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ABSTRACT 

Objective: The present study was undertaken to discover Single Nucleotide Polymorphisms (SNPs) in bread wheat with reference to leaf rust 
disease. 

Methods: Next Generation Sequencing platform sequencing by Oligonucleotide Ligation and Detection (SOLiD) was performed on four Serial 
Analysis of Gene Expression (SAGE) libraries of mock and leaf rust pathogen infected near-isogenic lines HD2329±Lr28. CLC Genomics Workbench 
was used for computational prediction of the SNPs. The predicted SNPs were filtered by Blast using wheat Expressed Sequence Tags (ESTs). The 
SNP-containing ESTs were annotated, and their expression was checked in response to inoculation of Puccinia triticina. 

Results: We have identified 191 SNPs from data obtained through the These EST-SNPs participated in various physiological and biochemical 
processes that influence important traits, such as cell rescue, defense and disease resistance. 

Conclusion: Very little knowledge exists on SNPs in hexaploid bread wheat (Triticum aestivum L.) because of the difficulty to discern the true 
polymorphic loci. This study has revealed fast and costs effective approach for SNP discovery which will be helpful in molecular breeding with 
important agronomic traits. 
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INTRODUCTION 

There has been a recent inclination for single nucleotide 
polymorphism (SNP)-based markers to substitute other marker 
types in many crop species, because, in general, SNPs are 
widespread in the genome, both within and between genes. Major 
resources have been devoted for the development of SNPs as high-
throughput markers and also to SNP discovery. SNP discovery 
projects have been undertaken in many plant species, such as 
Arabidopsis thaliana, barley, maize, rice, soybean and wheat [1-8]. In 
species for which no reference sequence is available, large-scale SNP 
discovery in genes is generally dependent on sequence information 
in libraries of expressed sequence tags (ESTs) for either direct 
discovery or as the source for primer design for re-sequencing [9-
12]. ESTs have been mined as a source of SNPs in sugarcane [13-15]. 
The cost of cloning and conventional sequencing of more than a 
modest number of products is excessive for most budgets. In 
addition, haplotype assignment can be confusing with this system as 
a result of bacterial host mismatch repair of cloned PCR 
heteroduplexes–which can produce apparent ‘recombinant’ 
haplotypes [16]. Although SNPs can be typed rapidly when 
identified, the process of genome-wide SNP discovery has been 
performed for several crop species.  

Bread wheat (Triticum aestivum L.) is a key cereal crop in both 
human and animal nutrition. Its huge genome consists of three 
highly related sub-genomes (homoeologous A, B and D genomes), 
originated from two independent polyploidization events [17] 
(Dubcovsky and Dvorak, 2007). The first event involved the 
hybridization of two diploid progenitors, an ancestor of Triticum 
urartu (AA genome) and a species related to Aegilops speltoides (BB 
genome), which resulted in wild and cultivated allotetraploid wheats 
(T. turgidum ssp.). The second hybridization occurred between 
ancestors of the diploid Aegilops tauschii var. strangulate (DD 
genome) and an allotetraploid wheat resulting in allohexaploid. 
Some studies have been carried out on nucleotide diversity in wheat 
because of the presence of two or three homoeologous genome 
copies. Cultivated wheat species are reported to have a low level of 

nucleotide diversity due to their evolutionary history and several 
demographic bottlenecks and selective events [8, 18]. Therefore, to 
date, SNP discovery in these species has been a tough task.  

Fungal pathogens are a major cause of yield losses in wheat and 
resistance to fungal pathogens is fundamental to global food 
security. To reduce crop losses, wheat production is dependent on 
new and improved cultivars with resistance to the rapidly evolving 
biotrophic wheat rust diseases, such as leaf rust (Puccinia triticina), 
stripe rust (Puccinia striiformis) and stem rust (Puccinia graminis). 
Introducing genes from related species could enhance resistance to 
pests and diseases, and increase crop yields. Development in next-
generation sequencing (NGS) and the unraveling of wheat’s complex 
genome will help the process to identify molecular markers for 
useful wheat characteristics, to improve this development of novel 
wheat cultivars. 

To identify new gene-associated SNPs, we have taken advantage of 
the rapidly developing databases of partial cDNA sequences, ESTs 
that have been generated from many different tissues of the wheat 
plant. Because the majority of these libraries have been obtained 
from different individuals, assembly of overlapping sequences for 
the same region can lead to the identification of new SNPs. In this 
report, we describe a strategy for rapidly identifying candidate SNPs 
within ESTs. We attempted to utilize SNPs discovered from ESTs in 
the public domain for the development of markers. 

MATERIALS AND METHODS 

Plant materials, sequencing and library construction 

Near-isogenic lines (NILs) of Triticum aestivum cultivar, HD2329 
was used in this study. One of the NILs has Lr28 gene and absent in 
the other which makes it resistant and susceptible respectively. The 
seeds were grown to single leaf stage in the growth chamber 
available at National Phytotron Facility, IARI, New Delhi. Leaf rust 
pathogen Puccinia triticina pathotype 77-5 was used in the study. 
The pathogen inoculum was prepared by addition urediospores of P. 
triticina pathotype 77-5 and talcum powder (ratio 1:1) and applied 
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smoothly on leaves of HD2329+Lr28 and HD2329 with the help of a 
paint brush. Another set of plants belonging to HD2329+Lr28 and 
HD2329 were inoculated with only talcum powder and used as a 
control. After inoculation, misting of the growth chamber was 
performed and plants were placed under a high humidity of>90% 
for 24 h post inoculation (hpi) in the dark to facilitate infection [19].  

SAGE libraries were prepared for four selected wheat lines; 
susceptible HD2329 mock, susceptible HD2329 infected, resistant 
HD2329+Lr28 mock and resistant HD2329+Lr28 infected using 
SOLiD SAGE kit (Applied Biosystems, CA, USA) following 
recommended protocol. S-M library corresponds to reads generated 
from susceptible wheat variety HD2329 after mock inoculation. S-PI 
library stands for reads generated after challenging HD2329 with 
leaf rust pathogen. R-M library is formed after the resistant variety 
of wheat HD2329+Lr28 is mock inoculated. R-PI is created after the 
resistant variety HD2329+Lr28 is challenged with Puccinia triticina.  

In silico discovery of SNPs 

Computational methods nowadays dominate in SNP discovery. We 
used CLC Genomics Workbench 6.5.1 (CLC bio, Aarhus, Denmark; 
http://www. clcbio. com) for predicting the SNPs. The SOLiD SAGE 
reads were first trimmed for quality and adapter. The reads of each 
library were first screened for a minimum length of 20 bases and a 
minimum Phred quality score of 20. The sequences were then 
trimmed of poly A/Ts. This step eliminates low-quality portions of 
reads, thereafter, Puccinia sequences were discarded by allowing the 
reads to map against the transcripts of Puccinia available at The 
Broad Institute (www.broadinstitute.org/annotation/genome/ 
puccinia_group/Multi Home.html). The reads that did not match to 
Puccinia transcripts were considered for the discovery of SNPs. The 
trimmed and Puccinia removed reads from each of the four libraries 
were mapped separately to the reference available at Gene Indices 
(ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Triticum_aestivu
m/). Two mapping strategies were used to generate and compare 
the output of SNP numbers and frequencies (table 1). The first 
strategy involved mapping the sequence reads to the reference at 
default parameter i.e. using a length fraction of 0.5, the similarity of 
0.8 and random handling of non-specific reads. In other words, 50% 

of the reads must have 80% identity to the reference. Insertion, 
deletion and mismatch costs were 3, 3, and 2 respectively. The 
second strategy involved mapping the sequence reads to the 
reference at stringent parameters with length fraction 0.9, the 
similarity of 0.9 and non-specific mapping of reads were ignored i.e. 
gene paralogues were minimized by setting the match mode to 
‘ignore’ which meant that those reads aligning to more than one 
position would be ignored or discarded. Putative SNPs from both the 
relaxed and stringent mapping were called using the Quality based 
variant detection tool in CLC Genomics Workbench, which is based 
on the Neighbourhood Quality Standard (NQS) algorithm [20]. This 
algorithm uses a combination of quality filters and user-specified 
thresholds for coverage and frequency to find SNPs. We required an 
11-base NQS 20/20, i.e. Phred score of 20 or higher at the central base, 
and a window of five bases on each side, with a quality score of 20. The 
minimum variant frequency was set to 0.5% in order to capture a 
large dataset including rare alleles while the minimum coverage was 
set to 20x for sensitivity [21]. The resulting SNPs and allele 
frequencies were tabulated automatically and exported to Excel. 
 

Table 1: Parameters used for default and stringent mapping 

Parameter Default  Stringent 
Masking No No 
Mismatch cost 2 2 
Deletion cost 3 3 
Length fraction 0.5 0.9 
Similarity 0.8 0.9 
Colorspace alignment Yes Yes 
Non-specific matches Random Ignored 
 

To reduce the rates for misidentification of SNPs or removal of 
uninformative SNPs, post-processing of the predicted SNP data was 
done. BLAST was performed considering the consensus sequence 
which comprises of predicted SNPs as a query against NCBI wheat 
EST database. The best hit which do not contain any gaps or Ns and 
has mismatch only at the position of predicted SNPs was selected for 
further processing (fig. 1). 

  

 

Fig. 1: Pipeline for SNP discovery 
 

Annotation of the sequence showing predicted polymorphism  

To know the function and pathway in which the particular EST is 
involved, the sequences were annotated using the software 
Blast2GO [22]. Functional annotations of polymorphic SNPs 
containing sequences were analysed for gene content by blastx to 
non-redundant protein database at NCBI using an e-value cutoff of 
1e-5. The blastx search results were filtered to remove non-specific 

homologies using the following filtration: (1) for each EST sequence 
with a gene hit results were filtered to keep only the hits with the 
minimal e-value score; and (2) EST sequence with several hits 
having the same minimal e-value were further filtered to keep the 
hits with the highest HSP (high-scoring segment pairs; calculated as 
the product of % identity multiplied by alignment length). Only SNP-
containing EST sequences having a gene hit were used for further 
analysis. 
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Localization of SNP-containing ESTs in T. aestivum genome 

While no complete physical map has yet been developed for T. 
aestivum, chromosome and chromosome arm-specific scaffolds are 
available at the IWGSC Survey Sequence repository (http://wheat-
urgi. versailles. inra. fr/Seq-Repository/) with access to blasting and 
download. Thus, it was interesting to determine the genomic 
distribution of T. aestivum, SNP-containing sequences, at 
chromosomes, sub-genomes and arms levels. To this aim, DNA 
sequences of gene models identified in this study were individually 
used to perform Blastn against the full set of scaffolds from the 
IWGSC’s wheat chromosome survey sequence (CSS), including 
repeats.  

Expression studies of the SNP predicted sequences  

In order to identify the role of SNP-containing sequences, expression 
analysis was performed based on the abundance of reads within a 
particular library. For expression study, reads from four SOLiD SAGE 
libraries, as mentioned earlier was used to decipher the expression 
profiles of predicted SNP-containing sequences when challenged 
with the leaf rust pathogen P. triticina to the mock-inoculated 
controls. Comparison of S-M vs. S-PI, R-M vs. R-PI and S-PI vs. R-PI, 
were performed by taking sequences containing SNPs as a reference. 
High-quality reads from the individual library were mapped to the 
reference to obtain total mapped reads. Analysis of gene expression 
between the above-mentioned pair of libraries were assessed using 
Reads Per Kilobase of transcript per Million mapped reads (RPKM) 
were read counts of a particular contig explain its expression. RPKM, 
allows measuring even sparsely expressed transcripts considering 

read count as fundamental. The contigs were considered to be 
differentially expressed when the average fold change was abs ≤ 2; 
the other criteria was false discovery rate (FDR) p-value 
correction<0.05 and the difference in absolute value>10 [23]. All 
post-trimmed reads were mapped to de novo assembled contigs 
using the minimum read length fraction set at 0.9, minimum 
similarity set at 0.95, and up to 10 non-specific matches were 
allowed. RPKM was selected as expression value. Uniquely mapped 
reads were assigned to each contig, allowing a maximum of two 
mismatches. Statistical difference in expression level was calculated 
using Kal’s test at CLC Genomics Workbench 6.5.1 [24].  

RESULTS 

Creation of sequencing libraries and mapping of sequencing 
reads 

Using SOLiD sequencing, we generated four high-quality libraries of 
SOLiD-SAGE reads namely, S-M, S-PI, R-M and R-PI. In total, 1, 65, 
767, 777 reads with an average length of 34.85 bases were 
generated (table 2). After trimming low-quality reads, poly A/T tails, 
adaptor sequences, about 38, 180, 500 reads with an average length 
of 28.9 were retained (table 2). The library S-PI and R-PI contain 
Puccinia reads so, it was necessary to remove these reads. The 
Puccinia reads were removed by mapping it to the reference 
available at The Broad Institute. The libraries of S-PI and R-PI, as 
expected, mapped more i.e. 20.9% and 19.4% to Puccinia specific 
reads (table 3). After removing Puccinia specific reads about 
30,894,161 reads were retained for subsequent analysis and SNP 
discovery.

  

Table 2: Summary of trimming report of SOLiD SAGE libraries 

Library 
name 

No. of 
reads 

Average length 
(nucleotide) 

No. of reads after 
trim 

Percentage trimmed 
(%) 

Average length of read after 
trim 

S-M 48,782,889  34.9  12,247,862  25.11  29.5  
S-PI 37,756,220  34.9  12,924,486  34.23  29.2  
R-M 40,118,870  34.8  6,780,611  16.90  28.6  
R-PI 39,109,798  34.8  6,227,541  15.92  28.3  
 

Table 3: Summary of mapping with Puccinia transcripts 

Library 
name 

Total no. of reads after 
trim 

No. of reads mapped Puccinia 
transcripts 

Percentage of reads mapped to Puccinia 
transcripts 

S-M 12,247,862  2,154,694 17.6 
S-PI  12,924,486  2,70,1621 20.9 
R-M  6,780,611   1,232,943 18.2 
R-PI 6,227,541   1,208,473 19.4 
 

The main aim of this study was to discover SNPs in a large number 
of wheat genes. For this purpose two mapping strategies were 
employed. The first mapping was performed at relaxed 
parameters and the second at stringent parameters (table 4 and 
5). About 23,981,205 reads are mapped with the reference. The S-
PI library has the maximum percentage of mapped reads (table 4). 

In stringent parameters as expected only 7,124,560 numbers of 
reads mapped to the reference (table 5). As the majority of the 
reads were based on the expressed part of the genome, the 
Transcript Assembly available at Gene Indices was selected as the 
main reference for aligning the SOLiD SAGE reads from the four 
libraries for SNP detection. 

 

Table 4: Mapping report using default parameter 

Library 
name 

No. of reads after removing Puccinia 
matched reads 

No. of reads mapped to wheat 
transcript assembly 

Percentage of reads mapped to wheat 
transcript assembly 

S-M 10,093,168 7,781,231 77.1 
S-PI 10,225,473 8,014,500 78.4 
R-M 5,551,126 4,092,737 73.7 
R-PI 5,024,394 4,092,737 74.15 
 

Table 5: Mapping report using stringent parameter 

Library 
name 

No. of reads after removing Puccinia 
matched reads 

No. of reads mapped to wheat 
transcript assembly 

Percentage of reads mapped to wheat 
transcript assembly 

S-M 10,093,168 2,159,634 21.40 
S-PI 10,225,473 2,302,277 22.52 
R-M 5,551,126 1,376,298 24.79 
R-PI 5,024,394 1,286,351 25.60 
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Discovery of single nucleotide polymorphisms 

SNP discovery was carried out on the reads mapped to the transcript 
assembly of wheat sequence after depleting reads that matched to the 
chloroplast, mitochondrial or known repeat sequences. A pipeline 
developed is mentioned in fig. 1. The main focus was to find SNPs 
between the homologous loci (fig. 2). About 10,012 numbers of 
candidate SNPs were initially identified from the sequence alignments.  

 

Fig. 2: CLC Genomics workbench snapshot showing putative SNPs 

 

The default parameter predicted about 9428 SNPs and even with 
stringent parameters for SNP detection, 584 putative SNPs were 
detected (table 6). In S-PI library a maximum number of putative 
SNPs (3348) were identified. 

The sequences containing the putative SNPs were extracted. 
Uninformative SNPs or false SNPs were removed by BLAST filtering 
performed against wheat ESTs at NCBI. Each SNP-containing 
sequence was checked for no gaps, mismatch or N’s at either side of 
the SNPs and only those SNPs fulfilling these criteria were selected 
(fig. 3). After BLAST filtering 191 EST containing SNPs were 
selected. The number of SNPs remained in each library after blast 
filtering is shown in table 7. 

 

Table 6: Summary of SNPs detected in respective library 

Library 
name 

Default 
parameter  

Stringent 
parameter  

Total 

S-M  3065  180  3245 
S-PI  3162  186  3348 
R-M  1684  112  1796 
R-PI  1517  106  1623 
Total 9428  584 10,012 

 

Fig. 3: Blastn filtering for selecting putative SNPs 

 

Table 7: Summary of SNPs detected in respective library after 
BLAST filtering 

Library 
name 

Default 
parameter  

Stringent 
parameter  

Total 

S-M  29 26  55 
S-PI  38 19  57 
R-M  25 19  44 
R-PI  19 16  35 
Total 111  80 191 
 

Functional annotation of SNPs containing sequences 

The SNP-containing genes were identified by blastx search against 
the non-redundant protein database at NCBI and putative functional 
annotation were assigned based on homology. In total, 136 SNP-
containing sequences were putatively annotated. These genes 
encode proteins mainly participating in the biological processes of 
the biosynthetic process, response to stress and DNA metabolic 
process (fig. 4). In molecular function the most represented process 
was nucleotide binding, DNA binding and catalytic activity (fig. 5). In 
cellular component most of the sequences are localized on 
cytoplasm, plastid and mitochondrion (fig. 6).  

Homology distribution showed a maximum hit to Aegilops tauschii 
followed by Triticum urartu and Hordeum vulgare (fig. 7). 

 

Fig. 4: Distribution of GO terms in the biological process 
category 
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Fig. 5: Distribution of GO terms in the Molecular function category 
 

 

Fig. 6: Distribution of GO terms in the Cellular Component 
category 

 

 

Fig. 7: Ranking based on the number of hits matching SNPs 
containing sequences using Non-redundant protein database 

 

EST distribution in sub-chromosome arms of Triticum aestivum 

The chromosome arm specific distribution (fig. 8) showed 
chromosome 3B has the highest number of SNP-containing EST (15) 
followed by chromosome arm 4AL (14). On comparing the 
homologous groups of wheat chromosomes, group 7 had the 
greatest number of SNP-containing sequences (30). At the sub-
genome level, the distribution of SNP-containing genes was almost 

balanced, with sub-genomes A, B, and D containing 45, 45 and 36 
SNP-containing sequences respectively.  
 

 

Fig. 8: Distribution of SNPs containing ESTs across T. aestivum 
chromosomes and chromosome arms 

 

Expression study of the SNP-containing sequences 

To know the expression pattern of SNP-containing sequences in 
response to leaf rust infection, the SOLiD SAGE reads, mentioned 
earlier were used. The comparison was made between the reads of 
S-M vs. S-PI, R-M vs. R-PI and S-PI vs. R-PI. The SNP-containing 
sequences were taken as reference. On the comparison between S-M 
vs. S-PI, 71 sequences showed differential expression of which 60 
were unregulated in S-M and 11 sequences have more expression in 
S-PI. The unregulated sequence of S-PI has shown homology with 
Fructose-bisphosphate aldolase, E3 ubiquitin-protein ligase RLIM, 
Cyclin-D1-binding protein 1 FAMILY, heat shock factor A6, CBL-
interacting protein kinase 10 (table 8). Disease resistance protein 
RPM1 and a hypothetical protein (Armadillo-type fold) were 
expressed exclusively in S-PI.. 

Comparison between R-M vs. R-PI revealed 42 sequences to be 
differentially regulated of which 31 sequences are up regulated in R-
M and 11 are up regulated in R-PI. The up regulated sequence of R-
PI has shown homology with Fructose-bisphosphate aldolase, 
Peroxisomal membrane protein 2 and DEAD-box ATP-dependent 
RNA helicase 20 (table 9). Hypothetical protein F775_18732 and S-
norcoclaurine synthase were uniquely expressed in R-PI. 

Finally, on comparing S-PI vs. R-PI 82 sequences were found to be 
differentially expressed, of these 25 sequences have more expression 
in S-PI. In R-PI 57 sequences have more expression as compared to S-
PI. The up regulated sequence of R-PI has shown homology with 
ELAV-like protein 1, Beta-1,3-galactosyltransferase 15, WW domain-
containing oxidoreductase, Thioredoxin H-type, Disease resistance 
protein RPM1, Ubiquitin carboxyl-terminal hydrolase 12, Ring finger 
and transmembrane domain-containing protein 2, Defensin-like 
protein, Putative inactive receptor kinase, RNA polymerase Rpb7, 
Cryptochrome-1, Putative salt tolerance-like protein, Glutaredoxin-C1, 
DEAD-box ATP-dependent RNA helicase 20, Serine carboxypeptidase-
like 19, ATP-dependent RNA helicase dhx8, CBS domain-containing 
protein etc. (table 10). Ubiquitin carrier protein E2 was uniquely 
expressed in R-PI. List of up regulated annotated ESTs with fold 
change has been provided in table 11. It was observed that many of 
the highly up regulated genes were not annotated. 

 

Table 8: SNP-containing annotated ESTs and fold changes with higher expression in S-PI as compared to S-M 

SNP-containing EST Fold change Annotation 
BQ237017 36.24 Fructose-bisphosphate aldolase 
CD490585 3.04 E3 ubiquitin-protein ligase RLIM 
CD491095 3.41 Cyclin-D1-binding protein 1 FAMILY 
CJ555209 5.29 heat shock factor A6 
CJ564155 5.04 Not available 
CJ585290 ∞ Not available 
CJ600598 ∞ Disease resistance protein RPM1 
CJ714721 ∞ hypothetical protein, Armadillo-type fold 
CK163754 2.86 CBL-interacting protein kinase 10 
CO346053 2.01 Not available 
CO349287 2.03 Putative mediator of RNA polymerase II transcription subunit 6 

∞ stands for infinity 
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Table 9: SNP containing annotated ESTs and fold changes with higher expression in R-PI as compared to R-M 

SNP-containing EST Fold change Annotation 
BQ237017 2.42 Fructose-bisphosphate aldolase 
CJ632153 2.32 Not available 
CJ677583 ∞ hypothetical protein F775_18732 
CJ684250 ∞ Not available 
CJ717347 3.87 Peroxisomal membrane protein 2 
CJ725154 ∞ S-norcoclaurine synthase 
CJ731128 2.03 Not available 
CJ849990 ∞ Not available 
DR731556 2.5 DEAD-box ATP-dependent RNA helicase 20 
HX181880 2.39 Not available 
HX194755 2.9 Not available 

∞ stands for infinity 

 

DISCUSSION 

Identification of SNPs in crop plants has been a challenging 
endeavour, irrespective of whether the whole genome or 
transcriptome is surveyed for SNPs [25]. Currently, no whole 
genome reference sequence is publicly available for wheat due to 
the large genome size and complexity of the genome. We utilized 
next generation sequencing data to identify SNPs. The strategy 
involved read mapping to a Transcript Assembly available at Gene 
Indices and crosschecked against EST reference database. The SNP 
outputs were annotated, and expression analysis was performed. 
Our strategy was to reduce the likelihood of false positive SNP 
discovery by setting stringent SNP discovery parameters and post-
SNP discovery processing and minimize the possibility of false SNP 
identification from gene paralogues.  

Defining robust SNP calling software parameters and minimum 
acceptable coverage is vital [26]. SNPs had to be represented on at 
least two independent reads, with stringent quality scores both for 
the SNP itself and the surrounding window of bases. The high-
quality neighbourhood SNP scoring algorithm used in this study is 
very consistent for polymorphism calling and, where high coverage 
is present, very high specificity can be reached (<10 false positives 
per Mb) [21]. We chose a minimum base coverage of 20x for SNP 
calling as increasing minimum coverage to 25x and 30x was found 
by others to result in only modest gains in sensitivity, that is, the 

ability to detect a SNP [21]. When the stringency of the assembly 
parameters length fraction and similarity were increased from 0.5 
and 0.8 to 0.9 and 0.9 respectively, the SNP output was significantly 
changed. The possibility of these SNPs being false due to the 
alignment of gene paralogues cannot be discounted, however, and 
could be stringently screened for by discarding a sequence that 
contained more than one SNP [27]. 

To assign putative functions of SNPs, we performed blastx searches 
of corresponding EST sequences against the non-redundant protein 
database available at NCBI. Blastx search results made it possible to 
assign putative functions of EST sequences. Of these, some EST 
sequences showed higher expression in response to infection with 
Puccinia triticina.  

The greater part of these annotated contigs showed homology with 
plants and many of the top hits were from Aegilops tauschii whose 
genome sequence information is available [28]. SNPs in some 
important gene like Ubiquitin-related will be helpful in countering 
disease resistance as Ubiquitin-mediated protein modification 
contributes towards a defensive role in wheat against P. triticina 
[29]. This is particularly important since they could be considered as 
a valuable candidate gene for polymorphisms underlying important 
traits leading to the identification of resistance genes. However, 
these predictions were conducted using computational tools and 
functional data analyses are therefore needed to validate. 

 

Table 10: SNP-containing annotated ESTs and fold changes with higher expression in R-PI as compared to S-PI 

SNP-containing EST Fold change Annotation 
BJ220374 2.3 Not available 
BJ314338 5.48 hypothetical protein TRIUR3_09559 
CA744898 3.28 ELAV-like protein 1 
CJ509267 6.33 Beta-1,3-galactosyltransferase 15 
CJ511172 4.64 predicted protein 
CJ526779 2 Not available 
CJ536987 5.16 Not available 
CJ538458 ∞ Ubiquitin carrier protein E2  
CJ547191 2.88 WW domain-containing oxidoreductase 
CJ552019 2.95 hypothetical protein F775_31570 
CJ557944 5.23 Not available 
CJ576459 8.29 Not available 
CJ583250 3.68 Not available 
CJ583301 2.63 Not available 
CJ584805 6.67 Not available 
CJ600022 6.3 Thioredoxin H-type 
CJ600598 16 Disease resistance protein RPM1 
CJ608054 3.37 Not available 
CJ609740 4.7 hypothetical protein F775_10103 
CJ611385 4.67 Not available 
CJ615506 7.73 predicted protein 
CJ622247 101.34 Ubiquitin carboxyl-terminal hydrolase 12 
CJ632153 3.88 Not available 
CJ632301 4 Not available 
CJ653541 28.8 predicted protein 
CJ655821 5.33 Not available 
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CJ661752 2.89 Not available 
CJ665107 2.09 Ring finger and transmembrane domain-containing protein 2 
CJ670233 6.3 Defensin-like protein 
CJ676039 4.05 Not available 
CJ677583 5.33 hypothetical protein F775_18732 
CJ680257 2.75 Not available 
CJ681303 2.46 Putative inactive receptor kinase 
CJ685340 3.56 Not available 
CJ688850 3.56 Not available 
CJ706431 2.67 Not available 
CJ710387 6.47 RNA polymerase Rpb7 
CJ714199 4.62 Cryptochrome-1 
CJ725461 4 50S ribosomal protein L27 
CJ731128 18.67 Not available 
CJ848862 7.65 Putative salt tolerance-like protein 
CJ849990 ∞ Not available 
CJ884208 4.06 hypothetical protein TRIUR3_20989 
CJ907530 6.88 Glutaredoxin-C1 
CJ910160 4.8 Not available 
CK161193 2.01 Not available 
DR731556 7.87 DEAD-box ATP-dependent RNA helicase 20 
GH726620 13.33 Serine carboxypeptidase-like 19 
GH726775 ∞ predicted protein 
GH731418 2.4 Not available 
HX085954 11.26 ATP-dependent RNA helicase dhx8 
HX103789 3.96 uncharacterized protein 
HX103790 4.69 uncharacterized protein 
HX107602 9.86 CBS domain-containing protein 
HX167374 5.33 zinc finger CCCH domain-containing protein 
HX181880 2.22 Not available 
HX194755 64 Not available 

 ∞ stands for infinity 

 

Table 11: SNP-containing annotated ESTs and fold changes with higher expression in S-PI as compared to R-PI 

SNP-containing EST Fold change Annotation 
BQ170192 2.26 Not available 
BQ237017 21.56 Fructose-bisphosphate aldolase class-I 
CD490585 5.17 E3 ubiquitin-protein ligase RLIM 
CD491095 ∞ Cyclin-D1-binding protein 1 FAMILY 
CJ531178 ∞ Not available 
CJ532803 ∞ Not available 
CJ555209 3.94 heat shock factor A6 
CJ555694 ∞ Not available 
CJ563575 ∞ Not available 
CJ585290 ∞ Not available 
CJ622441 ∞ putative poly(A) polymerase 
CJ672790 ∞ Homeobox-leucine zipper protein ROC8 
CJ699321 ∞ hypothetical protein F775_01328 
CJ725154 7.69 S-norcoclaurine synthase 
CJ734830 3.89 Not available 
CJ807624 7.14 synbindin-like 
CJ917632 5.7 Ribulose bisphosphate carboxylase/oxygenase activase 
CK163754 13.31 CBL-interacting protein kinase 10 
CK192956 544.84 hypothetical protein TRIUR3_30972 
CK205634 23.59 Not available 
CO346053 ∞ Not available 
CO347122 ∞ Not available 
CO349287 8.27 Putative mediator of RNA polymerase II transcription subunit 6 
EF473215 25.5 Not available 
GR304906 3.06 Not available 

 

We have demonstrated an approach for the rapid identification and 
verification of SNP-based genetic markers using EST data sources. 
The use of EST sequence data for the identification of SNPs has many 
advantages that can be exploited to facilitate the development of 
highly complex genetic maps of wheat. One of the main advantages 
of using EST sources is that markers closely associated with, or 
directly in the coding region of genes, can be identified, thus 
maximizing the density of a map toward gene-associated markers. In 
addition to finding variants in new genes, it is also possible that this 

approach could identify a large number of sequence variants. 
Discovering SNP with reference to leaf rust which is one of the major 
threats to wheat production will be very beneficial. Since, 
computational approaches dominate SNP discovery methods due to 
the ever-increasing sequence information in public databases, CLC 
genomics Workbench was employed for predicting the SNPs. In 
order to ensure that the discovered SNP is a Mendelian locus, it has 
to be validated. The validation of a SNP marker is the process of 
designing an assay based on the discovered polymorphism and then 
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genotyping a panel of diverse germ plasm. Working with wheat is 
challenge where useful SNPs are only a small percentage of the total 
available polymorphisms. The present study will pitch light on the 
little-understood interaction of leaf rust with the wheat. 

CONCLUSION 

The SOLiD reads were processed, and the putative SNPs were 
discovered by CLC Genomics Workbench. The predicted SNPs were 
filtered individually by performing BLAST of the sequence 
containing the SNPs with wheat ESTs. After screening, 191 SNPs 
were finally selected out of 10,012 SNPs. All the 191 SNP-containing 
sequences were annotated using the Blast2GO. In the lack of a 
reference genome, EST resources represent an attractive approach 
for in silico SNP identification. The SNP discovery method and 
application system established in this study was fast and cost 
effective. 
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