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ABSTRACT 

Objective: To synthesize new amino acetylenic benzophenone derivatives with significant H3-antagonist’s activity.  

Methods: Amino acetylenic benzophenone derivatives were synthesized from the reaction of 2-hydroxybenzophenone with 3-bromoprop-1-in to 
generate 2-(prop-2-yn-1-yloxy)-1,3-benzophenone (AZ-1). A mixture of 2-(prop-2-yn-1-yloxy)-1,3-benzophenone, paraformaldehyde, cyclic amine, 
cuprous chloride (catalytic amount) in peroxide free dioane through Mannich reaction yielded the designed amino acetylenic benzophenone 
derivatives (AZ-2-7). 

Results: The IR, H1-NMR, 13C NMR, and elemental analysis were consistent with the assigned structures. The designers of these compounds as H3-
antagonists were based on the nationalization of the important criteria that provide effective inhibitory binding with H3-receptor. Molecular 
docking results of compounds (AZ-2-7) showed a good H3-receptor antagonistic activity relative to thioperamide of-6 (kcal/mol) especially AZ-2 
which has-8.6 (kcal/mol).  

Conclusion: Docking results provide a good lead to designing more effective H3 antagonists in managing many CNS diseases like Alzheimer, 
epilepsy, depression, schizophrenia and many others. 

Keywords: Amino acetylenic benzophenone derivative, CNS diseases, H3-antagonist activity, Molecular docking. 

 

INTRODUCTION  

Histamine is a biologic amine that influences a wide range of 
pathophysiological processes [1-3] through the activation of 
different G-protein-coupled receptors (GPCRs). At present; four 
subtypes of histamine GPCRs are known. H1 and H2 receptors are 
implicated in allergic responses and gastric acid secretion, 
respectively [4, 5].  

The more recently discovered H4 receptor is mainly located on mast 
cells, eosinophil and lymphoid tissues and seems to be involved in 
inflammatory processes [6-8]. The histamine H3 receptor was 
identified in 1983 [9] and was initially described as an auto receptor, 
mainly expressed in the central nervous system (CNS), regulating 
histamine biosynthesis and release from histaminergic neurons [10]. 
Subsequently, H3 receptors have also been shown to act as hetro 
receptors on non-histaminergic neurons, where they inhibit the 
release of other neurotransmitters such as acetylcholine, dopamine, 
norepinephrine, serotonin and various neuropeptides [11, 12].  

The high density of H3 receptors in different CNS areas and their 
influence on the release of a large variety of neurotransmitters 
encouraged wide pharmacological investigation of their 
physiological role and quest for potential therapeutic applications of 
H3-antagonists in the treatment of various CNS diseases. Among 
them the most promising ones include attention-deficit 
hyperactivity disorders (ADHD), Alzheimer's disease, epilepsy, 
schizophrenia, obesity and eating disorders [14, 15]. Since the 
discovery of the reference antagonist thio peramide, many classes of 
potent and selective H3-antagonists have been reported [11]. The 
earliest generation of H3-antagonists were derived from the 
endogenous neurotransmitter histamine and the compounds 
contained an imidazole ring in their structures (fig. 1). It is now well 
established that the presence of imidazole ring may lead to low CNS 
penetration and potential metabolic liabilities due to the interaction 
with cytochrome P450 [11].  

Such liabilities seem to be avoided by new classes of non-imidazole 
antagonists [16]; fig. 2 compromising some interesting compounds 

that proved to block the H3-receptor at nano molar concentrations 
and to posses promising efficacy in several experimental models of 
central disorders [11]. This approach led to the selection of some 
imidazole-free compounds for clinical studies. 

 

Fig. 1: Imidazole-Based H3 antagonist 
 

Reviewing various structural features in H3 antagonists and their 
impressive results in the treatment of various CNS diseases promoted 
our interest to design and synthesize a new series of amino acetylenic 
benzophenones (fig. 3) for the following reasons: Benzophenone as a 
replacement for the imidazole ring to overcome limitation of the 
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imidazole and provide effective overlap with the H3 receptor, the basic 
cyclic amines to provide either ionic or hydrogen bonding with the H3 

receptor, the acetylenic moiety incorporated in 2-butyne to link the 
cyclic amine and benzophenone in appropriately design distance to 
provide the critical electrostatic interaction with receptor.  

Molecular docking of this unique approach to the design of H3 
antagonists showed significant H3 blocking activity as compared 
with thioperamide. These new amino acetylenic benzophenones 
may generate a lead compound in the treatment of depression, 
Parkinson's, epilepsy, Alzheimer and other CNS diseases. 

 

 

Fig. 2: Non-Imidazole-based Histamine H3 receptor antagonists 

 

MATERIALS AND METHODES 

Experimental 

Chemicals  

The following chemicals and materials were used: 2-
Hydroxybenzophenone 99% (Sigma-Aldrich), Propagyl bromide 
(Sigma-Aldrich), 2,6-Dimethylpiperidine 98% (Aldrich), 2-
Methypiperidine 98% (Aldrich), Piperidine, 99% reagent plus 
(Sigma), N-Methylpiperazine 99% (Aldrich), Pyrrolidine, 98% 
(Aldrich-Sigma), Hexamethyleneimine 98% (Aldrich-Sigma), 
Acetonitrile (TEDIA), Peroxide-free1,4-Dioxane (Full time), Di-ethyl 
ether 99% (AZ Chem. For Chemicals), Chloroform (TEDIA), Distilled 
water, Paraformaldehyde (BDH Chemicals), Potassium carbonate 
anhydrous extra pure (K2CO3) (Sd Fine Chem Ltd), Cuprous chloride, 
Duterated dimethyl sulfoxide, and tetramethylsilane.  

Instrumentation  

Melting points were determined by using a Gallenkamp melting 
point apparatus and DSC thermogram measurement was carried out 
by using the DSC 1 Stare System v.11. ox (Mettler Toledo). Infrared 
spectra (IR) were recorded, using alpha FT-IR spectrometer (Bruker, 
Jordan University). H1-NMR spectra were acquired with the aid of 
Varian 300 MHz spectrometer and DMSO-d6 as solvent and TMS as 

standard (Jordan University) 13C NMR spectra were measured using 
Bruker DRX 300 MHz spectrometer and DMSO-d6 as solvent and 
TMS as standard (Jordan University). Elemental analysis was 
obtained, using Euro EA 3000 Elemental analyzer (Euro Vector, 
Jordan University). Marvin's Sketch and ChemSketch programs were 
used in the drawing of our schemes. Maestro programmes and 
Autodock Tool program were used in our docking study.  

Docking and scoring  

A validated homology model of the H3 receptor by Mori's group [17] 
was used in our docking study. Charges were assigned to all protein 
atoms using Kollman united atom model in the Autodock tool 
program [18, 19] then the H3 receptor active site was defined by a 
known inhibitor. A grid box of a 50 x 42 x 60 Å size was created with 
a grid spacing of 0.375 Å using Autogrid module [20, 21].  

Ligand 3D structures were built using the Maestro program [22] and 
were then minimized using the OPLS force field [23]. Gasteiger-
Marsili model [24] was used to give atomic partial charges for all 
ligands whose tertiary amine groups were assigned protonated. 
Subsequently, ligands were docked into the previously identified 
active site using the Autodock software (version 4.2) [20, 21] where 
Lamarckian Genetic Algorithm [20] was employed in the 
conformational sampling process. Poses generated by docking were 
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then rated by the Autodock scoring function which estimates 
binding free energy via calculating van der Waals, hydrogen bond, 
electrostatic interactions, and the ligand internal energy for each 
ligand-protein complex.  

Synthesis of 2-(prop-2-yn-1-yloxy)-Benzophenone, (MZ-1) 

A solution of 3-bromoprop-1-yne(Propargyl bromide) (1.88 g, 0.0158 
mol) in Acetonitrile (10 ml) was added to the solution of 2-
Hydroxybenzophenone (3 g, 0.015 mol), and K2CO3 (2.18g, 0.0158 
mol) in Acetonitrile (20 ml). The resulting mixture was left, with 
stirring, for 60 min at 80 oC. After cooling, the insoluble residue was 
filtrated, and the filtrate was concentrated under reduced pressure. 
The resulting residue was extracted with chloroform. The organic 
layer was concentrated under reduced pressure generating a brown 
powder. The yielded powder (2.6 g, yield 73.24%). Mp: (68 oC). IR 
(neat, cm-1), 3175 (acetylenic ≡CH, stretch), 2110 (C≡C, stretch), 1690 
(C=O, stretch), 1600, 1460, 1425 (Ar C=C, stretch), 1000-900 (Ar C=C, 
bending), 800-610 (Ar-H, bending). H1-NMR (DMSO-d6): δ, 2.34 (s, 1H, 
C≡CH), 4.75 (s, 2H, O-CH2-C≡), 7.10-7.71 (m, 9H, Ar H). Anal. Calcd. 
(C16H12O2): C 81.35%, H 5.08%. Found: C 81.48%, H 5.13%.  

Synthesis of 2-{[4-(amino-2-yn-1-yl]oxy}-benzophenone, (MZ-2-
MZ-7) 

A mixture of 2-(prop-2-yn-1-yloxy)-benzophenone (MZ-1)(1.98 g, 
0.01 mol), paraformaldehyde (0.5 g, 0.015 mol), the cyclic amine 
(0.01 mol), and cuprous chloride catalytic amount (0.03 g), in 
peroxide-free dioxane (30 ml) was left, under magnetic stirring, for 
80 min at 90 oC. After cooling, the insoluble residue was removed by 
filtration, and the filtrate was concentrated under reduced pressure. 
The resulting residue was washed with ethyl ether generating the 
desired compounds MZ-2, MZ-3, MZ-4, MZ-5, MZ-6, and MZ-7 as 
powder. The Mp, IR, H1-NMR, [13] CNMR, DSC and elemental 
analysis are shown for each compound.  

Synthesis of 2-{[4-(2,6-dimethylpiperidine-1-yl)but-2-yn-1-
yl]oxy}-benzophenone, (MZ-2)  

The titled compound was prepared following the general procedure 
for synthesis of 2-{[4-(amino-1-yl)but-2yn-1-yl]oxy}-benzophenone 
(Scheme 1). Yielded brown powder (3.18g, yield 58.64%). Mp: 
138oC, IR (neat, cm-1): 2950, 2900, 2825 (acetylenic≡ CH, stretch), 
2115 (Ar-H, stretch), 1670 (C=O, stretch), 1590, 1490, 1445, 1360 
(Ar C=C, stretch), 1300-925 (ArC=C, bending), 875-625 (Ar-H, 
bending). H1-NMR (DMSO-d6): δ, 0.85-1.09 (m, 2H, CH of cyclic 
amine), 1.12, 1.14 (d, 6H, J=6.01 Hz, C-CH3), 1.47-1.51(t, 1H, CH of 
cyclic amine), 2.07-2.18 (d, 2H, CH of cyclic amine), 2.42-2.50 (d, 1H, 
CH of cyclic amine), 3.49 (t, 1H, C≡C -CH2), 3.56 (t, 1H, C≡C -CH2), 
4.44 (s, 1H, O-CH2-C≡), 4.77 (s, 1H, O-CH2-C≡), 7.08-7.72 (m, 9H, 
ArH), Anal. Calcd. (C24H27NO2): C 79.77%, H 7.47%, N 3.87%. Found: 
C 80.012%, H 7.599%, and N 4.24%.  

Synthesis of 2-{[4-(2-Methylpiperidine-1-yl)but-2-yn-1-yl]oxy}-
benzophenone, (MZ-3)  

The titled compound was prepared following the general procedure for 
the synthesis of 2-{[4-(2-amino-1-yl)but-2-yn-1-yl]oxy}-benzophenone 
yielded brown powder (3.11 g, yield 59.78%). Mp: 137 oC. IR (neat, cm-1): 
2900, 2800, 2740 (Ar-H, stretch), 2210 (C≡C, stretch), 1650 (C=O, 
stretch), 1580,1450, 1425, 1350 (ArC=C, stretch), 1300-900 (ArC=C, 
bending), 875-625 (Ar-H, bending). H1-NMR (DMSO-d6): δ, 0.88 (t, 3H, 
j=5.9 Hz, C-CH3), 0.98-1.21, 1.34-1.56, 2.07-2.18 (m, 4H of cyclic amine), 
2.50-2.56 (d, 4H of cyclic amine), 3.18 (t, 1H, C ≡C-CH2), 3.49 (t, 1H, C ≡C-
CH2), 4.45 (s, 1H, O-CH2-C≡), 4.77 (s, 1H, O-CH2-C≡), 7.09-7.72 (m, 9H, 
Ar-H), 13C NMR (DMSO-d6): δ, 19.98 (C[18]), 25.27 (C4), 25.56 (C5), 25.70 
(C3), 38.78 (C7), 39.06 (C6), 40.18 (C2), 46.52 (C[10]), 67.39 (C9), 80.21 
(C8), 114.08 (C[17,15]), 121.67 (C[23]), 128.87 (C[25]), 129.25 (C[13]), 
129.36 (C[22]), 129.44 (C[26]), 129.68 (C[24]), 132.12 (C[16]), 133.86 
(C[14]), 137 (C[21]), 154.74 (C[12]), 196.31 (C[19]). Anal. Calcd. 
(C23H25NO2): C 79.53%, H 7.20%, N 4.03%. Found: C 79.71%, H 7.48%, 
and N 4.35%.  

Synthesis of 2-{[4-(amino-1-yl) but-2-yn-1-yl]oxy}-benzophenone 
(MZ-4)  

The titled compound was prepared following the general procedure 
for the synthesis of 2-{[4-(2-methylpiperidine-1-yl)but-2-yn-1-

yl]oxy}-benzophenone (Scheme 1), yielded brown powder (2.84 g, 
yield 56.95%). Mp: (108 oC). IR (neat, cm-1): 2915, 2825, 2775, 2725 
(Ar-H, stretch), 2175 (C≡C, stretch), 1650 (C=O, stretch), 1580, 
1490, 1450, 1360 (Ar C=C, stretch), 1325-910 (ArC =C, bending), 
800-625 (ArH, bending). H1-NMR (DMSO-d6): δ, 1.29-1.58 (m, 2H of 
cyclic amine), 2.26-2.34 (d, 4H of cyclic amine), 2.50, 3.11 (s, 2H of 
cyclic amine),3.19-3.34, 3.49-3.56 (m, 2H of cyclic amine), 3.87 (t, 
2H, J=6.03, C≡ C-CH2-N), 4.76 (s, 2H, O-CH2-C≡), 7.08-7.94 (m, 9H, 
Ar-H). 13C NMR (DMSO-d6): δ, 25.27 (C4), 25.56 (C5), 25.70 (C3), 38.78 
(C7), 39.06 (C6), 40.18 (C2), 46.52 (C[10]), 66.77 (C9), 80.10 (C8), 
114.01 (C[17,15]), 121.73 (C[22]), 128.96 (C[24]), 129.26 (C[13]), 
129.39 (C[21]), 129.75 (C[23,25]), 132.21 (C[16]), 133.93 (C[14]), 
137.26 (C[20]), 154.78 (C[12]), 196.33 (C[18]). Anal. Calcd. 
(C22H23NO2): C 79.27%, H 6.90%, N 4.20%, found: C 79.49%, H 
7.09%, and N 4.43%.  

Synthesis of 2-{[4-(N-methylpiperazen-1-yl)but-2-yn-1-yl]oxy}-
benzophenone, (MZ-5) . 

The titled compound was prepared following the general procedure 
for the synthesis of 2-{[4-(amino-1-yl)but-2-yn-1-yl]oxy}-
benzophenone (Scheme 1). Yielded brown powder (3.23 g, yield 
61.9%). Mp: (118 oC). IR (neat, cm-1): 2900, 2875, 2850, 2800, 2750, 
(Ar-H, stretch), 2210, (C ≡C, stretch), 1645 (C=O, stretch), 1550, 1530, 
1500, 1460, 1440 (ArC=C, stretch), 1325-910 (ArC=C, bending), 860-
600 (Ar-H, bending).). H1-NMR (DMSO-d6): δ, 2.06-2.18 (t, 4H, HC-N-
CH), 2.29-2.36 (d, 2H,of cyclic amine), 2.50 (s, 3H, N-CH3), 2.73-3.32 
(m, 2H of cyclic amine), 3.39 (t, 1H, J=5. 1Hz, C≡C-CH2), 3.56 (t, 1H, 
J=4.63 Hz, C≡C -CH2), 4.56 (s, 1H,O-CH2-C≡), 4.78 (s, 1H, O-CH2-C≡), 
7.12-7.98 (m, 9H, Ar-H). Anal. Calcd. (C22H24N2O2): C 75.86%, H 6.89%, 
N 8.04%. Found: C 76.01%, H 7.09%, and N 8.31%.  

Synthesis of 2-{[4-(pyrrolidin-1-yl)but-2-yn-1-yl]oxy}-
benzophenone, (MZ-6)  

The titled compound was prepared following the general procedure 
for the synthesis of 2-{[4-(amino-1-yl)but-2-yn-1-yl]oxy}-
benzophenone (Scheme 1). Yielded brown powder (2.92 g, yield 
61.05%). Mp: (83 oC). IR (neat, cm-1): 2950, 2900, 2850, 2825, 2750, 
(Ar-H, stretch), 2210, (C≡C, stret ch), 1650 (C=O, stretch), 1575, 
1530, 1510, 1500, 1450, 1425 (ArC=C, stretch), 1350-910 (ArC=C, 
bending), 875-600 (Ar-H, bending).). H1-NMR (DMSO-d6): δ, 1.65-
1.79 (t, 2H, N-CH2), 2.37-2.55 (m, 2H,of cyclic amine), 3.09-3.26 (t, 
2H, of cyclic amine), 3.34-3.49 (m, 2H of cyclic amine), 3.55 (t, 1H, 
J=6.52 Hz, C≡C-CH2), 3.65 (t, 1H, J=6.46 Hz, C≡C-CH2), 4.49 (s, 1H,O-
CH2-C≡), 4.77 (s, 1H, O-CH2-C≡), 7.11-7.71 (m, 9H, Ar-H). Anal. 
Calcd. (C21H21NO2): C 78.99%, H 6.58%, N 4.38%. Found: C 79.18%), 
H 6.63%, and N 4.51%.  

Synthesis of 2-{[4-(hexamethyleneimin-1-yl)but-2-yn-1-yl]oxy}-
benzophenone, (MZ-7)  

The titled compound was prepared following the general procedure 
for the synthesis of 2-{[4-(amino-1-yl)but-2-yn-1-yl]oxy}-
benzophenone (Scheme 1). Yielded brown powder (3.07 g, yield 
59.1%). Mp: (142 oC). IR (neat, cm-1): 2900, 2790, (Ar-H, stretch), 
2190, (C≡C, stretch), 1660 (C =O, stretch), 1590, 1450, 1425, 1350 
(ArC=C, stretch), 1300-910 (ArC=C, bending), 860-600 (Ar-H, 
bending).). H1-NMR (DMSO-d6): δ, 1.48-1.52 (t, 4H of cyclic amine), 
2.43-2.59 (q, 2H, of cyclic amine), 3.01 (s, 2H, of cyclic amine), 3.29 
(d, 2H of cyclic amine), 3.56 (t, 2H of cyclic amine), 4.29 (s, 2H, C≡C-
CH2), 4.76 (s, 2H,O-CH2-C≡), 7.49-7.72 (m, 9H, Ar-H). Anal. Calcd. 
(C23H25NO2): C 79.53%, H 7.20%, N 4.03%. Found: C 79.72%, H 
7.44%), and N 4.18%. 

RESULTS AND DISCUSSION 

Chemistry 

The designed compounds were prepared as shown in (Schemes 2).  

2-(Prop-2-yn-1-yloxy)-benzophenone (MZ-1) was prepared from the 
alkylation of 2-Hydroxybenzophenone via 3-Bromoprop-1-
yne(propargyl bromide) in the presence of acetonitrile as solvent 
and K2CO3 as a base. The reaction involves direct displacement of the 
phenoxide anion to the bromide in propargylbromide as outlined in 
Scheme 2.  
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The Mannich reaction of 2-(prop-2-yn-1-yloxy)-benzophenone (MZ-
1) with Paraformaldehyde, appropriate cyclic amine, and a catalytic 
amount of cuprous chloride in peroxide free dioxane was heated to 

yield the desired compounds (MZ-2-MZ-7). The yield obtained 
ranged from 56.95 to 61.90%. The proposed mechanism for 
Mannich reaction is outlined in (Scheme 3). 

 

2-hydroxybenzophenone MZ-1 

 

 

  
MZ-2 MZ-3 

 
 

MZ-4 MZ-5 

  
MZ-6 MZ-7 

 
Scheme 1: Synthesis of 2-{[4-(amino-1-yl)but-2-yn-1-yl] oxy}-benzophenone, (MZ-2-MZ-7) 

 
In order for Mannich reaction to proceed, a reactive ammonium 
cations intermediates should be formed from condensation of the 
formaldehyde with the appropriate amines (Schiff base formation). 
The attack of the carbanion in 2-(prop-2-yn-1-yloxy)-benzophenone 
cuprous salt on the Schiff base, generates the desired Mannich 
adducts (MZ-2-MZ-7). The Mp, IR, H1-NMR, 13C NMR, DSC and 
elemental analysis were consistent with the assigned structures. 
Docking study of the synthesized amino acetylenic benzophenones 
derivatives showed good docking scores as indicated in (table 1) 

The site-directed mutagenesis studies of the H3 receptor illustrated 
the importance of having at least one ionic interaction between an 
H3 natural messenger (i. e histamine) and the carboxylate group of 
Asp 114 or Glu 206 [17]. Classical H3 receptor antagonists seem to be 

also required to make such an interaction in order to bind well with 
the H3 receptor pocket. In fact, some docking studies showed that 
both key amino acids could be involved in the binding of some 
known H3 receptor antagonists [17]. Consistently, our current study 
has shown that thioperamide is able to make electrostatic 
interactions with these key amino acids Asp 114 and Glu 206.  

Similar docking results were obtained for our amino acetylenic 
benzophenone derivatives. The protonated amino group was always 
able to make an ionic interaction with one of the key amino acids 
which is Asp 114. Additionally, the docked ligands nicely fit in the H3 
receptor pocket and they all possess favorable binding free energies 
(energies ‹ 0, table 1) which indicates that the important 
pharmacophoric features required for blocking the H3 receptor are 
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present in these designed compounds.  Docking study of the 
synthesized amino acetylenic bezophenone derivatives showed a 
good docking score as shown in (table 1).  

MZ-2 was the best scoring ligand amongst all benzophenone 
compounds (-8.6 kcal/mol). Interestingly, MZ-2 has less energy to 
dock into the H3 receptor and bind effectively to inhibit the H3 
receptor relative to thioperamide (-6.6 kcal/mol). MZ-2 has the ionic 
interaction with the same key residue Asp 114. Additionally, the 
ligand hydrophobic skeleton has close contacts with the side chains 
of IIe 88, Tyr 91, Trp110, His 187, Phe 193, Phe 198, Tyr 256 and 
Phe 280 amino acid. The acetylenic 2-butyne seems to act as an 
appropriate spacer between a protonated amino group and 
benzophenone to afford effective blocking activity of the H3 receptor 
[17] as shown in table 1 and fig. 3 

 

MZ-1 

Scheme 2: Proposed Alkylation reaction 

 

Scheme 3: Proposed Mannich reaction

 

Table 1: Docking scores of amino acetylenic benzophenone derivatives in the H3 receptor active site 

Molecule (Kcal/mol) Autodock score 

 
-6.6  Thioperamide  
-8.6 MZ-2  
-8.4 MZ-3 
-7.7 MZ-4  
-7.1 MZ-5 
-7.3 MZ-6 
-7.8 MZ-7 

 

  

Fig. 3: Shows the binding mode demonstrated by MZ-3, and MZ-6 respectively (blue sticks) in the H3 receptor active site (gold). The picture 
was generated by PyMol. Electrostatic interactions are shown as yellow dotted lines. Some protein chains are not shown for clarity 
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CONCLUSION  

The synthesis and characterization of a new series of 2-{[4-(amino-
1-yl) but-2-yn-1-yl]oxy}-benzophenone, (MZ-2-MZ-7) was 
accomplished. Docking of the new amino acetylenic benzophenone 
compounds showed a promising approach in managing different 
diseases such as Attention deficit hyperactivity disorder (ADHD), 
depression, psychosis, epilepsy, Alzheimer's and other neurological 
disorders through the inhibition of H3 receptor. We hope that further 
pharmacological investigation generates a new drugs in one or more 
of the above diseases.  
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