
Hierarchy Implosion for Faster User Equilibria on Road
Networks?

Dennis Luxen and Peter Sanders

Karlsruhe Institute of Technology
{luxen, sanders}@kit.edu

Abstract. The road traffic of an entire day for a certain region can be understood
as a flow with sources and sinks on the road network. Traffic has the tendency to
evade regularly clogged roads and other bottlenecks, especially with modern on-
board navigation devices that are able to interpret traffic information. In an ideal
world, traffic would shape itself in a way such that all used routes between any
two points on the road network have equal latency. Although these traffic patterns
do not or very seldom occur in real life, they are a handy tool to predict the gen-
eral traffic situation. For small networks, these patterns can be easily computed,
but road networks that model entire countries are still a hurdle, because Dijkstras
algorithm does not scale. Thus the known techniques have only been applied to
either small networks or small extracts of a much larger network. We solve this
problem for country sized road networks by combining a well-known formula-
tion of traffic assignment as an optimization problem with current research on
fast route planning by exploiting the special properties of a routing algorithm
called Contraction Hierarchies. Our results show the feasibility of the approach
for road networks that cover entire countries with running times that are suitable
for a server-based implementation. Also, it shows that the actual size of the road
network is not a limiting factor anymore.

1 Introduction

Traffic is often seen as a mere stream of cars. Consider the following picture. During a
typical day of work traffic flows from the suburbs into inner cities in the morning and
back from it in the evening. Or on national holidays a stream of cars and busses flows
perhaps to resort towns or recreation areas close to the metropolitan areas. Naturally,
some roads are more crowded than others since the traffic is not equally distributed
over the road network. As a matter of fact, traffic has the natural tendency to shift
itself to alternatives if it is more convenient for a driver to take the other route. Drivers
seek to minimize travel time (or any other metric) and can be understood to act as
selfish agents. They switch to better routes if they become aware of it. Assuming all
drivers have full knowledge one is interested in how the traffic would distribute itself
over the road network. This problem is known as the traffic assignment problem and is
a major application in the field of transportation planning. Visually speaking, it is the
process that finds edge latencies in a road network that are the result of many individuals
competing for transportation.
? Partially supported by DFG grant SA 933/5-1

We assume travelers to take a least cost or (under some metric) shortest path be-
tween their origins and destinations. The problem at hand has been the subject of re-
search since the early 1950s. Wardrops [29] first principle states the properties for a
so-called user equilibrium state, which resembles the natural tendency of traffic to take
a way of least resistance.

Definition 1 (Wardrops User Equilibrium) A set of flows along the edges of a road
network is said to be in a user equilibrium state (UE) when the two conditions of the
following definition are met.

1. If two or more paths between the origin s and the destination t are actually traveled,
then the cost of each path between s and t actually used must be the same.

2. There does not exist any path between s and t that is of less cost and unused.

Finding a traffic pattern for which the above conditions hold is called traffic assign-
ment problem. Solutions to this problem have a wide range of applications, for example
in transportation management or in traveller information systems. Also, the real-time
computation of equilibria states can be used as traffic forecasts and for traffic steering.
Basic traffic jam avoidance is a feature of nowadays navigation devices. Unfortunately,
this feature is not as developed as it is advertised.

Consider the following example. A traffic jam is reported for a certain highway and
drivers on that highway are advised to leave their route by switching to an alternate road
nearby. Since many drivers leave the highway, the road nearby is also clogged. This is
not just an academic example, but happens every day. Germanys biggest automobile
club ADAC reports in a large scale study [27] that most towns close to a highway
suffer from increased pass-through traffic because of jam evaders. Routing on a road
network that is at equilibrium is said to be a good estimate of routes that make not only
economical sense but also are perceived as good alternatives to a clogged route. Todays
jam evading features of navigation devices is limited. ADAC also reports a field study
[6] that shows the inferiority of current approaches for traffic jam evasion. Not only the
current traffic situation has to be considered to give better guidance around traffic jams,
but also how the traffic will evolve.

Travelers on a road network are said to be non-cooperating. The state of the equilib-
rium is the aggregate result of individual decisions and therefore the name user equilib-
rium. It is generally assumed that under equilibrium conditions all used routes for the
same origin destination pair have same costs, i.e. equal travel time. Also, unused routes
between any origin destination pair have higher costs than used ones. Travellers are
free to switch routes if there exists a better one than the current. The traffic distributes
itself in a way that no traveller can lower its path cost unilaterally by switching to a
cheaper path. This is the case at equilibrium, because by definition there is simply no
such path. Note that this equilibrium state is closely related to the conditions of a Nash
Equilibrium.

A general behavioral assumption in the field of transportation science is that each
traveler or vehicle in a road network will take a path that has least cost (or is at least
perceived as such). It is further assumed that travel time is the most significant utility for
route choice. We recognize the over-simplification of this model, but direct the reader

2

to the literature on empirical research of route choice, i.e [22]. We stick to travel time
as edge cost or distance measurement throughout this paper.

The remainder of this paper is organized as follows. First, we look at the relevant
literature in Section 2. We introduce the basic algorithms and data structures that we
use and explain how they solve the problem at hand in Section 3. Second, we present
an experimental evaluation in Section 5 that shows the performance of our approach.
The method is applied to a graph that models the entire road network of Belgium and
Germany. Section 6 summarizes the results and presents future directions of research.

2 Related Work

The traffic assignment problem (TAP) has been studied for more than 50 years. The
first mathematical formulation is generally attributed to Beckman et al. [4] and was first
given in 1956. It formulates the traffic assignment problem as an equivalent optimiza-
tion problem. See Appendix ?? for a formal definition of the problem.

The method of choice to solve this problem is the Frank-Wolfe algorithm [17],
which is also known as the convex combinations algorithm. It was originally invented
to solve quadratic programming problems. Over the years it has been applied to the
traffic assignment problem, mainly because of its rather simple structure. Occurences
in the literature go back to the late 1960s [7,18]. The major advantage of the Frank-
Wolfe algorithm (besides it’s simplicity) is its low memory consumption. For example,
it does not save any information on computed routes. It only counts the volume of
traffic on each individual street segment. This was considered a major advantage in
the early days of computation, because of limited memory capabilities. The algorithm
alternates between an assignment phase of the traffic demand and a minimization step
to numerically approximate edge flows.

The textbook of Sheffi [24] gives an overview of the first three decades of research
between 1950 and 1980. Most of the solution techniques described are still in use by
practitioners today. Usually they are applied to road networks of small and medium
size up to several hundred or a few thousand edges and often only on sparse subsets of
highway networks which are much smaller than the full road network.

There are several publications that focus on speeding up convergence of solving the
traffic assignment problem by modifying the way traffic flow is distributed during the
computation. Gentile [13] proposes an algorithm that seeks a deterministic equilibrium
for the local route choice of users directed toward a same destination at every node.
Bar-Gera [1] presents an algorithm to compute the UE by paired alternative segments. If
flow between two nodes splits into separate subpaths than flow is shifted proportionally.

A completely different model to solve the traffic assignment problem is to apply
game theory. Rosenthal [23] was the first to consider the problem by a game theoretic
approach. A so-called congestion game is defined by a set of players that compete for
one or more shared resources. It is said to be symmetric if all players chose among the
same set of strategies. Fabrikant et al. [11] show that any symmetric congestion game
can be solved in polynomial time. Relating to our case the players are travellers that
compete for roads and seek to minimize travel expenses. Edge latencies, i.e. the time
time it takes to traverse a road segment, are defined to be nonnegative, continuous and

3

nondecreasing functions of the amount of travellers on that edge. A potential is defined
by summing over the edge latencies of a solution under which each traveller has chosen
a route. This potential can be easily optimized to a (local) minimum by allowing players
to switch their strategy, which is a shortest route in this case. These switches are called
selfish steps. Consider a move of one of the players to a better route. Any local optimum
corresponds to the conditions stated in Definition 1. It is easy to see that the potential
is lowered and that it can be brought to a minimum by subsequent switches until no
switch to an improved route for any player is possible.

Kirschner et al. [16] apply book keeping heuristics to avoid many path computations
and subsequently speed up the rate of convergence on networks with less than a few
thousand nodes and edges. For an excellent survey over the literature for congestion
games and algorithmic game theory in general see the textbook of Nisan et al. [19].
Note that the game theoretic approach prohibits any precomputation that exploits the
underlying network topology, i.e preprocessing that is done for a fixed metric only. A
single selfish step might change the topology enough to invalidate the preprocessed data
structures and preprocessing the network for a single query is out of the question.

The application of the Frank-Wolfe algorithm and also the game theoretic solution
need a method of path finding. Plain solutions spend virtually all of the computational
effort in path finding. Unfortunately, Dijkstras algorithm does not scale well on large
road networks with millions of nodes and egdes. For large scale applications [20] this
is simply inacceptable. Therefore speedup techniques for point-to-point queries with
Dijkstras classic algorithm have been the focus of numerous publications before. For
surveys on the literature and combinations of several methods see [10,3].

Contraction Hierarchies [12] is a very successful speedup technique that has the
advantage of combining a simple algorithmic concept and very good speedups. The
technique is based on the concept of contracting nodes. The nodes of the input graph
G = (V,E) are ordered by some measurement of importance. Unimportant nodes are
bypassed and replaced by so-called shortcut edges to preserve shortest path distances
The resulting data structure can be queried by a bidirectional Dijkstra to find shortest
paths. We refer the interested reader to the publication of Geisberger et al. [12] for an
in-depth explanation of the node ordering and proofs of correctness. There have also
been reports on combinations of several distinct speedup techniques [3].

To the best of our knowledge there is no publication that reports on directly exploit-
ing the special properties of such a speedup technique to augment traffic assignment
computations. Also, we are not aware of equilibria computations for large networks
with significantly more than a few hundred or thousand street segments [14,1,13].

3 Problem Formulation

We model a road network as a graph G=(V,E). V is a set of nodes and E ∈V×V is a set
of edges or less formally the set of street segments. Each edge carries a certain amount
of traffic that we call flow. Each edge e is labelled with an edge weight we = c(fe) that
is the result of the flow fe on e and edge cost function c. Given n nodes in a network,
let nodes 1, . . . , p ≤ n be a subset of nodes which are either origin or destination of a
so-called demand set.

4

Generally, we view the nodes of the graph as the places where traffic passes-by,
enters or leaves the system. We define the set of demands D as a set of triples (i, j,k),
where i, j ∈ V and k ∈ N. The nodes i and j indicate origin and destination nodes and
k the number of units that demand to flow between these nodes. Note that demands
are integral. Flow on a certain road segment is said to be the ratio of the current and
maximum number of vehicles on that segment. The maximum flow of a road segment
is the ratio of length of the segment times the number of lanes and the average length of
a car. In absence of data we defined motorways and motorway links to have two lanes
while the other categories feature only one lane.

The traditional name OD-matrix for the demand set comes from the case where the
number of modeled nodes equals the number of all origins and destinations with flow
going from every node to every other node. One reason for this name might be the result
of the shortest paths algorithms itself. As we argued before, Dijkstras algorithm does
not scale well on large instances. Finding the shortest path for each and every origin-
destination pair is a heavy computational burden on large graphs. So it is more efficient
to model each node as an origin of traffic and to compute the shortest path search tree
for each node exactly once and to store the resulting distances in the column of a matrix.
Multiple destinations will be found with just one search. As we show in this and later
Sections, this model is not imperative anymore.

Optimization Problem. In [24] it has been shown that the traffic assignment problem
can be solved as a minimization problem. The objective function of the underlying opti-
mization problem is based on total edge flows and the resulting edge weights. Consider
ω to be the flow on an edge. The function is defined by the sum over the change of all
edge weights

min(z) = ∑
e∈E

∫ fe

0
Ce(ω)dω

with the constraint, that the sum over all observed flows between any two nodes equals
the total demand between those nodes. This minimization problem can be solved by
applying the Frank-Wolfe algorithm [17,24]. In each step of the algorithm the approxi-
mation of the solution is replaced by a new approximation that is obtained by gradient
descent towards the optimum.

Initialization and Iterative Improvement. The initialization is an all-or-nothing assign-
ment of the demand set where each demand is assigned to the edges of the shortest
paths using free flow speed on the edges. In other words, travellers choose the routes
that would be best if they were the only travellers on the road network. These free
flow usages are counted and edge weights reevaluated w.r.t. the flow on the edges and
these edge weights are taken as the initial solution X0. In each iteration a subsequent
assignment Y i is computed and combined with the previous solution to get a better
approximation.

More formally, the n-th iteration starts with an update of all edge weights Ce =
(cn

1, . . . ,c
n
|E|) corresponding to the edge flow vector Fn = (f n

1 , . . . f n
|E|) which is the re-

sult of the previous iteration. Next, an all-or-nothing assignment that distributes the

5

so-called auxiliary flow Y n = (yn
1, . . .y

n
|E|) on the network is performed. The new ap-

proximation
Xn+1 = Xn +α

n · (Y n−Xn)

is obtained by computing a scaling factor αn that is feasible in the current iteration only.
Note that computing Y n is straight-forward and Xn is known from previous iteration. We
solve

α
n = min

0≤α≤1
∑
e

∫ f n
e +α(yn

e− f n
e)

0
Ce(ω)dω

at each iteration. Since we know the derivative of the function, we can solve that step
with a search strategy to find the minimum. This is also known as line search.

The search for αn is solved approximately with a certain error threshold by applying
the bisection method of Bolzano, which finds the zero of a continuous function by a
recursive descent similar to binary search. For any given interval [a,b] and c= (b+a)/2
we examine if our solution is either in [a,c] or [c,b] and decent recursively until we have
reached a certain accuracy. Note that the number of repeated bisections N needed to
approximate α ∈ [0,1] with an error less or equal than a δ > 0 is given by N :=
− log2 δ .

The series of solutions X i, i > 0, is known to converge to the solution of the traffic
assignment problem. Again, we refer the reader to the textbook of Sheffi [24] for in-
depth explanations and for the correctness of the method.

Edge Cost Functions. If the travel time between any two nodes was a constant inde-
pendent of the flow in between then we could solve the problem easily. It would suffice
to compute the shortest path for each element of the demand set. Of course, this view
neglects reality and the effect that flow, or in other words dense traffic, has to the aver-
age speed on a road segment. The denser the traffic gets the more careful drivers have
to be not to cause an accident by running into a decelerating car in front. Likewise the
denser the traffic the more cars are affected by ones own driving maneuvres [26].

To model the situation more realistically the edge cost function has to be increas-
ing, contiguous and non-linear. Several good edge cost functions have been proposed.
A simplified function is the Bureau of Public Roads [8] function (BPR). This function
was derived from empiric observation and takes length, speed limit and capacity as pa-
rameters. Although it is easy to compute its curves are not asymptotic to any maximum
capacity value, which is in stark contrast to reality. To overcome this shortage Davidson
[9] proposed a function family that is based on queuing theory. It is defined as

te = t0
e ·
[

1+ J · xe

ce− xe

]
where t0

e denotes the travel time at 0 usage, ce the capacity of the street segment and xe
the current usage. J is a tuning parameter to control the shape of the curve.

Other classes of road functions have been proposed. For example, the class of con-
ical volume-delay functions [25]. For an earlier survey on edge cost functions see [5].
But on the other hand the Davidson function models basic relationships between usage
und resulting travel times and it is easy to compute. We set J to 0.25 throughout this

6

paper. See Appendix ?? for a plot of the Davidson function function family for different
values of J showing the relation between average travel times and the amount of flow
relative to maximum flow.

Convergence Criterion. Convergence can be based on a number of criteria. Clearly, one
would like to stop once the changing of edge weights comes to a halt between iterations.
The easiest choice is to stop after a fixed number of iterations, but this entirely neglects
solution quality. A natural choice would be to use the change of the objective function
as convergence test. This might be misleading, since the lengths of individual paths
might differ significantly while the sum of of the lengths is relatively stable. Therefore,
the stopping criterion is based on how much the path length for each demand differs
between two iterations.

max
d∈D

abs
(

µn(d)−µn−1(d)
µn−1(d)

)
where

D = set of demands
µn(d) = length (cost) of path in iteration n for demand d

This stopping criterion indicates the quality of the approximation of the equilibrium
much better from a behavioral point of view than a simple sum of all edge weights.
Furthermore it ensures that the computation is only stopped once the weights of all
edges have settled down.

4 Integration into Contraction Hierarchies

A naive implementation of the optimization algorithm of Section 3 is technically easy
and straight-forward with any algorithm that computes shortest path, i.e. Dijkstras Al-
gorithm. A more efficient approach will be explained in this Section.

As we mentioned before, it is not necessary to save any information on the paths
that are computed. After all path computation is done in an iteration, it suffices to know
how often each edge occurs in the set of shortest paths that are computed. So, it is a
characteristic of the optimization that there is no need at all for saving the path. Al-
though, computing and unpacking each path is technically feasible, it is also possible to
integrate the path computation of Contraction Hierarchies more efficiently.

Note that any shortest path that is computed by the bidirectional Contraction Hier-
archies query on the search data structure consists of shortcuts. Although the length of
any shortest path is optimal, it has to be unpacked to actually know which edges of the
original graph are used. Usually, unpacking is done by a recursive method. The edges
of the packed path are pushed onto a stack and while the stack is non-empty an edge
is popped. If it is a shortcut then the two edges building that shortcut are pushed onto
the stack. Otherwise the popped edge is inserted into the resulting unpacked path. The
recursive unpacking runs fast in time linear to the length of the unpacked path. When
compared to a plain Dijkstra algorithm unpacking is still several orders of magnitude
faster. But with the help of the next observation, we can do even better.

Consider the case that the method of Section 3 has been implemented naively with
a variant of Dijkstras algorithm. Each (original) edge of the road network needs to

7

keep track of the number of times it occurs in a path. From our experience from the
experiments of Section 5 and also from a brief look into reality we can tell that many
street segments of a road network, i.e. highways and other roads of high importance, are
traversed a vast number of times, if the demand set is sufficiently large. So, many single
edges will be touched several times during the computation and this is not necessary as
we see in the remainder of this Section.

We modify the path computation in a way that each shortcut is unpacked exactly
once during each assignment phase. At first, we do not unpack the paths at all, but
count the flows on edges without unpacking shortcuts. To do so, each edge is equipped
with a counter to record the number of times it is part of a shortest path. This number
is counted during the path computation. It can be done easily, since each path consists
of a few shortcuts only. Recall that we do not need to keep track of the routes actually
chosen by travellers, but only the amount of flow on each individual edge. After all
paths have been computed the hierarchy is deconstructed by unpacking all shortcuts
and assigning the load of the shortcut to edges that lie underneath. See Figure 1 for an
illustration of the process of hierarchy implosion.

f

f
f

f

f
f

f

Fig. 1. Usage gets distributed through dashed edges to edges of shortcuts

The only prerequisite to the correctness of this approach is to implode the shortcutes
in the opposite order in which they were created during creation of the hierarchy. It is
obvious from the order of implosion that no shortcut needs to be unpacked more than
once and no edge usage is lost. The order of shortcut creation is easy to record during
preprocessing and takes up a neglectable amount of space only. The reverse order of
insertion defines the order of implosion. Note that the order can also be determined by
a topological search since the hierarchy is a directed acyclic graph.

If each path would be unpacked directly each time a path gets computed then the
heavily traversed edges would be touched many, many times to increase usage counters.
Instead, the path unpacking is independent of the number of demands and depends only
size of the hierarchy. Note that the implosion of the hierarchy is not recursive.

Our resulting algorithm performs very well as we will see in Section 5. The addi-
tional space overhead for shortcut order and edge usage counters is more than bearable
on a current desktop computer.

8

4.1 Demand Generation

We pregenerate randomized lists of origin destination pairs, also called the set of de-
mands or demands for short, for the test cases of Section 5. It is out of the scope of
this paper to generate demand sets that reproduce observed conditions from reality. A
simple trip generation model is presented that generates traffic demand that is realistic
enough to show the validity of the technical approach.

The set of demands is fixed and therefore does not change during the assignment.
To the best of our knowledge we are not aware of any high resolution trip generation
algorithms coming from transportation science that covers entire countries. Also, we
do not aim to provide a completely realistic simulation, but rather a tool to demonstrate
the technical feasibility of the approach. As a consequence, we have to resort to trip
generation that does not claim the character of any close approximation of reality.

During a personal conversation with an ADAC representative it was suggested to
us that the distances actually traveled are geometrically distributed with an expected
distance of 40 kilometres. We conjecture that the population density correlates strongly
with the density of a road network and choose the starting points uniformly and at ran-
dom from the set of all nodes. Since we know the distribution, we draw a geometrically
distributed distance that each lies between each start and target node. A ball is grown
around each starting node s using a unidirectional Dijkstra Search and when an edge is
relaxed we check the distance its end node has from the source. If the distance of the
end node is equal or more than the travel distance that was drawn before, we accept the
node as the target t of s and insert the pair (s, t) into the demand set.

5 Experimental Evaluation

We implemented our algorithm and data structures in C++ using GCC v4.3.2 as com-
piler with full optimizations turned on. All tests were done on a single core of a Intel
Xeon X5550 CPU running at 2.67GHz. The machine is equipped with 48 GB of RAM
running Linux kernel version 2.6.27. The evaluation was done on road networks of
Belgium and Germany. The Belgian network consists of 463 514 nodes and 1.093 454
edges whereas the german network consists of 4 378 446 nodes and 9 574 254 million
edges. Both have been made available by PTV AG1 for scientific use. For each road
segment length and the respective out of 13 road categories are available. Free flow
speeds have been derived from category and length of an edge. Capacity is implied by
the category of the edge, which is an oversimplification, but unavoidable because of
lack of data. Travel times were computed according to the Project OSRM car speed
profile [21].

We pregenerated lists of 105,106 and 107 demands for the network of Belgium and
Germany and in addition also a list of 108 demands 2 for Germany to reflect the larger
size of the road network. We computed the user equilibria for all demand sets on the
respective graphs. The line search approximation parameter was set to 10−10 and the

1 http://www.ptv.de
2 The experiments 108 will appear in the final version only, because of hardware problems just

before the deadline.

9

dampening factor J of the davidson edge cost function was set to 0.25. See Figure 5 for
the numerical results of the experiments.

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

 2 4 6 8 10 12 14

ch
an

ge
 [%

]

iteration count

Belgium

avg error, 107

max error, 107

avg error, 106

max error, 106

avg error, 105

max error, 105
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

 2 4 6 8 10 12 14
ch

an
ge

 [%
]

iteration count

Germany

avg error, 107

max error, 107

avg error, 106

max error, 106

Fig. 2. Experimental results for the Belgian (left) and German (right) road network.

The stopping value is quickly approached in each of the experiments. We observe
that the stopping value of a maximum error of less than 0.001% is approached in a
similar way for each of the demand sets while the average error drops significantly with
larger demand set sizes. The larger the graph and the demand set the more evident this
phenomenon gets.

The traffic assignment changes the topology of the underlying graph. This ist a
direct consequence of Wardrops User Equilibrium from Definition 1. Recall that under
equilibrium state all used routes for a certain origin-destination pair have equal travel
times. The edge weights are adapted iteratively to (approximately) reach this state. This
flattens the natural hierarchy of the road network that is exploited during the contraction
phase. Thus the preprocessing takes longer, because it is harder to decide if a certain
shortcut is needed or not. Less shortcut edges can be omitted from the search data
structure, because for many shortcuts there is now a shortest path that actually lies on
it. Likewise, the query times rise. The effect is most obvious in the first two iterations
when the most changes occur in the edge weight. See Appendix A and B for plots for
all the experiments.

From the plots of Appendix A and B it becomes clear, that the larger the numbers
of queries the less important preprocessing and the road network size gets.

Note we also implemented a simpler iterated all-or-nothing assignment. The method
starts with a feasible flow on the network. Then edge costs are recalculated for the flow,
which is observed on each edge. The flow is reassigned to the changed network and
the process is reiterated until a specified number of iterations is completed. We did
not observe any convergence with this technique even for large numbers of iterations.
In contrast, we observed oscillation of route choice and quickly deemed the approach

10

infeasible. Likewise, an incremental loading where a subset of the demands is assigned
proved infeasible as well. Again, convergence did not occur.

6 Conclusions

Our algorithm exploits the special properties of the search data structure of Contraction
Hierarchies which enables us to solve the problem with better efficiency than pure path
computation with unpacking of each computed path. We showed the feasibility of large
scale traffic assignment on graphs that cover entire countries. Although our algorithm
works sufficiently well for smaller countries like Belgium, there is still some room for
improvement. The running times for Germany are not yet fast enough to allow near-
realtime traffic assignment.

A parallel implementation of our algorithm is straight-forward. Vetter has already
implemented a parallel Contraction Hierarchies variant [28] that could be adapted for
hierarchy implosion. We are working to extend our research to time-dependent road
networks, multiple cost functions and also distributed computation. Contraction Hier-
archies have already been adapted to time-dependent road networks [2] and there has
been a distributed implementation recently [15] that can be used to speed up the pre-
processing phase even further. Finding the right modelling of the time-dependent traffic
assignment problem is an interesting question on its own.

References

1. Bar-Gera, H.: Traffic assignment by paired alternative segments. Transportation Research
Part B (2010)

2. Batz, V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies.
In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments
(ALENEX’09). pp. 97–105. SIAM (2009)

3. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining
Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm (2009), ACM
JEA special issue for WEA 2008

4. Beckmann, M., C.B.McGuire, C.B.Winsten: Studies in the economics of transportation. Yale
University Press, New Haven (1959)

5. Branston, D.: Link capacity functions: A review. Transportation Research 10(4), 223–236
(August 1976)

6. Brieter, K., Eicher, C.C., Haart, V., Vigl, M.: Mit dem navi sicher in den stau. ADAC Motor-
welt 3, 56–59 (2010)

7. Bruynooghe, M., Gilbert, A., Sakarovitch, M.: Une methode d’affectation du trafic. In:
Leutzbach, W., Baron, P. (eds.) Proc. 4th Internat. Sympos. Theory Road Traffic. pp. 198–
204. Bundesminister für Verkehr, Abt. Strassenbau, Bonn, Germany (1969)

8. Bureau of Public Roads: Traffic Assignment Manual. U.S. Dept. Of Commerce, Washingtion
D.C. (1964)

9. Davidson, K.B.: A flow travel time relationship for use in transportation planning. Proceed-
ings of the Australian Road Research Board 3, 183–194 (1966)

10. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Algorithmics of Large and Complex Net-
works, chap. Engineering Route Planning Algorithms, pp. 117–139. Springer (2009)

11

11. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. pp. 604–
612. STOC ’04, ACM, New York, NY, USA (2004)

12. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA. Lecture Notes
in Computer Science, vol. 5038, pp. 319–333. Springer (2008)

13. Gentile, G.: Linear user cost equilibrium: a new algorithm for traffic assignment. submitted
for publication in Transportation Research B (2010)

14. Jayakrishnan, R., T.Tsai, W., Prashker, J.N., Rajadhyaksha, S.: A faster path-based algorithm
for traffic assignment. Transportation Research Record (1994)

15. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hier-
archies. In: Proceedings of the 9th International Symposium on Experimental Algorithms
(SEA 2010). Springer (2010)

16. Kirschner, M., Schengbier, P., Tscheuschner, T.: Speed-up techniques for the selfish step
algorithm in network congestion games. In: Proceedings of the 8th International Symposium
on Experimental Algorithms. pp. 173–184. SEA ’09, Springer (2009)

17. Marguerite, F., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics
Quaterly 3, 95–110 (1956)

18. Murchland, J.: Road network traffic distribution in equilibrium. Mathematical models in the
social sciences (1979)

19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.): Algorithmic Game Theory.
Cambridge University Press (2007)

20. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP, Utrecht, The
Netherlands (1994)

21. Project OSRM: http://project-osrm.org, http://project-osrm.org
22. Ramming, S.M.: Network Knowledge and Route Choice. Ph.D. thesis, Massachusetts Insti-

tute of Technology (February 2002)
23. Rosenthal, R.W.: The network equilibrium problem in integers. Networks 3, 53–59 (1973)
24. Sheffi, Y.: Urban Transportation Networks: Equlibrium Analysis with Mathematical Pro-

gramming. Prentice-Hall, Inc Englewood Cliffs, NJ 07632 (1982)
25. Spiess, H.: Technical Note–Conical Volume-Delay Functions. TRANSPORTATION SCI-

ENCE 24(2), 153–158 (1990)
26. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki,

S., Yukawa, S.: Traffic jams without bottlenecks – experimental evidence for the physical
mechanism of the formation of a jam. New Journal of Physics 10(3), 033001 (2008)

27. Unknown Authors: TMC-Stauumfahrung:Verkehrsprobleme durch Stauverlagerungen?
Tech. rep., ADAC e.V. (2010)

28. Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s thesis,
Karlsruhe Institute of Technology (2010)

29. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Insti-
tute of Civil Engineers. vol. 1, pp. 325–378 (1952)

12

A Running times for experiments on Belgian road network

 0

 5

 10

 15

 20

 25

 30

1, 2, 3, 4, 5, 6, 7,

Ti
m

e
pe

r i
te

ra
tio

n
[s

]

Iterations

Belgium 105 demands

contraction
query

 0

 50

 100

 150

 200

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,
Ti

m
e

pe
r i

te
ra

tio
n

[s
]

Iterations

Belgium 106 demands

contraction
query

 0

 500

 1000

 1500

 2000

1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,

Ti
m

e
pe

r i
te

ra
tio

n
[s

]

Iterations

Belgium 107 demands

contraction
query

Fig. 3. Running times for Belgian network

13

B Running times for experiments on German road network

 0

 50

 100

 150

 200

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,

Ti
m

e
pe

r i
te

ra
tio

n
[s

]

Iterations

Germany 105 demands

contraction
query

 0

 50

 100

 150

 200

 250

 300

 350

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,
Ti

m
e

pe
r i

te
ra

tio
n

[s
]

Iterations

Germany 106 demands

contraction
query

 0

 500

 1000

 1500

 2000

1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,

Ti
m

e
pe

r i
te

ra
tio

n
[s

]

Iterations

Germany 107 demands

contraction
query

Fig. 4. Running times for German network

14

C Mathematical Programming notation of the Traffic Assignment
Problem

This formulation of the problem is due to Beckman Beckman et al. [4].

min(z) = ∑
e∈E

∫ fe

0
c(ω)dω

s.t. fe = ∑
r

∑
s

∑
p

hrs
p δ

rs
e,p ∀e ∈ E

∑
p

hrs
p = qrs ∀r ∈ R,s ∈ S

hrs
p ≥ 0

δ
rs
e,p =

{
1 if path p contains edge e
0 else

E,R,S =̂ edges in road network, set of origins and destinations
Z =̂ numerical value of the objective function
fe =̂ total flow on edge e
Ce(fe) =̂ cost of traversing edge e under flow
hrs

p =̂ flow on path p from r ∈ R to s ∈ S
qrs =̂ number of trips going from r ∈ R to s ∈ S

D Plot of the Davidson function family

 1

 10

 100

 0 20 40 60 80 100

D
el

ay
 F

ac
to

r

Used capacity [%]"

Davidson delay function

J=1.0
J=0.5

J=0.25
J=0.01

J=0.001

Fig. 5. Plot of the BPR function

15

E Plots of Germany and Belgium at Equilibrium state

Fig. 6. Germany (left) and Belgium (right) at equilibria states with 106 demands each.

Note that the plot sizes do not reflect the actual sizes of either Germany or Belgium.
In fact the size of the area of Germany is larger by an order of magnitude. The plot
on the left hand side is much darker because the density of the road network is much
higher.

16

