
extended report

From Rewriting Logic Executable Semantics
to Matching Logic Program Verification

Grigore Roşu
University of Illinois at

Urbana-Champaign
grosu@illinois.edu

Chucky Ellison
University of Illinois at

Urbana-Champaign
celliso2@illinois.edu

Wolfram Schulte
Microsoft Research

Redmond
schulte@microsoft.com

Abstract
Rewriting logic semantics (RLS) is a definitional framework in
which a programming language is defined as a rewrite theory: the al-
gebraic signature defines the program configurations, the equations
define structural identities on configurations, and the rewrite rules
define the irreversible computational steps. RLS language defini-
tions are efficiently executable using conventional rewrite engines,
yielding interpreters for the defined languages for free.

Matching logic is a program verification logic inspired by RLS.
Matching logic specifications are particular first-order formulae
with constrained algebraic structure, called patterns. Configurations
satisfy patterns iff they match their algebraic structure and satisfy
their constraints. Patterns can naturally specify data separation and
require no special support from the underlying logic.

Using HIMP, a C-like language with dynamic memory alloca-
tion/deallocation and pointer arithmetic, this paper shows how one
can derive an executable matching logic verifier from HIMP’s RLS.
It is shown that the derived verifier is sound, that is every verified
formula holds in the original, complementary RLS of HIMP, and
complete, that is every verified formula is provable using HIMP’s
sound matching logic proof system. In passing, this paper also shows
that, for the restriction of HIMP without a heap called IMP for which
one can give a conventional Hoare logic proof system, a restricted
use of the matching logic proof system is equivalent to the Hoare
logic proof system, in that any proof derived using any of the proof
systems can be turned into a proof using the other. The encoding
from Hoare logic into matching logic is generic and should work
for any Hoare logic proof system.

A matching logic verifier, called MatchC, has been built on top
of the Maude rewrite system. A nontrivial MatchC case study is
discussed, namely the verification of the partial correctness of the
Schorr-Waite algorithm (with graphs). The verifier automatically
generated and proved all 227 paths in 16 seconds.

1. Introduction
Programming language semantics and program verification are well
developed research areas with a long history. In fact, one might
think that all problems would have been solved by now. One would
hope that any formal semantics for an imperative language should

[Copyright notice will appear here once ’preprint’ option is removed.]

Matching Logic
Proof System for L

Matching Logic
Verifier for L

Rewriting Logic
Semantics of L

Figure 1. Overview of our verification approach for language L

give rise to a proof system and that a verifier for such a system
would simply extend the proof system with a proof strategy; or
looked at from the other side, one might assume that any verification
system for a particular programming language would be grounded
in that language’s formal semantics. However reality tells us that
building semantics-grounded verifiers for realistic languages is still a
dream. Popular languages, like C, C# or Java had initially no formal
semantics, just reference implementations or informal reference
manuals. Their corresponding verifiers like Caduceus [Filliâtre and
Marché 2004] or VCC [Cohen et al. 2009] for C, Spec# [Barnett
et al. 2004] for C#, or ESC/Java [Flanagan et al. 2002] for Java, are
best efforts to capture the behavior of a particular implementation
or of an informal reference manual. But how can the verification
community claim to do serious verification on real programs if
we do not relate verification systems to semantics and semantics
to implementations? This paper tries to address the first of these
issues: it links program language semantics and program verification
formally, as shown in Figure 1. We proceed in three steps:

First, we suggest using Rewriting Logic Semantics (RLS) as
a flexible and expressive logical framework to give meaning to
programs. RLS defines the meaning of programs as a rewrite theory:
the algebraic signature defines the program configurations, like code
fragments to be executed, environments and stores; the equations
define structural identities on configurations, e.g. that execution
proceeds from left to right or that the order of variable-value pairs
in the environment does not matter; and the rewrite rules define
the irreversible computational steps, such as an assignment updates
the environment. Such semantic definitions are directly executable
as interpreters in a rewriting system such as Maude [Clavel et al.
2007]. RLS scales well; even though we exemplify RLS by defining
a simple language in this paper, it has in fact been used to define
real languages, like Java 1.4 [Farzan et al. 2004].

Second, we introduce a provably sound Matching Logic proof
system for a given RLS. Matching logic is similar to Hoare logic in
many aspects. Like Hoare logic, matching logic specifies program
states as logical formulae and gives an axiomatic semantics to a

Matching Logic - From Executable Semantics to Program Verification 1 2009/7/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4822343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

programming language in terms of pre- and post-conditions. Like
Hoare logic, matching logic can generically be extended to a formal,
syntax-oriented compositional proof system. However, unlike Hoare
logic, matching logic configurations will not be flattened to arbitrary
first order logic (FOL) formulas; instead they are kept as symbolic
configurations, i.e. restricted FOL= (FOL with equality) formulae.
Matching logic specifications, e.g. pre- and postconditions, are
patterns over configurations, possibly containing both free and
bound variables. A configuration matches a pattern iff it is obtained
as an instance of the pattern (i.e., mapping pattern’s variables to
concrete values). Matching logic, which was only introduced this
year in a technical report [Roşu and Schulte 2009], has unique
benefits compared to other program logics, for instance:

• Matching logic, by means of its patterns, separates the syntactic
ingredients, such as the program variables and expressions, from
the semantic ones, such as the logical variables; it thus eliminates
the problems and limitations due to mixing program syntax with
logical specifications.
• Matching logic achieves heap separation without having to

extend the logic with special connectives; e.g. the very fact
that one can match two trees in a heap means, by definition, that
the two trees are separate; in other words, unlike in separation
logic, in matching logic separation is nothing special and it is
achieved at the term level instead of at the formula level; in
particular, no disjointness predicate is needed.
• Matching logic, by means of its algebraic foundation, often al-

lows to substitute algebraic axiomatizations of uninterpreted
operations for recursive predicates which are a problem for FOL.
For example, the operation reverse on lists can be axiomatized
with two equations, rev(nil) = nil and rev(a : α) = rev(α) : a,
where list concatenation (here written with the infix operator “:”)
is defined equationally as an associative and commutative op-
erator. Tools, such as Maude, which can execute RLS and can
be used to build program verifiers based on matching logic, are
quite effective in using those.

Third, and perhaps more importantly from a practical perspective,
executable and thus testable RLS language definitions can easily
be turned into efficiently executable automatic Matching Logic
Verifiers based on symbolic forward simulation, which are sound and
complete for the matching logic axiomatic semantics. The following
language-independent steps need to be taken to turn a RLS into
such a matching logic verifier: (1) extend RLS configurations with
new configuration items that keep track of bound variables and path
conditions; this extension is modular, in that none of the existing
equations and rules in the original RLS need to change; (2) add an
explicit case-split rule to deal with conditional control structures
and keep track of path conditions (this rule corresponds to a
similar sound matching logic rule); (3) distinguish successful proofs
from failed proof attempts. In addition to the above background
infrastructure that can in principle be generated automatically for
any existing RLS, the semantics of control and memory allocation
constructs in the original RLS has to be adapted to work on symbolic
configurations. Interestingly, as the steps above may suggest, one
can derive a matching logic verifier from an RLS of a language more
easily than one can derive a matching logic proof system, which is
the reason why we emphasized the corresponding arrow in Figure 1.
The matching logic proof system is, nevertheless, worthwhile for
many reasons: it rigorously justifies the correctness of our verifier;
it serves as a foundational backbone for other verifiers, for example
ones based on backwards analysis; etc.

Matching logic verifiers maintain a clean separation between the
property to check, the program and the language semantics. This
makes debugging failed verification attempts easy: when the verifier

gets stuck, it simply shows the current configuration — it has all
the information that is needed to understand what has happened: the
code where the prover got stuck, the path which had been taken, the
assumptions on environment and store, etc. Compare this simplicity
to the intricate details that a modern weakest-precondition-based
prover like Boogie [Barnett et al. 2006] has to maintain.

We demonstrate these three steps by deriving a matching logic
verifier for HIMP, a C-like language with dynamic memory allo-
cation/deallocation and pointer arithmetic. We provide a theorem
for the soundness of the matching logic formal system w.r.t. the
original, complementary and testable RLS semantics; and a sound-
ness and completeness theorem for the correctness of the verifier
w.r.t. the matching logic proof system. To show the practicality of
the approach, we implemented an extended version of the derived
matching logic verifier, called MatchC, using a modified version of
Maude that invokes off-the-shelf SMT solvers to discharge proof
obligations that cannot be solved by rewriting. We demonstrate the
effectiveness of MatchC by applying it on a nontrivial case study:
the partial correctness of the Schorr-Waite algorithm (with graphs).
Our formalization uses novel axiomatizations of clean and marked
partial graphs, as well as a specific stack-in-graph structure, which
records that during the execution of Schorr Waite the heap consists
at any time of such a stack and either a clean or a marked partial
subgraph. With this formalization the prover automatically gener-
ated and verified all paths (over 200) in a few seconds. To the best
of our knowledge, this is the first time the partial correctness of
this algorithm has been automatically verified. Previous efforts have
either proved only its memory safety [Hubert and Marché 2005] or
a version restricted to trees [Loginov et al. 2006] automatically.

The novel contributions of this paper are thus as follows:

• We provide a rewriting logic semantics for HIMP, a C-like
language with dynamic memory allocation/deallocation and
pointer arithmetic. We also give the fragment of HIMP without a
heap, called IMP, a Hoare logic axiomatic semantics as a proof
system and show that it is sound w.r.t. the RLS of IMP.
• We introduce matching logic and show how a matching logic

proof system can be derived from an existing RLS of a language,
here HIMP. We prove the soundness of the matching logic proof
system w.r.t. the original RLS, first for IMP and then for HIMP.
• We show that for IMP, a restricted use of the matching logic

proof system is equivalent, via a back-and-forth mechanical
translation, to a conventional Hoare logic proof system for IMP.
The translation from Hoare logic to matching logic is generic
and should work for any language, suggesting that any Hoare
logic proof system admits an equivalent matching logic proof
system. The other translation, from matching logic to Hoare
logic, appears to be language specific, because it relies on finding
appropriate encodings of program configuration patterns into
Hoare specifications; it is not clear that they always exist.
• We derive a matching logic verifier for HIMP from its RLS and

show that it is sound and complete for the matching logic proof
system of HIMP. That means, in particular, that the derived
program verifier for HIMP is sound w.r.t. the original executable
(and thus debuggable) complementary RLS of the language.
• We briefly introduce MatchC, a matching logic verifier for

KernelC (an extension of HIMP with malloc and free), which
has been built on top of the Maude rewriting system. It efficiently
and automatically proves the partial correctness of the Schorr-
Waite algorithm with graphs (invariant is provided).
• We provide a new and simple approach to prove Schorr-Waite,

based on axiomatizations of clean and marked graphs, as well as
of the specific stack-in-graph structure, and provide an invariant
stating that the heap consists at any time of such a stack and
either a clean or a marked partial subgraph.

Matching Logic - From Executable Semantics to Program Verification 2 2009/7/25

Section 2 introduces some background notions and notation.
Section 3 gives the RLS semantics of IMP, the variant of HIMP
without a heap, gives a Hoare logic axiomatic semantics of IMP as
a proof system, and finally shows that the latter is sound w.r.t. the
former. Section 4 introduces some generic matching logic notions,
then gives a sound matching logic axiomatic semantics to IMP
as a proof system, and then finally shows that a restricted use of
this matching logic proof system is equivalent to the Hoare logic
proof system of IMP. Section 5 shows how to derive a sound and
complete matching logic prover for IMP. Section 6 shows how easily
the concepts and techniques defined for IMP extend to HIMP; we
show how several heap patterns are also axiomatized, such as lists,
trees and graphs. Section 7 briefly discusses our implementation
MatchC and shows how we used it to prove the partial correctness
of the Schorr-Waite algorithm.

2. Preliminaries
We assume the reader is familiar with basic concepts of multi-sorted
algebraic specification, rewriting logic, and first-order logic with
equality. The role of this section is to establish our notation for
concepts and notions used later in the paper.

An algebraic signature (S,Σ) consists of a finite set of sorts S and
of a finite set of operation symbols Σ over sorts in S. For example, in
the context of a programming language, S may include sorts like E
for expressions and S for statements, and Σ may include operation
symbols like if () else : E×S ×S → S , where the underscores
are placeholders for the corresponding arguments; this style of
writing operation symbols using underscores is called mixfix and
is supported by several languages in the OBJ family [Goguen et al.
2000]. Many-sorted algebraic signatures like above are equivalent
to context-free grammars (CFG): sorts correspond to non-terminals
and mixfix operation symbols to productions; e.g., “if () else :
E × S × S → S ” corresponds to “S F if (E) S else S ”. From
here on we prefer to use the CFG notation for algebraic signatures,
because it is more common in the context of programming languages.
We may write Σ instead of (S,Σ) when S is understood or when it
is irrelevant. Signatures can be used to build terms, which can be
organized into an initial algebra. We let TΣ denote the initial Σ-
algebra of ground terms (i.e., terms without variables) and let TΣ(X)
denote the free Σ-algebra of terms with variables in X, where X is
an S-indexed set of variables.

An algebraic specification (Σ,E) consists of an algebraic signa-
ture Σ and a set of Σ-equations E, where a Σ-equation is a triple
∀X.(t = t′), where X is a set of variables and t, t′ are terms having the
same sort in TΣ(X). Algebraic specifications (Σ,E) admit initial and
free models, obtained by factoring the initial and free term models
by all equational consequences of E. Many domains of interest to
languages, such as integer numbers, finite lists (sequences), sets and
multisets (bags), mappings of finite domain, etc., can be axiomatized
as initial models of finite algebraic specifications.

A rewriting logic specification [Meseguer 1992] (Σ,E,R) adds
to an algebraic specification (Σ,E) a set of rewrite rules of the form
∀X.(l → r), where X is a set of variables and l, r are terms of the
same sort in TΣ(X). Rewriting logic specifications can be used to
define dynamic and concurrent systems: equations are structural
identities modulo which the irreversible rewrite rules are applied.
It was shown [Şerbănuţă et al. 2009] that rewriting logic embeds
various programming language definitional styles, such as structural
operational semantics [Plotkin 2004], reduction semantics with
evaluation contexts [Wright and Felleisen 1994], the CHAM [Berry
and Boudol 1992], continuations [Reynolds 1993], etc. By “embed”,
as opposed to “encode”, is meant that the corresponding rewriting
logic specifications capture the original semantics step-for-step, i.e.,
they do not change the computational granularity of the embedded
semantics. K [Roşu 2007, Meseguer and Roşu 2007] is a rewriting

logic language definitional technique employed in this paper to
give executable semantics to our language(s). K overcomes the
limitations of the above-mentioned styles and fully exploits and
extends the strengths of rewriting logic.

We next briefly recall first-order logic with equality (FOL=). A
first-order signature (S,Σ,Π) extends an algebraic signature (S,Σ)
with a finite set of predicate symbols Π; we also use the mixfix
notation for predicates, e.g., < : E × E, etc. FOL= formulae
have the syntax ϕ F t = t′ | π(t) | ∃X.(ϕ) | ¬ϕ | ϕ1 ∧ ϕ2,
plus the usual derived constructs ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, ∀X.(ϕ), etc.,
where t, t′ range over Σ-terms of the same sort, π ∈ Π over atomic
predicates and t over appropriate term tuples, and X over finite sets of
variables. Σ-terms can have variables; all variables are chosen from
a fixed sort-wise infinite S-indexed set of variables, Var. We adopt
the conventional notions of free and bound variables in formulae,
and the notation ϕ[e/x] for the capture-free substitution of all free
occurrences of variable x by term e of same sort in formula ϕ. A
FOL= specification (S,Σ,Π,F) is a FOL= signature (S,Σ,Π) plus a
set of closed (i.e., no free variables) formulae F . A FOL= model M
is a Σ algebra together with relations for the predicate symbols in Π.
Given any closed formula ϕ and any model M, we write M |= ϕ iff
M satisfies ϕ. If ϕ has free variables and ρ : Var ⇁ M is a partial
mapping defined (at least) on all free variables in ϕ, also called an
M-valuation of ϕ’s free variables, we let ρ |= ϕ denote the fact that
ρ satisfies ϕ. Note that ρ |= ϕ[e/x] iff ρ[ρ(e)/x] |= ϕ.

3. A Simple Imperative Language Without Heap
This section introduces (our version of) IMP, a simple imperative
language with assignments, conditionals and while loops. Like C,
IMP has no boolean expressions (0 means “false” and , 0 means
“true”) but unlike C, IMP uses := instead of = for assignments
(to avoid confusion with = of FOL=). We give IMP an executable
semantics in the K rewrite framework, and an axiomatic semantics
as a Hoare logic proof system; the latter is also shown sound w.r.t.
the former. Both of these semantics will be needed later in the
paper. Section 6 extends IMP with memory allocation and pointers
(including pointer arithmetic); the new language will be called
HIMP (IMP with a heap).

3.1 K Executable Definition of IMP
K is an executable rewriting logic language definition framework in
which a programming language L is defined as a rewrite logic the-
ory (ΣL,EL,RL). ΣL includes the syntax of L and additional syntax
needed to define configurations and the actual language semantics,
EL includes structural equations that have no computational mean-
ing but can “rearrange” terms so that semantic rules match and
apply, and RL includes irreversible rules that correspond to intended
computational steps in the defined language.

Figure 2 shows the complete K definition of IMP. The signature
is given via CFG notation and consists of the IMP syntax plus
the syntax of configurations. K makes use of bags (or multisets),
sets, sequences and finite maps to define configurations. All of these
structures are routinely defined equationally and our implementation
of K automatically generates Maude algebraic specifications for
them whenever used. Each of these structures admit a unit and
a binary construct; these are given as subscript and superscript,
respectively. Maps have additional polymorphic constructs for pairs,
namely 7→ , and for update, namely [/]. For example, the Env
sort is defined in Figure 2 as Map ,

· [PVar, Int], that is, environments
are map structures of the form “x1 7→ i1, x2 7→ in, ..., xn 7→ in”,
with “·” representing the empty environment. Technically, it means
that several operations and equations are added: “ , : Env×Env→
Env” as a binary associative and commutative construct with “·” as
unit, “ 7→ : PVar × Int→ Env” as atomic environment construct,
and “ () : Env×PVar→ Int” and “ [/] : Env× Int×PVar→ Env”

Matching Logic - From Executable Semantics to Program Verification 3 2009/7/25

NatF naturals,Nat+ F pos. naturals, IntF integers (abstract syntax)
PVar F identifiers, to be used as program variable names
E F Int | PVar | E1 op E2

S F PVar:=E | S 1;S 2 | if (E) S 1 else S 2 | while (E) S

Cfg F 〈Bag· [CfgItem]〉 (configuration)
CfgItem F 〈K〉k | 〈Env〉env

K F E | S | Seq y· [K] | �
Env F Map ,· [PVar, Int]

(x:=e) = (ey x:=�) (structural “strictness” equations)
e1 op e2 = (e1 y � op e2) i1 op e2 = (e2 y i1 op�)
if (e) s1 else s2 = (ey if (�) s1 else s2)

s1 ; s2 = s1 y s2 (semantic equations and rules)
i1 op i2 → i1 opInt i2

〈xy k〉k 〈x 7→ i, ρ〉env → 〈iy k〉k 〈x 7→ i, ρ〉env

〈x:= iy k〉k 〈ρ〉env → 〈k〉k 〈ρ[i/x]〉env

if (i) s1 else s2 → s1, where i , 0
if (0) s1 else s2 → s2
〈while (e) sy k〉k = 〈(if (e) s;while (e) s else ·)y k〉k

(x∈PVar; e,e1,e2 ∈E; s,s1,s2 ∈S ; k∈K; i,i1,i2 ∈ Int; ρ∈Map , [PVar,Int])

Figure 2. IMP in K: Complete Executable Semantics

as environment lookup and update operations; in addition to the
obvious equations defining all the above, constraints ensuring that
xi , xj whenever i , j are also added.

Configurations in K are defined as potentially nested structures
of such bags, sets, sequences and maps; these structures are called
cells and are labeled to avoid confusion. The configurations of our
simple IMP language have the form 〈〈...〉k 〈...〉env〉, so are bag cells
containing two subcells — a computation (which is a sequence
cell) and an environment (which is a map cell). We add a new heap
cell when we extend IMP to HIMP in Section 6. Configurations
can be arbitrarily complex and their cells can be created and
destroyed dynamically. For example, the configurations of our Java
1.4 definition [Farzan et al. 2004] contain nine fixed top-level cells
plus one other cell per dynamically created thread, each such thread
cell containing eight other subcells holding the thread-specific data.

A distinctive aspect of K is the K sort and its constructs. The K
sort stands for computational structures, or simply computations.
Computations sequentialize computational tasks separated by an as-
sociative y (read “then”, or “followed by”). The placeholder “�”
signifies where the result of the previous computation should be
plugged.1 Recall that in rewriting logic and implicitly in K, equa-
tions are reversible and rewrite rules are applied modulo equations.
For example, the equation “(x:= e) = (ey x:=�)” states that the
assignment “x:= e” is to be considered identical to the computa-
tion “ey x:=�”, which schedules e for processing and says how
its result will be plugged back into the right assignment context.
This equation will need to be applied twice, once to unplug e and
schedule it for processing, and another to plug the result of e, once
computed, back into the assignment statement. Structural equations
define the evaluation strictness of the language constructs and cor-
respond to the definition of the grammar of evaluation contexts
in reduction semantics [Wright and Felleisen 1994]; however, the
process of parsing a term into a context and a redex in reduction
semantics is replaced by equational deduction in K.

The semantic equations and rules are the core of a K semantics,
with typically one per language construct (two or more only for
choice statements). For IMP, there are two semantic equations: one

1 The meaning of � in K in its full generality is slightly more complex, but
we do not need its full generality here.

for desugaring the sequential composition and one for the while loop
unrolling. We made these equations because we do not want them
to count as computational steps, but one is free to make them rules
instead. The domains of concrete values typically come with suitable
signatures that one can use in the semantics; e.g., the IMP “+”
expression construct is reduced to the domain “+Int : Int× Int→ Int”
when its arguments become values (integers in this case). Note
that the while loop is unrolled only when it is the top task in the
computation, to avoid non-termination of unrolling. The semantic
rewrite rules are self-explanatory; we only discuss the assignment
rule “〈x:= iy k〉k 〈ρ〉env → 〈k〉k 〈ρ[i/x]〉env”. This says that if the
assignment “x:= i” is the top computational task and the current
environment is ρ, then remove the assignment from the computation
and update the environment with i for x.

We can now formally define IMP as a rewriting logic specifica-
tion/theory, together with some terminology.

Definition 1. We let IMP denote the rewriting logic specification
(ΣIMP,EIMP,RIMP) in Figure 2 and, like in rewriting logic, we write
IMP |= t = t′ or IMP |= t → t′ when the equation t = t′ or the rule
t → t′, respectively, can be derived using rewriting logic deduction
from the IMP specification. We also write IMP |= t →∗ t′ when the
rule t → t′ can be derived in zero or more steps. Recall that rewrite
steps apply modulo equations in rewriting logic. To simplify writing,
we may drop the “IMP |=” when understood.

Computation k ∈ K is well-formed iff it is equal (using equa-
tional reasoning within IMP’s semantics) to a well-formed IMP
statement or expression. Computation k is well-terminated iff it is
equal to the unit computation “·” or to an integer value i ∈ Int.

Let IMP◦ be the algebraic specification (ΣIMP,E
◦
IMP) of IMP

configurations, where E◦IMP ⊂ EIMP contains all the configuration
defining equations (those for bags, sequences, maps, etc., but not
the computation or semantic equations). Let T be the initial IMP◦

algebra, i.e., the ΣIMP-algebra of E◦ equational classes of ground
terms (i.e., ΣIMP-terms provably equal with equations in E◦IMP are
considered identical). Terms 〈〈k〉k 〈ρ〉env〉 in T of sort Cfg are called
(concrete) configurations and we distinguish several types of them:

• Configurations 〈〈s〉k 〈·〉env〉 with s ∈ S , written more compactly
JsK, are called initial configurations;
• Configurations 〈〈k〉k 〈ρ〉env〉 with k well-terminated are called

final configurations;
• Configurations γ ∈ T which cannot be rewritten anymore are

called normal form configurations;
• Normal form configurations which are not final are called stuck

(or junk, or core dump) configurations;
• Configurations that cannot be rewritten infinitely are called

terminating configurations.

For example, 〈〈x := x + y; y := x − y〉k 〈x 7→ 7, y 7→ 5〉env〉 is a
terminating configuration and, since bags are associative and com-
mutative and environment maps are bags of pairs, it is identical
to 〈〈y 7→ 5, x 7→ 7〉env 〈x := x + y; y := x − y〉k〉. The configuration
〈〈x := 0; y := 1〉k 〈·〉env〉 is initial, 〈〈·〉k 〈x 7→ 0, y 7→ 1〉env〉 is final,
and 〈〈xy � + 1y x := �〉k 〈y 7→ 1〉env〉 is stuck.
K rules are schemas and, unlike in SOS [Plotkin 2004], they are

unconditional; thus, no premises need to be proved in order to apply
a rule. Note that the first rule for the conditional statement has the
side condition “i , 0”, but that acts as a simple filter for instances
of the rule schema and not as a premise that needs to recursively
invoke the rewriting procedure. Also, note that unlike in reduction
semantics with evaluation contexts [Wright and Felleisen 1994], K
rewrites are context insensitive, in that its rules and equations can
apply wherever they match; one needs to use structure to inhibit
applications of undesired rules or equations, like we did for while.
One natural question is whether the tasks in a computation structure

Matching Logic - From Executable Semantics to Program Verification 4 2009/7/25

are indeed processed sequentially; the following result is crucial for
most if not all subsequent results in the paper.

Proposition 2. Given k ∈ E∪S and r ∈ K, then 〈〈ky r〉k 〈ρ〉env〉 →
∗

γ for some final configuration γ iff there is some final config-
uration γ′ = 〈〈k′〉k 〈ρ

′〉env〉 such that 〈〈k〉k 〈ρ〉env〉 →
∗ γ′ and

〈〈k′ y r〉k 〈ρ
′〉env〉 →

∗ γ; moreover, if that is the case then k′ = ρ(k)
and ρ′ = ρ when k ∈ E, and k′ = · when k ∈ S .

Proof. The “if” part is easier; it states that if there are some final con-
figurations γ′ = 〈〈k′〉k 〈ρ

′〉env〉 and γ such that 〈〈k〉k 〈ρ〉env〉 →
∗ γ′

and 〈〈k′ y r〉k 〈ρ′〉env〉 →
∗ γ, then 〈〈ky r〉k 〈ρ〉env〉 →

∗ γ. Since
each rewrite rule only modifies the computation at its top, we
can repeat all the steps in the rewrite sequence 〈〈k〉k 〈ρ〉env〉 →

∗

〈〈k′〉k 〈ρ
′〉env〉 starting with the term 〈〈ky r〉k 〈ρ〉env〉 and append-

ing r to the computation of every other configuration that ap-
pears in the rewrite sequence, eventually obtaining a rewrite se-
quence 〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈k′ y r〉k 〈ρ
′〉env〉. Since we know

that 〈〈k′ y r〉k 〈ρ′〉env〉 →
∗ γ, we conclude 〈〈ky r〉k 〈ρ〉env〉 →

∗ γ.
We prove the “only if” part by structural induction on k.
Let us first consider the cases where k ∈ E. If k ∈ Int then

one can take k′ = k = ρ(k) and γ′ = 〈〈k〉k 〈ρ〉env〉, which ver-
ify the property. If k ∈ PVar then there is only one possibil-
ity for the first step in the rewrite sequence of 〈〈ky r〉k 〈ρ〉env〉

to γ, namely to use the variable lookup rule, so one can take
k′ = ρ(k) and ρ′ = ρ, which verify the property. Suppose now
that k is an expression of the form e1 op e2 If e1, e2 ∈ Int then
take k′ = ρ(e1 op e2) = e1 opInt e2 and ρ′ = ρ. If e1 ∈ Int and
e2 < Int then, since k = e2 y e1 op�, by the induction hypothesis
we get that 〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈ρ(e2)y e1 op�y r〉k 〈ρ〉env〉

and also that 〈〈ρ(e2)y e1 op�y r〉k 〈ρ〉env〉 →
∗ γ. For the latter

sequence, since ρ(e2) y e1 op� = e1 op ρ(e2), the only way for
that rewriting sequence to take place is that is starts by rewrit-
ing e1 op ρ(e2) to e1 opInt ρ(e2). Then take k′ = e1 opInt ρ(e2) =
ρ(e1 op e2) and ρ′ = ρ and note that the property holds. If e1 < Int
then, since k = e1 y � op e2, by the induction hypothesis we
get that 〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈ρ(e1)y � op e2 y r〉k 〈ρ〉env〉 and
also that 〈〈ρ(e1)y � op e2 y r〉k 〈ρ〉env〉 →

∗ γ. For the latter se-
quence, since ρ(e1) y � op e2 = ρ(e1) op e2 = e2 y ρ(e1) op�,
by the induction hypothesis, 〈〈e2 y ρ(e1) op�y r〉k 〈ρ〉env〉 →

∗

〈〈ρ(e2)y ρ(e1) op�y r〉k 〈ρ〉env〉 →
∗ γ. For the latter sequence,

since ρ(e2) y ρ(e1) op� = ρ(e1) op ρ(e2), the only way for
that rewriting sequence to take place is that is starts by rewriting
ρ(e1) op ρ(e2) to ρ(e1) opInt ρ(e2). Then take k′ = ρ(e1) opInt ρ(e2) =
ρ(e1 op e2) and ρ′ = ρ and note that the property holds.

Let us now analyze the cases where k ∈ S . If k = s1; s2 =
s1 y s2 then by the induction hypothesis there is some ρ1 such
that 〈〈s1〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ1〉env〉 and 〈〈s2 y r〉k 〈ρ1〉env〉 →
∗ γ.

The latter rewrite implies, by the induction hypothesis again, that
there is some ρ2 such that 〈〈s2〉k 〈ρ1〉env〉 →

∗ 〈〈·〉k 〈ρ2〉env〉 and
〈〈r〉k 〈ρ2〉env〉 →

∗ γ. Pick k′ = · and ρ′ = ρ2 and note that the prop-
erty verifies. If k = (x := e) = ey (x :=�) then by the induction
hypothesis 〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈x := ρ(e) y r〉k 〈ρ〉env〉 →
∗ γ;

the only way to advance the rewriting of 〈〈x := ρ(e) y r〉k 〈ρ〉env〉

is to apply a variable update rule instance, so we obtain that
〈〈x := ρ(e) y r〉k 〈ρ〉env〉 → 〈〈r〉k 〈ρ[ρ(e)/x]〉env〉 →

∗ γ. Then
pick k′ = · and ρ′ = ρ[ρ(e)/x] and note that the property
holds. If k = if (e) s1 else s2 = ey if (�) s1 else s2, then
〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈if (ρ(e)) s1 else s2 y r〉k 〈ρ〉env〉 →
∗ γ

by the induction hypothesis. Since ρ(e) ∈ Int, it is either 0
or different from 0. If ρ(e) , 0 then 〈〈ky r〉k 〈ρ〉env〉 →

∗

〈〈s1 y r〉k 〈ρ〉env〉 →
∗ γ, so by the induction hypothesis there is

some ρ′ s.t. 〈〈s1〉k 〈ρ〉env〉 →
∗ 〈〈·〉k 〈ρ

′〉env〉 and 〈〈r〉k 〈ρ′〉env〉 →
∗ γ.

Pick k′ = · and ρ′ as above and note that the property holds. If
ρ(e) = 0 then 〈〈ky r〉k 〈ρ〉env〉 →

∗ 〈〈s2 y r〉k 〈ρ〉env〉 →
∗ γ, so

by the induction hypothesis there is some ρ′ s.t. 〈〈s2〉k 〈ρ〉env〉 →
∗

(IMP statement rules)

·

{ϕ[e/x]} x:= e {ϕ} (HL-asgn)

{ϕ1} s1 {ϕ2}, {ϕ2} s2 {ϕ3}

{ϕ1} s1;s2 {ϕ3}
(HL-seq)

{ϕ ∧ (e , 0)} s1 {ϕ′}, {ϕ ∧ (e = 0)} s2 {ϕ′}
{ϕ} if (e) s1 else s2 {ϕ

′}
(HL-if)

{ϕ ∧ (e , 0)} s {ϕ}
{ϕ} while (e) s {ϕ ∧ (e = 0)} (HL-while)

(Generic rule)

|= ψ⇒ ϕ, {ϕ} s {ϕ′}, |= ϕ′ ⇒ ψ′

{ψ} s {ψ′}
(HL-consequence)

Figure 3. Hoare logic formal system for IMP

〈〈·〉k 〈ρ
′〉env〉 and 〈〈r〉k 〈ρ′〉env〉 →

∗ γ. Pick k′ = · and ρ′ as above
and note that the property holds. Now suppose that k = while (e) s
and that 〈〈while (e) sy r〉k 〈ρ〉env〉 →

n γ for some n > 0.
We prove the property by well-founded induction on n, for any
ρ. Like above, it must be that 〈〈while (e) sy r〉k 〈ρ〉env〉 →

∗

〈〈if (ρ(e)) s; while (e) s else ·y r〉k 〈ρ〉env〉 →
n′ γ for some

n′ ≤ n. If ρ(e) , 0 it can only be that the conditional rule is
applied on the intermediate term above, then by the induction hy-
pothesis there is some ρ′′ such that 〈〈s〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′′〉env〉

and 〈〈while (e) sy r〉k 〈ρ′′〉env〉 →
n′′ γ for some n′′ < n′ (at least

one rewrite step has been consumed by the conditional)). By the
inner induction hypothesis (since n′′ < n), there is some ρ′ such that
〈〈while (e) s〉k 〈ρ′′〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉 and 〈〈r〉k 〈ρ′〉env〉 →

∗ γ,
which proves our property. If ρ(e) = 0 then the conditional rewrites
to ·, so 〈〈while (e) sy r〉k 〈ρ〉env〉 →

∗ 〈〈r〉k 〈ρ〉env〉 →
∗ γ. Pick

k′ = · and ρ′ = ρ and note that the property holds. Proposition 2

3.2 Hoare Logic Proof System for IMP
Figure 3 gives IMP an axiomatic semantics as a Hoare logic proof
system deriving (partial) correctness triples of the form {ϕ} s {ϕ′},
where ϕ and ϕ′ are FOL formulae called the pre-condition and
the post-condition, respectively, and s is a statement; the intuition
for {ϕ} s {ϕ′} is that if ϕ holds before s is executed, then ϕ′ holds
whenever s terminates. We only consider partial correctness triples
in this paper. In Hoare logic, program states are mappings (that we
call environments) from variables to values, and are specified as FOL
formulae — environment ρ “satisfies” ϕ iff ρ |= ϕ in FOL. Because
of this, program variables are regarded as logical variables in
specifications; moreover, because of the rule (HL-asgn) which may
infuse program expression e into the pre-condition, specifications
in Hoare logic actually extend program expressions, which is
sometimes a source of confusion and technical inconvenience
(since not all languages agree on the same syntax for expressions,
since some expression constructs may have side effects or peculiar
evaluation strategies, such as the “shortcut and” && in C, etc.).

Let us formally define the underlying FOL. Its signature is the
subsignature of IMP in Figure 2 keeping the expressions E and their
subsorts (i.e., excluding only S and the statement constructs). Its
universe of variables, Var, is PVar. Assume a background theory
(i.e., a set of formulae that are by default conjuncted with any other
formula) that can prove i1 op i2 = i1 opInt i2 for any i1, i2 ∈ Int.
To ease writing, expressions e are allowed as formulae as syntactic
sugar for ¬(e = 0). Here are two examples of correctness triples:
{x > 0 ∧ z = old z} z := x+z {z > old z}

{∃z.(x = 2 ∗ z + 1)} x := x*x+x {∃z.(x = 2 ∗ z)}

Matching Logic - From Executable Semantics to Program Verification 5 2009/7/25

The first sequent above says that the new value of z is larger after
the assignment statement than the old value, and the second says
that if x is odd before the assignment then it is even after.

We now fix a FOL model, say Int, whose carrier corresponding
to the sort E of expressions is the integer numbers. Finite-domain
valuations ρ : PVar ⇁ Int in this model then correspond to
environment mappings as defined in Figure 2. We can now state
the soundness theorem of the Hoare logic formal system for IMP in
Figure 3 w.r.t. its K executable definition in Figure 2 (as mentioned,
here we only consider partial correctness). The role of Theorem 3 is
twofold: on the one hand it shows how K definitions relate to Hoare
logic formal systems, and on the other hand it prepares the ground
for the soundness of matching logic (Theorem 8).

Theorem 3. (Soundness of Hoare logic w.r.t. K for IMP) If
{ϕ} s {ϕ′} is derivable, then for any environment ρ ∈ Map , [PVar,Int]
with ρ |= ϕ, if IMP |= 〈〈s〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉 then ρ′ |= ϕ′.

Proof. By structural induction on the derivation of {ϕ} s {ϕ′} using
the proof system in Figure 3. We next consider each rule.

·

{ϕ[e/x]} x:= e {ϕ} (HL-asgn)

Let ρ ∈ Map , [PVar, Int] be such that ρ |= ϕ[e/x], and suppose that
〈〈x:= e〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉. We claim that ρ′ = ρ[ρ(e)/x].

Indeed, since 〈〈x:= e〉k 〈ρ〉env〉 = 〈〈ey x:=�〉k 〈ρ〉env〉, by Proposi-
tion 2 we get 〈〈ey x:=�〉k 〈ρ〉env〉 →

∗ 〈〈ρ(e)y x:=�〉k 〈ρ〉env〉,
and so the original rewrite sequence can only be of the form
〈〈x:= e〉k 〈ρ〉env〉 →

∗ 〈〈x:= ρ(e)〉k 〈ρ〉env〉 → 〈〈·〉k 〈ρ
′〉env〉, which im-

plies that ρ′ = ρ[ρ(e)/x]. Next, since we assumed that ρ |= ϕ[e/x],
it follows that ρ′ |= ϕ (see fact at the end of Section 2).

{ϕ1} s1 {ϕ2}, {ϕ2} s2 {ϕ3}

{ϕ1} s1;s2 {ϕ3}
(HL-seq)

Let ρ1 ∈ Map , [PVar, Int] such that ρ1 |= ϕ1, and suppose that
〈〈s1;s2〉k 〈ρ1〉env〉 →

∗ 〈〈·〉k 〈ρ3〉env〉. Since 〈〈s1;s2〉k 〈ρ1〉env〉 =
〈〈s1 y s2〉k 〈ρ1〉env〉, by Proposition 2 we get that there is some
ρ2 ∈ Map , [PVar, Int] such that 〈〈s1〉k 〈ρ1〉env〉 →

∗ 〈〈·〉k 〈ρ2〉env〉 and
〈〈s2〉k 〈ρ2〉env〉 →

∗ 〈〈·〉k 〈ρ3〉env〉. By the induction hypothesis for the
derivation of {ϕ1} s1 {ϕ2} we get ρ2 |= ϕ2, and then ρ3 |= ϕ3 by the
induction hypothesis for the derivation of {ϕ2} s2 {ϕ3}.

{ϕ ∧ (e , 0)} s1 {ϕ′}, {ϕ ∧ (e = 0)} s2 {ϕ′}
{ϕ} if (e) s1 else s2 {ϕ

′}
(HL-if)

Let ρ ∈ Map , [PVar, Int] be such that ρ |= ϕ, and suppose that
〈〈if (e) s1 else s2〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉. Since the equality

〈〈if (e) s1 else s2〉k 〈ρ〉env〉 = 〈〈ey if (�) s1 else s2〉k 〈ρ〉env〉

holds, by Proposition 2 we get that 〈〈if (e) s1 else s2〉k 〈ρ〉env〉 →
∗

〈〈if (ρ(e)) s1 else s2〉k 〈ρ〉env〉. We now distinguish two cases: if
ρ(e) , 0 then 〈〈if (ρ(e)) s1 else s2〉k 〈ρ〉env〉 → 〈〈s1〉k 〈ρ〉env〉;
if ρ(e) = 0 then 〈〈if (ρ(e)) s1 else s2〉k 〈ρ〉env〉 → 〈〈s2〉k 〈ρ〉env〉.
The first case implies that ρ |= ϕ∧ (e , 0) and that 〈〈s1〉k 〈ρ〉env〉 →

∗

〈〈·〉k 〈ρ
′〉env〉, so by the induction hypothesis for the derivation of

{ϕ ∧ (e , 0)} s1 {ϕ′} it follows that ρ′ |= ϕ′. The second case implies
that ρ |= ϕ ∧ (e = 0) and that 〈〈s2〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉, so by

the induction hypothesis for the derivation of {ϕ ∧ (e = 0)} s2 {ϕ′} it
follows that ρ′ |= ϕ′.

{ϕ ∧ (e , 0)} s {ϕ}
{ϕ} while (e) s {ϕ ∧ (e = 0)} (HL-while)

(IMP statement rules)

C[e] ≡ v
〈C〉 x:= e 〈C[x← v]〉 (ML-asgn)

〈C1〉 s1 〈C2〉, 〈C2〉 s2 〈C3〉

〈C1〉 s1;s2 〈C3〉
(ML-seq)

C[e] ≡ v, 〈C ∧ (v , 0)〉 s1 〈C′〉, 〈C ∧ (v = 0)〉 s2 〈C′〉
〈C〉 if (e) s1 else s2 〈C′〉

(ML-if)

C[e] ≡ v, 〈C ∧ (v , 0)〉 s 〈C〉
〈C〉 while (e) s 〈C ∧ (v = 0)〉 (ML-while)

(Generic rule)

|= Γ⇒ Γ1, Γ1

V
Γ′1, |= Γ′1 ⇒ Γ′

Γ

V

Γ′
(ML-consequence)

(only statement patterns)

(IMP expression rules)
·

C[i] ≡ i (ML-int)

·

(C 〈x 7→ v, ρ〉env)[x] ≡ v (ML-lookup)

C[e1] ≡ v1, C[e2] ≡ v2

C[e1 op e2] ≡ v1 opInt v2
(ML-op)

Figure 4. Matching logic formal system for IMP

Let ρ ∈ Map , [PVar, Int] be such that ρ |= ϕ, and suppose that
〈〈while (e) s〉k 〈ρ〉env〉 →

n 〈〈·〉k 〈ρ
′〉env〉 for some n > 0. We

prove by well-founded induction on n that ρ′ |= ϕ ∧ (e = 0).
By Proposition 2 it follows that 〈〈while (e) s〉k 〈ρ〉env〉 →

∗

〈〈if (ρ(e)) s;while (e) s else ·〉k 〈ρ〉env〉 →
n′ 〈〈·〉k 〈ρ

′〉env〉, where
n′ ≤ n. We again distinguish two cases, like in the case of the condi-
tional: if ρ(e) , 0 then 〈〈if (ρ(e)) s;while (e) s else ·〉k 〈ρ〉env〉

rewrites in one step to 〈〈s;while (e) s〉k 〈ρ〉env〉, and if ρ(e) = 0
then it rewrites in one step to 〈〈·〉k 〈ρ〉env〉. The second case is
simpler: it implies that ρ |= ϕ ∧ (e = 0) and that ρ′ = ρ, so
ρ′ |= ϕ∧ (e = 0). The first case implies that ρ |= ϕ∧ (e , 0) and that
〈〈s;while (e) s〉k 〈ρ〉env〉 →

n′−1 〈〈·〉k 〈ρ
′〉env〉. By Proposition 2

again it follows that there is some ρ′′ ∈ Map , [PVar, Int] such that
〈〈s〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′′〉env〉 and 〈〈while (e) s〉k 〈ρ′′〉env〉 →

n′′

〈〈·〉k 〈ρ
′〉env〉 for some n′′ < n′. By the induction hypothesis for

the derivation of {ϕ ∧ (e , 0)} s {ϕ} it follows that ρ′′ |= ϕ. By the
well-founded induction hypothesis for n′′ < n (and ρ′′), it follows
that ρ′ |= ϕ ∧ (e = 0).

|= ψ⇒ ϕ, {ϕ} s {ϕ′}, |= ϕ′ ⇒ ψ′

{ψ} s {ψ′} (HL-consequence)

Let ρ ∈ Map , [PVar, Int] be such that ρ |= ψ, and suppose that
〈〈s〉k 〈ρ〉env〉 →

∗ 〈〈·〉k 〈ρ
′〉env〉. Since |= ψ ⇒ ϕ, it follows that

ρ |= ϕ, so by the induction hypothesis we get that ρ′ |= ϕ′, and
since |= ϕ′ ⇒ ψ′ we finally get ρ′ |= ψ′. Theorem 3

4. Matching Logic Definition of IMP
In this section we first introduce some generic matching logic
notions and notations, and then give a matching logic axiomatic
semantics for IMP and show it sound w.r.t. the K semantics in
Section 3. Then we show that for the simple IMP language, a
restricted use of this matching logic proof system is equivalent
to the Hoare logic proof system of IMP in Section 3.2.

Matching Logic - From Executable Semantics to Program Verification 6 2009/7/25

4.1 General Matching Logic Notions and Notations
A matching logic formal system for a language L can be best given
when one already has a K semantics for L. A technique is suggested
in Roşu and Schulte [2009] to relatively mechanically generate a
matching logic formal system from a K semantics, and in this paper
we show how a program verifier can be derived from theK semantics
of a language. Additionally, a K definition of a language also yields
an interpreter for the language as well as an explicit state model
checker essentially for free when executed in Maude [Meseguer and
Roşu 2007]. Thus, there are multiple benefits of giving a language
a K semantics. However, supposing that one wants to exclusively
define a matching logic proof system for a language and is not
interested in the other benefits of a K semantics, all that is really
needed is an appropriate definition of configurations; having a fully
executable and tested K semantic definition of L gives confidence
in the appropriateness of its configurations, but it is not necessary.

LetL◦ = (ΣL,E◦L) be the algebraic specification defining the con-
figurations of some language L; Section 3 (Definition 1) discusses
IMP◦ as an example of a two-subcell configuration (a computation
and an environment) and one other cell is added in Section 6 (a
heap), but one can have arbitrarily complex configurations in L◦.
Let Cfg be the sort of configurations in L◦. A first major distinction
between matching logic and Hoare logic is that in matching logic
program variables are syntactic constants, not logical variables.
In other words, one cannot quantify over program variables and
they are neither free nor bound in formulae. Instead, let Var be a
sortwise infinite set of logical, or semantical, variables, together
with a distinguished variable named “◦” of sort Cfg which serves as
a placeholder for the configuration in specifications.

Definition 4. Matching logic specifications, called configuration
patterns or just patterns, are FOL= formulae∃X.((◦=c)∧ϕ), where:

• X ⊂ Var is the set of (pattern) bound variables; the variables in
c and the free variables in ϕ which are not in X are the (pattern)
free variables; special variable “◦” is considered neither free
nor bound, and can only appear once in the pattern, as shown;
• c is the pattern structure and is a term of sort Cfg that may

contain logical variables in Var (bound or not to the pattern); it
may (and typically will) also contain program variables in PVar,
but recall that those have no logical meaning;
• ϕ is the (pattern) constraints, an arbitrary FOL= formula.

We let Γ, Γ′, ..., range over patterns. For example, the IMP pattern
∃z.(◦ = 〈〈x := y/x〉k 〈x 7→ x, y 7→ x ∗Int z, ρ〉env〉 ∧ x , 0)

specifies configurations whose computation is “x := y/x” and in
which the value x held by x is different from 0 and divides the value
held by y; variables x and ρ are free, meaning that they are expected
to be bound by the proof context (like in Hoare logic, such free
variables in specifications act as parameters to the entire proof).

Let us fix as underlying model TL◦ , written more compactly just
T , the initial model ofL◦; T is obtained by factoring the ΣL-algebra
of ground terms by all the equational properties in E◦

L
, so T is the

model of concrete (i.e., non-symbolic) values and configurations —
Section 3 (Definition 1) defines the corresponding initial model
for IMP◦. Let Var◦ be the set Var ∪ {◦} of variables Var extended
with the special variable ◦ of sort Cfg. Valuations Var◦ → T then
consist of a concrete configuration γ corresponding to ◦ and of a
map τ : Var→ T ; we write such valuations using a pairing notation,
namely (γ, τ) : Var◦ → T .

We are now ready to introduce the concept of pattern matching
that inspired the name of our axiomatic semantic approach.

Definition 5. Configuration γ matches pattern ∃X.(◦ = c ∧ ϕ), say
Γ, iff there is some τ : Var→ T such that (γ, τ) |= Γ.

Let us elaborate on the meaning of (γ, τ) |= ∃X.(◦ = c∧ϕ). Since
the special variable ◦ appears only once in the pattern and since the
syntax of configurations is included in the syntax of our FOL=, it
is equivalent to τ |= ∃X.(γ = c ∧ ϕ), which is further equivalent to
saying that there exists some θτ : Var → T with θτ�Var\X= τ�Var\X
such that γ = θτ(c) ∧ θτ(ϕ) holds. Note that γ = θτ(c) ∧ θτ(ϕ) is
a closed formula, because θτ substitutes a ground term for each
variable; in particular, if v is a term (possibly containing semantic
variables) of sort Int appearing in c, then θτ(v) is an integer number.
Therefore, this is equivalent to saying that γ = θτ(c) and θτ |= ϕ.

We next introduce an important syntactic sugar notation for the
common case when configurations are bags of cells, that is, when
“CfgF 〈Bag· [CfgItem]〉”. If that is the case, then we let C, C′, ...,
range over configuration item bag terms, possibly with variables.

Notation 6. If L’s configuration syntax is of the form “Cfg F
〈Bag· [CfgItem]〉” and if 〈C〉 is a Cfg-term, then we may write
〈C 〈X〉bnd 〈ϕ〉form〉 instead of ∃X.(◦ = 〈C〉 ∧ ϕ).

We continue to call the structures 〈C 〈X〉bnd 〈ϕ〉form〉 patterns.

In other words, we include the pattern bound variables X and
constraints ϕ as subcells in the top cell, thus regarding them as
additional ingredients in the pattern configuration structure. The
rationale for this notation is twofold: on the one hand it eases the
writing and reading of matching logic proof systems by allowing
meta-variables C, C′ to also range over the two additional subcells
when not important in a given context, and on the other hand it
prepares the ground for our technique to derive matching logic
provers from K executable semantics. This is because the pattern
bound variables and constraints are effectively added as new cells
into configurations, so most of the equations and rules in the K
semantics can be borrowed and used unchanged in the prover!

A matching logic axiomatic semantics to a programming lan-
guage is given as a proof system for deriving special sequents called
correctness pairs, which relate configurations before the execution
of a fragment of program to configurations after its execution:

Definition 7. A matching logic (partial) correctness pair consists
of two patterns Γ and Γ′, written Γ

V

Γ′. For analogy to Hoare logic,
we call Γ a pre-condition pattern and Γ′ a post-condition pattern.

Since the code is included as part of the pre-condition pattern Γ,
we do not mention it as part of the sequent as in Hoare triples; to ease
reading, we however shortly introduce some notational conventions
that will highlight the code. Section 4.2 gives a matching logic proof
system for IMP with configurations consisting of a computation
and an environment, and Section 6 extends it for HIMP, whose
configurations add a heap to IMP’s configurations.

4.2 Matching Logic Proof System for IMP
Figure 4 gives a matching logic proof system for IMP. To make it
resemble the more familiar Hoare logic proof system of IMP, we
adopted the following additional notational conventions:

(C 〈ρ〉env)[x← v] instead of C 〈ρ[v/x]〉env

(C 〈ϕ〉form) ∧ ϕ′ instead of C 〈ϕ ∧ ϕ′〉form

C[e] ≡ v instead of 〈〈e〉k C〉

V

〈〈v〉k C〉
〈C〉 s 〈C′〉 instead of 〈C 〈s〉k〉

V

〈C′ 〈·〉k〉
The meta-variables C, C′ above range over appropriate configuration
item bag terms so that the resulting patterns are well-formed for
IMP◦ (see Definition 1). The desugared rule for while is then:

∃X.(◦ = 〈〈e〉k C〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k C〉 ∧ ϕ),
∃X.(◦ = 〈〈s〉k C〉 ∧ ϕ ∧ (v , 0))

V

∃X.(◦ = 〈〈·〉k C〉 ∧ ϕ)
∃X.(◦ = 〈〈while (e) s〉k C〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k C〉 ∧ ϕ ∧ (v = 0))

In the case of IMP, C above ranges over one-element configura-
tion item bags, namely 〈ρ〉env. However, in the case of HIMP, C will

Matching Logic - From Executable Semantics to Program Verification 7 2009/7/25

〈〈p 7→ p, s 7→ s, n 7→n, ρ〉env c 〈p≥0〉form 〈·〉bnd〉

s = 0; n = 1;

〈〈p 7→ p, s 7→0, n 7→1, ρ〉env c 〈p≥0〉form 〈·〉bnd〉

〈〈p 7→ p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0 ∧ n≤ p+1〉form 〈n〉bnd〉

while(n != p + 1) {

〈〈p 7→ p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0 ∧ n< p+1〉form 〈n〉bnd〉

s = s + n; n = n + 1

〈〈p 7→ p, s 7→n(n+1)/2, n 7→n+1, ρ〉env c 〈p≥0 ∧ n< p+1〉form 〈n〉bnd〉

〈〈p 7→ p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0 ∧ n≤ p+1〉form 〈n〉bnd〉

}

〈〈p 7→ p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0 ∧ n = p+1〉form 〈n〉bnd〉

〈〈p 7→ p, s 7→ p(p+1)/2, n 7→ p+1, ρ〉env c 〈p≥0〉form 〈·〉bnd〉

Figure 5. Matching logic proof of the sum of first p numbers.

include an additional heap cell. Using generic meta-variables like
C above instead of more concrete configuration item bag terms is
key to the modularity of our matching logic definitions and proofs.
Indeed, to add heaps to IMP in Section 6 we only add new rules for
the new language constructs (none of the rules in Figure 4 changes).

Figure 5 shows a matching logic proof, following a compact and
intuitive notation, also used in informal Hoare logic proofs. The
grayed text is the code, the rest are proof annotations. A sequence
〈C〉 s 〈C′〉 means that a proof for the corresponding correctness
pair can be derived, and two consecutive patterns means that the
former implies the latter, so an implicit use of (ML-consequence) is
assumed. Note that p, s, n, ρ and c are free, so they act as parameters
for the proof. Since s and n do not occur in the post-pattern anymore,
it means that the program calculates the sum of numbers up to p no
matter what the initial values of s and n were. Also, note that the
variables ρ and c appear unaltered in the post-pattern, meaning that
nothing else changes in the environment and in the configuration
pattern; in the case of IMP the c is always empty (“·”), but by placing
it there we can transport the proof as is to HIMP, in which case c
says that the heap remains unchanged.

The variables ρ and c above act as environment and configuration
frames. In matching logic, one can have a frame corresponding to
any cell. We refrain from adding framing rules for these because
one can achieve the same result methodologically, by always using
a free variable matching “the rest” of the cell one is interested to
frame. This works for the heap the same way. We refer the reader to
Roşu and Schulte [2009] for more on framing in matching logic.

The next result shows that the matching logic proof system
for IMP in Figure 4 is sound w.r.t. the K executable semantics in
Figure 2. For technical reasons, we assume that the original IMP
program (embedded in the pattern Γ below) is ground (i.e., it does
not contain variables in Var); this is not a limitation, because the
program variables in PVar are treated as constants in matching logic.
If one wants programs to be parametric, one can do it by using free
variables in the environment, as in Figure 5.

Theorem 8. (Soundness of matching logic w.r.t. K for IMP) If
Γ

V

Γ′ is derivable, then for any (γ, τ) : Var◦ → T with (γ, τ) |= Γ,
if IMP |= γ →∗ γ′ with γ′ final then (γ′, τ) |= Γ′.

Proof. For simplicity of writing, we do the proof specifically to the
current definition and implicit configuration structure of IMP. In
other words, we consider that the top-level configurations only have
a computation cell 〈...〉k and an environment cell 〈...〉env. However,
we never use the fact that configurations have only these two
items, so our soundness proof below works for more complex
configurations, too, like those in Section 6 for the HIMP language.

We first prove the soundness of the rules deriving “expression
evaluation” sequents of the form C[e] ≡ v, that is, in desugared

form, ∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ), where
e and v are terms of sorts E and Int, respectively (note that v may
contain semantic variables, bound or not). We prove a stronger
result, namely that the resulting θτ’s (see discussion preceding this
theorem) can be chosen to be the same; specifically, we prove

Lemma 9. If ∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ)
is derivable and if (γ, τ) |= ∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ), which is
equivalent to γ = 〈〈e〉k 〈θτ(ρ)〉env〉 for some θτ : Var → T with
θτ�Var\X= τ�Var\X and θτ |= ϕ, and if IMP |= γ →∗ γ′ with γ′ final,
then γ′ = 〈〈θτ(v)〉k 〈θτ(ρ)〉env〉 (note that θτ(v) is an integer); this
implies, in particular, that (γ′, τ) |= ∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ).

Proof. The proof of Lemma 9 goes by induction on the length of the
derivation of C[e] ≡ v using the proof system in Figure 4. For each
of the rules deriving a sequent C[e] ≡ v (desugared as above), con-
sider (γ, τ) |= ∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ϕ), that is, γ = 〈〈e〉k 〈θτ(ρ)〉env〉

for some θτ : Var→ T such that θτ�Var\X= τ�Var\X and θτ |= ϕ, and
also that IMP |= γ →∗ γ′ with γ′ final.

(ML-int)

·

∃X.(◦ = 〈〈i〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈i〉k 〈ρ〉env〉 ∧ ϕ)

In this case γ = 〈〈i〉k 〈θτ(ρ)〉env〉 is already final, so γ′ = γ =
〈〈θτ(i)〉k 〈θτ(ρ)〉env〉 (note that θτ(i) = i).

(ML-lookup)

·

∃X.(◦= 〈〈x〉k 〈x 7→v, ρ〉env〉∧ϕ)

V

∃X.(◦= 〈〈v〉k 〈x 7→v, ρ〉env〉∧ϕ)

In this case γ = 〈〈x〉k 〈x 7→ θτ(v), θτ(ρ)〉env〉. The only way to rewrite
γ in the K semantics in Figure 2 is by a lookup rule (getting a final
configuration), so γ′ = (〈〈θτ(v)〉k 〈θτ(x 7→v, ρ)〉env〉.

(ML-op)

∃X.(◦ = 〈〈e1〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v1〉k 〈ρ〉env〉 ∧ ϕ),
∃X.(◦ = 〈〈e2〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v2〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦ = 〈〈e1 op e2〉k 〈ρ〉env〉∧ϕ)

V

∃X.(◦ = 〈〈v1 opInt v2〉k 〈ρ〉env〉∧ϕ)

In this case γ= 〈〈e1op e2〉k 〈θτ(ρ)〉env〉= 〈〈e1y � op e2〉k 〈θτ(ρ)〉env〉,
so by Proposition 2 there is some integer i1 s.t. 〈〈e1〉k 〈θτ(ρ)〉env〉 →

∗

〈〈i1〉k 〈θτ(ρ)〉env〉 and 〈〈i1 y � op e2〉k 〈θτ(ρ)〉env〉, which is equal
to 〈〈i1 op e2〉k 〈θτ(ρ)〉env〉, equal to 〈〈e2 y i1 op�〉k 〈θτ(ρ)〉env〉,
rewrites to γ′. Using Proposition 2 again, it follows that there
is some integer i2 s.t. 〈〈e2〉k 〈θτ(ρ)〉env〉 →

∗ 〈〈i2〉k 〈θτ(ρ)〉env〉 and
〈〈i2 y i1 op�〉k 〈θτ(ρ)〉env〉 = 〈〈i1 op i2〉k 〈θτ(ρ)〉env〉 rewrites to
γ′. It is obvious then that γ′ = 〈〈i1 opInt i2〉k 〈θτ(ρ)〉env〉. By the
induction hypothesis applied for γ1 =def 〈〈e1〉k 〈θτ(ρ)〉env〉 and
γ2 =def 〈〈e2〉k 〈θτ(ρ)〉env〉, it follows that i1 = θτ(v1) and i2 = θτ(v2).
Therefore, γ′ = 〈〈θτ(v1 opInt v2)〉k 〈θτ(ρ)〉env〉. Lemma 9

Lemma 9 implies the soundness of the expression rules. We now
return to the proof of Theorem 8 and prove the soundness of the
statement rules. As expected, the proof also goes by induction, on
the length of the derivation of the statement sequent 〈C〉 s 〈C′〉 ap-
pearing in the conclusion of each rule of the proof system in Figure 4.
As before, we consider these rules in desugared form. For each of
the rules deriving a sequent of the form 〈C〉 s 〈C′〉, desugared to
∃X.(◦ = 〈〈s〉k 〈ρ〉env〉∧ϕ)

V

∃X′.(◦ = 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′), consider that
(γ, τ) |= ∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ), that is, that γ = 〈〈s〉k 〈θτ(ρ)〉env〉

for some θτ : Var → T s.t. θτ�Var\X= τ�Var\X and θτ |= ϕ, and also
consider that IMP |= γ →∗ γ′ with γ′ final.

Matching Logic - From Executable Semantics to Program Verification 8 2009/7/25

(ML-asgn)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦ = 〈〈x:= e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k 〈ρ[v/x]〉env〉 ∧ ϕ)

In this case γ = 〈〈x:= e〉k 〈θτ(ρ)〉env〉 = 〈〈ey x:=�〉k 〈θτ(ρ)〉env〉,
so by Proposition 2 there is some integer i s.t. 〈〈e〉k 〈θτ(ρ)〉env〉 →

∗

〈〈i〉k 〈θτ(ρ)〉env〉 and 〈〈x:= i〉k 〈θτ(ρ)〉env〉 →
∗ γ′, so γ′ can only be

〈〈·〉k 〈θτ(ρ)[i/x]〉env〉. By Lemma 9, we get that i = θτ(v). Then γ′ =
〈〈·〉k 〈θτ(ρ[v/x])〉env〉, so (γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ[v/x]〉env〉) ∧ ϕ.

(ML-seq)

∃X1.(◦ = 〈〈s1〉k 〈ρ1〉env〉 ∧ ϕ1)

V

∃X2.(◦ = 〈〈·〉k 〈ρ2〉env〉 ∧ ϕ2),
∃X2.(◦ = 〈〈s2〉k 〈ρ2〉env〉 ∧ ϕ2)

V

∃X3.(◦ = 〈〈·〉k 〈ρ3〉env〉 ∧ ϕ3)
∃X1.(◦ = 〈〈s1;s2〉k 〈ρ1〉env〉 ∧ ϕ1)

V

∃X3.(◦ = 〈〈·〉k 〈ρ3〉env〉 ∧ ϕ3)

In this case, γ = 〈〈s1;s2〉k 〈θ
1
τ(ρ1)〉env〉 = 〈〈s1 y s2〉k 〈θ

1
τ(ρ1)〉env〉,

where, for uniformity in writing, we replaced θτ by θ1
τ . By Proposi-

tion 2 and the induction hypothesis, we get 〈〈s1〉k 〈θ1
τ(ρ1)〉env〉 →

∗

〈〈·〉k 〈θ
2
τ(ρ2)〉env〉 and 〈〈s2〉k 〈θ2

τ(ρ2)〉env〉 →
∗ γ′ for some θ2

τ : Var →
T with θ2

τ�Var\X2 = τ�Var\X2 and θ2
τ |= ϕ2. By the induction hypothesis

again we get (γ′, τ) |= ∃X3.(◦ = 〈〈·〉k 〈ρ3〉env〉 ∧ ϕ3).

(ML-if)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ),
∃X.(◦ = 〈〈s1〉k 〈ρ〉env〉 ∧ ϕ ∧ (v , 0))

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′),
∃X.(◦ = 〈〈s2〉k 〈ρ〉env〉 ∧ ϕ ∧ (v = 0))

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′)
∃X.(◦= 〈〈if(e) s1 else s2〉k 〈ρ〉env〉∧ϕ)

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′)

In this case γ is 〈〈if(e) s1 else s2〉k 〈θτ(ρ)〉env〉, which is equal
to 〈〈ey if(�) s1 else s2〉k 〈θτ(ρ)〉env〉, so by Proposition 2 there
is some integer i s.t. 〈〈e〉k 〈θτ(ρ)〉env〉 →

∗ 〈〈i〉k 〈θτ(ρ)〉env〉 and
〈〈if(i) s1 else s2〉k 〈θτ(ρ)〉env〉 →

∗ γ′, and by Lemma 9 we know
that i = θτ(v). Now there are two cases to analyze, namely i , 0
and i = 0; we only analyze the former because the later is similar.
If i , 0 then there is only one way to rewrite in one step the
configuration containing the computation if(i) s1 else s2, so we
can conclude that 〈〈s1〉k 〈θτ(ρ)〉env〉 →

∗ γ′. Since θτ |= ϕ ∧ (v , 0),
we can apply the induction hypothesis on the second hypothesis in
the rule (ML-if) and conclude (γ′, τ) |= ∃X′.(◦= 〈〈·〉k 〈ρ

′〉env〉∧ϕ
′).

(ML-while)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ),
∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ ∧ (v , 0))

V

∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦= 〈〈while(e)s〉k 〈ρ〉env〉∧ϕ)

V

∃X.(◦= 〈〈·〉k 〈ρ〉env〉∧ϕ∧(v=0))

In this case we have that γ = 〈〈while (e) s〉k 〈θτ(ρ)〉env〉 →
∗ γ′.

We prove by well-founded induction on n that the following propo-
sition holds for any n > 0: if 〈〈while (e) s〉k 〈θτ(ρ)〉env〉 →

n γ′

for some θτ : Var → T such that θτ �Var\X= τ�Var\X and θτ |= ϕ,
then (γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ ∧ (v = 0). Fix an n > 0
and suppose that 〈〈while (e) s〉k 〈θτ(ρ)〉env〉 →

n γ′ for some
θτ : Var → T . Proposition 2 and Lemma 9 imply that this rewrite
sequence must be of the form 〈〈while (e) s〉k 〈θτ(ρ)〉env〉 →

∗

〈〈if ((θτ(ρ))(v)) s;while (e) s else ·〉k 〈θτ(ρ)〉env〉 →
n′ γ′, for

some n′ ≤ n. We distinguish two cases, like in the case of the
conditional. (1) If (θτ(ρ))(v) , 0 then the last n′ rewrite steps above
can only be 〈〈if ((θτ(ρ))(v)) s;while (e) s else ·〉k 〈θτ(ρ)〉env〉 →

〈〈s;while (e) s〉k 〈θτ(ρ)〉env〉 →
n′−1 γ′. By Proposition 2 again,

it follows that there is some ground environment ρ0 such that
〈〈s〉k 〈θτ(ρ)〉env〉 →

∗ 〈〈·〉k 〈ρ0〉env〉 and 〈〈while (e) s〉k 〈ρ0〉env〉 →
n′′

γ′ for some n′′ ≤ n′ − 1. By the outer induction hypothesis, it
follows that (〈〈·〉k 〈ρ0〉env〉, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ), that

is, there is some θ′τ : Var → T with θ′τ �Var\X= τ �Var\X and
θ′τ |= ϕ such that ρ0 = θ′τ(ρ). Since ρ0 = θ′τ(ρ) and n′′ < n
we can apply the inner induction hypothesis and conclude that
(γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ ∧ (v = 0). (2) If (θτ(ρ))(v) = 0
then it can only be that n′ = 1 and γ′ = 〈〈·〉k 〈θτ(ρ)〉env〉, so taking θτ
as the witness for the existential quantifier, we conclude that it is
also the case that (γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ ∧ (v = 0).

Finally, we prove the soundness of the generic rule. We prove
its soundness more generally, for any configuration patterns, even
though we only use it for statement patterns.

(ML-consequence)

|= Γ⇒ Γ1, Γ1

V

Γ′1, |= Γ′1 ⇒ Γ′

Γ

V

Γ′

Let (γ, τ) |= Γ and suppose that IMP |= γ →∗ γ′ for some final γ′.
Then also (γ, τ) |= Γ1 and, by the induction hypothesis, (γ′, τ) |= Γ′1,
which implies that (γ′, τ) |= Γ′. Theorem 8

4.3 Equivalence of Matching Logic and Hoare Logic for IMP
We next show that, in the case of the simple IMP language discussed
so far, any property provable using Hoare logic is also provable
using matching logic and vice-versa, that is, any property provable
using matching is also provable using Hoare logic. Moreover, our
proof reductions are mechanical in both directions, which means
that one can automatically generate a matching logic proof from
any Hoare logic proof and vice-versa. As before, we specialize our
proofs for IMP; however, in the embedding of Hoare logic into
matching logic part we do not use the fact that the configuration
contains only an environment and a computation, so this result also
works for other languages that admit Hoare logic proof systems.

Before we proceed with the technical constructions, we need to
impose a restriction on the structure of the matching logic patterns
to be used throughout this section, more precisely on their envi-
ronments. Note that matching logic patterns allow us to give more
informative specifications than Hoare logic. For example, a pattern
of the form 〈...〈x 7→ x〉env...〉 specifies configurations whose environ-
ments only declare x (and its value is x), while a pattern 〈...〈·〉env...〉
specifies configuration with empty environments; that means that
while one is able to derive 〈〈x 7→ x〉env〉 x:=x-x 〈〈x 7→ 0〉env〉, it is
impossible to derive 〈〈·〉env〉 x:=x-x 〈〈x 7→ 0〉env〉, simply because
one will never be able to “evaluate” x in the empty environment.
However, note that the obvious Hoare logic equivalent, namely
{true} x:=x-x {x = 0} is unconditionally derivable.

To prove our desired equivalence result, we fix a finite set of
program variables Z ⊂ PVar which is large enough to include all
the program variables that appear in the original program that one
wants to verify. Moreover, from here on in this section we assume
that all the environments that appear in matching logic patterns
have the domain precisely Z. Also, we assume that Z ⊆ Var is
a set of “semantic clones” of the program variables in Z, that
is, Z = {z | z ∈ Z}, and that the semantic variables in Z are
reserved only for this semantic cloning purpose. Also, let ρZ be
the special environment mapping each program variable z ∈ Z into
its corresponding semantic clone z ∈ Z.

We first define mappings H2M and M2H taking Hoare logic cor-
rectness triples to matching logic correctness pairs, and, respectively,
matching logic correctness pairs to Hoare logic correctness triples.
Then we show in Theorem 10 that these mappings are logically in-
verse to each other and that they take derivable sequents in one logic
to derivable sequents in the other logic; for example, if a correctness
triple {ϕ} s {ϕ′} is derivable with the Hoare logic proof system in
Figure 3 then the correctness pair H2M({ϕ} s {ϕ′}) is derivable with
the matching logic proof system in Figure 4.

Matching Logic - From Executable Semantics to Program Verification 9 2009/7/25

H2M. Assume that variables that appear in Hoare logic speci-
fications but not in the original program are semantic variables in
Var. Let us first define a homonymous map taking formulae ϕ and
statements s to configuration patterns H2M(ϕ, s) as follows:

H2M(ϕ, s) def
= ∃Z.(◦ = 〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ϕ)).

Hence, H2M(ϕ, s) is a pattern whose computation is s, whose en-
vironment ρZ maps each program variable z in ϕ or in s into its
semantic clone z (and possibly many other variables that do not
appear in s or in ϕ), and whose side condition ρZ(ϕ) renames all the
program variables in the original formula into their semantic coun-
terparts. We now define the mapping from Hoare logic correctness
triples into matching logic correctness pairs as follows:

H2M({ϕ} s {ϕ′}) def
= H2M(ϕ, s)

V

H2M(ϕ′, ·).
For example, if Z = {x, z} then

H2M({x > 0 ∧ z = u} z := x+z {z > u}) =

∃x, z.(◦ = 〈〈z := x + z〉k 〈x 7→ x, z 7→ z〉env〉 ∧ x > 0 ∧ z = u)

V

∃x, z.(◦ = 〈〈·〉k 〈x 7→ x, z 7→ z〉env〉 ∧ z > u).
The resulting matching logic correctness pairs are quite intuitive,
making use of pattern bound variables as a bridge between the
program variables and the semantic constraints on them.

M2H. Given an environment ρ = (x1 7→ v1, x2 7→ v2, ..., xn 7→
vn), let ρ be the FOL= formula x1 = v1 ∧ x2 = v2 ∧ ... ∧ xn = vn.
Then we define the mapping M2H taking matching logic statement
correctness pairs into Hoare logic correctness triples as follows:

M2H(∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X′.(◦ = 〈〈·〉k 〈ρ
′〉env〉 ∧ ϕ

′))
= {∃X.(ρ ∧ ϕ)} s {∃X′.(ρ′ ∧ ϕ′)}

For example, if Γ

V

Γ′ is the correctness pair
∃x, z.(◦ = 〈〈z := x + z〉k 〈x 7→ x, z 7→ z〉env〉 ∧ x > 0 ∧ z = u)

V

∃x, z.(◦ = 〈〈·〉k 〈x 7→ x, z 7→ z〉env〉 ∧ z > u)
above, then M2H(Γ

V

Γ′) is the correctness triple
{∃x, z.(x = x ∧ z = z ∧ x > 0 ∧ z = u)}

z := x + z

{∃x, z.(x = x ∧ z = z ∧ z > u)}.
We say that two FOL formulae ϕ1 and ϕ2 are logically equivalent iff
|= ϕ1 ⇔ ϕ2. Moreover, correctness triples {ϕ1} s {ϕ

′
1} and {ϕ2} s {ϕ

′
2}

are logically equivalent iff |= ϕ1 ⇔ ϕ2 and |= ϕ′1 ⇔ ϕ′2; similarly,
matching logic correctness pairs Γ1

V

Γ′1 and Γ2

V

Γ′2 are logically
equivalent iff |= Γ1 ⇔ Γ2 and |= Γ′1 ⇔ Γ′2. Thanks to the rules
(HL-consequence) and (ML-consequence), respectively, in both
Hoare logic and matching logic, logically equivalent sequents are
either both or none derivable. Since ∃x, z.(x = x ∧ z = z ∧ x >
0 ∧ z = u) is logically equivalent to x > 0 ∧ z = u and since
∃z.(z = z ∧ z > u) is logically equivalent to z > u, we can conclude
that the correctness triple M2H(Γ

V

Γ′) above is logically equivalent
to {x > 0 ∧ z = u} z := x+z {z > u}.

Theorem 10. Any Hoare triple {ϕ} s {ϕ′} is logically equivalent to
M2H(H2M({ϕ} s {ϕ′})), and any matching logic correctness pair
Γ

V

Γ′ is logically equivalent to H2M(M2H(Γ

V

Γ′)). Moreover, for
any Hoare logic proof of {ϕ} s {ϕ′} one can construct a matching
logic proof of H2M({ϕ} s {ϕ′}), and for any matching logic proof of
Γ

V

Γ′ one can construct a Hoare logic proof of M2H(Γ

V

Γ′).

Proof. To prove that M2H(H2M({ϕ} s {ϕ′})) is logically equivalent
to {ϕ} s {ϕ′}, we need to prove that any ϕ is logically equivalent
to ∃Z.(ρZ ∧ ρZ(ϕ)), where Z and ρZ are those in the definition of
H2M. This follows by noting that ρZ is a conjunct of equalities
of the form z = z, one equality for each program variable z ∈ Z
(and its corresponding semantic clone z ∈ Z), and noting that ρZ(ϕ)
replaces each program variable in ϕ with its semantic clone: one can
therefore apply all the equalities z = z backwards on ρZ(ϕ) and thus

soundly recover ϕ, then one can first remove the redundant ρZ and
then the redundant quantifier “∃Z”.

To prove that H2M ◦M2H is logically equivalent to the identity
on matching logic correctness pairs, all we need to prove is that
any matching logic pattern ∃Y.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ) is logically
equivalent to ∃X.(◦ = 〈〈s〉k 〈ρX〉env〉 ∧ ρX(∃Y.(ρ ∧ ϕ))), where X
is the set of semantic variable clones of those program variables
in the domain of ρ. Since ρX only maps program variables x ∈ X
into corresponding semantic clones x ∈ X which are not used for
any other purpose (in particular X ∩ Y = ∅ and ϕ contains no
variable in X), we obtain that ρX(∃Y.(ρ ∧ ϕ)) = ∃Y.(ρX(ρ) ∧ ϕ).
Moreover, since the variables in Y can at most be used in ρ
and ϕ, we can move the existential quantifiers in front, that is,
∃X.(◦ = 〈〈s〉k 〈ρX〉env〉 ∧ ρX(∃Y.(ρ ∧ ϕ))) is logically equivalent to
∃Y.∃X.(◦ = 〈〈s〉k 〈ρX〉env〉 ∧ ρX(ρ)∧ ϕ). Note that ρX is a term of the
form x1 7→ x2, x2 7→ x2, xn 7→ xn where X = {x1, x2, ..., xn} is the
set of program variables in the domain of ρ, that if ρ has the form
x1 7→ v1, x2 7→ v2, ..., xn 7→ vn then ρX(ρ) is a formula of the form
x1 = v1 ∧ x2 = v2 ∧ ... ∧ xn = vn, and that these are the only places
where the semantic variables x1, x2, ..., xn appear. Replacing each
term xi by the equal term vi in ρX we can systematically replace each
mapping xi 7→ xi in ρX by a mapping xi 7→ vi, thus transforming
ρX back into ρ. Since the existentially quantified variables in X are
not used anymore in the formula except for in the subformula ρX(ρ),
we obtain that ∃Y.∃X.(◦ = 〈〈s〉k 〈ρX〉env〉 ∧ ρX(ρ) ∧ ϕ) is logically
equivalent to ∃Y.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ∃X.(ρX(ρ)) ∧ ϕ). Finally, since
∃X.(ρX(ρ)) is ∃X.(x1 = v1∧x2 = v2∧...∧xn = vn) which is obviously
a tautology, we conclude that ∃Y.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧∃X.(ρX(ρ))∧ϕ)
is logically equivalent to ∃Y.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ∧ϕ).

To prove the remaining of Theorem 10, we first prove the
following lemma stating that the “evaluation” of an expression is
unconditionally provable in matching logic:

Lemma 11. If e is an expression, then the expression correctness
pair ∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X′.(◦ = 〈〈v〉k 〈ρ′〉env〉 ∧ ϕ
′) is

derivable using the expression rules in the matching logic proof
system in Figure 4 iff X′ = X, ρ′ = ρ, ϕ′ = ϕ, and ρ is defined in all
program variables occurring in e and v = ρ(e).

Proof. The proof of the lemma goes by structural induction on e.
There are three cases to analyze.

(1) If e is an integer i, then the correctness pair is derivable
iff it is derivable as an instance of rule (ML-int) in Figure 4, iff
v = i = ρ(i), X′ = X, ρ′ = ρ, and ϕ′ = ϕ.

(2) If e is a variable x, then the correctness pair is derivable iff
it is derivable as an instance of rule (ML-lookup) in Figure 4, iff
X′ = X and ρ = ρ′ contains the mapping x 7→ v; if that is the case,
then obviously v = ρ(x).

(3) If e is an expression of the form e1 op e2 for some expressions
e1 and e2, then the correctness pair is derivable iff it is derivable
using the rule (ML-op) in Figure 4, iff X′ = X and ρ′ = ρ and ϕ′ = ϕ
and v = v1 opInt v2 and
∃X.(◦ = 〈〈e1〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v1〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦ = 〈〈e2〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v2〉k 〈ρ〉env〉 ∧ ϕ)
are derivable, iff X′ = X and ρ′ = ρ and ϕ′ = ϕ and v = v1 opInt v2
and ρ is defined in all program variables appearing in e1 and e2 and
v1 = ρ(e1) and v2 = ρ(e3), iff X′ = X, ρ′ = ρ, ϕ′ = ϕ, and ρ is
defined in all program variables occurring in e and v = ρ(e) (since
ρ(e1 op e2) = ρ(e1) opInt ρ(e2)). Lemma 11

We now return to Theorem 10 and prove that for any Hoare
logic proof of {ϕ} s {ϕ′} one can construct a matching logic proof
of H2M({ϕ} s {ϕ′}). The proof goes by structural induction on the
formal proof derived using the Hoare logic proof system in Figure 3.
We consider each rule in Figure 3 and show how corresponding
matching logic proofs for the hypotheses can be composed into a
matching logic proof for the conclusion.

Matching Logic - From Executable Semantics to Program Verification 10 2009/7/25

·

{ϕ[e/x]} x:= e {ϕ} (HL-asgn)

We have to produce a matching logic proof for
∃Z.(◦ = 〈〈x := e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ[e/x]))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ)),
where Z is the one in the definition of H2M. By Lemma 11, the
following is derivable (because Zwas chosen large enough to contain
all program variables in e, so ρZ fits the hypothesis of Lemma 11)

∃Z.(◦ = 〈〈e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ[e/x]))

V

∃Z.(◦ = 〈〈ρZ(e)〉k 〈ρZ〉env〉 ∧ ρZ(ϕ[e/x])),
so by applying rule (ML-asgn), the following is also derivable:

∃Z.(◦ = 〈〈x := e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ[e/x]))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ[ρZ(e)/x]〉env〉 ∧ ρZ(ϕ[e/x])).
Finally, since ρZ(ϕ[e/x]) = ρZ[ρZ(e)/x](ϕ) and since in FOL= the
formula ∃Z.(◦ = 〈〈·〉k 〈ρZ[ρZ(e)/x]〉env〉 ∧ ρZ[ρZ(e)/x](ϕ)) implies
the formula ∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ)) (intuitively, because the
former is “more concrete”), we get by rule (ML-consequence) that

∃Z.(◦ = 〈〈x := e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ[e/x]))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))
is derivable.

{ϕ1} s1 {ϕ2}, {ϕ2} s2 {ϕ3}

{ϕ1} s1;s2 {ϕ3}
(HL-seq)

Suppose H2M(ϕ1, s1)

V

H2M(ϕ2, ·) and H2M(ϕ2, s2)
V

H2M(ϕ3, ·)
are derivable. Desugaring these and the rule (ML-seq) in Figure 4,
we can easily see that rule (ML-seq) implies that the correctness
pair H2M(ϕ1, s1; s2)

V

H2M(ϕ3, ·) is also derivable.

{ϕ ∧ (e , 0)} s1 {ϕ′}, {ϕ ∧ (e = 0)} s2 {ϕ′}
{ϕ} if (e) s1 else s2 {ϕ

′}
(HL-if)

Suppose, inductively, that the following two correctness pairs
∃Z.(◦ = 〈〈s1〉k 〈ρZ〉env〉 ∧ ρZ(ϕ ∧ (e , 0)))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ′))
and

∃Z.(◦ = 〈〈s2〉k 〈ρZ〉env〉 ∧ ρZ(ϕ ∧ (e = 0)))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ′))
are derivable with the proof system in Figure 4. By Lemma 11

∃Z.(◦ = 〈〈e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))

V

∃Z.(◦ = 〈〈ρZ(e)〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))
is derivable, so (ML-if) implies that

∃Z.(◦ = 〈〈if (e) s1 else s2〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))
V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ′))
is also derivable.

{ϕ ∧ (e , 0)} s {ϕ}
{ϕ} while (e) s {ϕ ∧ (e = 0)} (HL-while)

Suppose, inductively, that the correctness pair
∃Z.(◦ = 〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ϕ ∧ (e , 0)))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))
is derivable with the proof system in Figure 4. By Lemma 11

∃Z.(◦ = 〈〈e〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))

V

∃Z.(◦ = 〈〈ρZ(e)〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))
is derivable, so (ML-while) implies that

∃Z.(◦ = 〈〈while (e) s〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ ∧ (e = 0)))
is also derivable.

|= ψ⇒ ϕ, {ϕ} s {ϕ′}, |= ϕ′ ⇒ ψ′

{ψ} s {ψ′} (HL-consequence)

Suppose, inductively, that the correctness pair
∃Z.(◦ = 〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ϕ))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ϕ′))
is derivable with the proof system in Figure 4. Since |= ψ ⇒ ϕ
implies |= ρZ(ψ) ⇒ ρZ(ϕ), which further implies |= ∃Z.(◦ =
〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ψ)) ⇒ ∃Z.(◦ = 〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ϕ)), and
similarly for |= ϕ′ ⇒ ψ′, we get by (ML-consequence) that

∃Z.(◦ = 〈〈s〉k 〈ρZ〉env〉 ∧ ρZ(ψ))

V

∃Z.(◦ = 〈〈·〉k 〈ρZ〉env〉 ∧ ρZ(ψ′))
is also derivable with the proof system in Figure 4.

We now prove that for any matching logic proof of Γ

V

Γ′ one can
construct a Hoare logic proof of M2H(Γ

V

Γ′). The proof goes by
structural induction on the formal proof derived using the matching
logic proof system in Figure 4. We consider each rule in Figure 4 in
desugared form and show how corresponding Hoare logic proofs
for the hypotheses can be composed into a matching logic proof for
the conclusion.

(ML-asgn)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦ = 〈〈x:= e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k 〈ρ[v/x]〉env〉 ∧ ϕ)

Since we can assume that have a matching logic proof for the hypoth-
esis of (ML-asgn), then v = ρ(e) by Lemma 11, so M2H(Γ

V

Γ′) is
the Hoare triple {∃X.(ρ ∧ ϕ)} x:= e {∃X.(ρ[ρ(e)/x] ∧ ϕ)}. We show
this derivable using the Hoare logic proof system in Figure 3.
Note that {(∃X.(ρ[ρ(e)/x] ∧ ϕ))[e/x]} x:= e {∃X.(ρ[ρ(e)/x] ∧ ϕ)},
is derivable by rule (HL-asgn). We next show that |= ∃X.(ρ ∧ ϕ)⇒
(∃X.(ρ[ρ(e)/x]∧ϕ))[e/x], so that the desired result holds by an appli-
cation of the rule (HL-consequence). First, note that ϕ only uses se-
mantic variables, so ϕ[e/x] = ϕ. Second, let ρ\x be the environment
ρ from which the mapping “x 7→ ” is removed; thus, ρ[ρ(e)/x] =

ρ\x∧ρ(e) = e. Since there is no name capturing between the seman-
tic variables in X and the program variables in the substitution [e/x],
we get that (∃X.(ρ[ρ(e)/x] ∧ ϕ))[e/x] = ∃X.(ρ\x ∧ ρ(e) = e ∧ ϕ),
so it suffices to show that |= ∃X.(ρ ∧ ϕ)⇒ ∃X.(ρ\x ∧ ρ(e) = e ∧ ϕ),
and in particular that |= ρ ⇒ ρ\x ∧ ρ(e) = e, and since obviously
|= ρ⇒ ρ\x, all we have to show is that |= ρ⇒ ρ(e) = e. Fortunately,
this follows easily by equational reasoning, replacing each program
variable in e with its semantic counterpart in ρ until eventually e
becomes ρ(e).

(ML-seq)

∃X1.(◦ = 〈〈s1〉k 〈ρ1〉env〉 ∧ ϕ1)

V

∃X2.(◦ = 〈〈·〉k 〈ρ2〉env〉 ∧ ϕ2),
∃X2.(◦ = 〈〈s2〉k 〈ρ2〉env〉 ∧ ϕ2)

V

∃X3.(◦ = 〈〈·〉k 〈ρ3〉env〉 ∧ ϕ3)
∃X1.(◦ = 〈〈s1;s2〉k 〈ρ1〉env〉 ∧ ϕ1)

V

∃X3.(◦ = 〈〈·〉k 〈ρ3〉env〉 ∧ ϕ3)

Suppose, inductively, that we already have Hoare logic proofs
for the triple {∃X1.(ρ1 ∧ ϕ1)} s1 {∃X2.(ρ2 ∧ ϕ2)} and for the triple
{∃X2.(ρ2 ∧ ϕ2)} s2 {∃X3.(ρ3 ∧ ϕ3)} corresponding to the two hy-
potheses in rule (ML-seq). Then by rule (HL-seq) we can also build
a Hoare logic proof for {∃X1.(ρ1 ∧ ϕ1)} s1; s2 {∃X3.(ρ3 ∧ ϕ3)}.

Matching Logic - From Executable Semantics to Program Verification 11 2009/7/25

(ML-if)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ),
∃X.(◦ = 〈〈s1〉k 〈ρ〉env〉 ∧ ϕ ∧ (v , 0))

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′),
∃X.(◦ = 〈〈s2〉k 〈ρ〉env〉 ∧ ϕ ∧ (v = 0))

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′)
∃X.(◦= 〈〈if(e) s1 else s2〉k 〈ρ〉env〉∧ϕ)

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′)

By Lemma 11, v = ρ(e). Suppose, inductively, that the triple
{∃X.(ρ ∧ ϕ ∧ (ρ(e) , 0))} s1 {∃X′.(ρ′ ∧ ϕ′)} as well as the triple
{∃X.(ρ ∧ ϕ ∧ (ρ(e) = 0))} s2 {∃X′.(ρ′ ∧ ϕ′)} are derivable using the
Hoare logic proof system in Figure 3. We can use the equalities
in ρ to systematically replace each program variable in e with
its corresponding semantic value in ρ until e becomes ρ(e), so
one can show that |= ρ ∧ ϕ ∧ e , 0 ⇒ ρ ∧ ϕ ∧ ρ(e) , 0 and
|= ρ ∧ ϕ ∧ e = 0 ⇒ ρ ∧ ϕ ∧ ρ(e) = 0. Extending these to
the quantified expressions and using the rule (HL-consequence)
twice, we get that the triples {∃X.(ρ ∧ ϕ ∧ e , 0)} s1 {∃X′.(ρ′ ∧ ϕ′)}
and {∃X.(ρ ∧ ϕ ∧ e = 0)} s2 {∃X′.(ρ′ ∧ ϕ′)} are derivable using the
Hoare logic proof system in Figure 3, so by (HL-if) the triple
{∃X.(ρ ∧ ϕ)} if(e) s1 else s2 {∃X′.(ρ′ ∧ ϕ′)} is also derivable.

(ML-while)

∃X.(◦ = 〈〈e〉k 〈ρ〉env〉 ∧ ϕ)

V

∃X.(◦ = 〈〈v〉k 〈ρ〉env〉 ∧ ϕ),
∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ ∧ (v , 0))

V

∃X.(◦ = 〈〈·〉k 〈ρ〉env〉 ∧ ϕ)
∃X.(◦= 〈〈while(e)s〉k 〈ρ〉env〉∧ϕ)

V

∃X.(◦= 〈〈·〉k 〈ρ〉env〉∧ϕ∧(v=0))

By Lemma 11, v = ρ(e). Suppose, inductively, that the triple
{∃X.(ρ ∧ ϕ ∧ (ρ(e) , 0))} s {∃X.(ρ ∧ ϕ)} is derivable using the Hoare
logic proof system in Figure 3. Like above, we can use the equalities
in ρ to show that |= ρ ∧ ϕ ∧ e , 0 ⇒ ρ ∧ ϕ ∧ ρ(e) , 0, so by rule
(HL-consequence) noting that the variables in e and X are disjoint,
we get that {∃X.(ρ ∧ ϕ) ∧ e , 0} s {∃X.(ρ ∧ ϕ)} is derivable using
the Hoare logic proof system in Figure 3, so by (HL-while) the
triple {∃X.(ρ ∧ ϕ)} while (e) s {∃X.(ρ ∧ ϕ) ∧ e = 0} is also deriv-
able. Finally, like above we can show that |= ∃X.(ρ ∧ ϕ) ∧ e = 0⇒
∃X.(ρ ∧ ϕ ∧ ρ(e) = 0), so the result follows by one more application
of the rule (HL-consequence).

(ML-consequence)

|= ∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ)⇒ ∃X1.(◦ = 〈〈s〉k 〈ρ1〉env〉 ∧ ϕ1),
∃X1.(◦ = 〈〈s〉k 〈ρ1〉env〉 ∧ ϕ1)

V

∃X′1.(◦ = 〈〈·〉k 〈ρ
′
1〉env〉 ∧ ϕ

′
1),

|= ∃X′1.(◦ = 〈〈·〉k 〈ρ
′
1〉env〉 ∧ ϕ

′
1)⇒ ∃X′.(◦ = 〈〈·〉k 〈ρ

′〉env〉 ∧ ϕ
′)

∃X.(◦= 〈〈s〉k 〈ρ〉env〉∧ϕ)

V

∃X′.(◦= 〈〈·〉k 〈ρ
′〉env〉∧ϕ

′)

Suppose, inductively, that {∃X1.(ρ1 ∧ ϕ1)} s {∃X′1.(ρ
′
1 ∧ ϕ

′
1)} is deriv-

able using the Hoare logic proof system in Figure 3. We show that
|= ∃X.(ρ∧ϕ)⇒ ∃X1.(ρ1∧ϕ1) and |= ∃X′1.(ρ

′
1∧ϕ

′
1)⇒ ∃X′.(ρ′∧ϕ′),

so that the result follows by applying rule (HL-consequence). The
two properties are similar, so we only prove the first one. Let
ξ : Var∪PVar→ T be a valuation such that ξ |= ∃X.(ρ∧ϕ). All we
need to show is that ξ |= ∃X1.(ρ1 ∧ ϕ1). Let θξ : Var ∪ PVar → T
be a valuation such that θξ�(Var∪PVar)\X= ξ�(Var∪PVar)\X and θξ |= ρ ∧ ϕ.
Let τ : Var → T be ξ �Var and let θτ : Var → T be θξ �Var.
Note that θτ �Var\X= τ �Var\X and θτ |= ϕ. Thus, if we take γ
to be the configuration 〈〈s〉k 〈θτ(ρ)〉env〉, then θτ is a witness that
(γ, τ) |= ∃X.(◦ = 〈〈s〉k 〈ρ〉env〉 ∧ ϕ). By hypothesis we get that
(γ, τ) |= ∃X1.(◦ = 〈〈s〉k 〈ρ1〉env〉∧ϕ1), so there is some θ1

τ : Var→ T
such that θ1

τ�Var\X1 = τ�Var\X1 , θ1
τ |= ϕ1, and γ = 〈〈s〉k 〈θ

1
τ(ρ1)〉env〉, the

latter being equivalent to θ1
τ(ρ1) = θτ(ρ). Let θ1

ξ : Var ∪ PVar→ T
be the valuation with θ1

ξ�Var= θ1
τ and θ1

ξ�PVar= θξ�PVar= ξ�PVar. Then

note that θ1
ξ |= ρ1 ∧ ϕ1, so ξ |= ∃X1.(ρ1 ∧ ϕ1). Theorem 10

Start with the executable K semantics of IMP in (Figure 2) and:

(1) Define patterns (in sugared form), by adding: (language-independent)

syntactic categories Var and Form for semantic variables and formulae, and
CfgItemF ... | 〈Set ,· [Var]〉bnd | 〈Form〉form

(2) Extend language syntax with pattern annotations and add a new top cell
S F ... | assert Cfg and
TopF 〈Set· [Cfg]〉>

(3) Add language-independent, verification-framework-specific rules:
〈〈assertΓyk〉k c〉 → Γ〈k〉k when |= 〈〈k〉k c〉⇒Γ〈k〉k (V-assertion-checking)
Γ→ Γ1 Γ2 when |= Γ⇒ Γ1 ∨ Γ2 (V-case-and-abstraction)
〈〈·〉k c〉 → · (V-done)
〈〈false〉form c〉 → · (V-infeasible)

(4) Replace rules for if and while with: (language-specific)– here IMP

〈〈(if (v) s1 else s2)yk〉k 〈ϕ〉form c〉 (V-if)
→ 〈〈s1 y k〉k 〈ϕ ∧ v , 0〉form c〉 〈〈s2 y k〉k 〈ϕ ∧ v = 0〉form c〉

〈〈(while (e) s)y k〉k c〉 → 〈〈if (e) (s; assert〈c〉) else k〉k c〉 (V-while)

Figure 6. Matching logic verifier, generic(1,2,3) and IMP-specific(4)

5. Deriving an IMP Matching Logic Verifier in K
Figure 6 shows how we can turn the K semantics of IMP into a
program verifier in four simple steps, the first three being language-
independent (so they are reusable across different languages). Sec-
tion 6 shows that it is equally simple to do the same for a more com-
plex language with a heap, dynamic memory allocation/deallocation,
and even arbitrary pointer arithmetic. We next discuss each of the
four steps deriving the prover in Figure 6 and show that it is sound
and complete for matching logic (provided enough annotations).
Intuitively, the idea of our approach is to execute the K semantics
symbolically on a pattern annotated variant of the original program,
splitting the verification task into two tasks at each conditional. This
way, one can have in principle a path explosion problem, but, as we
show, that can be mitigated by providing additional annotations.

The first step is to add algebraic infrastructure for patterns. It is
easier and more intuitive to work with patterns in sugared notation as
bags, like in Notation 6. All we need to do is to add two new subcells,
one holding the set of bound variables and the other holding the
constraints. However, one needs to also add all the syntax of FOL=

formulae, but we assume that to be defined once and for all and
import it in each language definition. We therefore assume we are
given the syntactic categories Var for logical variables and Form for
FOL= formulae. Since our FOL= is many-sorted, Var is also many-
sorted: VarInt, VarEnv, etc. Moreover, since logical variables act as
symbolic values, we need to subsort them to the domains of values:
VarInt < Int, VarEnv < Env, etc. Note that terms of sort Cfg of the
form 〈〈k〉k 〈ρ〉env 〈ϕ〉form 〈X〉bnd〉 are now patterns, while terms of sort
Cfg of the form 〈〈k〉k 〈ρ〉env〉 with ρ ground are still configurations;
in this section we only work with patterns, though. Thanks to K’s
modularity, equations and rules from Figure 2 apply unchanged
on patterns as well, yielding a symbolic execution engine for IMP
for free. However, this simplistic symbolic engine may get stuck
at control statements. We address this problem below by splitting
the symbolic execution in two executions, one for each branch,
accumulating the corresponding constraints.

The second step is to add program annotations. We do this
by allowing the user to state a partial pattern at any place in
the computation; by “partial” pattern we mean one whose 〈...〉k
cell is omitted (it is unnecessary, since the current computation is
understood). We also add a new top-level cell wrapping a set of
patterns, each corresponding to one symbolic execution path being
explored. The configuration of the program verifier will therefore

Matching Logic - From Executable Semantics to Program Verification 12 2009/7/25

consist of a cell 〈Γ1 Γ2 ...Γn〉>, each Γi being a pattern with annotated
computation. Interestingly, the equations and rules in Figure 2 work
with such extended configurations without any change, because they
can operate “in parallel” in each of the embedded patterns.

The third step is to introduce some generic rules that are the same
for all languages. (V-assertion-checking) gives semantics to pattern
assertions: if pattern assertion Γ is reached, then it should hold in
the current specification. The notation Γ〈k〉k stands for the complete
pattern obtained by infusing cell 〈k〉k into the partial pattern Γ,
that is, 〈c〉〈k〉k =def 〈〈k〉k c〉. Note that we switch to the asserted
pattern Γ for the rest of the verification task and discard c, the
rationale being that one’s intention when asserting a pattern at a
place in a program is to provide details for the remaining proof
tasks; this is particularly important when Γ is a loop invariant, i.e.,
an assertion preceding a loop. In practice, providing all the details
for the remaining proof tasks may be inconvenient, so one may
want instead to keep c combined with useful information from Γ.
Rule (V-case-and-abstraction) allows one to rewrite a verification
task to a set of potentially simpler tasks. This rule is more general
than theoretically needed for the soundness and completeness of our
verifier w.r.t. the matching logic proof system (theoretically, all that
is needed is an abstraction rule “Γ→ Γ′ when |= Γ⇒ Γ′”2, obtained
when Γ1 = Γ2 = Γ′); however, we found it very useful in practice to
split cases. To see why this rule is correct, note that it corresponds
to the following (sound) matching logic proof rule:
|= Γ⇒ Γ1 ∨ Γ2, Γ1

V

Γ′, Γ2

V

Γ′

Γ

V

Γ′
(ML-case)

(only statement patterns)
In implementations, one should use (V-case-and-abstraction)

conservatively, because it may lead to nontermination (when Γ1 = Γ2
and Γ ⇔ Γ1). We also add rules (V-done) and (V-infeasible) dis-
charging verified tasks; a task is considered verified either when its
computation is empty, meaning that all the assertions stated as anno-
tations have been proved, or when it is found infeasible, meaning
that its constraints yield false. These last two rules eventually empty
the top level cell when the program is fully verified.

All three steps above are language-independent: they can be
reused for any language, so they can be regarded as part of the
matching logic verification framework. The fourth (and last) step
towards developing a matching logic program verifier for a language
is to modify its K semantics for control constructs to deal with
symbolic configurations. The strictness equations of the conditional
will ensure that its condition is evaluated to a symbolic value v (i.e.,
one containing only domain operations and semantic variables in
Var). However, since the current pattern constraints ϕ may not have
enough information about the validity of v, we split the current task
into two tasks, one for each branch, adding to ϕ the corresponding
assumption about v. This is the only rule that increases the number
of verification tasks in the top cell. The rule for while is tricky but
clear once one assumes that the current pattern acts as invariant
(such an invariant may be given via an ordinary pattern assertion
right before the loop, which will be checked and then assumed by
first rule in step three above): the resulting conditional generates
two branches, one in which the loop condition is assumed true and
so the loop body is processed followed by an assertion stating the
invariant holds, and one assuming the loop condition false and the
remaining computation k is processed.

The above completes the discussion on the derivation of our IMP
prover in Figure 6 from the K semantics of IMP in Figure 2. To use
the prover, one needs to provide a program annotated with pattern
assertions and an initial pattern. The rewrite system in Figure 6 is

2 The intuition for the abstraction rule would be that one can at any moment
drop some of the information about the current program configuration (e.g.,
irrelevant axioms, etc.); if one can still check all the remaining assertions
with less information, then one can also check them with more information.

then launched on the top cell containing initially only one pattern,
namely the initial pattern infused with the program. The program
is considered fully verified when the top cell becomes empty. Let
us illustrate our verifier on the sum program with its pre- and post-
condition patterns, as given in Figure 5. This program is simple
enough that we only need to assert a loop invariant. Therefore, let
us make the following notations:

Γstart≡ 〈〈
s=0; n=1; assert 〈cinv〉;

while(n!=p+1) {s=s+n; n=n+1}; assert 〈cpost〉
〉k cpre〉

cpre ≡ 〈p 7→p, s 7→ s, n 7→n, ρ〉env c 〈p≥0〉form 〈·〉bnd

cpost≡ 〈p 7→p, s 7→p(p+1)/2, n 7→p+1, ρ〉env c 〈p≥0〉form 〈·〉bnd

cinv ≡ 〈p 7→p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0∧n≤ p+1〉form 〈n〉bnd
Letting the rewrite engine run on the top configuration of the verifier
containing the pattern 〈Γstart〉>, it produces the rewrite sequence
〈Γstart〉>→

∗ 〈Γ1〉>→〈Γ2〉>→〈Γ3〉>→〈Γ4 Γ6〉>→
∗ 〈Γ5 Γ6〉>→

∗ 〈·〉>, where
Γ1 ≡ 〈〈assert〈cinv〉;while(n!=p+1){s=s+n;n=n+1};assert〈cpost〉〉k c1〉

c1≡ 〈p 7→p, s 7→0, n 7→1, ρ〉env c 〈p≥0〉form 〈·〉bnd

Γ2 ≡ 〈〈while(n!=p+1){s=s+n;n=n+1};assert〈cpost〉〉k cinv〉

Γ3 ≡ 〈〈if (n!=p+1) {s=s+n;n=n+1;assert〈cinv〉} else assert〈cpost〉〉k cinv〉

Γ4 ≡ 〈〈s=s+n;n=n+1;assert〈cinv〉〉k c4〉

c4≡ 〈p 7→p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0∧n< p+1〉form 〈n〉bnd

Γ5 ≡ 〈〈〈cinv〉〉k c5〉

c5≡ 〈p 7→p, s 7→n(n+1)/2, n 7→n+1, ρ〉env c 〈p≥0∧n< p+1〉form 〈n〉bnd

Γ6 ≡ 〈〈〈cpost〉〉k c6〉

c6≡ 〈p 7→p, s 7→n(n−1)/2, n 7→n, ρ〉env c 〈p≥0∧n= p+1〉form 〈n〉bnd
Note that the top-level set of patterns eventually emptied, meaning
that all the pattern assertions have been checked on all the paths.
There are three assertion checks encountered in the run of the verifier
above (corresponding to the side condition of the assertion checking
rule in step three in Figure 6), two for the invariant and one for
the postcondition. All these are easy to check both manually and
automatically (using SMT solvers, as our prover does).

Theorem 12. (Soundness and completeness of K verifier w.r.t.
matching logic) The following hold, where given an annotated
computation s ∈ S like in Figure 6, s ∈ S is the computation
obtained by removing all pattern assertions from s:

1. (Soundness) If 〈〈〈s; assert〈cpost〉〉k cpre〉〉> →
∗ 〈·〉> using the

K definition in Figure 6, then 〈cpre〉 s 〈cpost〉 is derivable using
the matching logic proof system in Figure 4;

2. (Completeness) If 〈cpre〉 s 〈cpost〉 is derivable using the matching
logic proof system in Figure 4, then there is some annotated com-
putation s such that s = s and 〈〈〈s; assert〈cpost〉〉k cpre〉〉> →

∗

〈·〉> using the K definition in Figure 6.

Proof. (Soundness) Note that the K definition in Figure 6 takes the
original term 〈〈〈s; assert〈cpost〉〉k cpre〉〉> →

∗ 〈·〉> and iteratively
rewrites it to a sequence of terms which are AC soups (terms mod-
ulo associativity and commutativity) of the form 〈Γ1,Γ2, ...,Γn〉>.
Moreover, there are no rewrite rules that match two or more such Γ’s
in a soup, which means that we can serialize the rewrite steps so that
at each moment precisely one Γ in the soup is being rewritten (re-
call that rewrite logic allows parallel rewriting). Note that there are
rules that rewrite a pattern Γ to another pattern, others that rewrite a
pattern to two patterns, and others that dissolve a pattern (rewrite
it to the empty set). Moreover, it is almost always the case that
for a pattern Γ in the soup, there is only one precisely determined
sequence of rewrite steps that can be applied on it; since the set of
patterns is eventually emptied we can assume that such uniquely
determined sequences of rewrite steps will take place. For example,
if a pattern Γ in the soup is satisfiable (i.e., it is not logically equiva-
lent to false) and has the form 〈〈ey k〉k 〈ρ〉env c〉, then this pattern
will eventually become 〈〈ρ(e)y k〉k 〈ρ〉env c〉. We let the (tedious
but easy) precise proof of this intuitive fact as an exercise to the

Matching Logic - From Executable Semantics to Program Verification 13 2009/7/25

interested reader (hint: the proof is similar to that of Proposition 2).
Suppose Γ { Γs, where Γs is a set of patterns, is such a possible
“determined rewriting” relation. Then the discussion above implies
that 〈Γ〉> →∗ 〈·〉> if and only if 〈Γ〉> {∗ 〈·〉>. Our proof strategy
now is as follows:

1. Pick an appropriate “determined rewrite” relation{ as above;

2. Show that all the patterns Γ′ that will ever be obtained by
applications of the new rewrite relation { starting with the
original pattern 〈〈cpre 〈sy assert〈cpost〉〉k〉〉> have a similar
form, i.e., Γ′ = 〈〈c′pre 〈s′ y assert〈c′post〉〉k〉〉> for some c′pre, s′,
c′post, where s′ is either a statement or an empty computation;

3. To each such pattern Γ′ of the form above, we associate a
correctness pair 〈c′pre〉 s′ 〈c′post〉 when s′ is a statement and the
formula 〈〈·〉k c′pre〉 ⇒ 〈〈·〉k c′post〉 when s′ is empty, written Γ′;

4. For each Γ { Γs, we prove that if Γ′ is derivable using the
matching logic proof system in Figure 4 for each Γ′ ∈ Γs, then Γ
is also derivable; by abuse of terminology, a formula is called
derivable iff it is a tautology.

It is easy to see that the four steps above imply the desired
soundness result. Let us do all four steps above in parallel, by
inductively defining such a relation{ and showing that it has the
desired properties. The original pattern 〈〈cpre 〈s; assert〈cpost〉〉k〉〉>
plays no role from here on in the soundness proof, so we reuse its
symbols. Let us first define{ on unsatisfiable patterns:

• 〈〈〈false〉form 〈sy assert〈cpost〉〉k c〉〉> { ·
Note that on such unsatisfiable patterns Γ, it is indeed the case
that “Γ →∗ ·” if and only if “Γ {∗ ·”. Also, note that the
correctness pairs associated to unsatisfiable patterns like in 3
above are indeed derivable with the matching logic proof system,
since they have the form false

V

Γ′ and these obviously sound
correctness pairs are derivable (we leave it as an exercise).

Let us now define{ on case splits exactly like→:

• Γ{ Γ1 Γ2 iff Γ→ Γ1 Γ2
Since |= Γ ⇒ Γ1 ∨ Γ2, all three patterns must have the same
computation. Suppose that Γ1 and Γ2 are derivable, and that

Γ is 〈〈sy assert〈c′〉〉k c〉,

Γ1 is 〈〈sy assert〈c′〉〉k c1〉, and

Γ2 is 〈〈sy assert〈c′〉〉k c2〉.

Therefore, 〈c1〉 s 〈c′〉 and 〈c2〉 s 〈c′〉 are derivable. Then by rule
(ML-cases) it follows that 〈c〉 s 〈c′〉 is also derivable.

Let us now assume that Γ = 〈〈cpre 〈sy assert〈cpost〉〉k〉〉> is
satisfiable, where s is either a statement or an empty computation.
It suffices to define and prove our relation { on such patterns,
inductively on the structure of the first statement in s, if any:

• 〈cpre 〈assert〈cpost〉〉k〉 { · when |= 〈〈·〉k cpre〉 ⇒ 〈〈·〉k cpost〉

This is the case when s is empty. Note that this is the only way
to rewrite the left-hand-side pattern using→, too, and that Γ is
indeed derivable whenever (actually “iff”) the condition holds.
• 〈〈x := ey s′ y assert〈cpost〉〉k 〈ρ〉env c〉
{ 〈〈s′ y assert〈cpost〉〉k 〈ρ[ρ(e)/x]〉env c〉
Note that the only way to rewrite the left-hand-side pattern
above using → is to first eventually transform e to ρ(e) and
then to apply the rewrite rule for assignment, so the rela-
tion { above is determined by the relation →. Suppose that
〈〈s′ y assert〈cpost〉〉k 〈ρ[ρ(e)/x]〉env c〉 is derivable. If s′ is
empty, then we have |= 〈〈·〉k 〈ρ[ρ(e)/x]〉env c〉 ⇒ 〈〈·〉k cpost〉 and
〈〈x := ey s′ y assert〈cpost〉〉k 〈ρ〉env c〉 is the correctness

pair 〈〈ρ〉env c〉 x:= e 〈cpost〉, which is derivable by an application
of (ML-asgn) followed by an application of (ML-consequence).
If s′ is a statement, then we have that 〈〈ρ[ρ(e)/x]〉env c〉 s′ 〈cpost〉

is derivable and that 〈〈x := ey s′ y assert〈cpost〉〉k 〈ρ〉env c〉
is the correctness pair 〈〈ρ〉env c〉 x:= e;s′ 〈cpost〉, which is deriv-
able by an application of (ML-asgn) followed by an application
of (ML-seq). Therefore, all the desired properties hold.
• 〈〈if(e) s1 else s2 y s′ y assert〈cpost〉〉k 〈ϕ〉form 〈ρ〉env c〉
{ 〈〈s1 y s′ y assert〈cpost〉〉k 〈ϕ ∧ ρ(e) , 0〉form 〈ρ〉env c〉

〈〈s2 y s′ y assert〈cpost〉〉k 〈ϕ ∧ ρ(e) = 0〉form 〈ρ〉env c〉
First, note that the relation { is determined for the condi-
tional, because once a conditional statement is on the top of
some computation, the only thing which the rewrite system
of → can do with it is to eventually evaluate its condition
e to ρ(e) and then to apply the rule (V-if) and generate two
pattern tasks, like above. Before we prove this case, let us
introduce a notion of “join pattern”. We show it for the par-
ticular configuration of IMP, but it works the same way for
any configuration. If Γ1 and Γ2 are patterns over the same
computation, say Γ1 = 〈〈k〉k 〈ρ1〉env 〈X1〉bnd 〈ϕ1〉form〉 and Γ2 =
〈〈k〉k 〈ρ2〉env 〈X2〉bnd 〈ϕ2〉form〉, then let Γ1O Γ2 be the join pattern
〈〈k〉k 〈ρ〉env 〈X1 ∪ X2 ∪ {ρ}〉bnd 〈ϕ1 ∧ ρ = ρ1 ∨ ϕ2 ∧ ρ = ρ2〉form〉.
Notice that |= Γ1O Γ2 ⇔ Γ1 ∨ Γ2 but, unlike Γ1 ∨ Γ2, Γ1O Γ2 is an
actual pattern. Let us now assume that the correctness pairs cor-
responding to the two patterns in the right-hand-side of the rule
above are derivable, i.e., 〈〈ϕ ∧ ρ(e) , 0〉form 〈ρ〉env c〉 s1;s′ 〈cpost〉

and 〈〈ϕ ∧ ρ(e) = 0〉form 〈ρ〉env c〉 s2;s′ 〈cpost〉 are derivable. That
means that there must be some appropriate partial configura-
tions c1 and c2 such that 〈〈ϕ ∧ ρ(e) , 0〉form 〈ρ〉env c〉 s1 〈c1〉 and
〈c1〉 s′ 〈cpost〉, and such that 〈〈ϕ ∧ ρ(e) = 0〉form 〈ρ〉env c〉 s2 〈c2〉

and 〈c2〉 s′ 〈cpost〉. Let Γ1 be 〈〈s′〉k c1〉, let Γ2 be 〈〈s′〉k c2〉, and
let Γ1OΓ2 be the joint pattern constructed as above; by abuse of
notation we let c1Oc2 denote the partial configuration such that
Γ1OΓ2 is 〈〈s′〉k c1Oc2〉. By (ML-cases), 〈c1O c2〉 s′ 〈cpost〉 is deriv-
able. By (ML-consequence) applied twice and (ML-if) applied
once, 〈〈ϕ〉form 〈ρ〉env c〉 if(e) s1 else s2 〈c1O c2〉 is derivable, so
〈〈ϕ〉form 〈ρ〉env c〉 if(e) s1 else s2; s′ 〈cpost〉 is derivable.
• 〈〈while(e) sy s′ y assert〈cpost〉〉k 〈ϕ〉form 〈ρ〉env c〉
{ 〈〈sy assert〈〈ϕ〉form 〈ρ〉env c〉〉k 〈ϕ ∧ ρ(e) , 0〉form 〈ρ〉env c〉

〈〈s′ y assert〈cpost〉〉k 〈ϕ ∧ ρ(e) = 0〉form 〈ρ〉env c〉
First, note that the rule above for{ is determined by→. Indeed,
the only thing→ can do with a while on top of the computation
is to rewrite it to an if using rule (V-while), then to process
the condition e of the resulted conditional until it becomes
ρ(e), and then to apply the rule (V-if) to split the conditional
in the two cases appearing in the right-hand-side of the rule
above. Suppose 〈〈ϕ ∧ ρ(e) , 0〉form 〈ρ〉env c〉 s 〈〈ϕ〉form 〈ρ〉env c〉
and 〈〈ϕ ∧ ρ(e) = 0〉form 〈ρ〉env c〉 s′ 〈cpost〉 are derivable. Then by
(ML-while) and (ML-seq), 〈〈ϕ〉form 〈ρ〉env c〉 while(e) s; s′ 〈cpost〉

is also derivable.

(Completeness) The idea of the proof of completeness is to fully
annotate the program with assertions corresponding to all the
pre- and post-conditions for all the fragments of code obtained
from the matching logic proof, and then to show that the fully
annotated program verifies. In order to prove the result modularly by
induction, we need to distinguish paths that correspond to normally
terminated programs from paths that correspond to loop body checks,
because the latter do not get composed with the remaining program.
Therefore, let us introduce a special statement “stop” that will
be used to annotate the end of loop bodies; stop counts as an
annotation, that is, it is discarded like any other annotation by the
operation s 7→ s. Let ξ be a mapping from matching logic proofs

Matching Logic - From Executable Semantics to Program Verification 14 2009/7/25

into annotated programs defined recursively over proofs as follows:

• If πasgn is the (trivial) matching logic derivation of the pair
〈cpre〉 x:= e 〈cpost〉, then let ξ(πasgn) be the annotated program
assert〈cpre〉; x := e; assert〈cpost〉;
• If πseq is the derivation of 〈cpre〉 s1; s2 〈cpost〉 and πseq1 and
πseq2 are the corresponding derivations of 〈cpre〉 s1 〈c〉 and
〈c〉 s2 〈cpost〉 (for the appropriate c), then let ξ(πseq) be the anno-
tated program assert〈cpre〉; ξ(πseq1); ξ(πseq2); assert〈cpost〉;
• If πif is a derivation of 〈cpre〉 if(e) s1 else s2 〈cpost〉 an πif1 and
πif2 are the derivations of s1 and s2 corresponding to this partic-
ular proof (for the sake of saving space, we do not mention the
exact configuration ingredients), then let ξ(πif) be the annotated
program assert〈cpre〉; if(e) ξ(πif1) else ξ(πif2); assert〈cpost〉;
• If πwhile is a derivation of 〈cpre〉 while(e) s 〈cpost〉 and πbody is

the derivation of s corresponding to this particular proof (for
the sake of saving space, we do not mention the exact configu-
ration ingredients), then let ξ(πwhile) be the annotated program
assert〈cpre〉; while(e) (ξ(πbody); stop) ; assert〈cpost〉. Since
the while is rewritten by the verifier into a conditional checking
the invariant as an assertion after its positive branch correspond-
ing to the loop body, we need to allow for switching the stop
statement with a subsequent assertion, so that stop will indeed
become the end of the computation. We therefore add the rule

stop; assert〈c〉 → assert〈c〉; stop

It is easy to see that for any statement s for which a derivation
〈cpre〉 s 〈cpost〉 exists in matching logic, say πs, it is indeed the case
that ξ(πs) = s. All we need to show is that 〈〈〈ξ(πs)〉k cpre〉〉> →

∗

〈Γstop〉>, where Γstop contains only patterns of the form 〈〈stop〉k c〉.
We proceed by proving a stronger result by induction on s and its
derivation, namely that 〈〈〈ξ(πs)〉k cpre〉〉> →

∗ 〈Γstop 〈〈·〉k cpost〉〉>. We
discuss each of the four cases above corresponding to the each of
the four types of statements:

• ξ(πasgn) = assert〈cpre〉; x := e; assert〈cpost〉

We start with the term 〈〈〈ξ(πasgn)〉k cpre〉〉>. The first assertion is
obviously discarded by rule (V-assertion-checking), because the
current configuration is precisely the asserted assertion. Then the
rewrite rule for assignment modifies the value of x in the environ-
ment ρ of cpre to ρ(e), so the configuration before assert〈cpost〉

is exactly cpost. Therefore rule (V-assertion-checking) applies
again and rewrites the term to 〈〈〈·〉k cpost〉〉>.
• ξ(πseq) = assert〈cpre〉; ξ(πseq1); ξ(πseq2); assert〈cpost〉

We start with the term 〈〈〈ξ(πseq)〉k cpre〉〉> and, as above, the
first assertion is immediately discarded by rule (V-assertion-
checking). Assume, inductively, that the property holds for
ξ(πseq1) and ξ(πseq2), i.e., 〈〈〈ξ(πseq1)〉k cpre〉〉> →

∗ 〈Γ1
stop 〈〈·〉k c〉〉>

and 〈〈〈ξ(πseq2)〉k c〉〉> →∗ 〈Γ2
stop 〈〈·〉k cpost〉〉>. Since all rules in

Figure 6 only match and change the computations at the top
of the 〈...〉k cell and since the while loops generate a top-level
conditional whose positive branch discards the computation that
follows the while loop, the computations in the left terms and
the empty computations in the right terms in the rewrites above
can be appended any other computations and the rewrites would
still hold, in particular
〈〈〈ξ(πseq1); ξ(πseq2); assert〈cpost〉〉k cpre〉〉>

→∗ 〈Γ1
stop 〈〈ξ(πseq2); assert〈cpost〉〉k c〉〉>

and
〈〈〈ξ(πseq2); assert〈cpost〉〉k c〉〉>

→∗ 〈Γ2
stop 〈〈assert〈cpost〉〉k cpost〉〉>.

Since the patterns in Γ1
stop do not interfere with the rewrites

applied on 〈〈〈ξ(πseq2); assert〈cpost〉〉k c〉〉>, the two rules above
can apply one after the other, then followed by an instance of

(V-assertion-checking), and thus we obtain
〈〈〈ξ(πseq1); ξ(πseq2); assert〈cpost〉〉k cpre〉〉>

→∗ 〈Γ1
stop Γ2

stop 〈〈·〉k cpost〉〉>.
• ξ(πif) = assert〈cpre〉; if(e) ξ(πif1) else ξ(πif2); assert〈cpost〉

We start with the term 〈〈〈ξ(πif)〉k cpre〉〉> and, as above, the first
assertion is discarded by rule (V-assertion-checking). Then the
only rewrite steps which can take place are those that lead to the
evaluation of e to ρ(e), where ρ is the environment of cpre. Once
e is evaluated, the only rule which can take place is (V-if), yield-
ing 〈〈〈ξ(πif1)〉k cpre ∧ ρ(e) , 0〉 〈〈ξ(πif2)〉k cpre ∧ ρ(e) = 0〉〉>.
We can now apply the induction hypothesis and obtain that
〈〈〈ξ(πif1)〉k cpre ∧ ρ(e) , 0〉〉> →∗ 〈Γ1

stop 〈〈·〉k cpost〉〉> and that
〈〈〈ξ(πif2)〉k cpre ∧ ρ(e) = 0〉〉> →∗ 〈Γ2

stop 〈〈·〉k cpost〉〉>. There-
fore, 〈〈〈ξ(πif)〉k cpre〉〉> →

∗ 〈Γ1
stop Γ2

stop 〈〈·〉k cpost〉〉>.
• ξ(πwhile) = assert〈cpre〉; while(e) (ξ(πbody); stop) ; assert〈cpost〉

We start with the term 〈〈〈ξ(πwhile)〉k cpre〉〉> and, as above, the
first assertion is discarded by rule (V-assertion-checking). The
the rule (V-while) can be applied, yielding the term
〈〈〈if(e) (ξ(πbody); stop; assert〈cpre〉) else assert〈cpost〉〉k〉〉>
which further rewrites into

〈
〈〈ξ(πbody); assert〈cpre〉; stop〉k cpre ∧ ρ(e) , 0〉
〈〈assert〈cpost〉〉k cpre ∧ ρ(e) = 0〉

〉>

However, in this case cpost is precisely cpre ∧ ρ(e) = 0, so the
second pattern rewrites to 〈〈·〉k cpost〉. The induction hypoth-
esis for ξ(πbody) gives us the following rewriting sequence:
〈〈〈ξ(πbody)〉k cpre ∧ ρ(e) , 0〉〉> →∗ 〈Γstop 〈〈·〉k cpre〉〉>.
Then we can deduce that
〈〈ξ(πbody); assert〈cpre〉; stop〉k cpre ∧ ρ(e) , 0〉
→∗ 〈Γstop 〈〈assert〈cpre〉; stop〉k cpre〉〉> → 〈Γstop 〈〈stop〉k cpre〉〉>.
Thus, we have proved that
〈〈〈ξ(πwhile)〉k cpre〉〉> →

∗ 〈Γstop 〈〈stop〉k cpre〉 〈〈·〉k cpost〉〉>.

The completeness proof is done. Theorem 12
Note that we generated many more annotations than needed with

the translation ξ in the proof above. Since our verifier is capable
of performing many steps without a need for annotations, it would
be interesting to research ways to produce minimal annotations in
verified programs so that those can be checked without any involved
search. However, that was not our purpose here.

Thus, although in principle one needs to provide pre- and post-
condition patterns for all statements in a program, the verifier
discussed above has the advantage that it calculates many of those
patterns automatically. Indeed, given a pre-condition pattern, it
uses symbolically the actual executable semantics of the current
language construct to calculate the post-condition pattern, at the
same time generating proof obligations for SMT solvers whenever
given pattern assertions are reached during the rewriting process. In
our experience with an implementation of a matching logic prover
in Maude (see Section 7), in addition to pre- and post-condition
patterns for the program to verify one typically only needs to provide
pattern annotations for loop invariants.

One potential practical issue with our verification approach above
is the so-called path explosion problem. First, note that since in term
rewriting one can choose any rule that matches to apply, our K
verifier definition has several degrees of freedom w.r.t. how it can
be implemented. For example, one can discard verification tasks
as soon as their condition becomes false (fourth rule in step (3) in
Figure 6), thus avoiding exploring infeasible paths. Second, one can
use pattern assertions anywhere in the program, in particular right
after conditionals. If that is the case, then the two verification tasks
corresponding to the two branches become identical right after the
pattern assertion at the end of the conditional is processed (recall
that the top level cell is a set, so duplicates are eliminated); this way,
the path explosion problem is avoided.

Matching Logic - From Executable Semantics to Program Verification 15 2009/7/25

S F ...

| PVar := cons(Seq , [E])
| PVar := [E]
| [E1] := E2

| dispose(E)
CfgItem F ... | 〈Mem〉mem

Mem F Map �
· [Nat+, Int]

(x := cons(i, e, e)) = (ey x := cons(i,�, e))
(x:=[e]) = (ey x:=[�])
([e1] := e2) = (e1 y [�] := e2) ([p] := e2) = (e2 y [p] := �)
dispose(e) = (ey dispose(�))

〈x := cons(i)y k〉k 〈ρ〉env 〈σ〉mem → 〈k〉k 〈ρ[p/x]〉env 〈p 7→ [i]�σ〉mem

〈x := [p]y k〉k 〈ρ〉env 〈p 7→i�σ〉mem→ 〈k〉k 〈ρ[i/x]〉env 〈p 7→i�σ〉mem

〈[p] := iy k〉k 〈p 7→i′�σ〉mem → 〈k〉k 〈p 7→i�σ〉mem

〈dispose(p)y k〉k 〈p 7→i�σ〉mem → 〈k〉k 〈σ〉mem

(range of new variables: p ∈ Nat+; i ∈ Seq ,· [Int]; e ∈ Seq ,· [E])

Figure 7. HIMP in K (features above added to those in Figure 2)

6. Adding a Heap
We next define HIMP (IMP with heap), an extension of IMP with
dynamic memory allocation/deallocation and pointer arithmetic.
We show that the three definitions related to IMP presented so
far (i.e., its K definition, its matching logic formal system, and
its K matching logic verifier) extend modularly to HIMP; we also
show the corresponding correctness theorems. The heap allows
for introducing and axiomatizing heap data-structures by means
of pointers, such as lists, trees, graphs, etc. We define some of
these and prove the list reverse as an example (Section 7 discusses
a more elaborate case study, the Schorr-Waite algorithm). It is
worth mentioning that, unlike in separation logic where such data-
structures are defined by means of recursive predicates, we define
them as ordinary term constructs, with natural (purely first-order)
axioms saying how they can be identified and/or manipulated in
configurations or patterns.

6.1 K Definition of HIMP
Figure 7 shows the features that need to be added to the K definition
of IMP to obtain an executable definition of HIMP. We follow
the simple syntax and semantics proposed by Reynolds [2002]
for memory operations, namely: statement x := cons(e1, ..., en)
evaluates e1, ..., en to values i1, ..., in, allocates a contiguous block of
size n available starting with pointer (a positive integer) p in memory
and writes values i1, ..., in in order in that block, and finally assigns
p to x; x := [e] evaluates e to a pointer p which must be allocated,
and assigns to x the value at location p; [e1] := e2 evaluates e1 to
pointer p which must be allocated and e2 to value i, and writes i
to location p; dispose(e) evaluates e to a pointer p (which must
have been allocated), and deallocates the location p. Note how we
define the strictness of cons, a style also supported by our tool (see
Section 7): i ranges over (possibly empty) sequences of values,
while e ranges over (possibly empty) sequences of expressions;
this way, the term x := cons(i, e, e) matches the first non-value
argument expression e. This equation applies iteratively to schedule
all arguments of cons for processing, and to plug back their results
into the cons after they are processed.

To define the semantics of HIMP, we need to first extend the
configuration of IMP with a heap, or memory cell. A heap is a
(partial) map structure just like the environment, but from positive
naturals (also called pointers) to integers. We use � as a heap
construct to make our heap notation resemble that of separation
logic, but note that there is big difference between the two: our �

is a term constructor, while ∗ in separation logic is a special logical
connective. Note that, thanks to K’s modularity, adding a new cell
to the configuration does not affect the existing semantic equations
and rules (e.g., those of IMP in Figure 2) at all, because they simply
match and use/modify only what they need from the configuration.
Therefore, we only add one rule for each new construct. Due to
the strictness equations, we can assume that all the arguments
have been evaluated. The semantics of cons reads as follows: if
“x := cons(i)” is the next computational task under environment
ρ and memory σ, then pick some arbitrary pointer p such that
p 7→ [i]�σ is a well-formed map, discard the statement and update
the environment and the memory accordingly; here and elsewhere in
the paper we use the notation “p 7→ [i1, i2, ..., in]” as a shorthand for
“p 7→i1�p+1 7→i2�· · ·�p+n−1 7→in”, inspired from separation logic.
The semantic rule of cons above is compact, elegant and natural,
but it is rather dense. There are at least two important aspects of it
that need to be noticed. (1) How can one choose such a p? Rewriting
logic allows variables that do not appear in the left-hand-sides of
rules to appear in the right-hand-sides, like our p, with the semantics
that such a rule can be regarded as infinitely many instances, one for
each instance of that variable; that is why we called p an “arbitrary
pointer” above. (2) How can we make sure that the allocated memory
was available? All the terms appearing in a rule are assumed to have
the expected sorts, satisfying all the corresponding sort constraints.
In our case, the term p 7→ [i] � σ appears where a map sort is
expected, so it must be a well-formed map. Thinking in terms of
“rule schemata” (standing for the recursively enumerable set of its
ground instances), the rule of cons can be regarded as an infinite
set of ground rules, one for each choice of p satisfying all the sort
constraints in the rule. The semantics of the remaining three rules
should be clear now.

We adopt and extend in the obvious way all the notions intro-
duced in Definition 1 for IMP. In particular, JsK denotes the initial
configuration 〈〈s〉k 〈·〉env 〈·〉mem〉. We next introduce a HIMP specific
notion, namely memory safety. Note that the rewriting process using
the HIMP semantic rules in Figure 7 will get stuck when pointer p
is not available in the heap (or, in the case of the cons rule, when
the block cannot be allocated — due to memory bounds constraints,
if any). This leads to a natural definition of memory safety:

Definition 13. HIMP configuration γ is memory safe iff it is not
the case that HIMP |= γ →∗ γ′ for some junk configuration γ′

which is stuck with a memory access construct at the beginning of
its computation (in its 〈...〉k cell).

To execute the K semantics in Figure 7, one needs to make a
concrete choice for the pointer p in the rule for cons, that is, one
needs to define a “memory manager”. Roşu et al. [2009] show how to
give executable K semantics to C-like languages where p is chosen
symbolically; this makes the language definition deterministic and
leads to a strictly stronger notion of memory safety.

We prove a similar result to Proposition 2, stating that tasks in
the computation structure are processed in order.

Proposition 14. Given k ∈ E∪S and r ∈ K, then a rewrite sequence
〈〈ky r〉k 〈ρ〉env 〈σ〉mem〉 →

∗ γ is possible for a final configuration γ
iff there is a final configuration γ′ = 〈〈k′〉k 〈ρ

′〉env 〈σ
′〉mem〉 such that

〈〈k〉k 〈ρ〉env 〈σ〉mem〉 →
∗ γ′ and 〈〈k′ y r〉k 〈ρ′〉env 〈σ

′〉mem〉 →
∗ γ;

moreover, if that is the case then k′ = ρ(k), ρ′ = ρ and σ′ = σ when
k ∈ E, and k′ = · when k ∈ S .

Proof. The proof of the “if” part is identical to that of Proposition 2
and does not depend on any particular language constructs. The
“only if” part follows by structural induction on k and is identical to
that of Proposition 2 for the IMP constructs, so therefore we only
need todiscuss the new constructs.

Let us now analyze the cases where k ∈ S .

Matching Logic - From Executable Semantics to Program Verification 16 2009/7/25

C[e] = v with C = 〈ρ〉env 〈σ〉mem 〈X〉bnd C′

〈C〉 x := cons(e) 〈〈ρ[p/x]〉env 〈p 7→ [v]�σ〉mem 〈X, p〉bnd C′〉 (ML-cons)

C[e] ≡ v, with C = 〈ρ〉env 〈v 7→v′�σ〉mem C′

〈C〉 x:= [e] 〈〈ρ[v′/x]〉env 〈v 7→v′�σ〉mem C′〉 (ML-[lookup])

C[(e1, e2)] ≡ (v1, v2), with C = 〈v1 7→v′2�σ〉mem C′

〈C〉 [e1] := e2 〈〈v1 7→v2�σ〉mem C′〉 (ML-[mutate])

C[e] ≡ v, with C = 〈v 7→v′�σ〉mem C′

〈C〉 dispose(e) 〈〈σ〉mem C′〉 (ML-dispose)

Figure 8. Matching logic formal system for HIMP (the rules above
are added to those in Figure 4 — rules in Figure 4 stay unchanged)

If k = (x := cons(e) then by the induction hypothesis applied
on each expression in e, it follows that 〈〈ky r〉k 〈ρ〉env 〈σ〉mem〉 →

∗

〈〈x := cons(ρ(e)) y r〉k 〈ρ〉env 〈σ〉mem〉 →
∗ γ; the only way to

advance the rewriting of 〈〈x := cons(ρ(e)) y r〉k 〈ρ〉env 〈σ〉mem〉

is to apply the semantic rewrite rule for cons, so we obtain that
〈〈x := cons(ρ(e)) y r〉k 〈ρ〉env 〈σ〉mem〉 →

〈k〉k 〈ρ[p/x]〉env 〈p 7→ [ρ(e)]�σ〉mem →
∗ γ for some arbitrary p.

Then pick k′ = ·, ρ′ = ρ[p/x] and σ′ = p 7→ [ρ(e)]�σ and note that
the property holds.

If k = (x := [e]) then by the induction hypothesis on e, we get
〈〈ky r〉k 〈ρ〉env 〈σ〉mem〉 →

∗ 〈〈x := [ρ(e)] y r〉k 〈ρ〉env 〈σ〉mem〉 →
∗

γ; the only way for the latter rewrite sequence to exist is that the
location ρ(e) exists in σ, that is σ = ρ(e) 7→ v�σ0, and an in-
stance of the semantic rule of location lookup is applied, that is,
〈〈x := [ρ(e)] y r〉k 〈ρ〉env 〈σ〉mem〉 → 〈k〉k 〈ρ[v/x]〉env 〈σ〉mem →

∗

γ. Then pick k′ = ·, ρ′ = ρ[v/x] and σ′ = σ.
If k = ([e1] := e2) then by the induction hypothesis applied

first on e1 and then on e2, we get 〈〈ky r〉k 〈ρ〉env 〈σ〉mem〉 →
∗

〈〈[ρ(e1)] := ρ(e2) y r〉k 〈ρ〉env 〈σ〉mem〉 →
∗ γ; the only way for the

latter rewrite sequence to exist is that the location ρ(e1) exists in
σ, that is σ = ρ(e1) 7→v�σ0, and the semantic rule of location up-
date is applied, that is, 〈〈[ρ(e1)] := ρ(e2) y r〉k 〈ρ〉env 〈σ〉mem〉 →

〈k〉k 〈ρ〉env 〈ρ(e1) 7→ρ(e2)�σ0〉mem →
∗ γ. Then pick k′ = ·, ρ′ = ρ

and σ′ = ρ(e1) 7→ρ(e2)�σ0 and note that the property holds.
If k = dispose(e) then by the induction hypothesis on e, we get

〈〈ky r〉k 〈ρ〉env 〈σ〉mem〉 →
∗ 〈〈dispose(ρ(e)) y r〉k 〈ρ〉env 〈σ〉mem〉

→∗ γ; the only way for the latter rewrite sequence to exist is that
the location ρ(e) exists in σ, that is σ = ρ(e) 7→ v�σ0, and
an instance of the semantic rule of dispose is applied, that is,
〈〈dispose(ρ(e)) y r〉k 〈ρ〉env 〈σ〉mem〉 → 〈k〉k 〈ρ〉env 〈σ0〉mem →

∗

γ. Then pick k′ = ·, ρ′ = ρ and σ′ = σ0. Proposition 14

6.2 Matching Logic Definition of HIMP
Figure 8 shows the rules that need to be added to the formal
system of IMP in Figure 4 to obtain a matching logic formal
system for HIMP. In order for these rules to work, we extend IMP
patterns to correspond to configurations extended with a heap, as
discussed in Section 6.1. Since patterns inherit the structure of
configurations, matching logic is as modular as K. In particular,
none of the matching logic rules in Figure 4 need to change when
we add a heap to the configuration! To obtain a matching logic
semantics for HIMP, all we need to add is one rule for each new
language construct, as shown in Figure 8. To save space, we write
“C[(e1, e2, ..., en)] ≡ (v1, v2, ..., vn)” as a shorthand for “C[e1] ≡ v1
and C[e2] ≡ v2 and ... and C[en] ≡ vn”.

The rules in Figure 8 are self-explanatory, mechanically follow-
ing their K counterparts in Figure 7. The only interesting thing to
note is that the “arbitrary pointer” in the K rule of cons now gets
existentially quantified in the pattern, so it becomes a pattern bound

parameter. This way, the matching logic proof system becomes
deterministic and, as expected, when a program is verified using
matching logic then it is necessarily memory safe.

Theorem 15. (Soundness of matching logic formal system for
HIMP) Suppose that Γ

V

Γ′ is derivable with the proof system
in Figure 8 and that (γ, τ) : Var◦ → T is such that (γ, τ) |= Γ. Then:

1. γ is memory safe; and
2. If HIMP |= γ →∗ γ′ with γ′ final then (γ′, τ) |= Γ′.

Proof. We do the proof in the same style as the proof of Theorem 8.
As already mentioned in the proof of Theorem 8, there we never
used the fact that the configurations of IMP had only two cells, a
computation and an environment. In other words, the same proof of
Theorem 8 can be used here for the soundness of the IMP constructs
in HIMP, so we only need to continue with the soundness of the
new constructs. Note, however, that in Theorem 8 we did not need to
worry about memory safety, but now we do. None of the operations
used on the proof of Theorem 8 affected in any way memory
safety, in that the memory safety of the configurations satisfying
the correctness pairs in the hypotheses of rules ensures the memory
safety of the configuration satisfying the derived correctness pair. In
other words, the memory safety is also preserved inductively over
the rules proved sound in Theorem 8.

Like in the proof of Theorem 8, we consider the rules in Fig-
ure 8 in desugared form. For each of the rules deriving a sequent
of the form 〈C〉 s 〈C′〉, desugared to ∃X.(◦= 〈〈s〉k 〈ρ〉env 〈σ〉mem〉 ∧

ϕ)

V

∃X′.(◦ = 〈〈·〉k 〈ρ
′〉env〈σ

′〉mem〉 ∧ ϕ
′), consider that (γ, τ) |=

∃X.(◦ = 〈〈s〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ), that is, that γ is the term
〈〈s〉k 〈θτ(ρ)〉env 〈θτ(σ)〉mem〉 for some θτ : Var → T s.t. θτ �Var\X=
τ�Var\X and θτ |= ϕ.
(ML-cons)

∃X.(◦= 〈〈e〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ)

V

∃X.(◦= 〈〈v〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ)
∃X.(◦ = 〈〈x := cons(e)〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ)

V

∃X, p.(◦ = 〈〈·〉k 〈ρ[p/x]〉env 〈p 7→ [v]�σ〉mem〉 ∧ ϕ)

In this case γ has the form 〈〈x := cons(e)〉k 〈θτ(ρ)〉env 〈θτ(σ)〉mem〉,
so by Proposition 14 and Lemma 11 γ can only rewrite (in possibly
several steps) to the term 〈〈x := cons(θτ(v))〉k 〈θτ(ρ)〉env 〈θτ(σ)〉mem〉.
The only semantic rewrite rule which can apply now is the one
for cons, which rewrites the term above to a term of the form
〈〈·〉k 〈θτ(ρ)[p/x]〉env 〈p 7→θτ(v)�σ〉mem〉, for some arbitrary natural
number (or pointer) p, which is final. Therefore, γ is memory safe
and, moreover, any final γ′ with HIMP |= γ →∗ γ′ must have
the same form. It is easy to see now that (γ′, τ) |= ∃X, p.(◦ =
〈〈·〉k 〈ρ[p/x]〉env 〈p 7→ [v]�σ〉mem〉 ∧ ϕ) (pick θ′τ defined like θτ
modified only in p, where θ′τ(p) = p).
(ML-[lookup])

∃X.(◦= 〈〈e〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)

V

∃X.(◦= 〈〈v〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)
∃X.(◦ = 〈〈x := [e]〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k 〈ρ[v′/x]〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)

In this case γ has the form 〈〈x := [e]〉k 〈θτ(ρ)〉env 〈θτ(v 7→v′�σ)〉mem〉,
so by Proposition 14 and Lemma 11 γ can only rewrite (in possibly
several steps) to 〈〈x := [θτ(v)]〉k 〈θτ(ρ)〉env 〈θτ(v 7→v′�σ)〉mem〉. The
only rewrite rule which can apply is the one for pointer lookup,
which yields 〈〈·〉k 〈θτ(ρ)[θτ(v′)/x]〉env 〈θτ(v 7→v′�σ)〉mem〉, which is
final. Therefore, γ is memory safe and, moreover, the above is the
only final γ′ with HIMP |= γ →∗ γ′. It is easy to see now that
(γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ[v′/x]〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ).

Matching Logic - From Executable Semantics to Program Verification 17 2009/7/25

(ML-[mutate])

∃X.(◦= 〈〈e1〉k 〈ρ〉env 〈v1 7→v′2�σ〉mem〉 ∧ ϕ)

V

∃X.(◦= 〈〈v1〉k 〈ρ〉env 〈v1 7→v′2�σ〉mem〉 ∧ ϕ),
∃X.(◦= 〈〈e2〉k 〈ρ〉env 〈v1 7→v′2�σ〉mem〉 ∧ ϕ)

V

∃X.(◦= 〈〈v2〉k 〈ρ〉env 〈v1 7→v′2�σ〉mem〉 ∧ ϕ)
∃X.(◦ = 〈〈[e1] := e2〉k 〈ρ〉env 〈v1 7→v′2�σ〉mem〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k 〈ρ〉env 〈v1 7→v2�σ〉mem〉 ∧ ϕ)

In this case γ is 〈〈[e1] := e2〉k 〈θτ(ρ)〉env 〈θτ(v1 7→v′2�σ)〉mem〉, so by
Proposition 14 and Lemma 11 γ can only rewrite (in possibly several
steps) to 〈〈[θτ(v1)] := θτ(v2)〉k 〈θτ(ρ)〉env 〈θτ(v1 7→v′2�σ)〉mem〉. The
only rewrite rule which can apply is the one for pointer assignment,
which yields 〈〈·〉k 〈θτ(ρ)〉env 〈θτ(v1 7→v2�σ)〉mem〉, which is final.
Therefore, γ is memory safe and, moreover, the above is the
only final γ′ with HIMP |= γ →∗ γ′. It is easy to see now that
(γ′, τ) |= ∃X.(◦ = 〈〈·〉k 〈ρ〉env 〈v1 7→v2�σ〉mem〉 ∧ ϕ).
(ML-dispose)

∃X.(◦= 〈〈e〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)

V

∃X.(◦= 〈〈v〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)
∃X.(◦ = 〈〈dispose(e)〉k 〈ρ〉env 〈v 7→v′�σ〉mem〉 ∧ ϕ)

V

∃X.(◦ = 〈〈·〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ)

In this case γ is 〈〈dispose(e)〉k 〈θτ(ρ)〉env 〈θτ(v 7→v′�σ)〉mem〉, so
by Proposition 14 and Lemma 11 γ can only rewrite (in possibly
several steps) to 〈〈dispose(θτ(v))〉k 〈θτ(ρ)〉env 〈θτ(v 7→v′�σ)〉mem〉.
The only rewrite rule which can apply is the one for dispose,
which yields 〈〈·〉k 〈θτ(ρ)〉env 〈σ)〉mem〉, which is final. Therefore, γ
is memory safe and, moreover, the above is the only final γ′ with
HIMP |= γ →∗ γ′. It is easy to see now that (γ′, τ) |= ∃X.(◦ =

〈〈·〉k 〈ρ〉env 〈σ〉mem〉 ∧ ϕ). Theorem 15

6.3 Deriving a HIMP Matching Logic Verifier in K
The K matching logic verifier for IMP in Section 5 was obtained by
adding configuration infrastructure for expressing patterns to the K
definition of IMP, four language independent rules, and modifying
two of the original K rules (for if and while) to become symbolic.
We follow the same steps for HIMP and, surprisingly, we only have
to modify the rule for cons.

Concretely, the matching logic verifier for HIMP is obtained by
extending the one for IMP in Figure 6 with HIMP configurations
(i.e., adding memory cell) and with the HIMP K rules in Figure 7
modifying the one for cons as follows:
〈x := cons(i)y k〉k 〈ρ〉env 〈σ〉mem 〈X〉bnd

→ 〈k〉k 〈ρ[p/x]〉env 〈p 7→ [i]�σ〉mem 〈X, p〉bnd
Therefore, the pointer p of the original K semantics is now bound
by the right-hand-side pattern, making it a symbolic value for the
remainder of the proof.

Theorem 16. (Soundness and completeness of HIMP K verifier
w.r.t. matching logic) The following hold, where given an annotated
computation s ∈ S like in Figure 9, s ∈ S is the computation
obtained by removing all pattern assertions from s:

1. (Soundness) If 〈〈〈s; assert〈cpost〉〉k cpre〉〉> →
∗ 〈·〉> using the

K definition in Figure 9, then 〈cpre〉 s 〈cpost〉 is derivable using
the matching logic proof system in Figure 8;

2. (Completeness) If 〈cpre〉 s 〈cpost〉 is derivable using the matching
logic proof system in Figure 8, then there is some annotated com-
putation s such that s = s and 〈〈〈s; assert〈cpost〉〉k cpre〉〉> →

∗

〈·〉> using the K definition in Figure 9.

Proof. The proof of soundness and completeness proceeds like that
of Theorem 12. Due to the inherent modularity of using AC soups

NatF naturals,Nat+ F pos. naturals, IntF integers (abstract syntax)
PVar F identifiers, to be used as program variable names
VarF logical variables,FormF FOL= formulae
E F Int | PVar | E1 op E2

S F PVar:=E | S 1;S 2 | if (E) S 1 else S 2 | while (E) S
| assert Cfg
| PVar := cons(Seq , [E])
| PVar := [E]
| [E1] := E2

| dispose(E)

Cfg F 〈Bag· [CfgItem]〉 (configuration)
CfgItem F 〈K〉k | 〈Env〉env | 〈Set ,· [Var]〉bnd | 〈Form〉form | 〈Mem〉mem

Mem F Map �
· [Nat+, Int]

TopF 〈Set· [Cfg]〉>
K F E | S | Seq y· [K] | �
Env F Map ,· [PVar, Int]

(x:=e) = (ey x:=�) (structural “strictness” equations)
e1 op e2 = (e1 y � op e2) i1 op e2 = (e2 y i1 op�)
if (e) s1 else s2 = (ey if (�) s1 else s2)
(x := cons(i, e, e)) = (ey x := cons(i,�, e))
(x:=[e]) = (ey x:=[�])
([e1] := e2) = (e1 y [�] := e2) ([p] := e2) = (e2 y [p] := �)
dispose(e) = (ey dispose(�))

s1 ; s2 = s1 y s2 (semantic equations and rules)
i1 op i2 → i1 opInt i2

〈xy k〉k 〈x 7→ i, ρ〉env → 〈iy k〉k 〈x 7→ i, ρ〉env

〈x:= iy k〉k 〈ρ〉env → 〈k〉k 〈ρ[i/x]〉env

〈〈(if (v) s1 else s2)yk〉k 〈ϕ〉form c〉
→ 〈〈s1 y k〉k 〈ϕ ∧ v , 0〉form c〉 〈〈s2 y k〉k 〈ϕ ∧ v = 0〉form c〉

〈〈(while (e) s)y k〉k c〉 → 〈〈if (e) (s; assert〈c〉) else k〉k c〉
〈x := cons(i)y k〉k 〈ρ〉env 〈σ〉mem 〈X〉bnd

→ 〈k〉k 〈ρ[p/x]〉env 〈p 7→ [i]�σ〉mem 〈X, p〉bnd

〈x := [p]y k〉k 〈ρ〉env 〈p 7→i�σ〉mem→ 〈k〉k 〈ρ[i/x]〉env 〈p 7→i�σ〉mem

〈[p] := iy k〉k 〈p 7→i′�σ〉mem → 〈k〉k 〈p 7→i�σ〉mem

〈dispose(p)y k〉k 〈p 7→i�σ〉mem → 〈k〉k 〈σ〉mem

〈〈assertΓyk〉k c〉 → Γ〈k〉k when 〈〈k〉k c〉 ⇒ Γ〈k〉k (generic rules)

Γ→ Γ1 Γ2 when |= Γ⇒ Γ1 ∨ Γ2

〈〈·〉k c〉 → ·
〈〈false〉form c〉 → ·

(x∈PVar; e,e1,e2 ∈E; s,s1,s2 ∈S ; k∈K; i,i1,i2 ∈ Int;
ρ∈Map , [PVar,Int];ϕ ∈ Form; p ∈ Nat+; i ∈ Seq ,· [Int]; e ∈ Seq ,· [E])

Figure 9. HIMP Matching Logic Verifier (complete definition)

in both matching logic and the verifier, the proof of Theorem 12 can
be reused verbatim. We add below only the necessary cases.
(Soundness) Recall that the soundness proof strategy in Theorem 12
was to define a “determined rewriting” relation{ which has the
property that whenever the patterns in its right-hand-side terms
correspond to derivable correctness pairs then the pattern in its
left-hand-side term also corresponds to a derivable pair.

• 〈〈x := cons(e)y s′ y assert〈cpost〉〉k 〈ρ〉env 〈σ〉mem 〈X〉bnd c〉
{ 〈〈s′yassert〈cpost〉〉k〈ρ[p/x]〉env〈p 7→ [ρ(e)]�σ〉mem〈X, p〉bndc〉
(Note that in the above, e is a list of expressions.)
The only way to rewrite the left-hand side above using→ is to
first reduce e to ρ(e) and then to apply the rewrite rule for cons,
so the relation{ above is determined by→. Suppose that

〈〈s′yassert〈cpost〉〉k 〈ρ[p/x]〉env 〈p 7→ [ρ(e)]�σ〉mem 〈X, p〉bnd c〉

Matching Logic - From Executable Semantics to Program Verification 18 2009/7/25

is derivable. It is the case that either s′ is empty or a statement.
In the first case, we have that

|= 〈〈·〉k 〈ρ[p/x]〉env 〈p 7→ [ρ(e)]�σ〉mem 〈X, p〉bnd c〉 ⇒ 〈〈·〉k cpost〉

and

〈〈x := cons(e)y s′ y assert〈cpost〉〉k 〈ρ〉env 〈σ〉mem 〈X〉bnd c〉

is the correctness pair 〈〈ρ〉env 〈σ〉mem 〈X〉bnd c〉 x:=cons(e) 〈cpost〉,
which is derivable by an application of (ML-cons) and (ML-
consequence). If s′ is a statement, then we have that

〈〈ρ[p/x]〉env 〈p 7→ [ρ(e)]�σ〉mem 〈X, p〉bnd c〉 s′ 〈cpost〉

is derivable and that

〈〈x := cons(e)y s′ y assert〈cpost〉〉k 〈ρ〉env 〈σ〉mem 〈X〉bnd c〉

is 〈〈ρ〉env 〈σ〉mem 〈X〉bnd c〉 x:=cons(e);s′ 〈cpost〉, which is deriv-
able by an application of (ML-cons) followed by an application
of (ML-seq). Therefore, all the desired properties hold.
• 〈〈x := [e]y s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉
{ 〈〈s′ y assert〈cpost〉〉k 〈ρ[i/x]〉env 〈ρ(e) 7→i�σ〉mem c〉
This rule is different from the others, in that its left-hand side
requires a specific structure not only of the computation, but
also of the heap. One may therefore admittedly doubt that the
new relation{ still has the property that 〈Γ〉> {∗ 〈·〉> implies
〈Γ〉> →

∗ 〈·〉> (the other implication is easy to see, because{
can be simulated with a sequence of → steps). Consider Γ a
pattern like the left-hand side of the rule above, but with some
arbitrary σ′ instead of ρ(e) 7→ i�σ. The only way to rewrite
Γ using → is to first reduce e to ρ(e); then the resulting term
is stuck unless the mapping ρ(e) 7→ i is in σ′, that is, σ′ is of
the form ρ(e) 7→ i�σ. Then the only thing that→ can do is to
apply the rewrite rule for heap lookup, yielding that indeed the
relation{ above is determined by the relation→. Suppose that

〈〈s′ y assert〈cpost〉〉k 〈ρ[i/x]〉env 〈ρ(e) 7→i�σ〉mem c〉

is derivable. It is the case that either s′ is empty or a statement.
In the first case, we have that

|= 〈〈·〉k 〈ρ[i/x]〉env 〈ρ(e) 7→i�σ〉mem c〉 ⇒ 〈〈·〉k cpost〉

and

〈〈x := [e]y s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉

is the correctness pair 〈〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉 x := [e] 〈cpost〉,
which is derivable by an application of (ML-[mutate]) and (ML-
consequence). If s′ is a statement, then we have that

〈〈ρ[i/x]〉env 〈ρ(e) 7→i�σ〉mem c〉 s′ 〈cpost〉

is derivable and that

〈〈x := [e]y s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉

is 〈〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉 x := [e];s′ 〈cpost〉, which is deriv-
able by an application of (ML-[mutate]) followed by an applica-
tion of (ML-seq). Therefore, all the desired properties hold.
• 〈〈[e1] := e2 y s′y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e1) 7→i�σ〉mem c〉
{ 〈〈s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e1) 7→ρ(e2)�σ〉mem c〉
The existence of the ρ(e1) entry in the heap can be justified like
in the case above. The only way to rewrite the left-hand side
term in the rule above using→ is to first reduce e1 to ρ(e1) and
then to apply the rewrite rule for heap mutation, yielding that
indeed the relation{ above is determined by→. Suppose that
〈〈s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e1) 7→ρ(e2)�σ〉mem c〉 is deriv-
able. It is the case that either s′ is empty or a statement. In the
first case, we have that

|= 〈〈·〉k 〈ρ〉env 〈ρ(e1) 7→ρ(e2)�σ〉mem c〉 ⇒ 〈〈·〉k cpost〉

and

〈〈[e1] := e2 y s′y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e1) 7→i�σ〉mem c〉

is 〈〈ρ〉env 〈ρ(e1) 7→i�σ〉mem〉 [e1] := e2 〈cpost〉, which is deriv-
able by an application of (ML-[mutate]) and (ML-consequence).
If s′ is a statement, then we have that

〈〈ρ〉env 〈ρ(e1) 7→ρ(e2)�σ〉mem c〉 s′ 〈cpost〉

is derivable and that

〈〈[e1] := e2 y s′y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e1) 7→i�σ〉mem c〉

is 〈〈ρ〉env 〈ρ(e1) 7→i�σ〉mem〉 [e1] := e2; s′ 〈cpost〉, which is deriv-
able by an application of (ML-[mutate]) followed by an applica-
tion of (ML-seq). Therefore, all the desired properties hold.
• 〈〈dispose(e)y s′y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉
{ 〈〈s′ y assert〈cpost〉〉k 〈ρ〉env 〈σ〉mem c〉
The existence of the ρ(e) entry in the heap can be justified like
in the previous two cases above. The only way to rewrite the
left-hand side term in the rule above using→ is to first reduce e
to ρ(e) and then to apply the rewrite rule for dispose, yielding
that indeed the relation{ above is determined by→. Suppose
that 〈〈s′ y assert〈cpost〉〉k 〈ρ〉env 〈σ〉mem c〉 is derivable. It is the
case that either s′ is empty or a statement. In the first case, we
have that |= 〈〈·〉k 〈ρ〉env 〈σ〉mem c〉 ⇒ 〈〈·〉k cpost〉 and

〈〈dispose(e)y s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉

is 〈〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉 dispose(e) 〈cpost〉, which is deriv-
able by an application of (ML-dispose) and (ML-consequence).
If s′ is a statement, then we have that 〈〈ρ〉env 〈σ〉mem c〉 s′ 〈cpost〉

is derivable and that

〈〈dispose(e)y s′ y assert〈cpost〉〉k 〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉

is 〈〈ρ〉env 〈ρ(e) 7→i�σ〉mem c〉 dispose(e); s′ 〈cpost〉, which is
derivable by an application of (ML-dispose) and (ML-seq).
Therefore, all the desired properties hold.

(Completeness) Recall that the completeness proof strategy in The-
orem 12 was to define a mapping ξ that associates fully annotated
programs to matching logic derivations and then to show by in-
duction on derivations πs of correctness pairs 〈cpre〉 s 〈cpost〉 that
〈〈〈ξ(πs)〉k cpre〉〉> →

∗ 〈Γstop 〈〈·〉k cpost〉〉> for some set Γstop contain-
ing only patterns of the form 〈〈stop〉k c〉. We define the mapping
ξ on derivations πs of correctness pairs of the form 〈cpre〉 s 〈cpost〉

with s one of the new four constructs for statements as expected:

ξ(πcons) = assert〈cpre〉; x := cons(e); assert〈cpost〉

ξ(π[lookup]) = assert〈cpre〉; x := [e]; assert〈cpost〉

ξ(π[mutate]) = assert〈cpre〉; [e1] := e2; assert〈cpost〉

ξ(π[mutate]) = assert〈cpre〉; dispose(e); assert〈cpost〉

It is easy to see that for all the four cases above, the assertion
assert〈cpre〉 is immediately discarded by the rule for assertion
checking (V-assertion-checking), and that cpre must contain enough
detail that ρ(e) can be evaluated for any expression e appearing in
statement s. Also, for all the four cases above, 〈cpost〉 is precisely
the configuration pattern obtained after the verifier processes the
statement s. Therefore, in all cases above 〈〈〈ξ(πs)〉k cpre〉〉> →

∗

〈〈〈·〉k cpost〉〉>, which completes our proof. Theorem 16

6.4 Defining and Using Heap Patterns
Interesting programs organize heap data in structures such as linked
lists, trees, graphs, and so on. To verify such programs, one needs
to be able to specify and reason about heap structures. Since in
matching logic the heap is just an algebraic term, it is natural to

Matching Logic - From Executable Semantics to Program Verification 19 2009/7/25

define heap patterns as terms of sort “heap” and then to axiomatize
them appropriately. Consider linked lists whose nodes contain two
consecutive locations: an integer (data) followed by a pointer to next
node (or 0, indicating the list end). One is typically interested in
reasoning about the sequences of integers held by such list structures
(and not about the particular pointers holding these data). It is then
natural to define a list heap constructor “list : Nat× IntSeq→ Mem”
taking a pointer (the location where the list starts) and a sequence
of integers (the data held by the list, with ε for the empty sequence
and : for sequence concatenation) and yielding a fragment of
memory; integer sequences can be easily axiomatized, for example
as Seq :

ε [Int]. It does not make sense to define this as one would
a function, since it is effectively non-deterministic, but it can be
axiomatized as follows, in terms of patterns:

〈〈list(p, α)�σ〉mem 〈ϕ〉form 〈X〉bnd c〉
⇔ 〈〈σ〉mem 〈p = 0 ∧ α = ε ∧ ϕ〉form 〈X〉bnd c〉
∨ 〈〈p 7→ [a, q]�list(q, β)�σ〉mem 〈α=a:β ∧ ϕ〉form 〈X, a, q, β〉bnd c〉.

In words, a list pattern can be identified in the heap starting with
pointer p and containing integer sequence α iff either the list is
empty, so it takes no memory and its pointer is null (0), or the list is
non-empty, so it holds its first element at location p and a pointer
to a list containing the remaining elements at location p + 1. Using
this axiom, one can prove properties about patterns, such as:
〈〈5 7→2�6 7→0�8 7→3�9 7→5�σ〉mem c〉 ⇒ 〈〈list(8, 3:2)�σ〉mem c〉
〈〈list(8, 3:2)�σ〉mem 〈X〉bnd c〉 ⇒

〈〈8 7→3�9 7→q�q 7→2�q+1 7→0�σ〉mem 〈X, q〉bnd c〉
Figure 10 shows a snippet of a matching logic proof for list

reverse, where we assume defined a conventional algebraic reverse
operation rev : IntSeq → IntSeq on sequences of integers (easy to
define equationally) and, as earlier in the paper, two patterns next
to each other means that the former implies the latter. The loop
invariant pattern (topmost one) specifies configurations in which:
program variable p is bound to pointer p, program variables x and
y are bound to the same value x, and there are two disjoint lists in
the heap, one starting with pointer p and holding sequence β and
another starting with pointer x and holding sequence γ, such that
rev(α) = rev(γ):β, where α is the only free variable in the pattern
(in addition to the “frames” ρ, σ, ϕ, and c, which are expected to
always be free). There are two subproofs, one for the body of the
loop (ending with the same invariant right before the “}”) and one
for the desired property (list at p will hold rev(α)) after the loop.
We cannot show all the details here, but there are several interesting
uses of the list axiom, all discovered automatically by our prover in
milliseconds. For example, since x , 0 in the first pattern in the loop
body, one can expand list(x, γ) in the heap and thus yield the second
pattern in the loop body. The second pattern has all the configuration
infrastructure needed to (symbolically) execute the four assignments.
The resulting pattern can be applied the list axiom again to reshape
its heap into one having a list at x; the loop invariant follows then
by an α-conversion of bound variables.

Below is an axiomatization of heap binary trees, assuming, like
for lists, a corresponding mathematical notion of binary tree of
integers (sort IntTree together with ε for the empty tree and with
a(l, r) for a tree with data a, left subtree l and right subtree r):

tree : Nat × IntTree→ Mem
〈〈tree(p, t)�σ〉mem 〈ϕ〉form 〈X〉bnd c〉
⇔ 〈〈σ〉mem 〈p = 0 ∧ t = ε ∧ ϕ〉form 〈X〉bnd c〉

∨ 〈
〈p 7→ [a, l, r]�tree(l, u)�tree(r, v)�σ〉mem

〈t=a(u, v) ∧ ϕ〉form 〈X, a, l, r, u, v〉bnd c
〉

Using our matching logic prover in Section 7, we have verified
several interesting properties over trees and several over trees
combined with other heap structures. For example, we have verified

〈
〈p 7→ p, x 7→ x, y 7→ x, ρ〉env 〈list(p, β)�list(x, γ)�σ〉mem

〈rev(α) = rev(γ):β ∧ ϕ〉form 〈p, x, β, γ〉bnd c
〉

while (x!=0) {

〈
〈p 7→ p, x 7→ x, y 7→ x, ρ〉env 〈list(p, β)�list(x, γ)�σ〉mem

〈rev(α) = rev(γ):β ∧ x , 0 ∧ ϕ〉form 〈p, x, β, γ〉bnd c
〉

〈
〈p 7→p, x 7→x, y 7→ x, ρ〉env 〈list(p, β)�x 7→[a,x′]�list(x′,γ′)�σ〉mem

〈rev(α) = rev(γ):β ∧ γ = a:γ′ ∧ ϕ〉form 〈p, x, β, γ, x′, γ′〉bnd c
〉

y:=[x+1]; [x+1]:=p; p:=x; x:=y

〈
〈p 7→x, x 7→x′, y 7→x′, ρ〉env 〈list(p, β)�x 7→[a, p]�list(x′,γ′)�σ〉mem

〈rev(α) = rev(γ):β ∧ γ = a:γ′ ∧ ϕ〉form 〈p, x, β, γ, x′, γ′〉bnd c
〉

〈
〈p 7→ x, x 7→ x′, y 7→ x′, ρ〉env 〈list(x, a:β)�list(x′, γ′)�σ〉mem

〈rev(α) = rev(γ′):a:β ∧ ϕ〉form 〈x, x′, β, γ′〉bnd c
〉

〈
〈p 7→ p, x 7→ x, y 7→ x, ρ〉env 〈list(p, β)�list(x, γ)�σ〉mem

〈rev(α) = rev(γ):β ∧ ϕ〉form 〈p, x, β, γ〉bnd c
〉

}

〈
〈p 7→ p, x 7→ x, y 7→ x, ρ〉env 〈list(p, β)�list(x, γ)�σ〉mem

〈rev(α)=rev(γ):β ∧ x=0 ∧ ϕ〉form 〈p, x, β, γ〉bnd c
〉

〈〈p 7→p, x 7→0, y 7→0, ρ〉env 〈list(p, rev(α))�σ〉mem〈ϕ〉form 〈p〉bnd c〉

Figure 10. Matching logic proof snippet of list reverse.

a program traversing a tree in DFS and, as doing so, disposing each
tree node and moving its element into a linked list; this program
needed a stack-like heap structure in addition to lists and trees. Our
most complex program that we verified automatically is, however,
the (partial correctness of the) Schorr-Waite algorithm, which also
needs a stack-like heap structure. The details are in Section 7 and on
the tool website; here we only show our axiomatization of connected
binary graphs in matching logic:

graph : Nat ×Mem→ Mem

inr

inl

p 7→ [a, l, r]

out

graph : Nat ×Mem ×Mem→ Mem
graph(p, g) = graph(p, g, ·)

〈〈graph(p, in, out)�σ〉mem 〈ϕ〉form 〈X〉bnd c〉
⇔ 〈〈σ〉mem 〈(p = 0 ∨ p 7→a ⊆ out) ∧ in = · ∧ ϕ〉form 〈X, a〉bnd c〉

∨ 〈
〈

p 7→ [a,l,r]�graph(l,inl,out�inr�p 7→ [a,l,r])
�graph(r,inr,out�inl�p 7→ [a,l,r])

〉mem

〈in = p 7→ [a, l, r]�inl�inr ∧ ϕ〉form 〈X, a, l, r, inl, inr〉bnd c
〉

Like for lists and trees, graph(p, g) is a heap pattern correspond-
ing to a graph g rooted in p. Unlike for lists and trees, g is itself a
heap structure. While for lists/trees it made sense to define abstract
mathematical lists/trees (IntSeq and IntTree) aside and then to say
that the heap list/tree encloses the mathematical object, for graphs
we have no more abstract representation of a graph than its heap
representation. Indeed, a graph in the heap is a set of location pairs
p 7→ [l,r], where l and r are pointers to the left and the right neigh-
bors of p. Hence, we define the graph heap construct to take a heap
as its second argument.

To axiomatize graph(p, g), we introduce and axiomatize a help-
ing homonymous heap construct graph(p, in, out) for partial sub-
graphs, that is subgraphs of the original graph that are not complete
in that they may point out to nodes in the original graph, with the
following intuition: in and out are subheaps of the original g; in con-
tains all the nodes q 7→ [l,r] that are in the corresponding subgraph;
out, which is disjoint from in, contains nodes that the partial sub-
graph may point to; if in , · then p (the root) must be in in; if in = ·
then p must be in out. Note that, indeed, graph(p, g) = graph(p, g, ·),
as defined above. Our axiom for partial graphs has three cases. The
first two are when p = 0 or when p is in out, in which case the
subgraph is empty. The third case is the interesting one and it says
that there exists some split of the remaining nodes in in in two dis-

Matching Logic - From Executable Semantics to Program Verification 20 2009/7/25

joint heaps, inl and inr, each corresponding to a partial subgraph
potentially pointing out to nodes in out, to p, or to nodes in the other
partial subgraph. Note that the axiom covers all the cases, such as
when l = r or when one of l or r is p (one of the two subgraphs will
be empty in these cases). There is a lot of non-determinism in how
to split the partial subgraph in two partial subgraphs, but, as far as
at least one such splitting exists, we are sure that all the nodes in the
subgraph are reachable and that it only points out to nodes in out.

7. Proving Schorr-Waite With MatchC
This section reports on the use of our matching logic program
verifier MatchC to verify the partial correctness of the Schorr-
Waite algorithm. MatchC is an evolving prototype which is being
developed following the process described in this paper, but for
the language C. Only a core subset of C is covered so far, called
KernelC [Roşu et al. 2009, Roşu and Schulte 2009], including all
the features of HIMP but with malloc and free instead of cons
and dispose, as well as C’s shortcut “boolean” constructs &&, ||,
etc. An additional memory allocation table cell is needed in the
configuration to store the size of the allocated blocks, to know
how many locations to deallocate with free. However, due to the
modularity of matching logic and K, that additional cell only affects
the semantics of malloc and free. In particular, the definitions of
heap pattern constructs and their axioms are not affected. Being
C-specific, MatchC takes a series of notational shortcuts to make it
user-friendly and less verbose such as: the environment can always
be inferred from context, so one can directly refer to the program
variables in specifications (like in Hoare logic); one can define the
parameter bound variables by simply prepending them with “?”; and
one is not allowed to refer to the memory allocation table. Therefore,
all one needs to define in patterns is the formula 〈ϕ〉form and heap
〈σ〉mem cells. We define them compactly, using C’s already existing
&& construct, writing the σ in brackets. For example, the list reverse
loop invariant in Figure 10 (first pattern there) is written as follows
in MatchC (in plain text, we write ** instead of �):

inv [list(p,?B)**list(x,?C)**rest] && rev(A)==rev(?C):?B

We prepend invariant assertions with keyword inv; we addition-
ally allow annotation keywords assert and assume, the latter being
useful both to assume the original pre-condition and to eliminate
functions. One can actually use any C expressions within MatchC
annotations, not only program variables; these are evaluated in the
current configuration to compute the actual asserted/assumed pattern.
For example, one can write assertions like

assert [list(p,?alpha)**rest] && (*p > 0 || *(p+1)!=0)

MatchC currently only supports heap patterns specified like in
Section 6.4, that is, of the form “heap pattern iff cases”. These
axioms are applied lazily. They are applied from left to right only
when a heap access is attempted and the desired location is not
available, ass in the case of evaluating ∗(p + 1) while the current
heap includes the term list(p, ?alpha). We call this process heap
derivation and is similar to rearrangement rules of Berdine et al.
[2005, Sec. 3.2] and the “focus” step of shape analysis [Sagiv et al.
2002]. The axioms are applied from right to left only when one
asserts a pattern that the current heap does not match. Since right-
to-left applications of axioms are well-founded (they reduce the
size of the configuration), we apply them exhaustively. MatchC
gets stuck when no derivation can provide the desired location or
when the asserted pattern cannot be matched. One particularly useful
feature of MatchC in practice is that it gets stuck on exactly the
statement or expression that cannot be handled. MatchC is available
for download [Ellison and Roşu 2009], together with examples
including programs using lists, trees, queues, stacks, and graphs.

//@ assume [cleanGraph(root, in)]
t=root; p=null ;
//@ inv t==null && [stackInGraph(p, in)]

|| t!=null &&
(*t==1 && [markedGraph(t, ?in_t, ?in_p) **

stackInGraph(p, ?in_p, ?in_t)]
|| *t==0 && [cleanGraph(t, ?in_t, ?in_p) **

stackInGraph(p, ?in_p, ?in_t)]
) && in == ?in_t ** ?in_p

while (p!=null || t!=null && *t==0) {
if (t==null || *t=1) {
if (*(p+1)==1) { // pop
q=t;
t=p;
p=*(p+3);
*(t+3)=q;

} else { // swing
q=t;
t=*(p+3);
(p+3)=(p+2);
*(p+2)=q;
*(p+1)=1;

}
} else { // push
q=p;
p=t;
t=*(t+2);
*(p+2)=q;
*p=1;
*(p+1)=0;

}
}
//@ assert [markedGraph(t, in)]

Figure 11. The Schorr-Waite graph marking algorithm.

Like Caduceus, MatchC can be connected to various SMT solvers.
Unlike other provers, since MatchC is implemented using rewriting,
it can take advantage of rewrite rule simplifications that are applied
on the fly, wherever they match. In many cases the SMT solvers
need not even be called.

In the remainder of this section we discuss how MatchC proves
Schorr-Waite. We assume the reader is familiar with the algorithm.
We borrowed the C code from Hubert and Marché [2005], replacing
record accesses with explicit memory accesses and bookkeeping bits
with locations (MatchC does not support structures and bit accesses
yet); if t points to a node in the graph, then *t is the bit saying
whether that node is marked or not (0 clean, 1 marked), *(t+1) is
the bit saying whether the left (0) or the right (1) neighbor is next
to be explored, and *(t+2) and *(t+3) point to the left and the
right neighbor, respectively. Figure 11 shows the annotated program.
MatchC verifies it in about 16 seconds on a Linux 2.5GHz machine,
analyzing a total of 227 cases. The pre-condition states that there is
a clean graph in starting at pointer root in the heap and the post-
condition states that at the end of the execution the heap contains
that same graph in, but marked.

We define cleanGraph and markedGraph almost exactly as the
graph heap pattern in Section 6.4, the only difference being that
the “p 7→ [l, r]” term in the heap of the second case is replaced
by “p 7→ [0, 0, l, r]” for cleanGraph and by “p 7→ [1, 1, l, r]” for
markedGraph. This way, a term cleanGraph(t, in, out) in the heap
(with in and out disjoint) corresponds to a heap representation of
the partial graph in in which all nodes have the bookkeeping bits
0 (i.e., they are “clean”), are reachable from t, and any other node
reachable from t which is not in in must be in out.

The algorithm maintains two pointers: t points to a partial
subgraph to be processed next, and p points to a stack-in-the-graph

Matching Logic - From Executable Semantics to Program Verification 21 2009/7/25

inr

t r
p 7→ [1, 0, p′, r]

p′ in′

out

Case 2

inl

l t
p 7→ [1, 1, l, p′]

p′ in′

out

Case 3

stackInGraph : Nat ×Mem→ Mem
stackInGraph : Nat ×Mem ×Mem→ Mem

stackInGraph(p, g) = stackInGraph(p, g, ·)
〈〈stackInGraph(p, in, out)�σ〉mem 〈ϕ〉form 〈X〉bnd c〉
⇔ 〈〈σ〉mem 〈p = 0 ∧ in = · ∧ ϕ〉form 〈X〉bnd c〉

∨

〈〈p 7→ [1,0,p′, r]�stackInGraph(p′, in′, out�inr�p 7→ [l,r])
�cleanGraph(r, inr, out�in′�p 7→ [l,r])

〉
mem

〈in = p 7→ [l, r]�in′�inr ∧ ϕ〉form 〈X, p′, l, r, in′, inr〉bnd c

〉

∨

〈〈p 7→ [1,1, l, p′]�stackInGraph(p′, in′, out�inl�p 7→ [l,r])
�markedGraph(l, inl, out�in′�p 7→ [l,r])

〉
mem

〈in = p 7→ [l, r]�in′�inl ∧ ϕ〉form 〈X, p′, l, r, in′, inl〉bnd c

〉

Figure 12. Axiom for heap pattern stackInGraph.

which can reach all the nodes in the original graph that are not in
the partial subgraph at t. The partial subgraph at t is either clean,
in which case it needs to be visited, or is marked, in which case we
swing or backtrack. Since there could be multiple ways to reach the
same node, there is a high degree of non-determinism in choosing
the partial subgraph at t; all that matters is that the remaining nodes
are reachable from p. In other words, if ?in_t is the partial subgraph
at t and ?in_p is the partial subgraph corresponding to the stack
at p, then the two partial subgraphs should form a partition of the
original graph, that is, “in == ?in_t ** ?in_p”.

Before we define our critical heap pattern stackInGraph, let us
first intuitively discuss the invariant. There are two top level cases.
If t==null (when a leaf is reached) then the stack should contain
the entire graph. If t!=null then there are two cases again: if t
points to a clean graph, then the heap should be partitionable into a
clean graph at t and a stack at p, and if t points to a marked graph
then the heap should be partitionable into a marked graph at t and a
stack at p. We believe that this invariant is as simple as it can be.

Figure 12 shows our axiomatization for stackInGraph. There
are three cases to distinguish, but before discussing those let us
clarify the meaning of stackInGraph(p, in, out). Arguments in and
out will always be partial subgraphs of the original graph, so
they are unaffected by algorithmic mutilations of the graph. Then
stackInGraph(p, in, out) corresponds to a Schorr-Waite style stack
structure in the heap that starts with p, reaches all the nodes in the
original partial subgraph in, and can potentially point out to nodes in
out. The first case states that the stack is empty iff p is null and the
corresponding partial subgraph is empty. The second and third cases
are similar, so we only discuss the third: if p points to a marked
node (the first “1” in “[1, 1, l, p′]”) whose left neighbor at l was
already visited (the second “1” in “[1, 1, l, p′]”) and whose current
right neighbor is p′, then it must be the case that we can partition the
current stack into a marked partial subgraph at l, the node p in the
original graph, and a (smaller) stack at p′. The pictures in Figure 12
show these two cases (the grey subgraph at t is not in in; it is there
only to better relate the stack to the algorithm).

As mentioned, there are 227 cases to analyze. Let us only in-
formally discuss one of them. Recall from Figure 6 that, when

verifying the while loop, our K prover checks the invariant when
it first reaches it, then assumes it and generates two cases; one
of them executes the loop body and then asserts the invariant.
Our invariant generates itself several cases. Let us consider the
one in which t!=null and *t=1, that is, the heap has the form
[markedGraph(t,?in_t,?in_p)**stackInGraph(p,?in_p,?in_t)]

for some symbolic ?in_t and ?in_p. In the loop body, con-
sider the “swing” case when *(p+1)==0. To pass the condi-
tional’s *(p+1)==1 guard, the stack axiom needs to be applied
from left-to-right to derive the stack term. Only the second case
is feasible for the “swing” branch, which expands the stack
into p 7→ [1,0,p′, r] � stackInGraph(p′, in′, ?in t � inr � p 7→
[l,r])� cleanGraph(r, inr, ?in t� in′� p 7→ [l,r]) for some sym-
bolic p′, l, r, in′, inr. Now the “swing” branch can also be executed,
because it only affects the portion of heap p 7→ [1,0,p′, r], trans-
forming it into p 7→ [1,1, t, p′]; the environment will also hold the
mappings q 7→ t and t 7→ r, where t is original symbolic value
of t in the assumed environment. One can now apply the stack
axiom from right-to-left grouping the original marked graph at t,
the stack at p′ and the locations p 7→ [1,1, t, p′], into the term
stackInGraph(p, in′�?in t�p 7→ [l,r], inr). The symbolic heap now
has a stack at p and a clean graph at r, which satisfies the asserted
invariant. Indeed, since t 7→ r in the environment, the only feasible
path in the invariant is the one containing a stack and a clean graph;
the partitionability requirements of the involved partial subgraphs
can be easily checked. This case, as well as the other similar 226
cases, can all be dispatched and verified automatically by MatchC
in 16 seconds on a conventional Linux machine.

8. Related Work
Matching logic is most closely related to Hoare logics, separation
logic, and shape analysis.

There are many Hoare logic verification frameworks, such as
the KeY project [Beckert et al. 2007] and ESC/Java [Flanagan et al.
2002] for Java, as well as the Spec# tool [Barnett et al. 2004] for
C#, and HAVOC [Lahiri and Qadeer 2006, Hackett et al. 2008],
and VCC [Cohen et al. 2009] for standard C. Caduceus, part of the
Why platform [Filliâtre and Marché 2004, 2007, Hubert and Marché
2005], has seen much success with the first order logic approach,
including proving many correctness properties relating to the Schorr-
Waite algorithm. However, their proofs were not entirely automated.
The weakness of traditional Hoare-like approaches is that reasoning
about non-inductively defined data-types and about heap structures
tend to be difficult, requiring extensive manual intervention in the
proof process.

Separation logic [O’Hearn and Pym 1999, Reynolds 2002] is an
extension of Hoare logic. There are many variants and extensions
of separation logic which we do not discuss here, but we’d like to
mention that there is a major difference between separation and
matching logic: the former attempts to extend and “fix” Hoare
logic to work better with heaps, while matching logic attempts
to provide an alternative to Hoare logics in which the program
configuration structure is explicit in the specifications, so heaps are
treated uniformly just like any other structures in the configuration.
Smallfoot [Berdine et al. 2005], Verifast [Jacobs and Piessens 2008],
and jStar [Distefano and Parkinson 2008] are separation logic tools;
as far as we know, they have not proven Schorr-Waite — these tools
have good support for proving memory safety, though.

Shape analysis [Sagiv et al. 2002] allows one to examine and
verify properties of heap structures. It has been shown to be quite
powerful when reasoning about heaps, leading to an automated
proof of total correctness for the Schorr-Waite algorithm [Loginov
et al. 2006] on binary trees. The ideas of shape analysis have also
been combined with those of separation logic [Distefano et al. 2006]
to quickly infer invariants for programs operating on lists.

Matching Logic - From Executable Semantics to Program Verification 22 2009/7/25

Other notable frameworks for reasoning about heap structures
include Møller and Schwartzbach [2001], Bozga et al. [2003],
McPeak and Necula [2005], Rinetzky et al. [2005] and Mehta and
Nipkow [2005], which we do not have space to discuss in detail.

Dynamic logic [Harel et al. 1984] also works with pairs instead
of triples, embedding the code in the specification.

Meseguer and Roşu [2007] give a brief introduction to K and
the manuscript [Roşu 2007] gives a detailed presentation of it and
comparisons with other language definitional formalisms. In short,
K is related to: reduction semantics (with [Wright and Felleisen
1994] and without [Plotkin 2004] evaluation contexts) but it is
context insensitive and unconditional so it can be executed on
existing rewrite engines; the SECD [Landin 1964] and other abstract
machines, but it is also denotational in that a K definition is a
mathematical theory with initial model semantics; the CHAM [Berry
and Boudol 1992], but it allows a higher degree of concurrency
and it is efficiently executable; continuations [Reynolds 1993], but
the novice needs not be aware of them; refocusing [Danvy and
Nielsen 2004], but it is not aimed at “implementing” evaluation
contexts, can deal with non-deterministic context grammars, and its
refocusing steps are reversible; etc.K has been used in programming
language courses for more than five years and in research projects
to define a series of existing programming languages (like Java 1.4,
Scheme, C) and for prototyping many paradigmatic languages. The
URL http://fsl.cs.uiuc.edu/k gives more detail on K, including
several papers and a prototype tool that takes K definitions like the
one in Figure 2 and generates Maude [Clavel et al. 2007] modules
that can be executed and formally analyzed (e.g., model-checked)
using the available Maude tools.

9. Conclusion and Future Work
We showed that an executable rewriting logic semantics (RLS) of
a language can be turned into a provably correct and executable
matching logic verifier with relatively little effort. As shown in
our companion report [Ellison and Roşu 2009], one can conserva-
tively associate a matching logic proof system to any Hoare logic
proof system, so matching logic is at least as expressive as Hoare
logic. Moreover, since matching logic specifications have access to
the structure of the program configuration, it is relatively easy to
systematically axiomatize complex heap structures. Consequently,
our results not only bridge the gap between formal language se-
mantics and program verification, but are also practical. As a case
study showing the feasibility of our approach, we have automati-
cally verified the partial correctness of the challenging Schorr-Waite
algorithm using our MatchC prover built on top of Maude.

Matching logic is very new (it was introduced this year in a
technical report [Roşu and Schulte 2009]), so there is much work
left to be done. For example, we would like to extend MatchC to
verify multithreaded programs. The intrinsic separation available
in matching logic might simplify verifying shared resource access.
Another interesting investigation is to infer pattern loop invariants;
since configurations in our approach are just ground terms that are
being rewritten by semantic rules, and since patterns are terms
over the same signature with constrained variables, we believe
that narrowing and/or anti-unification can be good candidates to
approach the problem of invariant inference.

Since our matching logic verification approach makes language
semantics practical, we believe that it will stimulate interest in giving
formal rewrite logic semantics to various programming languages.
We have started implementing a K front-end to Maude that allows
one to define semantics of languages quickly and compactly.

Acknowledgments
The work presented in this report has been started while the first
author was on a sabbatical leave at Microsoft Research (MSR) in

Redmond, WA. We wish to express our thanks to the members of
the verification group at MSR, who attended presentations on this
material and provided us with valuable feedback. We would like
to warmly thank Margus Veanes of MSR and Ralf Sasse of UIUC
for comments on preliminary drafts of this work which helped us
significantly improve it. We express our warmest thanks to José
Meseguer, who suggested to us that we can regard patterns as FOL=

formulae; this important observation led to a series of technical
simplifications of the original formulation of matching logic, leading
to its current form. Last but not least, we would like to also thank
the members of the formal systems laboratory at UIUC, particularly
to Traian Florin Şerbănuţă, for manifested interest in the subject
presented in this paper.

References
M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system.

In CASSIS’04, volume 3362 of LNCS, pages 49–69, 2004.

M. Barnett, B. yuh Evan Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO’05, volume 4111 of LNCS, pages 364–387, 2006.

B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of LNCS. 2007.

J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic exec. with separation
logic. In APLAS’05, volume 3780 of LNCS, pages 52–68, 2005.

G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992.

M. Bozga, R. Iosif, and Y. Laknech. Storeless semantics and alias logic. In
PEPM’03, pages 55–65. ACM, 2003.

M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martı́-Oliet, and
C. Talcott. All About Maude, A High-Performance Logical Framework,
volume 4350 of LNCS. 2007.

E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A practical verification
methodology for concurrent programs. Technical Report MSR-TR-2009-
15, Microsoft Research, 2009.

O. Danvy and L. Nielsen. Refocusing in reduction semantics. Technical
Report RS-04-26, BRICS, 2004.

D. Distefano and M. J. Parkinson. jStar: Towards practical verification for
Java. In OOPSLA’08, pages 213–226. ACM, 2008.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS’06, pages 287–302, 2006.

C. Ellison and G. Roşu. Matching logic website – Tools and examples, 2009.
URL http://fsl.cs.uiuc.edu/ml.

A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java
programs in JavaFAN. In CAV’04, volume 3114 of LNCS, pages 501–505,
2004.

J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
Formal Methods and Software Engineering, pages 15–29, 2004.

J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In CAV’07, volume 4590 of LNCS, pages
173–177, 2007.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI’02, pages 234–245.
ACM, 2002.

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic specification
in action, pages 3–167. Kluwer, 2000.

B. Hackett, S. Lahiri, S. Qadeer, and T. Ball. Scalable modular checking of
system-specific properties: Myth or reality? Technical Report MSR-TR-
2008-82, Microsoft Research, 2008.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of
Philosophical Logic, pages 497–604. MIT, 1984.

T. Hubert and C. Marché. A case study of C source code verification: The
Schorr-Waite algorithm. In SEFM’05, pages 190–199. IEEE, 2005.

Matching Logic - From Executable Semantics to Program Verification 23 2009/7/25

B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report
CW-520, Katholieke Universiteit Leuven, 2008.

S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.
In POPL’06, pages 115–126. ACM, 2006.

P. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

A. Loginov, T. Reps, and M. Sagiv. Automated verification of the Deutsch-
Schorr-Waite tree-traversal algorithm. In SAS’06, 2006.

S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In CAV’05, volume 3576 of LNCS, pages 476–490, 2005.

F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic.
Information & Computation, 199(1-2):200–227, 2005.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

J. Meseguer and G. Roşu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.
SIGPLAN Not., 36(5):221–231, 2001.

P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5:215–244, 1999.

G. Plotkin. A structural approach to operational semantics. Journal of Logic
& Algebraic Programming, 60-61:17–139, 2004.

J. C. Reynolds. The discoveries of continuations. Lisp & Symbolic
Computation, 6(3-4):233–248, 1993.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS’02, pages 55–74. IEEE, 2002.

N. Rinetzky, J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm. A semantics
for procedure local heaps and its abstractions. In POPL, pages 296–309.
ACM, 2005.

G. Roşu. K: A rewriting-based framework for computations – Preliminary
version. Technical Report UIUCDCS-R-2007-2926, University of Illinois,
Department of Computer Science, 2007.

G. Roşu and W. Schulte. Matching logic – Extended report. Technical
Report UIUCDCS-R-2009-3026, Univ. of Illinois, 2009.

G. Roşu, W. Schulte, and T. Şerbănuţă. Runtime verification of C memory
safety. In RV’09, LNCS, 2009. to appear.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24
(3):217–298, 2002.

T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic approach to
operational semantics. Information & Computation, 207:305–340, 2009.

A. Wright and M. Felleisen. A syntactic approach to type soundness.
Information & Computation, 115(1):38–94, 1994.

Matching Logic - From Executable Semantics to Program Verification 24 2009/7/25

