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ABSTRACT 

Objective: Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) is a crucial nuclear hormone receptor, which modulates the transcriptional 
regulation of lipid and glucose homeostasis. It plays a crucial role in many of the metabolic and inflammatory systems. It is a key target for many of 
the anti-diabetic medications. Perturbation of PPARγ activity is also observed in many of the cancers involving colon, breast, gastric and lung. Thus, 
it is considered to be the hub molecule for targeting many of these cellular disorders. Seaweed metabolites have been well documented to be novel 
structural entities with a broad spectrum of pharmacological values. However, it is yet to be utilized for screening PPARγ agonists.  

Methods: In this study, virtual screening of PPARγ Ligand Binding Domain (LBD) was performed against the datasets from SeaWeed Metabolite 
Database (SWMD) using Schrodinger Glide High Throughput Virtual Screening module to identify potential PPARγ agonists. Further, the most 
potential lead was also subjected to molecular dynamics simulation to infer the stability of complex formation. 

Results: The results have revealed that bromophenolic compounds from the genus Avrainvillea to interact with documented key residues of LBD 
involved in agonist interactions. Many other metabolites from the genus Rhodomela, Leathesia, Bifurcaria, Osmundaria, Cymopolia also showed 
significant interactions with LBD of PPARγ.  

Conclusion: The insights from this study will pave the way for further exploration of lead compounds from seaweed metabolites targeting PPARγ. 
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INTRODUCTION 

PPARγ is a crucial molecule which actively modulates the 
transcriptional regulation of lipid and glucose homeostasis and is 
also reported to regulate the pathways involved in the 
differentiation of adipocytes [1, 2]. This protein harbors a large 
binding pocket, thereby allowing interaction of a diverse range of 
small molecules. The binding of small molecules to PPARγ binding 
pocket leads to conformational change in the Activation Function-2 
(AF-2) domain, which in turn recruits co-regulatory factors, thereby 
regulating gene transcription.  

This protein also exists in a hetero dimeric form in complex with 
retinoic X receptor alpha (RXRα), which forms an essential base for 
numerous PPARγ-DNA interactions [3]. PPARγ is a prominent 
molecular target for anti-diabetic medications like Thiazolidine-
diones (TZDs). It is also found to play a key role in many of the 
metabolic and inflammatory mechanisms. Dys regulation of PPARγ 
is also observed in many of the cancers involving colon, breast, 
gastric and lung. PPARγ agonists treated tumor cells were also 
shown to respond positively by adopting growth inhibition and 
apoptosis [4, 5]. Though numerous synthetic PPARγ agonists are 
available, the compounds of natural origin are highly preferred for 
safe therapeutic applications. Hence, biologically safe and potential 
agonists are essential for the effective treatment of cancer 
conditions, as these patients are already challenged with cytotoxic 
drugs and radiation. 

Marine chemicals have been documented to be novel structural 
entities with a broad spectrum of pharmacological values [6]. Among 
marine organisms, seaweeds are extensively studied and cataloged 
for its metabolite contents [7]. Davis & Vasanthi (2011) have created 
a chemical structure repository, namely, SWMD which currently 
features around 1055 compounds encompassing 25 descriptive 
fields and mostly from the Red algae of the genus Laurencia 
(Ceramiales, Rhodomelaceae) [8]. Hence, in this study, it is attempted 
to computationally screen the reported active metabolites from 

SWMD for compounds which potentially act as PPARγ agonists 
inferred through in silico binding affinity analysis, as similar studies 
on this database have yielded potential leads [9, 10]. 

PPARγ ligand binding domain 

Ligand binding domain (LBD) spans at the C-terminal of all the 
peroxisome proliferator-activated receptors (PPARs), structurally 
comprising of thirteen alpha helices and a four-stranded beta sheet. 
This Y-shaped domain, which is divided into Arm I, Arm II and a 
charge-clamp, ranging about 1400 cubic angstroms in size, favor 
interactions with the multitude of structurally discrete ligands [11]. 
Arm I harbors conserved polar residues: Ser, Tyr and His are found 
to be conserved in all the PPARs and these amino acids form 
hydrogen bond network with the carboxylate group of fatty acids 
and other ligands [12]. This conserved network also aids to hold the 
AF2-helix in the active conformation, which mediates the formation 
of co-activator binding pocket in the C-terminal region. Moreover, 
the hydrogen bonding network of Glu324, Arg397, Arg443, and 
Tyr477 (in PPARγ) was also shown to stabilize the AF-2 helix 
towards active conformation upon binding of small molecules [13]. 
The Arm II is extremely hydrophobic, thereby enabling the binding 
of the hydrophobic tail of fatty acids through van der Waals 
interactions. Though LBD is conserved among all the PPAR isotypes 
(around 80%), the rest of the regions account (around 20%) for the 
ligand selectivity. For instance, PPARγ shows selectivity to fatty 
acids with larger carboxylate head groups as it possesses His323 in 
the place of Tyr314 as found in PPAR alpha [13]. 

MATERIALS AND METHODS 

Protein structure data collection and preparation 

The crystal structure coordinates of the Human retinoid X receptor-
alpha (RXR-alpha) and PPARγ ligand binding domains bound with 9-
cis retinoic acid and rosiglitazone and co-activator peptides (PDB ID: 
1FM6) was downloaded from Protein Data Bank. Further, the 
coordinates of LBD (225-462 region) was parsed and extracted 
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manually. The Protein Preparation Wizard module of Schrodinger 
suite (Schrödinger, LLC, 2012, New York, NY, 2012) was used to 
correct the structural defects, and to add and optimize hydrogen 
atoms, to assign bond orders and also to selectively assign 
tautomerization and ionization states for the extracted LBD 
coordinates. Subsequently, the corrected structure was geometry 
optimized by energy minimization using Optimized Potentials for 
Liquid Simulation (OPLS) 2005 force field (fig. 1, fig. 2). 

 

 

Fig. 1: The structure of PPARγ ligand binding domain (PDB ID: 
1FM6) 

 

 

Fig. 2: The electrostatic surface of PPARγ ligand binding domain 
(PDB ID: 1FM6) (positively charged regions are shown in blue 
color and negatively charged regions are shown in red color)
 

 

Ligand preparation 

The complete ligand datasets (1055 compounds with different 
conformers) in MOL format was downloaded from SWMD and was 
optimized for ionization states, tautomers, stereochemical errors 
and ring conformations, under a pH range of 7±2, using Lig prep 
module (Schrödinger, LLC, New York, NY, 2012). Moreover, the 
compounds with reactive functional groups and those which do not 
follow Lipinski’s rule of five [14] (partition coefficient,  
Clog P≤ 5, H-bond donors ≤ 5, H-bond acceptors ≤ 10, molecular 
weight ≤ 500) were excluded during the optimization process. 
Finally, the optimized ligands were used for High-Throughput 
Virtual Screening and Docking studies. 

High-throughput virtual screening (HTVS) and docking 

The virtual screening of SWMD ligands against PPARγ was set using 
Glide HTVS option of Schrodinger suite (Schrödinger, LLC, 2012, 
New York, NY software). The complete LBD domain was set as a grid 
box as this domain is large and it binds to diverse types of ligands. 
The van der Waals radius scaling was set to 1.0, so as to soften the 
non-polar region of receptor and rest of other atoms were left free of 
scaling. Further, the optimized small molecules were sequentially 
docked to the LBD, ensuring flexible sampling with less than 300 
atoms and 50 rotatable bonds. A total of 10 energetically favorable 
conformations were selected out of 1000 poses generated per 

docking; among these, the best poses were finalized based on the 
Glide Docking Score and was confirmed to be the optimal docked 
complex. 

In this screening process, sequential reduction of ligand hits was 
carried out based on the significance of glide docking at three 
stringent modes using Schrödinger suite: HTVS (100%) of best hits 
passed to Standard Precision (SP) (80% of best hits from SP passed 
to Extra Precision (XP)). From the results of XP step, top 10 hits 
were shortlisted based on the Glide Docking Score.  

Molecular data visualization and analysis 

The virtual screening results were visualized in Schrodinger Maestro 
Interface (Schrödinger, LLC, 2012, New York, NY software). The two-
dimensional (2D) interaction maps for the top 10 hits shortlisted 
based on significant molecular interactions and Glide Docking Score 
were produced using Schrodinger Maestro. Further, the 2D maps 
generated were analyzed for intermolecular interactions like H-
bond formation, pi-pi stacking, pi-cation contacts and other residue 
contacts were duly tabulated. The tabulated data was compared to 
documented studies which portray the significant amino acids of 
PPARγ involved in agonist contacts. The hits which showed similar 
interactions to that of well proven PPARγ agonists were concluded 
as most potential lead compounds. 

Molecular dynamics simulation of the top ranking docked 
complex 

The top ranking docked complex (LBD-Avrainvilleol methyl ether 
complex) was subjected to Molecular Dynamic (MD) simulation to 
evaluate the stability of the complex formation. The MD simulation 
was performed using Desmond, which is an explicit solvent 
molecular dynamics program (developed by D. E. Shaw Research, 
New York, NY) with built-in OPLS 2005 force field. The system was 
built for simulation using SPC water model as solvent in cubic box 
with the dimension of 10Å x 10Å x 10Å distance and desirable 
electrically neutral system for simulation was built with 0.15M 
(physiological concentration of monovalent ions) NaCl in 10 Å buffer 
maestro 9.3. Further, the system was relaxed by energy 
minimization using a hybrid method of the steepest descent and the 
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 
algorithms. Martyna-Tobias-Klein barostat method and LBFGS 
vectors method were implemented to run the simulation at a 
constant temperature and pressure of 300K. The short-range and 
long-range Coulombic interactions were analyzed using a cut-off 
value 9.0 Å. A smooth particle mesh Ewald method was used for 
handling long-range Coulombic interactions. The complete 
production run of the system was performed for 5 nano seconds 
with a sampling interval of 1 pico second. Finally, the MD 
trajectories were analyzed using maestro interface. 

RESULTS AND DISCUSSION 

Outcome of virtual screening and docking studies 

Human PPARγ, one of the most crucial drug targets for the 
treatment of diabetes mellitus, also an emerging anticancer target 
[4, 5] was virtually screened against the compounds in the SWMD. 
During the ligand filtration process, out of 1,055 compounds from 
SWMD, only 656 passed the Lipinski’s rule [14] and all the 
stereochemical checks. Further, these compounds were 
computationally docked to LBD of PPARγ and were ranked in 
accordance to its binding affinity with LBD of PPARγ. Among all the 
compounds that were identified from virtual screening, the top ten 
compounds with a glide docking scoreless than-6.0 kcal/mol at the 
Glide XP mode were shortlisted as potential leads. The ten top 
scoring PPARγ-Ligand complexes were visually inspected and the 
interactions were tabulated (table 1, fig. 3). As per the documented 
studies, Tyr473, His449, His323 and Ser289 are crucial residues of 
PPARγ [1, 15] involved in interactions with well proven agonists like 
Dehydro di isoeugenol, Macelignan, Pioglitazone, Netoglitazone, and 
Rosiglitazone [17]. Moreover, interactions with residues, Phe360 
and Phe363 were also observed to be formed by many of the of 
PPARγ agonists [16]. Hence, keeping these residue contacts 
information as a reference, the top scoring ligands of this study were 
further validated. 



Samuel et al. 
Int J Pharm Pharm Sci, Vol 7, Issue 10, 268-271 

270 

Table 1: The top lead agonists for PPARγ with corresponding residue interactions, Bond Length, Glide Energy Score and seaweed details 
as shortlisted from virtual screening 

SWMDAcc. No/Metabolite Name/Seaweed Interaction Type Interacting 
Residues 

Bond 
length (Å) 

Glide Docking 
Score (kcal/mol) 

GA009/Avrainvilleol methyl ether/Avrainvillea rawsonii pi-pi stacking Edge to face 
His 449. Ring B 

4.46 -9.137 

Hydrogen bond 
(side chain) 

Ser 289 (673). 
.O(38) 

1.92 

Ser 289 (673). 
.O(36) 

1.82 
 

GA008/Avrainvilleol/Avrainvillea rawsonii pi-pi stacking Edge to face 
His 449. Ring B 

4.67 -8.266 

Hydrogen bond 
(backbone) 

Phe 363 (1254). 
O(30) 

2.35 

RR052/3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl) 
benzene-1,2-diol/Rhodomela confervoides 

pi-pi stacking Edge to face 
His 449. Ring A 

4.61 -8.100 

Hydrogen 
bond(side chain) 

Tyr 473 (2143). 
.O(35) 

1.84 

Arg 288(2873). 
.O(19) 

1.97 
 

BL006/(+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-
dihydroxy-1,3-dihydroisobenzofuran/leathesia nana 

Hydrogen bond 
(backbone) 

Cys 285  1.88 -8.081 

GA001/5'-hydroxyisoavrainvilleol/Avrainvillea nigricans pi-pi stacking Edge to face 
His 449. Ring B 

4.60 -7.924 

Hydrogen 
bond(side chain) 

Ser 289 (673). 
.O(38) 

1.86 

RR032/Methyl N'-(2,3-dibromo-4,5-dihydroxybenzyl)-γ-
ureidobutyrate/Rhodomela confervoides 

pi-pi stacking Edge to face 
His 449. Ring A 

4.70 -7.737 

Hydrogen 
bond(side chain) 

Ser 289 (673). 
.O(44) 

1.84 

RO006/Rhodomelol/ 
Osmundaria colensoi 

Hydrogen 
bond(side chain) 

Arg 288(2873). 
.O(23) 

2.25 -7.674 

Tyr 473 (2147). 
.O(41) 

2.46 

Hydrogen bond 
(backbone) 

Cys 285 (634). 
O(37) 

1.71 

GC002/Cymopol/Cymopolia barbata pi-pi stacking Edge to face 
His 449. Ring A 

4.56 -7.670 

Hydrogen 
bond(side chain) 

Tyr 473 (2147). 
.O(39) 

1.99 

BB001/4α-Acetyldictyodial/Bifurcaria bifurcata Hydrogen 
bond(side chain) 

Tyr 473 (2147). 
.O(49) 

1.97 -7.577 

BL009/2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)-1-
propanol/ 

 Leathesia nana 
 

pi-pi stacking Edge to face 
His 449. Ring 
A 

4.78 -7.560 

Hydrogen 
bond(side chain) 

Ser 289 (673). 
.O(30) 

1.71 

Hydrogen bond  
(backbone) 

Cys 285 (634). 
O(16) 

1.79 

 

 

Fig. 3: The 2D molecular interaction maps of the top 10 docked complexes 
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In this present study, the top most scoring ligand with significant 
Glide Docking Score (-9.137kcal/mol) was found to be Avrainvilleol 
methyl ether, a bromophenolic metabolite from Avrainvillea 
rawsonii. This was found to interact with His449 by pi-pi stacking with 
an edge to face interaction of the aromatic rings and also it formed two 
hydrogen bonds with Ser289. Moreover, the top second ranking 
compound from Avrainvillea rawsonii was Avrainvilleol, which does 
not have methyl ether group and this compound also formed similar 
pi-pi stacking interaction with His449, however, does not form 
hydrogen bonds with Ser289, instead it showed a hydrogen bond with 
the backbone of Phe363 (glide docking score-8.393 kcal/mol).  

The top third ranking compound was 3,4-dibromo-5-((2,3-
dihydroxypropoxy)methyl) benzene-1,2-diol, a metabolite from 
Rhodomela confervoides and it also showed pi-pi stacking with His449 
edge to face mode, stabilized by two hydrogen bonds with Tyr473 and 
Arg288. The fourth ranking compound namely, (+)-3-(2,3-dibromo-
4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydro-iso-benzo-
furan from Leathesia nana showed a single hydrogen bond with 
Cys285, with a Glide Docking Score of-8.081 kcal/mol, and no other 
interactions were observed. The fifth ranking compound was 5'-
hydroxyisoavrainvilleol form Avrainvillea nigricans which was similar 
to that of Avrainvilleol metabolites listed as top two hits and also 
formed similar interactions with His449 and Ser289, however, showed 
a lower docking score compared to the top two hits.  

The sixth compound was from Rhodomela confervoides 
(RR032/Methyl N'-(2,3-dibromo-4,5-dihydroxybenzyl)-γ-ureido-
butyrate and it also showed pi-pi stacking interactions with His449 
and hydrogen bonding with Ser289. The seventh ranking compound 
was found as Rhodomelol from Osmundaria colensoi which is also 
bromophenolic of origin and was found to stably form hydrogen 
bonding interactions with Arg288, Tyr473 and Cys285. The next 
ranking compound was Cympolol from Cympolia barbata which 
showed an edge to face pi-pi stacking interactions with His449 and 
Tyr473. The ninth ranking compound was found as 4α-
Acetyldictyodial from Bifurcaria bifurcata which showed only a 
single hydrogen bond interaction with Tyr473. The tenth ranking 
compound, 2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)-1-
propanol from Leathesia nana, showed two hydrogen bonding 
interactions with Ser289 and Cys285. It also formed pi-pi stacking 
interactions with His449, as observed in few of the other top-
ranking compounds. Moreover, the top ranking docked complex 
(LBD-Avrainvilleol methyl ether complex) was subjected to MD 
simulation and the backbone RMSD (Root Mean Square Deviation) 
plot was analysed, wherein, the plot showed deviation within 1Å 
which is suggestive of the stable complex formation (fig. 4). 
 

 

Fig. 4: The backbone RMSD plot of the top ranking docked 
complex (LBD-Avrainvilleol methyl ether complex) 

 

These interesting results strongly reinforce agonistic activities of the 
shortlisted metabolites from seaweed, as it can be noticed that 
majority of these compounds formed strong molecular interactions 
with Tyr473, His449, Ser289 [1, 15] and also with Phe363 which has 
been well documented as favourable agonist interacting interfaces of 
PPARγ agonists. As discussed above, the receptor grid selection for 
this docking study was formulated in an unbiased manner, as the 
entire LBD was assigned as the receptor cavity without assigning the 
information on documented residues of PPARγ involved in ligand 
interactions.  

By this, it was intended to mimic the native exploratory mode of ligand 
binding by exhaustive binding conformation search. Six out of ten top 
ranking of seaweed were found to be bromophenolic compounds and 
these compounds were highly in favor of forming pi-pi stacking 
interactions with His449 and also favored hydrogen bonding with 
Ser289 which are proven hotspot residues for PPARγ agonist 
interactions [15]. Moreover, three bromophenolic compounds were 
from the genus Avrainvillea and this seaweed might be of interest for the 
examination of hidden medicinal properties. The insights from this study 
will pave the way for the exploration of a treasure trove of seaweed 
metabolites which still remains unraveled for PPARγ agonists. 
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