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ABSTRACT 

Bacteriocins are antimicrobial peptides which are ribosomally synthesized and produced by Lactic acid bacteria. They play a major role in 
prevention of human disease such as cancer, inflammatory disease, respiratory infection, systemic infection, intestinal disorder and bacterial 
infection and also contribute in maintaining the healthy gut microflora. Now day’s bacteriocin is emerging as the very promising natural alternative 
against the antibiotic and chemical preservatives and gaining commercial importance worldwide. The inhibition of pathogenic bacterial strains 
occurs due to cell permiabilization, but producing strains are protected from it by specific immunity proteins. They are mainly classified in 4 classes: 
class I, class II, class III, and class IV bacteriocin based on lantibiotics ring. Nisin, Pediocin, Lactococcin B, Acidocin CH5, Curvacin A, and Sakacin are 
the bacteriocins, which have strong inhibition against pathogenic bacterial strain and used in food preservation. This review article summarizes and 
focuses on general introduction, classification, ecology and potential applications of bacteriocin as biopreservatives in food industry. 
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INTRODUCTION 

In the production of food, it is crucial to take proper measures for 
ensuring its safety and stability during the shelf-life. Food 
preservation is carried out to maintain the quality of raw material 
and physicochemical properties as well as the functional quality of 
the product whilst providing safe and stable products. In general, 
preservation processes include chemical preservatives to control 
food spoilage and the outgrowth of pathogenic spore-forming 
bacteria. Many chemical preservatives are being used for 
inactivation of food borne pathogens so as to preserve food products 
for long duration. Long-term intake of these preservatives can affect 
human health as they reduce all microflora present in the gut either 
they are healthy bacteria or pathogenic bacteria, causing many 
diseases like breathing difficulties, obesity and cancer [1, 2]. The 
resistance of some microorganisms to most commonly used 
preservatives also has created problems in the food industry. To 
overcome this problem, there has been an awareness in naturally 
produced antimicrobial agents such as bacteriocin produced from 
lactic acid bacteria which have activity against resistant pathogenic 
strains [3]. Traditionally foods were preserved by lactic acid bacteria, 
natural constituents of fermented foods used as a starter culture, 
which confer their preservative effects by the production of lactic acid, 
hydrogen peroxide and small peptides known as bacteriocins[4, 5]. 
Bacteriocins produced by LAB have received considerable attention 
for their possible as biopreservatives in foods [6], with a subsequent 
reduction in the use of chemical preservatives [7]. The immunity of 
bacteriocin and how they differ from antibiotics and drawbacks of 
chemical preservative are discussed in this review.  

Chemical preservatives: A silent toxin  

Several processed food products available in the market that has 
different types of preservatives that can help to last longer without 
becoming contaminated with food-borne illness these are known as 
artificial preservatives or food additives or chemical preservatives. 
They can be used alone or in combination with other methods of 
food preservation. Preservatives may be antimicrobial, which inhibit 
the growth of bacteria or fungi, including mold, or have antioxidants 
property which inhibits the oxidation of food constituents. Universal 
preservatives include calcium propionate, sodium nitrate, sodium 
nitrite, sulfites (sulfur dioxide, sodium bisulfite, potassium hydrogen 
sulfite) and disodium. In the United States, all artificial preservatives 
are "generally recognized as safe" by the U. S. Food and Drug 
Administration [8]. Not all of these additives are 100-percent safe 
for everyone sometimes they can give rise to certain health 

problems. Many people are allergic to certain food additives or 
colors [9]. ButylatedHydroxytoluene (BHT) and Butylated 
Hydroxyanisole (BHA) are commonly used preservatives in 
processed food, can induce allergic reactions in the skin [10]. 
According to UNEP and OECD, (2002)Long-term contact to high 
amounts of BHT is toxic in animals, causing liver, thyroid and kidney 
problems and affecting lung function and blood coagulation [11].  

When someone has a reaction after eating certain foods, such an 
allergy is suspected. Unfortunately, some people do not have a 
reaction until a day or two later, so it is difficult to know what is 
causing the problem. When a certain food additive is believed to 
cause an allergic reaction, the blood is mixed with materials known 
to trigger allergies. They are associated with adverse effects, which 
can involve an unpleasant reaction in people sensitive to a particular 
additive or a potential increased risk for cancer. It is best to eat a 
preservative-free diet if at all possible. The reaction from these 
additives can be very mild to life-threatening. They can be 
immediate or build up in the body over time. In table 1 we are given 
the name of the chemical which are used in various food products 
and their side effects on human health. 

Lactic acid bacteria 

Lacticacid bacteria are a group of Gram-positive, nonmotile, non-
spore forming, rod-and coccus-shape bacteria have low proportions 
of G+C in their DNA (<55%); produce lactic acid either through 
homofermentative or heterofermentative pathway. The genera 
comprise in this group are Lactococcus, Lactobacillus, Leuconostoc, 
Enterococcus, Carnobacterium, Aerococcus, Pediococcus, Oenococcus, 
Streptococcus, Tetragenococcus, Vagococcus, and Weisella. LAB 
isolated from many food and animal sources, showing inhibitory 
activity against L. monocytogenes, Staphylococcus aureus, and 
Enterococcus faecalis, and Salmonella Typhimurium[28-30]. They are 
the most widely used bacteria as starter cultures for the industrial 
processing of fermented dairy, meat, vegetable and cereal products 
they are beneficial bacteria because they have their ability to break 
down proteins, carbohydrates and fats in food and help in the 
absorption of necessary elements and nutrients such as minerals, 
amino acids and vitamins and increasing health profits [31, 32]. 

Bacteriocin: Inhibitory peptide  

Bacteriocins are narrow range of inhibitory peptide have been found 
in all major lineages of Bacteria and some members of the Archaea 
[33]. Theses peptides are ribosomally synthesized inhibit the closely 
related microorganism [34]. The genes that code for bacteriocins 
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can be either chromosomally or plasmid coded. Bacteriocins, such as 
Nisin is accepted safe for use as a food preservative in vegetables, 

dairy, cheese, meats, and other food products, as they inhibit 
microorganisms contamination during the production process [35-37]. 

 

Table 1: Name of chemical preservatives and their side effect on human health 

Chemical preservatives Occurrence  Side effects 
ButylatedHydroxytoluene (BHT) and 
ButylatedHydroxyanisole (BHA) 

Processed foods[12] BHT induces tumors in the stomach and liver in 
animals when used at high levels[13] 

Sulfites Processed foods[14] Aggravate asthma in children and adults[15] 
Organophosphates, Organochlorines, 
Thiocarbamates and Organoarsenic 
compounds. 

Organic foods Potentially carcinogenic and therefore able to 
cause genetic damage leading to the 
development of cancer[17] 

[16] 

Trans-Fats Found in margarine, vegetable shortenings, 
crackers, cookies, snack, processed food[[ 18] 

Increased risk for heart disease 
[19,20] 

Sodium Nitrate Preservation/curing of hotdogs, sausages and 
other cured foods[21, 22,] 

  Pancreatic and lung cancer 
[23] 

Propyl Gallate Used in packaged meals, dry milk, baked 
goodsgoods to inhibit food bore microbial 
growth[24] 

Cause prostate inflammation and tumors in the 
brain, pancreas and thyroid[25] 

Potassium Bromate Used to strengthen bread dough[26] Causing tumors in the kidneys and thyroid[27] 

 

The history of bacteriocins extends to the early 1920s. While their 
antimicrobial activity was first discovered in 1928, colicin is a first 
bacteriocins produced from Escherichia coli V and show inhibitory 
activity against E. coli S [38]. Bacteriocins were not used in food 
products until 1951. In the 1960s, the first bacteriocin, called nisin, 
which is produced by Lactococcus lactis subsp. lactis, was purified 
and recognized as a food preservative by FAO/WHO in 1969[39]. In 
1988, the FDA approved the use of nisin as an additive in canned 
products in the United States to inhibit the growth of Clostridium 
botulinum. Moreover, evidence from research studies indicates that 
the resistance of L. monocytogenes to nisin does not appear to be 
stable, providing additional support for the use of nisin and other 
bacteriocins over other chemical agents [40]. 

Bacteriocins may be bactericidal eliminate certain microorganisms, 
or they may be bacteriostatic, i.e. inhibit the growth of certain 
microorganisms. The bactericidal or bacteriostatic activity is 
directed against certain species close to the producer strain [41]. 
Most of the scientists work on isolation, identification, characteri-
zation and purification of bacteriocin of LAB from different natural 
sources [42]. 

Henninget al. (2015) identify several bacteriocins from Enterococcus 
spp. by using an Enterococcus-Specific Bacteriocin PCR Array; they 
have strong antimicrobial activity against L. monocytogenes. 
Combinations of different bacteriocins show activity against food 
borne pathogens and also used as food preservatives [43]. Hu et al. 
(2013) purified plantaricin 163 a bacteriocin, produced by 
Lactobacillus plantarum 163. Plantaricin 163 was stable at high 
temperature (20 min, 121 °C), active in the presence of acidic pH (3-
5), sensitive to protease, and exhibited broad-spectrum 
antimicrobial activity against closely related bacteria; propose that 
plantaricin 163 may be employed as a biopreservative in the food 
industry [44]. 

According to Chassainget al. (2015) gut microflora play an important 
role in metabolism and development of immunity in host. Many 
metabolic syndromes like chronic inflammatory diseases, including 
inflammatory bowel disease and the group of obesity-associated 
diseases are caused by disturbance in microflora–host relationship. 
Suez et al.(2014) reported the changes in intestinal microbiota 
(compositional and functional) by using Non-caloric Artificial 
Sweeteners (NAS) a food additives may cause glucose intolerance 
[45, 46]. 

Mechanism of action 

The general killing mechanisms of bacteriocin produced from gram 
positive bacteria include pore formation and modulation of enzyme 
activity or by Quorum sensing[47,48]. The bacteriocins are highly 
cationic such as Lacticin; they are quickly bound to the negatively 
charged phospholipid bilayer membrane. The interaction between 
the hydrophobic part of Lacticin and the bacterial target membrane 

generates unspecific ionic channels, the formation of pore which is 
aided by the presence of high transmembrane potentials and by the 
presence of anionic lipids and the absence of cationic lipids that 
would cause leakage of intracellular components, including ions, 
ATP, and small proteins, after which, the bacteriocin molecules 
translocate into the membrane as the pore closes (fig. 1). The type B 
lantibiotics inhibit the enzyme modulation in the target bacteria. For 
example, mersacidin interferes with bacterial cell wall biosynthesis [49]. 

The class IIa bacteriocins act through the formation of pores in the 
cytoplasmic membrane like type A lantibiotics. The current 
mechanistic hypothesis to explain the mode of action of bacteriocins 
belonging to this class involves electrostatic binding of the antibiotic 
to the target membrane mediated by a putative membrane-bound 
receptor molecule. However, the existence of a specific receptor is 
still controversial.  

 

 

Fig. 1: The general killing mechanisms of bacteriocin including 
binding of bacteriocin with receptors (A, B), cytoplasmic 

membrane pore formation, translocation of bacteriocin and 
modulation of enzyme activity (C) [50] 

 

Classification of bacteriocin 

Defensins a Bacteriocins produced by Gram-positive bacteria 
(resemble antimicrobial peptides produced by eukaryotes) they are 
approximately 2-6 kDa in size, generally cationic, amphiphilic, 
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membrane-permeabilizing peptides [51]. Typically, bacteriocin 
biosynthesis of Gram-positive bacteria is self-regulated with 
specifically dedicated transport mechanisms facilitating its release. 
Four main groups of bacteriocin have been identified: Class I 
modified bacteriocins, known as lantibiotics; Class II, heat stable 
minimally modified bacteriocins; class III, larger heat labile 
bacteriocins and Class IV, complex bacteriocins carrying lipid or 
carbohydrate moieties [47]. The classification of bacteriocins has 
been reviewed by several authors [52-54]. Settanni and Corsetti, 
(2008) classified bacteriocin in three classes on the basis of structural, 
characteristics (fig. 2, table: 2) [36]. Klaenhammer’s classification of 
bacteriocins classifies them into four well-defined classes based on 
common elements, as follows 

Class I bacteriocins (Lantibiotics) 

Among four classes of Bacteriocin, lantibiotics classes I Bacteriocin 
are currently attracting considerable attention because of their 
biosynthesis and their wide antimicrobial spectra. Members of this 
class are post-translationally modified to contain amino acids, such 
as lanthionine and B-methyllanthionine, and several dehydrated 
amino acids. lanthionine and B-methyllanthionine are formed by 
dehydration of a serine and a threonine to form dehydroalanine and 
dehydrobutyrine, respectively, followed by addition of the thiol 
group of a cysteine to the unsaturated amino acids residues [55]. 
Lanthionine and dehydroamino acids have been suggested to confer 
stability on the active conformation of the lantibiotics against heat 
and acids against proteinease present in the producers’ cells. 
Lantibiotics are further divided into two subgroups, A and B, based 
on their biosynthetic peculiarities; structural properties, and 
biological activities, lantibiotics can be classified in to two types. 
Type A and Type B lantibiotics. 

Type A lantibiotics: are linear and larger than type B lantibiotics, 
ranging in size from 21 to 38 amino acids. The bacteriocins 
belonging to this class kill the target cell by depolarising the 
cytoplasmic membrane. Nisin is the best-known and best-studied 
gram-positive bacteriocin. 

Type B lantibiotics: Type B lantibiotics have a more globular 
secondary structure and are smaller (the largest is 19 amino acids in 
length) than type A. In this class, leader peptides are 
cleaved by an ABC-transporter. For example, mersacidin. 

Class II Bacteriocins 

These bacteriocins are small, heat-stable, nonlanthionine-containing, 
not post-translationally modified peptides, ranging in size from 30 to 
60 amino acids, and are usually positively charged at a neutral pH. 
These bacteriocins are divided into 4 subgroups as follows:  

Class IIa  

Class IIa (pediocin-like bacteriocins with a strong antilisterial effect) is 
the largest group, and their members are characterized by a conserved 
amino-terminal sequence (YGNGVXaaC),shared strong inhibitory 
activity against Listeria. Because of their effectiveness against this food 
borne pathogen, class IIa bacteriocins are currently of interest as 
potential natural and non-toxic food preservatives. Some example are 
pediocin PA-1 and pediocin AcH(Pediococcus acidilactici), sakacins A 
and P (Lactobacillus sakei), leucocin A (Leuconostoc gelidum), 
enterocins A and P (Enterococcus faecium), and carnobacteriocin 
(Carnobacterium sp.). Pediocin-like bacteriocins are of considerable 
commercial interest because they are small, heat-resistant peptides 
that are not post-translationally modified. All of the pediocin-like 
bacteriocins share certain features, including a seven amino acid 
conserved region at the N-terminus of the active peptide (–Tyr–Gly–
Asn–Gly–Val–Xaa–Cys–) [57].  

These class IIa bacteriocins are active against other LAB but are 
particularly effective against Listeria monocytogenes. Perhaps the best-
known bacteriocin is pediocin PA-1, which is produced by P. acidilactici. 

Class IIb 

The activity of Class IIb bacteriocin depends on the complementary 
activity of two peptides. The primary structures of the peptides are 
notably different and are subdivided into type E (enhanced) and 
type S (synergistic) peptides. This group includes lacticin F and 

lactococcin G. The mechanism of action of this class is the formation 
of pores in the membranes of their target cells. Bacteriocin-induced 
leakage of various ions dissipates the trans-membrane electrical 
potential or the trans-membrane pH gradient and thereby also 
dissipates the proton motive force, which eventually leads to cell 
death by decreasing the intracellular ATP concentration [58]. 

Class IIc 

Class IIc cyclic bacteriocins, the N-and C-termini of which are 
covalently linked, are placed in class-IIc or in class-III. These 
bacteriocins are all cationic (except for subtilisin A) and relatively 
hydrophobic, size from 3400 to 7200 Da. All cyclic bacteriocin with 
mode of action that has been characterized render their target-cell 
membrane permeable to small molecules and thereby disrupt the 
proton motive force, which eventually results in cell death. The 
advantage of the cyclic structure of these bacteriocins is not entirely 
clear, but it has probably stabilized the three-dimensional structure 
that is required for their antibacterial activity. The cyclic structure, 
presumably also causes these bacteriocins to be more resistant to 
proteolysis [58]. 

Class IId  

This class includes other bacteriocins, such as lactocin A and B, 
which require lipid or carbohydrate moieties for their activity. 

Class III Bacteriocins 

This group consists of heat-labile peptide antibiotics with a 
molecular mass larger than 30 kDa. Most of these bacteriocin are 
produced by bacteria belonging to the genus Lactobacillus, including 
helveticin J produced by L. helveticus 481 and lactacin B produced by 
Lactobacillus acidophilus. Their mechanism of action involves the 
lysis of sensitive cells by catalyzing cell wall hydrolysis. These 
proteins have a catalytic domain at the N-terminus, while the C-
terminus probably represents the target recognition site [59]. 

Class IV bacteriocins (Cyclic peptides) 

Little is known about the structure and function of this class. 
Characteristics of this group have yet to be determined by 
purification and biochemical characterization. These bacteriocins 
include leuconocin S and lactocin 27. 

Bacteriocin immunity: Bacteriocin-producing bacteria protect itself 
from its similar bacteriocin by immunity proteins. When these 
proteins expressed in sensitive cells, they strongly protect against 
externally added similar bacteriocin. The immunity protein display 
strong specificity with respect to the bacteriocins to which they confer 
resistance. The Producing cell has two different systems for 
bacteriocin immunity. These two immune system can work 
synergistically to protect the producing cells from their own 
Bacteriocin [68]. Near about 20 immunity proteins have been 
identified from DNA sequences, most of them containing 25 to 35% 
charged residues. Proteins are highly charged and present towards 
each other, such that their hydrophobic faces interact and form a 
hydrophobic core in the center of the protein, whereas the hydrophilic 
and charged faces of the helices constitute the protein surface. This 
distribution of residues gives rise to a structurally stable and 
hydrophilic cytosolic protein. Carnobacteriocin B2 and enterocin A is a 
class IIa immunity proteins, like cytosolic proteins, loosely associated 
with the inside of the cell membrane (fig. 3). 

According to hybrid immunity proteins model the N-and C-terminal 
halves of immunity proteins from the same immunity protein 
subgroup have been interchanged. The bacteriocin and immunity 
proteins are located on opposite sides of the cell membrane, and 
there seems to be no direct contact between the two molecules. 
Thus, the membrane itself or a specific component embedded in, it 
seems to play a crucial role as a mediator in the recognition between 
the bacteriocin and the immunity protein. When cross-protection 
was observed, it was most often directed against closely related 
bacteriocins. For example, sakacin P and pediocin PA-1/AcH are two 
very similar bacteriocin, and thus the immunity proteins for sakacin 
P and pediocin PA-1/AcH protected against sakacin P and pediocin 
PA-1/AcH, despite the fact that these two immunity proteins display 
only 28% similarity and are placed in different subgroups. 
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Fig. 2: Formation of mature Lantibiotics from prepeptide after dehydration and cleavage of leader peptide and formation of thioether 
bridge formation (A), Primary structures of nisin-Type A Lantibiotics (B), Mersacidin–basic structure of Type B Lantibiotics (C), Primary 

structures of class II bacteriocins, Enterocin-novel class IIa bacteriocin (D), Lactococcin-class IIb (two-peptide) bacteriocin (E), 
Lactocyclicin Q and leucocyclicin-class IIc (circular) bacteriocins (F). Lacticin Q and lacticin Z-A leaderless class IId bacteriocins (G) 

(structure of bacteriocin adopted from Perez et al.(2014) Microbial Cell Factories [56] 

A 

B 

C 

D E 

F G 
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Table 2: Classification of bacteriocin produced from Lactic acid bacteria [59]  

Class Subclass Characteristics Example MW 
(Da) 

Producing species 

Class 
I 

 Post-translationally modified, linear or 
globular peptides containing lanthionine, β-methyl lanthionine and 
dehydrated amino acids 

Nisin A[60] 3352 Lactococcus lactis subsp. 
lactic [60] 

Nisin U 3029 Streptococcus uberis [61] 
Nisin Z 3493 Lactococcus lactis subsp. 

lactic [60] 
Class 
II 

Class IIa Heat stable, unmodified, 
non-lanthionine-containing bacteriocins, heterogeneous class of 
small peptides, Pediocin PA-1like bacteriocins 

Pediocin PA-
1[62] 

4629 Pediococcus acidilactici 
PAC-1.0 [62] 

Class IIb  Composed of two peptide Lactacin F[63] 4755 Lactobacillus spp.[63] 
Class IIc  Circular peptide Enterocin AS-

48[64] 
7149 Enterococcus faecalis [64] 

Class IId  Linear, non-pediocin like, single-peptide Lactococcin A 
[65] 

5778 Lactococcus lactis subsp. 
Cremoris [65] 

Class 
III 

 Large, heat unstable proteins [67] Caseicin 
80[66] 

42000 Lacto bacillus casei B80 
[66] 

Helveticin 
J[67] 

37511 Lactobacillus 
helveticus481[67] 

 

 

Fig. 3: The class IIa bacteriocin present on the upper side of the 
outer cell membrane in slanting position and the immunity 

protein on the cytosolic side. The immunity protein recognizes 
the bacteriocin and protects the cell against own bacteriocin 

(fig. adopted and modified [69] 

 

Alternative of antibiotics 

Bacteriocins have potency against antibiotic-resistant bacteria like 
antibiotics. The in situ production of bacteriocin improves gut 
intestinal flora and struggle against intestinal infections [70, 71]. For 
medical purposese, bacteriocin is used as viable antibiotics against 
pathogenic bacteria due to high specificity and multi-antibiotic 
resistant. Bacteriocin is ribosomal peptides that differ from other 

non-ribosomal peptides with antimicrobial activity in one critical 
feature: the protein or peptide nature of bacteriocins and the fact 
that they are characterized by a narrow target range, the mode of 
inhibition of bacteriocins has wide spectrum i.e. from enzymatic 
action to pore formation of the target cell. [72]. The main differences 
between bacteriocins and antibiotics are summarized in table 3. 

Example of bacteriocin those are mostly used as preservatives  

Enterocins  

Enterocins a group of bacteriocin produced by Enterococci species 
belongs to the group of Gram-positive lactic acid bacteria (LAB), 
isolated from different food sources i.e. cheese, meat, fish and 
sausages. They are mainly cocci, pairs or short chains in shape, non-
spore forming, facultative anaerobic, oxidase and catalase negative. 
Enterocins show bactericidal activity against pathogens and food 
spoilage microorganisms, including Listeria monocytogenes, 
Clostridium sp., E. coli, Vibrio cholerae, Staphylococcus aureus and 
Bacillus cereus and work as a natural food preservative [95]. 
Characterize the functional, safety, and probiotic properties of 
Enterococcus faecalis UGRA10 a new enterocin AS-48-producer 
strain [96]. E. faecium or its enterocins have been used as a starter 
culture in the production of fermented meat products. E. faecium 
RZS C13 and E. faecium CCM 4231 have been used as starter cultures 
in the production of Spanish sausages [97]. Enterocin AS-48 
produced by E. faecalis to control an enterotoxic strain of S. aureus. 
Ennahar and Deschamps (2000) found a high activity of enterocin A 
produced by E. faecium against 13 strains of L. monocytogenes [98]. 
It is widely used as starter cultures in the fermentation process. 
Table 4 contains selected enterocins used as food biopreservatives.

 

Characteristic 

Table 3: Difference between bacteriocin and antibiotics [70] 

Bacteriocin Antibiotics 
Application Food or Clinical [73] Clinical[74] 
Synthesis Ribosomal[75] Secondary metabolite[76] 
Intensity of bioactivity Active at nano or micro molar range[77] Active at micro or milli molar range[78] 
Activity spectra Narrow spectrum[79] Varying spectrum[80] 
Host cell immunity Yes[81] No[82,83] 
Mechanism of target cell Usually adaptation affecting cell[84] Usually a genetically transferable[85] 
Proteolytic degradability High[86] Low [87] 
Interaction requirements Depending on Specific target[89] Mostly pore formation, but in a few[88] 
 Mode of action Pore cell formation, Cell wall biosynthesis[90] Cell membrane or intracellular targets[91] 
Toxicity towards eukaryotic cells Note known[92, 93] Yes[94] 

 

Nisin 

The World Health Organization (WHO), Food and Drug 
Administration (FDA), In 1988 accepted Nisin as GRAS for use as a 

food preservative and disclosed into the European food additive list, 
where it was assigned the number E234 [111, 112]. Nisin is 
classified as a class-Ia bacteriocin peptide consists of 34 amino acid 
residues (3.5 kDa) produced from Lactococcus lactis subsp. lactis 
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strain [113]. Nisin has been shown to be effective in the microbial 
control of a number of dairy products and its use has been widely 
assessed in cheese manufacturing at low pH.  

The use of nisin-producing starter cultures appears to be a viable 
means of incorporating and maintaining this bacteriocin, through 

the cheese-making process, to control food-borne pathogenic and 
spoilage bacteria. Nisin has the wide spectrum of activity against 
Gram-negative and Gram-positive bacteria. Identify and characterize 
nisin A produced by Lactococcus lactis subsp. lactis LL27. Nisin A 
shows activity against pathogenic bacteria with the heating and freezing 
processes which are commonly used in the food processing [114]. 

 

Table 4: Application of enterocin produced by bacteria and their antimicrobial spectrum against pathogenic strain 

Enterocin Producer strain Application  Antimicrobial spectrum against  Reference  
Enterocin A Lactococcus lactis 

MG1614 
Cottage cheese L. monocytogenes [99,100] 

Enterocin A and B E. faecium WHE 81 Munster cheese L. monocytogenes [101,102] 
Enterocin L50A and B E. faecium F58 Goat milk and Jben (Moroccan 

Goat cheese) 
L. monocytogenes [103] 

Enterocin AS-48 E. faecalisA-48-32 Fat-free hard cheese  B. cereus [104] 
Enterocin AS-48 E. faecalisA-48-32 Skim milk and unripe soft cheese S. aureus [105] 
Enterocin CCM 4231 E. faeciumCCM 4231 Spanish fermented dry sausage Listeria. spp. [106,107] 
Enterocin 13 E. faeciumRZS C13 Spanish fermented dry sausage Listeria. spp [108,109]  
Enterocin A and B E. faeciumCTC492 Fermented dry sausage  L. innocua [110] 
Enterocin A and B E. faeciumCTC492 Cooked pork L. sakei CTC746 [111] 

 

Pediocins 

Pediocins are categorized in the Class II of unmodified antimicrobial 
peptides (36–48 residues), also known as "antilisterial" or "Listeria-
active" bacteriocins produced by Pediococcus spp. Pediocins-like 
bacteriocin are small (<5 kDa), have a 40–60% amino acid sequence 
similarity, and characterized by a-Y-G-N-G-V-N-amino terminus. 
Recently, a pediocin by P.acidilactici containing formulation is 
marketed under the commercial name Alta 2341®. The important 
feature of pediocin is they are stable in the complex environment of 
food when it’s used as a food additive. Pediocin F, one of the 
bacteriocins produced by P. acidilactici isolated from fermented 
sausage, is a small peptide, with a molecular weight of approximately 
4-5 kDa that has shown to be effective against many bacteria 
associated with food spoilage and food related health hazards. 

Pediocin F is reported to be sensitive to proteolytic enzymes, resistant 
to heat and organic solvents, and active over a wide range of pH [115]. 
In table 5 we listed name of commonly used pediocin and their 
application in the food industry. Papagianni and Anastasiadou 2009, 
review and discuss on characteristics of known pediocins molecules 
biosynthesis and production in fermentation systems [116].  

The application of Pediocins in Food can offer a good alternative 
means of protecting food against food borne pathogens, also provide 
natural means of preservation and can be accepted by the 
consumers in the way nisin became accepted. Pediocin produced 
from L. plantarum used in preservation of cheese, inhibit the growth 
of Listeria monocytogenes [117]. Being mild antimicrobials, 
pediocins are also expected in the future to find more applications in 
both human and veterinary medicine.  

 

Table 5: List of pediocin producer strain and their application in food industry 

Name of strain  Sugar ferment  Application  References  
P.acidilactici Glucose, ribose, xylose, fructose and 

galactose to DL-lactate 
Sauerkraut Fermentations, dry sausages [118-121] 

Pediococcus 
pentosaceus 

Glucose, ribose, galactose, arabinose, and 
fructose to DL-lactate 

Starter cultures in sausage fermentations, brewing industry and, 
silage fermentations 

[122-124] 

Pediococcus 
damnosus 

Glucose, sucrose and galactose 
 

Exopolysaccharide production and bacteriocin production [125,126] 

 

Lacticin 3147 

Lacticin 3147 a class I, two-component bacteriocin produced by 
Lactococcus lactis subsp. lactis, isolated from an Irish kefir grain has 
been used for making buttermilk. Numerous research works have 
recommended that Lacticin 3147 have activity against a broad range 
of organisms and potentially suitable for several food applications 
[127]. A bacteriocin, lacticin Zproduced by L. lactis QU 14 showed a 
nano molecular range of MICs against numerous Gram positive 
bacteria, and the bacteriocin was stable at 100 °C under alkaline 
conditions[128]. 

Lasta et al. (2015) isolated and characterized the new bacteriocin, 
lacticin LC14 from Lactococcus lactis have bactericidal-type 
antimicrobial activity against several lactic acid bacteria and 
pathogenic strains including Listeria monocytogenes [129]. As lacticin 
3147 inhibits a large number of food pathogenic organisms it would 
appear to be particularly suited to use as a biopreservatives. 

Lactococcin B  

The genus Lactococci are used in a large variety of industrial food 
fermentations for the formation of lactic acid from the available 

carbon source, which results in rapid acidification of food, a critical 
parameter for the preservation of these food products. Lactococcin B 
(LcnB) is a small, hydrophobic, positively charged bacteriocin 
produced by Lactococcus lactis subsp. Cremoris. L. lactis subsp. 
cremoris 9B4 produces at least three bacteriocin named lactococcin 
A, B, and M [130]. Isolates and characterize Lactococci from natural 
sources and suggest that could be used as starter cultures [131]. 

Acidocin 

The bacteriocin Acidocin B, is plasmid encoded (2.4 kDa) produced 
by Lactobacillus acidophilus strain M46 has an inhibitory spectrum 
against pathogenic bacteria Listeria monocytogenes, Clostridium 
sporogenes, Brochothrixthermo sphacta, Lactobacillus fermentum and 
Lactobacillus delbrueckii [132]. 

Leucocin A 

Leucocin A is a group of small antibacterial peptides produced by 
Leuconostoc pseudomesenteroides , Leuconostoc carnosum QU15 has 
a molecular weight 4 kDa (37 amino-acids). This group may include 
lactacin F (6.3 kDa, 57 amino acids) and leucocin B from 
Leuconostoccarnosum cloned bacteriocin [133].  
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Lactobacillus acidophilus produced bacteriocin lactacin F, which is a 
proteinaceous heat-stable component and inhibitory for other 
lactobacilli as well as Enterococcus faecalis [134, 135]. 

Mesentericin Y105  

Mesentericin Y105 is a 37-amino acids residue containg bacteriocin 
produced by Leuconostocmesenteroides Y105 that displays 
antagonistic activity against Gram-positive bacteria such as 
Enterococcus faecalis and Listeria monocytogenes [136]. 

Sakacin P 

Sakacin P is one of the most extensively studied bacteriocin has been 
found to be very potent against L. monocytogenes[137]. The addition 
of sakacin P in vacuum-packed cold smoked salmon, a lightly 
processed high-fat (15–20%) product inhibited the growth of L. 
monocytogenes [138]. According Listeria monocytogenes L182 grew 
rapidly on vacuum packed chicken cold the addition of sakacin P 
completely inhibited the growth of L. monocytogenes L182 for 4 
weeks. Sakacin A is a bacteriocin produced by Lactobacillus sakei 
Lb706 inhibits the growth of L. monocytogenes on cold smoked 
salmon [138, 139]. Moreover, some research article reported the use 
of bacteriocin producing cultures in the preservation of meat 
products ensure that the inhibition of Listeria is due to production of 
Sakacin A [140]. 

Curvacin A 

Curvacin A were produced in the late exponential growth phase of 
Lactobacillus curvatus and active against closely related species,food 
pathogens Listeria monocytogenes and Enterococcus faecalis. The 
bacteriocin curvacin A are small peptides of 38–41 amino acid 
residues. No unusual amino acids were detected. In the N-terminal 
region curvacin A and sakacin P shares the similar segment — Tyr-
Gly-Asn-Gly-Val. No sequence similarity was detected to previously 
characterized bacteriocins indicating that these bacteriocins are 
novel [141]. 

Reutericyclin 

Reutericyclin is the first low-molecular-weight,extremely 
hydrophobic inhibitory compound inhibits the cytoplasmic 
membrane of target organisms produced by Lactobacillus reuteri. 
Largely,Gram-positive and negative bacteria as well as numerous 
fungi and yeasts are sensitive to reutericyclin. Many pathogenic 
bacteria S. aureus, L. innocua, andE. faecium are inhibited by 
reutericyclin. The minimum inhibitory concentrations(MICs) range 
from 0.06 to 2.5 mg/l [142]. The application of reutericyclin is 
possible through the addition of a purified compound to food or 
pharmaceutical products,by fermentation with reutericyclin-
producing strains, orthrough the addition of metabolically inactive 
cells to foods where the product composition allows desorption of 
reutericyclin associated with the cells [143]. 

Limitation of bacteriocin activity 

The presence of bacteriocins in most of the food used from ancient 
times makes them to be considered more natural as compared to the 
currently used antibiotics [144]. A limitation of using bacteriocin in 
food is that most bacteriocins are moderately small and can diffuse 
simply through the aqueous phase of food products. However, 
bacteriocin are hydrophobic molecules and bind to the hydrophobic 
phase of foods, such as emulsions or food surfaces, which notably 
reduces the bacteriocin activity. For this reason, many researchers 
suggest that bacteriocin use is limited to non-emulsified products. 
However, the bacteriocin production or activity is affected by 
sensitivity to food enzymes, food environment, poor solubility, 
uneven distribution in the food matrix and inactivation by other 
additives [145]. 

Current and future developments 

Much is currently known about bacteriocins, allowing for 
development of a huge variety of bacteriocins as protective cultures 
for food preservation. While a wide number of publications and 
patents have demonstrated relevant results about direct food and 
antimicrobial applications of LAB[146], but many countries still do 

not allow the use of purified bacteriocins other than nisin [147]. This 
problem has been circumvented with approved food-grade 
bacteriocin-producing strains or their extracellular extracts in many 
processed foods. In most cases, bacteriocin production and activity 
has been demonstrated only in the laboratory.  

CONCLUSION AND DISCUSSION  

The use of bacteriocins in food preservation was started 
approximately 20 years ago, considered to be part of a barrier 
mechanism and not the only preserving agent, unless all of the 
characteristics of the bacteriocin are known. One of the advantages 
of using bacteriocins in food is that these peptides can be part of 
human and animal diets because meat and dairy products are 
natural sources of LAB. Now day’s research is concentrated on 
inhibition of food spoilage or human disease causing bacteria 
present in vegetables, dairy products and beverages with the use of 
bacteriocin in place of antibiotics. Bacteriocins have inhibitory 
potency against antibiotic-resistant bacteria like antibiotics. The in 
situ production of bacteriocin improves gut intestinal flora and fight 
against intestinal infections. Their main advantage over chemical 
preservatives is their ability to preserve without affecting the 
sensory qualities of the food while adhering to the demand for 
natural preservatives. The ideal bacteriocin should be potent at low 
concentrations, active against a range of spoilage and pathogenic 
organisms, innocuous to the host and economical to produce. These 
antimicrobials can be introduced into a food through incorporation 
of the bacteriocin-producing strain into the food product (most 
common in fermented foods), the generation and use of a 
bacteriocin-containing fermentate or as a more concentrate 
bacteriocin-containing food preservative. 
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