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Objective: Epidemiological reports have indicated a correlation between the increasing of bisphenol A (BPA) levels in the environment and the 
incidence of hepatotoxicity. The present study aimed to evaluate the protective effect of quercetin on oxidative stress, inflammatory markers, 
apoptotic and antiapoptotic markers in the liver tissue of the bisphenol A treated rats.  

Methods: Forty-eight male Wistar rats were divided into six groups; Group(1): Negative control group (Con), Group(2): Corn oil control group 
orally administered 1 ml of corn oil/rat daily for two months (Corn), Group(3): Olive oil control group orally administered 1 ml olive oil/rat daily 
for two months (Olive), Group(4): Quercetin (Qu) control group orally received Qu dissolved in olive oil (50 mg/kg b. wt.) daily for two months 
(Qu). Group(5): Positive control group orally received Bisphenol A (BPA) dissolved in corn oil in a dose of 50 mg/kg b. wt. daily for two months 
(BPA), Group(6): Quercetin treated group orally administered 50 mg/kg b. wt. of BPA and treated with Qu (50 mg/kg b. wt. Orally) daily for two 
months (BPA+Qu).  

Results: BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and glutathione-S-
transferase activity associated with significant decrease in glutathione peroxidase activity in the liver tissue. Moreover, BPA caused an up regulation 
in the values of liver function enzymes. Also, BPA produced a significant elevation in the hepatic Interleuckin-6 (IL-6) and caspase-3 levels with a 
significant decline in antiapoptotic protein B-cell lymphoma 2 (Bcl2) level in liver tissue. Quercetin significantly attenuated the BPA-evoked liver 
oxidative stress and modulated the activities of liver function enzymes. In addition, treatment of quercetin with BPA resulted in an improvement of 
IL-6 and caspase-3 levels associated with a significant increase in hepatic protein Bcl2 expression.  

Conclusion: These data suggest that quercetin protects rat liver from BPA-induced oxidative stress, probably via its antioxidant activity, anti-
inflammatory and antiapoptotic effects. So, Quercetin is a promising pharmacological agent for preventing the potential hepatotoxicity of BPA 
following occupational or environmental exposures. 
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INTRODUCTION 

Bisphenol A (BPA 2, 2-bis (4-hydroxyphenyl) propane), a xeno-
estrogen, is an important monomer of polycarbonate plastics and a 
constituent of epoxy and polystyrene resins [1]. It is commonly used 
to line metal cans, water pipes, baby bottles, drinking cups [2, 3], 
dental sealants [4] and many other household appliances [5]. 
Studies have shown that for incomplete polymerization and for 
degradation of the polymer, bisphenol A can leach out from food and 
beverage containers [6]. Bisphenol A has been found not only in 
environmental samples, including air, water, sewage sludge, soil, and 
dust but also in specimens of human body fluids, such as plasma, 
umbilical cord blood, placental tissue, amniotic fluid, follicular fluid, 
and breast milk [7]. Due to the widespread use and building 
toxicological database, a need arises to investigate the mechanism of 
bisphenol A-induced toxicity. Studies showed that Bisphenol A 
causes adverse effects on the brain, reproductive system, and liver 
by forming reactive oxygen species (ROS) [8]. Reactive oxygen 
species (ROS) are cytotoxic agents causing oxidative damage by 
attacking the cell membrane and DNA [9]. ROS are scavenged by the 
endogenous antioxidant defense system, including superoxide 
dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in 
cells [10, 11]. BPA could induce liver damage, affecting oxidant/ 
antioxidant balance in rat liver [12].  

Antioxidants are scavengers by preventing cell and tissue that could 
be expected to result in cellular damage and disease [13]. Herbal 
medicines derived from plants are being increasingly utilized to 
treat a wide variety of clinical diseases. Quercetin (3, 3′,4′,5,7-
pentahydroxyflavone) is a natural flavonoid, distributed in various 
fruits, vegetables, tea, red wine, and medicinal herbs [14]. Quercetin 
has been reported to have antioxidative capacity in vitro and in vivo 

[14]. Meanwhile, such antioxidative capacity of quercetin affords its 
protection of the brain, heart, liver, and other organs against the 
oxidative stress injury induced by ischemia–reperfusion, toxic 
compounds, or other factors [14]. 

The present study was undertaken to elucidate the antioxidant 
property of quercetin against Bisphenol A-induced hepatotoxicity in 
male Wistar rats along with the expression of lipid peroxidation, 
antioxidant enzymes, inflammatory, apoptotic and antiapoptotic 
markers in male rats.  

MATERIALS AND METHODS 

Chemicals and drugs 

Bisphenol A and quercetin were purchased from Sigma Chemical Co., 
USA. Corn oil and olive oil were purchased from a local market, 
Egypt. All other reagents and chemicals used for analysis met the 
quality criteria in accordance with international standards. 

Experimental design 

Animals and treatment 

All experiments involving animals and tissue samples were 
conducted in accordance with the principles and guidelines for the 
care and use of laboratory animals in the National Institute of Health 
(NIH) (USA). This study was approved by the Ethical Committee for 
animal experimentation, National Research Centre, Egypt. 

Forty-eight adult male albino rats of Wistar strain weighing 
130±10g at 90 d of age were enrolled in the present study. Animals 
were obtained from the Animal House Colony of the National 
Research Centre, Cairo, Egypt. Animals were housed throughout the 
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experiment (8 rats/cage) in polypropylene cages under specific 
pathogen-free (SPF) conditions with controlled illumination (12 h 
light/12 h dark cycle), relative humidity (30-50%) and temperature 
(18-22 P

o
PC). Animals were fed with standard laboratory rat diet and 

water provided ad libitum. Animals were allowed to adapt to their 
environment for two weeks before the commencement of the 
experiment. 

After the acclimatization period, the animals were randomly divided 
into six groups (n=8) and orally administrated daily for two months 
as: Group (1) (Con): rats served as normal control group. Group (2) 
(Corn): rats were inoculated orally with 1 ml corn oil. Group (3) 
(Olive): rats were administered orally with 1 ml olive oil. Group (4) 
(Qu): rats were administered orally with quercetin (50 mg/kg b. wt.) 
dissolved in olive oil [15]. Group (5) (BPA): rats were inoculated 
orally with Bisphenol A (50 mg/kg b. wt.) dissolved in corn oil [16]. 
Group (6) (BPA+Qu): rats were inoculated orally with BPA (50 
mg/kg b. wt.) dissolved in corn oil and treated with QU (50 mg/kg b. 
wt.) dissolved in olive oil.  

Sample collection 

At the end of experimental period, orbital blood samples were 
obtained from the retro-orbital venous pleux using micro capillaries. 
The blood samples were collected in clean, dry centrifuge tubes and 
allowed to clot to obtain sera. Serum samples were separated by 
centrifugation at 1800 xg for 10 min at 4 °C. Aliquots of serum 
samples were frozen and stored at-20 °C pending further analysis. 
Following blood collections, animals were sacrificed by cervical 
dislocation, and a midline abdominal incision was performed, and 
whole liver of each animal was rapidly dissected out, thoroughly 
washed with ice-cold isotonic saline, blotted dry and then weighed. 
After that, the liver was immediately homogenized to give 10% 
(w/v) homogenate in ice-cold medium containing phosphate buffer 
(pH 7.4). The homogenate was centrifuged at 1800 xg for 10 min at 
4 P

o
PC. The supernatant (10%) was separated and stored at-20 P

o
PC for 

determination of different biochemical determinations. 

Biochemical determinations 

Serum alanine aminotransferase (ALT) and aspartate amino-
transferase (AST) activity was determined by a colorimetric method 

using Salucea kit (Netherlands) according to the method described 
by Young [17]. Hepatic malondialdehyde (MDA), glutathione-S-
Transferase (GST) and glutathione peroxidase (GPx) contents 
were determined by colorimetric methods using Bio diagnostic kit 
(Egypt) following the methods of Satoh [18], Habig and Jakoby 
[19] and Peglia and Valentine [20], respectively. Interleuckin-6 
(IL-6) and Caspase-3 were estimated using ELISA technique using 
a kit purchased from Uscn life science Inc., USA. B-cell lymphoma 2 
(Bcl2) determined by using ELISA technique using a kit purchased 
from Glory Science Co., Ltd, USA, according to manufacturer's 
instruction.  

Statistical analysis 

All results of the present study were expressed as mean±S. E. of the 
mean. The statistical Package for the Social Sciences (SPSS) program, 
version 14.0 was used to compare the significance between each two 
groups. The difference was considered significant when P ˂0.05. 
Percentage difference representing the percent of variation with 
respect to the corresponding control group was calculated according 
to the following formula:  

 

RESULTS 

The data illustrated in table 1 represent the effect of BPA and its 
treatment with quercetin on MDA level and the activities of 
antioxidant enzymes in liver tissue of rats. The results revealed that 
hepatic malondialdehyde (MDA) content and GST activity displayed 
significant increase (P<0.05) in BPA group (257.57% and 27.61%, 
respectively) versus the normal control group. In the contrary, 
treatment of BPA group with Qu reverted this increase as indicated 
by the significant drop (P<0.05) in hepatic MDA and GST (-37.51% 
and-16.06) contents as compared with BPA group. Meanwhile, 
hepatic GPx activity in BPA group showed significantly (P<0.05) 
decline (-22.39%) as compared to the control group. On the other 
hand, the treatment of BPA group of Qu recorded significant 
(P<0.05) elevation (26.05%) in the activity of GPx as compared to 
the BPA group. 

 

Table 1: Effect of quercetin on hepatic MDA level and antioxidant enzymes activities of rats treated with BPA 

 Groups  
parameters 

Con group Corn group Olive group Qu group BPA group BPA+QU group 

MDA 
(nmol/mg protein) 

32.88±0.66 38.73±0.84 41.95±0.55 32.38±0.23 117.57±3.15P

a
P 257.57% 73.46±0.30P

b 
-37.51% 

GST 
(U/g tissue) 

6.88±0.71 6.91±0.22 6.90±0.30 6.50±0.87 8.78±0.24P

a
P  

27.61% 
7.37±0.12P

b
P  

-16.06% 
GPx 
(U/g tissue) 

9803.56±106.86 9506.46±181.10 9024.67±79.59 9136.83±128.20 7600.08±161.23P

a 
-22.39% 

9590.50±311.70P

b 
26.05% 

Data were represented as mean±S.E. of 8 rats/group, a: Significant change at P>0.05 in comparison with normal control group, b: Significant change 
at P>0.05 in comparison with BPA group. 

 

Table 2: Effect of quercetin on liver functions of rats treated with BPA 

 Groups 
Parameters 

Con group Corn group Olive group Qu group BPA group BPA+QU group 

ALT 
(U/l) 

12.50±0.26 14.12±0.39 
 

13.62±0.37 14.00±1.10 26.12±0.74P

a 

108.96% 
16.87±0.51P

b 
-35.41% 

AST 
(U/l) 

97.57±1.29 107.76±2.14 106.25±1.76 109.11±2.79 144.37±2.51P

a 
47.96% 

123.51±4.10P

b 

-14.44% 

Data were represented as mean±S. E of 8 rats/group, a: Significant change at P>0.05 in comparison with normal control group, b: Significant change 
at P>0.05 in comparison with BPA group. 

 

The results in table 2 showed the effect of BPA and treatment with 
quercetin on liver functions of Wistar rats. In comparison with a 
normal control group, there was a significant increase (P<0.05) in 
the activity of serum ALT (108.96%) and AST (47.96%) in group 

inducted with BPA. On the other hand, the treatment of BPA group 
with Qu produced a significant reduction (P<0.05) in the activities of 
serum ALT and AST (-35.41% and-14.44%respectively) as 
compared to BPA group.  

http://scialert.net/fulltext/?doi=ajft.2012.622.632&org=10#t3�


Zaazaa et al. 
Int J Pharm Pharm Sci, Vol 8, Issue 7, 306-310 

308 

The data illustrated in table 3 revealed that hepatic IL-6 and caspase 3 
levels showed a significant increase (P<0.05) in BPA group (100.67% 
and 164.51%, respectively) compared with normal control group.  

However, treatment of BPA group with Qu exerted a significant 
decrease (P<0.05) in hepatic IL-6 and caspase 3 levels (-38.30% 

and-32.85%, respectively) versus BPA group (table 3). In 
contrast, the hepatic Bcl2 recorded significant (P<0.05) decrease 
(-79.3%) with BPA group as respect to control group. On the 
other side, the treatment of BPA group with Qu led to significant 
increment (P<0.05) in Bcl2 (119.71%) as compared to BPA 
group. 

 

Table 3: Effect of quercetin on hepatic IL-6, caspase 3 and Bcl2 levels of rats treated with BPA 

 Groups 
Parameters 

Con group Corn group Olive group Qu group BPA group BPA+QU group 

IL-6 
(Pg/mg protein) 

62.64±4.07 66.22±2.63  67.30±6.97 60.14±0.99 125.70±11.13P

a 

100.67% 
77.55±3.35 P

b
P 38.30% 

Caspase 3 
(ng/mg protein) 

4.96±0.27 6.02±0.35 4.98±0.59 3.96±0.17 13.12±1.7P

a 

164.51% 
8.81±0.45P

b 
-32.85% 

Bcl2 
(ng/mg protein) 

5.91±0.13 4.51±0.21 6.58±0.83 4.51±0.1 1.42±0.21P

a
P  

-79.3% 
3.12±0.23P

b
P 119.71% 

Data were represented as mean±S. E of 8 rats/group., a: Significant change at P>0.05 in comparison with normal control group, b: Significant change 
at P>0.05 in comparison with BPA group. 

 

DISSCUSION 

Liver toxicity is still a major problem for clinicians, pharmaceutical 
companies, and regulators [21, 22]. Hence, the goal of this work is to 
evaluate the potential effect of Qu against BPA-induced 
hepatotoxicity. The present study recorded that treatment with BPA 
significantly increased liver MDA value and GST activity whereas 
showed a significant decrease in GPx activity as compared to the 
normal control group. The increased MDA level and GST activity, 
besides, the decreased GPx activity indicated an increasing in the 
generation of ROS, which causes lipid peroxidation in the liver [23]. 
Korkmaz et al. [12] showed an increase in MDA level in the liver of 
rats exposed to BPA. Similarly, previous studies show increased in 
the MDA levels in the brain, testes, and kidneys of male rats exposed 
to BPA dose [12, 24]. GST protects cells or tissues against oxidative 
stress and damage by detoxifying various toxic substrates derived 
from cellular oxidative processes [25]. A number of compounds lead 
to induce activity and expressions of GST isoenzymes [26]. It has 
been reported that increased GST activity and upregulated GST-Π 
expression correlate with increased oxidative stress and apoptosis 
in breast cancer [27]. Hassan et al. [28] suggested that high dose of 
BPA not only increases the free radical formation but also decreases 
its ability to detoxify reactive oxygen species. The formation of 
superoxide radicals together with nitric oxide (NO) might form 
peroxynitrite that induced by high doses of BPA and causes tissue 
damage leading to an increase in the levels of MDA and NO. 
Moreover, the present results are consistent with the previous study 
of Hassan et al. [28] who reported that GSH level is important for 
GPx activity, which requires GSH as a cofactor, and the elevation of 
GSH level increases the activity of GPx. So, it has been suggested that 
BPA exposure produces ROS by inhibiting antioxidant enzymes [29]. 

The treatment of BPA group with Qu showed a significant reduction 
in the hepatic level of MDA and GST activity associated with 
significant improvement in the values of the antioxidant enzyme 
(GPx) versus to the normal control group. Quercetin, which behaves 
as a powerful antioxidant and free radical scavenger, can decrease 
MDA level induced by many hepatotoxins in rat liver [30]. This may 
be explained by its higher diffusion into the membranes allowing it 
to scavenge free radicals at several sites throughout the lipid bilayer 
[31]. The present findings suggest that quercetin could be at least 
partly attenuate oxidative stress by decreasing the lipid peroxide 
level in BPA-treated rat liver. Moreover, this result is in agreement 
with several studies on hepatocytes exposure to oxidants [32, 33]. It 
was pointed out that quercetin could improve the antioxidant 
potentials in a cell by enhancing hepatic Mn-superoxide dismutase, 
Cu/Zn-superoxide dismutase, catalase and GPx mRNA expression 
[34, 35]. These findings indicated that quercetin could enhance the 
expression of antioxidant enzymes in the liver.  

The present study revealed that both AST and ALT recorded 
significant increase over control values in rats treated daily with 
BPA. These results are consistent with those of Korkmaz et al. [12] 

who reported a significant increase in ALT and AST activities in rats 
treated with 25 mg/kg BPA for 50 d. When the liver hepatocytes are 
damaged, these enzymes are released into the blood where the 
significant increase in AST and ALT activities indicates the damage 
to the cytosol and also to mitochondria [36]. Therefore, it could be 
suggested that the oxidative stress induced by BPA in the present 
study may mediate the disturbance in hepatic function which is 
reflected by the increase in ALT and AST. On the other hand, the 
treatment of BPA group with Qu caused significant depletion in the 
activity of liver enzymes ALT and AST. The ability of the 
hepatoprotective agent to reduce the injurious effect or to preserve 
the physiological normal hepatic function which has been disturbed 
by hepatotoxin is an index of its protective effect. The lowering of 
enzymes levels is a definite indication of hepatoprotective action of 
quercetin. It is also known to reduce toxicant-induced liver damage 
[37].  

Moreover, an increase in the level of IL-6 was noted following BPA 
treatment. Although ROS can increase proinflammatory cytokines 
[38], proinflammatory cytokines themselves can induce oxidative 
stress [39]. The expression of increase IL-6 and MDA contents after 
BPA injection suggested that IL-6 might have a pathogenic role in 
BPA-induced ROS generation. On the other hand, present data 
recorded significant depletion in the hepatic level of IL-6 in BPA 
group treated with Qu. This could be contributed to the anti-
inflammatory effect of quercetin structurally similar flavonoids on 
the liver, via mechanisms likely to involve blockade of NF-κB 
activation. 

Increasing attention is concentrated on alternative signaling 
pathways leading to cell death including necrosis, autophagy, and 
mitotic catastrophe [40]. The accomplishment of apoptosis is 
mediated by caspases, which constitute a family of aspartate-specific 
cysteine proteases that cleave their substrate and then activate 
caspases cascade [41]. The current data revealed that exposure of 
rats to BPA was found to upregulate caspase 3 level in liver tissue of 
rats as compared to the normal control group. This effect may be 
because caspases are part of a highly conserved protein family that 
is central to the apoptotic pathway. Caspases are proteases activated 
after a cell has received a signal instructing it to undergo apoptosis. 
The key components that the caspases break down include DNA 
repair enzymes and structural proteins of the cytoskeleton. Caspases 
can also activate other enzymes that degrade other parts of the 
cellular machinery by cleaving an inhibitory sequence on these 
enzymes. There is a loss of nuclear membrane integrity after 
disruption [42].  

The Bcl-2 family of proteins, containing both pro-apoptotic and anti-
apoptotic members, is known to regulate mitochondrial-mediated 
apoptosis [43]. Bcl-2, prevent the release of apoptogenic molecules 
from the intermembrane space of mitochondria [44]. Mitochondria 
may be one of the most important locations for apoptosis [45], 
which has a close relationship with the levels of Bcl-2 [46]. The 
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current data has shown that the expression of Bcl-2 was dropped in 
BPA group in comparison to the normal control group. It is thought 
that BPA may cause a reduction in the Bcl-2 level and activates 
caspase-3. An earlier study showed that BPA-induced germ and 
Sertoli cell apoptosis through the mitochondrial apoptotic pathway 
and through the Fas/Fas L signaling pathway [47-49]. Moreover, 
BPA could foster increased DNA damage, and genotoxicity is by the 
inhibition of cellular antioxidant activity and increase the oxidative 
stress [50, 51]. It suggested that BPA can diminish the expression of 
Bcl-2. Also, cells are susceptible to oxidative stress-induced 
apoptosis when levels of intracellular antioxidants are down-
regulated. GSH-Px is important antioxidant defenses. In the present 
study, the activity of GSH-Px decreased significantly when exposed 
to BPA, therefore, this may be the underlying another mechanism by 
which BPA can cause apoptosis. 

On the other hand, the present data recorded a significant decrease 
in the hepatic level of caspase 3 and a significant increase in hepatic 
Bcl2 level in the group of BPA treated with Qu as compared to the 
BPA group. Induction of direct liver cellular damage, ROS and 
oxidative stress are known as apoptosis triggers and modulators 
[52]. ROS-induced apoptosis requires the participation of other cell 
death signaling pathways, including JNK which regulates the 
expression of various apoptosis proteins implicated in 
hepatotoxicity [52, 53]. The mechanism of JNK-dependent apoptosis 
has been suggested to involve activation of caspase 3 via 
phosphorylation of Bcl-2 family proteins [54]. Previous studies 
indicated that quercetin was able to attenuate the toxicant-induced 
apoptosis by the inhibition of JNK activation [55, 56]. Also, same 
studies indicated that quercetin can prevent apoptosis by altering 
the expression of Bax, Bcl-2 and caspase 3 [55, 57]. So, the present 
study suggested that quercetin significantly attenuated the 
upregulation of Bax and cleaved caspase 3 expression in BPA treated 
rats. Furthermore, quercetin markedly prevented the 
downregulation of hepatic Bcl-2 expression in BPA treated rat. 

CONCLUSION  

In conclusion, the present study indicate that quercetin has a 
protective effect against BPA-induced hepatotoxicity in rats through 
attenuating lipid peroxidation, renewing the activities of antioxidant 
enzymes, ameliorating the activity of liver function enzymes, 
improving the IL-6 level and alleviating apoptosis by modulating 
caspase-3 and Bcl-2 expression. 
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