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A B S T R A C T

In this work we assess the applicability of the adjoint optimization technique for determining optimal surface
topographies of two surfaces in relative motion in presence of a thin lubricant films that can cavitate. Among
the existing numerical tools for topology optimization in engineering problems, the adjoint method represents
a promising and versatile technique, which can also be applied to the field of full film tribology. In particular,
the design of surfaces with complex textures can thoroughly benefit from this method, as it allows dealing with
a large number of degrees of freedom at low computational cost. We show that this optimization method can
be successfully applied to cavitating lubricant flows such as in pin-on-disc tribometers, giving the possibility
to extend the results also to other typical applications such as journal and slider bearings. It is shown that the
adjoint method can optimize the whole gap height distribution point by point in a more efficient way than
traditional optimization approaches and parametric studies. In particular, thanks to the sensitivity analysis the
adjoint method is able to find the placement and depth profile of each texture element.

1. Introduction

Improvements in the efficiency and reliability of tribological devices
are often achieved through shape optimization of the sliding contacts
either by modifications of the global contact geometry (e.g. optimized
Rayleigh step or slider bearing [1,2]) or locally by the introduction
of surface textures [3]. The typical goal of the optimization process
in hydro-dynamically lubricated contacts is to increase the separation
between the sliding surfaces in order to reduce friction and wear. This
goal is achieved by increasing the hydrodynamic pressure generated
in the contact through the shape optimization of the surfaces. Shape
optimization opens the way to potentially infinite variations of surface
modifications. For this reason, different optimization techniques have
been proposed in literature, which can be categorized in two main
groups: optimization techniques based on parametric studies and op-
timization techniques based on other more sophisticated optimization
approaches.

The first group comprises the vast majority of literature, since the
shape of the geometry modifications is often parameterized by using
elementary shapes, both for textured or stepped surfaces [4]. This is
because the complexity of a free-form optimization of the whole gap
height distribution ℎ(�⃗�) is usually reduced through elementary shapes
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or piecewise approximation of the investigated geometry. For example
Rohde [5] as well as Shen & Khonsari [6] maximized the load carrying
capacity of a stepped surface for a 2D slider bearing by parametrizing
the width, the depth and the position of a Rayleigh step.

Many other researchers focused on parametric studies, in particular
for the analysis of surface textures. Since the early works of Etsion and
coworkers [3,7] the parametric approach has been the widely used
for the optimization of textures in several kind of application, such
as 1D slider bearings [8,9], 2D slider bearings [10], Piston–Liner Con-
tacts [11,12], thrust bearings [13] and pin-on-disc tribometers [14]. In
some cases, the optimization of surface texture for 1D slider bearings
has been also performed by means of analytical solutions [15–17]. It
is important to notice that most of the studies on both textured and
stepped surfaces always proved the well known theoretical result that
the stepped geometry (i.e. a redesign of the global surface/contact
geometry) performs better than any other textured case. In particular
the work of Fillon and Dobrica [18] states the importance of texturing
in the same region of the bearing where a Rayleigh step should be.

In the second group more complex optimization strategies have
been employed. For example Guzek et al. optimized a 2D parallel
bearing with the aid of quadratic programming, hence exploiting the
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gradient of the cost function in order to reach the optimal design
faster than with usual trial and error approaches [19]. Their method,
however, focused on the optimization of predetermined texture topol-
ogy such as rectangular or elliptical dimples. For this reason other
methods based on the optimization of arbitrary shapes have been
proposed. Among them Fesanghary and Khonsari [20] applied a hybrid
optimization algorithm based on sequential quadratic programming
and harmony search to a slider bearing with groove shapes approx-
imated through splines. As a result, a higher load carrying capacity
was obtained than through elementary groove shapes. This hints to the
fact that an increase in the number of parameters in the optimization
algorithm, which in the extreme is equivalent to a point by point
optimization of the whole geometry, will perform better than an opti-
mization algorithm based on a reduced number of parameters, such as
an optimization of the surface topology described by a set of elementary
shapes. Similar conclusions were found also in the work of Wang
et al. [21] where elliptical air bearings are optimized by modifying
the whole surface in a continuous way thanks to an automated mesh
generation. Other strategies for the free-form optimization of the gap
height have been proposed by Maday using calculus of variations in the
case of a 1D journal bearing [22,23]. Beside the optimization based
on the simple Reynolds equation, sequential quadratic programming
was also used by Alyaqout and Elsharkawy [24] for slider bearings in
the frame of thermo-hydrodynamic lubrication by the coupling of the
Reynolds and energy equations.

More generally, optimization strategies share the common concept
of sensitivity analysis, that is, looking for the direct relationship be-
tween variations in the design parameter space and the corresponding
changes in the object function (i.e. the function which describes the
performance to be achieved). Sensitivity analysis is furthermore at the
heart of optimization methods which fall under the category of La-
grangian based methods and adjoint methods [25]. The main advantage
of such methods is the possibility of optimizing the whole gap height
distribution ℎ(�⃗�) without assigning any predetermined topology mod-
ification. This is in contrast to what is done in a typical optimization
study based on a parametric geometry.

The adjoint method takes advantage of the Lagrangian formulation
in order to define a second partial differential equation which is re-
ferred to as the adjoint equation. The solution of the adjoint equation
allows to compute the sensitivity in an efficient way, hence knowing
the impact of modifications of every single grid point on the objective
performance. The adjoint method was first introduced in control the-
ory [26] and then successfully applied in the aerospace sector for the
optimization of complex shapes under the fulfillment of the Navier–
Stokes equations [27–29]. The first usage of the adjoint method for
tribological application was performed by Yoon and Choi [30] for the
optimization of an air bearing for hard disks showing a huge reduction
in computational cost compared to traditional parametric approaches.
Subsequently, the adjoint method was employed for the first time by
Van Ostayen [31,32] for the optimization of the load carrying capacity
of hydrodynamic slider bearings with particular attention also to the
shape optimization under unsteady conditions.

In the current work we present an extension of the work by Van
Ostayen and employ the adjoint optimization for the free-form opti-
mization of both the macroscopic geometry and surface textures. To
the authors’ knowledge, the optimization is carried out for the first
time under the constraint of the incompressible Reynolds equation
with mass-conserving cavitation. Both the continuous and the discrete
formulation of the adjoint method have been implemented under two
different computational environments (Comsol® [33] and Matlab®).
The validation of the optimization algorithm is first performed against
analytical 1D solutions and subsequently between the two different
implementations because of the lack of analytical solutions in the
presence of cavitation. In order to ease the occurrence of cavitation
we choose to test the optimization algorithm on the geometry of a pin-
on-disc tribometer. This choice has the additional advantage to provide
useful insights for future experimental activities.

The goal of the optimization is to achieve the maximum fly height
for a given load since this results in an increase of the gap height and
hence in a reduction of friction by bringing the transition from mixed
lubrication to hydrodynamic lubrication to a lower sliding speed, as
pointed out in several studies [6,34]. Moreover the adjoint method
allows to freely find the optimal depth distribution inside the texture
elements, giving the possibility to compute the optimal shape of texture
elements according to their position on the macro geometry in a much
more efficient way than traditional methods [35].

2. Numerical approach

The present optimization problem deals with the thin lubricant film
between two surfaces in relative motion. The lubricant flow is described
by a set of Partial Differential Equation (PDE) which describes the
mass and momentum conservation of a lubricant fluid subjected to
cavitation. The optimization problem treats the PDE set as a constraint.
In this section we present the formulation of the adjoint method applied
to the Reynolds equation with mass-conserving cavitation.

2.1. Governing equation

Under the assumption of an incompressible Newtonian fluid and a
sufficiently regular gap height distribution ℎ(�⃗�), the shear flow between
two sliding walls can be modeled through the incompressible Reynolds
equation in the following form [36]:

𝑔(�̄�, 𝜃, ℎ) ≡ ∇ ⋅
[

− ℎ3

12𝜇
∇�̄� + 1

2
𝑉 ℎ (1 − 𝜃)

]

= 0 (1)

Here, �̄�(�⃗�) = 𝑝(�⃗�)−𝑝cav is the pressure relative to the cavitation pressure
𝑝cav, 𝜇 is the dynamic viscosity, 𝑉 = {𝑈,𝑊 }𝑇 is the upper wall velocity
and 𝜃(�⃗�) is the cavity fraction. As proposed by Elrod and Adams [37]
the cavity fraction can be expressed as a function of the local density
𝜌(�⃗�) of the flow

𝜃(�⃗�) = 1 −
𝜌(�⃗�)
𝜌ref

. (2)

where 𝜌ref describes the reference density of the lubricant. In this way
the cavity fraction is defined to be 𝜃 = 0 where the flow is completely
in the liquid state and has a maximum value of 𝜃 = 1 when the flow is
completely in the vapor phase. On the other side, the relative pressure
�̄� is zero in the cavitation region and positive elsewhere. These two
observations can be combined in a single condition which expresses
the complementarity constraint of Eq. (1):
(

𝑝 − 𝑝cav
)

𝜃 = �̄�𝜃 = 0. (3)

Instead of solving Eqs. (1) and (3) in an iterative way, Woloszynski
et al. proposed an algorithm which directly couples both equations in
a single system [36]. Besides ensuring mass conservation, the coupled
solution also has the advantage of being noticeably faster than previous
iterative methods [38–40].

The first step in the derivation of such an algorithm is to rewrite the
constraint equation (3) using the Fischer–Burmeister equation, so that:

𝑓 (�̄�, 𝜃) ≡ �̄� + 𝜃 −
√

�̄�2 + 𝜃2 = 0. (4)

After the discretization, the system of equations 𝑓 and 𝑔 can be com-
bined in a single system, whose non-linearity can be addressed by
applying the Newton–Raphson algorithm. The system of Eqs. (1) and
(4) is completed by assigning the pressure and cavity fraction values
on the Dirichlet boundaries 𝛴𝐷 and by assigning the flux �̂� ⋅ [− ℎ3

12𝜇∇�̄�+
1
2𝑉 ℎ(1 − 𝜃)] = 𝑞 on the Neumann boundaries 𝛴𝑁 . The resulting normal
force, which is also referred to as the load carrying capacity, is given
by:

𝑊 = ∫𝛺

(

𝑝(�⃗�) − 𝑝ext
)

𝑑𝛺 (5)
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Fig. 1. Sketch of the generic geometry and the coordinate system.

where 𝑝ext represents the external pressure acting on the other side of
the wall. The tangential force at 𝑦 = ℎ is computed as [36]

𝐹𝑇 = ∫𝛺

[

ℎ
2
∇𝑝 + (1 − 𝜃)𝜇 𝑉

ℎ

]

𝑑𝛺, (6)

where 𝛺 is the surface area in the 𝑥 − 𝑧 plane (see Fig. 1).

2.2. Optimization through the adjoint method

The optimization of hydrodynamic bearing has typically two ob-
jectives: either the maximization of the load carrying capacity or the
minimization of the friction coefficient. The two objectives may lead
to different optimal shapes as highlighted among others by Rahmani
et al. [41]. In this work we focus on the first objective, since a higher
load carrying capacity can also reduce friction indirectly due to the
increase in the overall gap height [2]. For this reason we can formulate
our optimization problem as follows:

maximize
ℎ(�⃗�)

𝑓obj = 𝑊 = ∫𝛺

(

𝑝(�⃗�) − 𝑝ext
)

𝑑𝛺

subject to 𝑔(𝑝, 𝜃, ℎ) = 0 and 𝑓 (𝑝, 𝜃, ℎ) = 0

ℎ(�⃗�) > ℎ0
for a given 𝑉 , 𝜇, 𝑝cav.

(7)

where ℎ(�⃗�) is the generic gap height distribution and ℎ0 is the minimal
gap height as shown in Fig. 1. The optimization is constrained by the
fulfillment of a partial differential equation i.e. the Reynolds equation
with cavitation, where 𝑝 and 𝜃 are the unknowns and ℎ is the opti-
mization parameter. The objective is to find the values of the variable
field ℎ(�⃗�) for all �⃗� which optimize an objective function of the form
𝑓obj(�̄�, 𝜃, ℎ) under the constraint 𝑔(�̄�, 𝜃, ℎ) = 0 and 𝑓 (�̄�, 𝜃, ℎ) = 0.

This class of optimization problems can be more conveniently re-
arranged as a minimization problem of a Lagrangian functional in the
following form:

(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = − 𝑓obj(�̄�, 𝜃, ℎ)

+ ∫𝛺

(

𝜆𝑝𝑔(�̄�, 𝜃, ℎ) + 𝜆𝜃𝑓 (�̄�, 𝜃, ℎ)
)

𝑑𝛺
(8)

where 𝜆𝑝(�⃗�) is the adjoint pressure and 𝜆𝜃(�⃗�) the adjoint cavity fraction.
Since the constraints 𝑔(�̄�, 𝜃, ℎ) = 0 and 𝑓 (�̄�, 𝜃, ℎ) = 0 are always
fulfilled, minimizing the objective function 𝑓obj is equivalent to the
minimization of the whole Lagrangian functional (�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) in
Eq. (8). Therefore, in the optimal point the gradient of the Lagrangian
function is zero for all variables and we can derive the following three
sets of equations:

𝛿
𝛿𝜆𝑝

≡ 𝑔(�̄�, 𝜃, ℎ) = 0

𝛿
𝛿𝜆𝜃

≡ 𝑓 (�̄�, 𝜃, ℎ) = 0

⎫

⎪

⎬

⎪

⎭

Reynolds equation
with cavitation

(9)

𝛿
𝛿�̄�

≡ 𝑙𝑝(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = 0

𝛿
𝛿𝜃

≡ 𝑙𝜃(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = 0

⎫

⎪

⎬

⎪

⎭

adjoint equation (10)

𝛿
𝛿ℎ

≡ 𝑑(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = 0 decision equation. (11)

The solution of the three sets of equations will give the optimal film
height ℎ(�⃗�) with the corresponding pressure field �̄�(�⃗�) and mass fraction
𝜃(�⃗�), as well as the adjoint variable field 𝜆𝑝(�⃗�) and 𝜆𝜃(�⃗�). Eq. (9) rep-
resents the already shown Reynolds equation and the complementarity
equation, while Eq. (10) is the set of adjoint equations which reads:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ ⋅
(

− ℎ3

12𝜇
∇𝜆𝑝

)

+

(

1 −
𝑝

√

𝑝2 + 𝜃2

)

𝜆𝜃 =
𝜕𝑓obj

𝜕�̄�

∇ ⋅
( 1
2
ℎ𝑉 𝜆𝑝

)

+

(

1 − 𝜃
√

𝑝2 + 𝜃2

)

𝜆𝜃 = 0.
(12)

Its boundary conditions are assigned in the same manner as for the
Reynolds equation with cavitation, i.e. by assigning the value of the
multipliers on 𝛴𝐷 and the flux of the multipliers on 𝛴𝑁 . The know
term of the second line of Eq. (12) is zero since the objective function
𝑓obj does not depend on the cavity fraction 𝜃. Further details of Eq. (12)
are given in appendix.

The third Eq. (11) is called decision equation which relates the
direct variable and the adjoint variable to the variation of the gap
height ℎ̄ which minimizes the objective function. At this point one
could follow two different strategies for the implementation of the
optimization algorithm according to the derivation of the decision
equation.

The first strategy consists of the derivation of the Lagrangian for-
mulation with the objective function expressed in Eq. (7). Since the
objective function does not depend on the gap height, one can directly
compute the decision equation (11) in the following way:

𝑑(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = − 3ℎ2
12𝜇

∇𝜆𝑝 ⋅ ∇𝑝 +
1
2
∇𝜆𝑝 ⋅ 𝑉 (1 − 𝜃) = 0. (13)

The influence of the Lagrangian multiplier of the cavity fraction 𝜆𝜃
is not considered since the complementarity equation (4) does not
depend on the gap height ℎ. Eq. (13) is an algebraic equation which
introduces the concept of sensitivity, i.e. the direct influence of the
design parameter ℎ on the objective function 𝑓𝑜𝑏𝑗 :

(�⃗�) ≡
𝑑𝑓obj

𝑑ℎ
= − 3ℎ2

12𝜇
∇𝜆𝑝 ⋅ ∇𝑝 +

1
2
∇𝜆𝑝 ⋅ 𝑉 (1 − 𝜃) . (14)

where (�⃗�) is the sensitivity [25,42]. It is then clear that an iterative
approach to the optimization problem can be pursued by updating the
geometry by a quantity which is proportional to the sensitivity:

ℎ𝑛+1(�⃗�) = ℎ𝑛(�⃗�) + 𝜀𝑛(�⃗�) (15)

where 𝜀 is an under-relaxation coefficient determined empirically in
order to ensure a fast convergence rate without instabilities.

It should be noted that a smoothing process is required after every
update in order to increase the stability and prevent sharp edges in the
solution which could lead to unrealistic shapes. This has been realized
through a Gaussian filter as proposed by Bletzinger [43] and Stück and
Rung [44] by applying a Gaussian smoothing in the following form:

ℎ𝑠(�⃗�) = 𝐹𝑠ℎ(�⃗�) = ∫𝛺
𝐾(𝑟; 𝜎)ℎ(�⃗� − 𝑟)𝑑𝑟, ∀�⃗� ∈ 𝛺 (16)

where ℎ𝑠 is the smoothed gap height, ℎ is the updated gap height
from Eq. (15), 𝐹𝑠 is the filtering operator, 𝑟 represents the local filter
radius and 𝜎 is the standard deviation of the Gaussian filter kernel 𝐾.
In this work 𝜎 is also referred to as the amplitude of the smoothing.
The filter operator 𝐾 is normalized so that:

∫𝛺
𝐾(𝑟; 𝜎)𝑑𝑟 = 1 ∀�⃗� ∈ 𝛺. (17)
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Fig. 2. Flowchart of the optimization process. The computation of the sensitivity and
of the update of the gap height are presented for both the continuous as well as the
discrete implementation.

In this way the integral of the shape is not altered, while fine scale
oscillations due to the derivative computation are damped [44]. The
filter is applied after updating the geometry in Eq. (15) and before
applying the eventual constraints.

Such an iterative approach is also used, for example, in aeronautics
for shape optimizations under the constraint of the Navier–Stokes
equation [28]. This first optimization strategy has been implemented
in Matlab® through a finite volume scheme and its detailed are shown
in Appendix. The corresponding optimization process is shown in the
right branch of the flowchart in Fig. 2.

The second method to implement the optimization strategy employs
a smoothing term directly in the objective function. This way the opti-
mizer will find the equilibrium between the maximization of the load
carrying capacity and a certain smoothing hence avoiding unfeasible
shapes. This implementation was first presented by Van Ostayen for
the optimization of dynamically loaded bearings in the hydrodynamic
regime [32]. The smoothing term is introduced by modifying the
objective function in the following way:

𝑓obj = −𝑊 + 1
2
𝜖𝛿𝑥∫𝛺

(∇ℎ̄)2𝑑𝛺 (18)

where 𝜖 represents the smoothing amplitude, 𝛿𝑥 is the local mesh size
and ℎ̄ = ℎ − ℎ0 is the geometry update as shown in Fig. 1. This way,
the decision equation (11) includes now the Laplacian of the update of
the gap height as additional term:

𝑑(�̄�, 𝜃, 𝜆𝑝, 𝜆𝜃 , ℎ) = ∇ ⋅
(

𝜖𝛿𝑥∇ℎ̄
)

− 3ℎ2
12𝜇

∇𝜆𝑝 ⋅ ∇𝑝

+1
2
∇𝜆𝑝 ⋅ 𝑉 (1 − 𝜃) .

(19)

Fig. 3. Validation of the adjoint implementation with analytical and direct methods.
Comparison between the analytical solution of the 1D Rayleigh step and the solution
of the discrete and continuous adjoint method. The curves are non dimensionalized.
The inlet pressure is set equal to the outlet one.

This partial differential equation can be solved for ℎ̄ with natural
boundary conditions. The implementation of this second strategy fol-
lows the path shown in the left branch of the flowchart in Fig. 2.

The second strategy presents some practical aspects from the com-
putational point of view since the simultaneous solution of the three
partial differential equations (Eqs. (9), (10), (11)) can be efficiently im-
plemented in commercial finite element software such as Comsol® [33].
This approach is also referred to as the one-shot approach since
the solver minimizes the Lagrangian formulation by setting its total
gradient to zero, as shown by Slawig in [45].

Both the Comsol® and the Matlab® implementations also represent
the two typical ways of addressing the adjoint method, namely the con-
tinuous and the discrete adjoint method respectively. In the continuous
adjoint method the three Eqs. (9), (10) and (19) are first analytically
derived and then discretized. In turn, the discrete method exploits the
discretized form in order to build the solving system for the adjoint
equation (10) and finally solves the decision equation in its algebraic
form (14). A detailed derivation of the discrete adjoint method is given
in Appendix.

A quantitative comparison of the performance of the two approaches
has been performed by Nadarajah and Jamson for the adjoint opti-
mization constrained by the Navier–Stokes equation [46]. They show
that the two approaches converge to the same solution for a suffi-
ciently fine mesh with minor differences at the boundaries where the
discrete method shows a better convergence despite its slightly higher
computational requirements. The two different implementations of the
optimization scheme for the present work are validated and compared
quantitatively against each other in Section 3.

3. Validation

Due to the novelty of the proposed optimization method, we present
a validation of both implementations of the adjoint method in this
section. A typical textbook example of an optimization problem for
lubricant thin films is the 1D Rayleigh step which maximizes the load
carry capacity of a 1D slider bearing. Fig. 3 shows the comparison
between the analytical curve and the two optimal solutions with the
continuous and discrete adjoint method. As one can see the analytical
shape is fully recovered by both methods, showing an inlet to outlet
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Fig. 4. Schematic representation of the pin geometry in a pin-on-disc tribometer. The
pin has a parabolic profile whose height at the center is ℎ𝑠, while the minimum gap
height at the center of the geometry is ℎ𝑐 . The side of the pin ℎside is 1 mm high. The
domain is size is 𝐿𝑥 and 𝐿𝑧 in the 𝑥- and 𝑧-direction respectively.

ratio of 1.86 and a normalized step position at 72% of the bearing
length [2]. In both optimization strategies the minimal film height was
constrained to be equal to 1.0. If left unconstrained, the optimizer
would reduce the film height towards zero in order to obtain the
maximum load.

With respect to the 2D Rayleigh step without cavitation, Van Os-
tayen presented the optimized shape in [32] showing a very good
agreement in terms of non dimensional load carrying capacity with the
optimized solution of Rhode [32].

Cavitation does not occur in the optimal 1D Rayleigh step solution.
In order to check the optimization methods in a cavitated lubricating
film, we performed a further comparison with a more complicated
geometry, namely a pin-on-disc tribometer. The pin used for this com-
parison has a circular base and a parabolic profile as shown in Fig. 4.
The chosen dimensions of the pin match those used in the experimental
campaign by Braun et al. [34], where a radius 𝑅pin = 4 mm was
chosen, while the parabolic profile of the pin surface has a shoulder
height of 1 μm. The discrete method uses a uniform mesh consisting of
1025x1025 grid points corresponding to a mesh size of 8.78 μm. Further
information about the mesh convergence are given in Ref. [14]. There is
no analytical solution available for the comparison of such a geometry
in presence of cavitation, but it is possible to validate the first step
of the optimization loop through a comparison with a direct method
to compute the sensitivity. In the direct method the total derivative
of the Lagrangian formulation in Eq. (8) with respect to the design
parameter can be obtained by introducing a Dirac delta perturbation
𝛿ℎ(�⃗�) in the reference geometry and measuring the effect of it on the
objective function directly. This way, the sensitivity can be computed
in the following way:

(�⃗�) =
𝑑𝑓obj

𝑑ℎ
=

𝑊𝛿ℎ(�⃗�) −𝑊ref

𝛿ℎ(�⃗�)
(20)

where 𝑊𝛿ℎ is the load computed with the perturbed geometry and 𝑊ref
is the reference load.

Fig. 5 shows the sensitivity evaluated in the centerline of the pin
with both the direct method and the discrete adjoint method at the
first step of the optimization loop, when the geometry is still the
reference one. As on can see, the two curves are in close agreement. The
sensitivity is defined such that a positive value of it means that the gap
height should be increased while a negative value implies a reduction
of the gap height. Moreover, it is interesting to notice that the second
part of the pin surface, where the sensitivity is zero, corresponds to the
cavitation region. This hints to the fact that there is no advantage to
modify the surface in the cavitation region.

Fig. 5. Validation of the adjoint implementation with analytical and direct methods.
Sensitivity in the centerline at the first iteration step for the pin with parabolic shape.
The sensitivity is shown with its dimensional value [N/m] since it relates the variation
of the normal force (object function) to a variation in the geometry.

Table 1
Simulation parameters used in the results section.
ℎ𝑐 1 μm
ℎ𝑠 1 μm
ℎside 1 mm
𝐿𝑥 = 𝐿𝑧 9 mm
𝑅pin 4 mm
𝜇 0.01 Pa⋅s
𝑈 0.1 m∕s
𝑃amb 101325 Pa
𝑃cav 80000 Pa

The simple geometry of the parabolic pin also allows comparing the
continuous and discrete adjoint results. For this comparison the same
uniform mesh is used for discrete method as for the sensitivity compu-
tation shown in Fig. 5. On the other side, the COMSOL implementation
of the continuous method employs a triangular mesh with a typical
element size of 8 μm.

This is shown in Figs. 6(a) and 6(b) where the optimized geometry
and its corresponding pressure profile are shown for both the ad-
joint methods and the reference case. The continuous and the discrete
method are overall in good agreement. The small differences in the
corners of the two optimal solutions are due to the different smoothing
procedures as explained in Section 2.

4. Results and discussion

In this section we apply the optimization through the adjoint
method to a pin-on-disc tribometer. Similar optimization attempts
documented in the literature treat cases without cavitation [5,6,32].
This specific experimental device is chosen since it is representative for
typical tribological applications in which cavitation occurs. Moreover,
pin-on-disc tribometers are widely used for testing texture designs,
hence easing the eventual experimental validation of the optimization
results presented here.

Fig. 4 shows the reference geometry of the pin of a pin-on-disc
tribometer. The surface has a parabolic profile in order to model the
rounding effects on the edge of the pellet which are typically created
by the manufacturing processes such as polishing and grinding. Geo-
metrical and operating parameters are presented in Table 1. Although
our COMSOL implementation of the adjoint method (continuous) is
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Fig. 6. Validation of the discrete and continuous adjoint implementations with the geometry of the parabolic pin in presence of cavitation. a, Comparison between the continuous
and the discrete adjoint methods for pin with parabolic shape. The parabola is 1 μm high as well as the gap height at the center. b, Comparison of the pressure profile in the
centerline of the pin. The comparison is carried out with the following operating parameters for both figures: 𝑈 = 0.1 m∕s, 𝜇 = 0.0028 Pa⋅s, 𝑃cav = 𝑃𝑖𝑛 = 101325 Pa.

computationally faster than the MATLAB one (discrete), the results in
this section are computed only by using the discrete adjoint method out
of practical reasons in the data management.

4.1. Sensitivity

One of the first relevant insights that we can deduce from the
adjoint method is the sensitivity map of the surface, or, in other words,
the direct influence of a gap height modification on the load carrying
capacity as presented in Eq. (14). Fig. 7(a) shows the sensitivity of the
reference pin geometry and Fig. 7(b) shows the corresponding pressure
distribution. The sensitivity is computed by evaluating the algebraic
sensitivity equation (14) for the initial geometry shown in Fig. 4. As one
can see three regions can be clearly identified. The first region covers
the front part of the pin and is characterized by a positive value of the
sensitivity. This means that in this region an increase of the gap height
leads to an increase of the normal force. This is, therefore, the part of
the pin surface which should be textured in order to achieve a higher
load carrying capacity. It is also important to notice that any addition
on top of the pin surface, i.e. a reduction of the film height, would
decrease the load carrying capacity, hence asperities elements [47]
should not be added here.

In the second region the sensitivity is negative, meaning that a
reduction of the gap height would be beneficial for the load carrying
capacity. At this point it is up to the designer to choose if the surface
can be manipulated in both directions or eventually only in one (i.e. if
the gap height ℎ can be increased or decreased). In the present work
we focus only on surface modifications which are based on texturing
techniques, hence allowing the surface to be modified only inwards e.g.
by etching or by laser texturing. This is done by setting the additional
constraint that the optimized gap height ℎ̄ can be only bigger than the
reference one:

ℎ̄(�⃗�) > ℎref(�⃗�). (21)

The last region of the sensitivity concerns the part of the domain
where cavitation occurs. In this region the sensitivity is zero, meaning
that any geometry modification would have no consequences on the
load carrying capacity (as long as it remains under a certain amplitude).
This has been already shown in literature, for example by Gercha et al.

who studied surface textures in a parallel bearing and showed how the
texture had no impact if the whole fluid film is cavitated [48]. The
same conclusion is reached in the work of Codrignani et al. [14] who
investigated the effects of a single dimple on a pin in a manner similar
to the direct method shown in Section 3.

We note that during the optimization process the size and the
position of the three regions may change. It could therefore become
beneficial to place texture elements in region with initial negative
sensitivity after some iterations of the optimizer.

4.2. 2D Rayleigh step

Fig. 8(a) shows the pin geometry after convergence of the optimizer,
hence until the relative residual of the gap height distribution 𝑟𝑛ℎ:

𝑟𝑛ℎ = ∫𝛺
|ℎ𝑛(�⃗�) − ℎ𝑛−1(�⃗�)|

|ℎ𝑛−1(�⃗�)|
𝑑𝛺 (22)

drops below 10−5. The optimized surface consists of a single big pocket
in the front part of the pin, the geometry of a 2D Rayleigh step. A sim-
ilar geometry is typically analyzed in the literature for slider bearings,
as described, among others, by Rohde [5], Shen & Khonsari [6] and
Fillon & Dobrica [18].

Thanks to the optimization the pin almost doubled its load carrying
capacity, going from a normal force of 𝐹𝑁 = 8.64 N to 16.79 N. This
is revealed by Fig. 9, that shows the convergence of both the normal
force and the friction coefficient over the optimization steps. The final
pressure distribution is shown in Fig. 8(b), with a maximum pressure of
around 1.4 MPa while the unoptimized Rayleigh step yields 0.9 MPa.
The adjoint formulation applied in this work assures that the normal
force corresponds to the maximum, while, on the other side, it cannot
be proven a priori that the friction coefficient is globally minimized.
Nonetheless, as already stated in Section 2, an increase in the load
carrying capacity leads to an increase of the gap height which, in
turn, corresponds to a friction reduction. Furthermore, optimizing the
load carrying capacity and therefore increasing the fly height for a
given load, will result in an earlier transition from mixed lubrication
to hydrodynamic lubrication.

The discrete optimizer reached convergence after 1000 iterations
which is as computationally expensive as running 2000 simulations of
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Fig. 7. Analysis of the reference untextured pin. a, Sensitivity over the pin geometry at the first optimization step. A positive sensitivity implies that the gap height should be
increased in order to achieve a higher load carrying capacity. The vertical 𝑦 axis is 1000 magnified in comparison to the other two ones. b, Pressure distribution of the parabolic
pin. The cavitation region is delimited by a red line. The lubricant fluid flows from left to right in the x direction. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Optimized pin geometry and pressure distribution with the 2D Rayleigh step. The optimization has the only constraint that the gap height cannot be reduced as stated
in Eq. (21). a, Geometry of the optimized 2D Rayleigh step. The sensitivity is plotted over the surface of the pin. The vertical 𝑦 axis is 1000 magnified in comparison to the
other two ones. b, Pressure distribution over the optimized 2D Rayleigh step. The cavitation region is delimited by a red line. The lubricant fluid flows from left to right in the 𝑥
direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Convergence of the normal force and of the friction coefficient during the
optimization iterations. The simulations are stopped as soon as the residual on the gap
height variation ℎ̄ drops below 10−5.

the Reynolds equation, since each step consists of the solution of the
Reynolds equation and the adjoint one. For the same level of accuracy,
this is faster than describing the Rayleigh step geometry through a
parametric study, since we are optimizing the geometry point by point.
In particular, the resolution of the system with a grid of 1025x1025
points took 10 h on a single core of a laptop. The iteration number can
be consistently reduced by solving the Eqs. (9), (10) and (11) in a single
system, as presented in Section 2 for the COMSOL implementation of
the continuous adjoint method.

As a next step we would like to consider more complex constraints
and their impact on the optimal solution. In particular the geometry of
the 2D Rayleigh step could introduce some experimental challenges if
tested on a pin-on-disc tribometer because of its behavior in the mixed
lubrication region where contact could occur on the sharp edges of the
Rayleigh step. In order to avoid this effect we add a further constraint
which will force the initial contact to occur in the central part of the
pin. This can be done, for example, as shown in Fig. 10 where the
central stripe along the centerline of the pin is constrained to remain
untextured. The introduction of such a constraint reduces the improve-
ment in the load carrying capacity. In particular the resulting normal
force is 𝐹𝑁 = 14.42 N which is just two thirds of the performance
obtained with the full 2D Rayleigh step. As one can see from Fig. 10
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Fig. 10. Sensitivity over the optimized pin geometry with the additional constraint
which eases the effective texturation on a real pin-on-disc tribometer. The central
stripe has a width of 30% of the pin radius. The vertical 𝑦 axis is 1000 magnified
in comparison to the other two ones.

the sensitivity on the front part of the stripe is positive, meaning that
the constraint prevents the increase of the gap height in a region where
this would be beneficial for the load carrying capacity.

4.3. Optimization of surface textures

In order to apply the adjoint method to the optimization of surface
textures we need to add two further constraints: the texture pattern
and the size of each element. Among the numerous shapes that texture
elements can have we focus here only on elements which have a
circular base, where each grid point inside the texture element remains
an optimization variable. The actual local depth of the optimal texture
element will be automatically determined by the algorithm. The texture
pattern is a pseudo-hexagonal one in which each texture element is
equally spaced in both directions and each second row is shifted of half
the distance in the 𝑧-direction as already used in [14].

Figs. 11(a) and 11(b) show the optimized textured surface and
the corresponding pressure distribution for a pseudo-hexagonal pattern
made by circular dimples with a diameter 𝐷 = 200 μm. As we can see
the texture elements in the part of the domain with positive sensitivity
were automatically selected to increase in depth. This is one of the
biggest advantages of the adjoint method, because usual parametric
techniques place texture elements also in region where their presence
is detrimental [4]. Moreover, the gap height distribution inside the
texture elements is optimized point by point, meaning that also non
circular shapes may be found. This can be seen in the elements on
the lateral side of the pin which assume a rather elongated shape.
This shape helps the lubricant flow to reach the central part of the
pin in order to enhance the load carrying capacity by bringing more
fluid where the gap height is lower. This could also explain why some
elements between the fully circular ones and the elongated ones have
a barrier inside them which splits the elements in two. All texture
elements in this case have rather sharp edges because of the low
amplitude of the smoothing 𝜎 = 0.3 applied at each iteration step.

By increasing the smoothing amplitude to 𝜎 = 1.2 the shapes of the
texture elements become more uniform as one can see in Fig. 12(a).
Nonetheless the elements on the side still assume an elongated form.
The smoothing has hence a non negligible impact on the optimal
solution and thus on the value of the load carrying capacity. In fact
the normal force of the slightly smoothed case is 𝐹𝑁 = 9.1823 N while
the heavily smoothed case delivers a lower force 𝐹𝑁 = 9.0623 N. Even
though both cases yield an increase of the load carrying capacity, it is
clear that an excessive smoothing could harm the optimal performance,
as reported also for other works on the adjoint optimization [44].

The difference between the two values of the smoothing amplitude
can be seen in Fig. 12(b) where the profile at the centerline of the pin
is shown for both cases. The less smoothed elements exhibits sharper
edges which resemble those of a cylindrical dimple while the smoothed
and less effective dimples have a shape similar to a spherical one. This
aspect should be considered in experimental activities because laser
surface texturing is unable to create very sharp edges. This finding is in
agreement with the results of other works which investigated the tex-
ture shape though parametric studies, such as Aggarwal & Pandey [49],
Adjemout et al. [35] and Nanbu et al. [50].

The spacing 𝑙𝑥 and 𝑙𝑧 between texture elements is chosen so that
the texture density is 𝜌txt = 15% if the whole pin surfaces is textured.
In practice, since dimples appear only where  > 0, the overall texture
density is lower. This hints at the fact that the definition of texture
density 𝜌txt should take into account the sensitivity analysis. In fact
the optimal value of texture density is simply 100% of the region with
positive sensitivity which corresponds to the 2D Rayleigh step shown
in Fig. 8(a).

As final comment to this subsection we note that special care has
to be taken in the analysis of the validity of optimized shape, since
texture elements with an excessive depth-to-diameter ratio may violate
the applicability assumption of the Reynolds equations as discussed by
Dobrica and Fillon [51]. The optimized texture in this section has a
maximal depth-to-diameter ratio of 1∕200 which is way below the limit
of 1∕10 found in [51].

4.4. Comparison between different optimization techniques for surface tex-
tures

The great advantage of the adjoint method in comparison to typical
parametric studies is its ability to optimize the whole surface point-by-
point. In particular, in the case of surface textures, the shape of every
single texture element can be optimized according to its position on the
macro-geometry. In order to assess the effectiveness of this optimization
technique a comparison is carried out between the optimized surface
presented in the previous section and the results of the same kind of
texture pattern which is optimized through a parametric study with
spherical dimples.

Fig. 13 shows a comparison of the load carrying capacity with
the untextured reference case of the different constraints seen in the
previous section and also with three parametric studies. At first we
focus on the impact of the constraints on the load carrying capacity by
comparing the first five columns. As one can see the best increase of
the normal force is obtained by the Rayleigh step (column b), hence by
optimizing each point of the surface under the only constraint that the
surface cannot be extruded Eq. (21). Column c concerns the case with
an additional stripe in the middle of the pin (see Fig. 10) which acts
as a further constraint which reduces the effectiveness of the Rayleigh
step. Columns d and e represent the adjoint optimization of the surface
texture presented in Section 4.3 which has texture elements arranged
in a pseudo hexagonal pattern. As we can see the introduction of
such an invasive constraint has lowered the increase of the normal
force, showing that the Rayleigh step is the best way to increase the
normal force in conformal contacts. Nonetheless columns d and e show
a higher normal force than all the remaining columns which correspond
to the parametric texture optimization. In particular we analyzed in
this work two recurrent cases in literature, namely the presence of
texture elements on the whole surface (last column) or only on the front
part (second last column). Front textures are known to perform better
than total ones and the reason can be clearly seen from the sensitivity
distribution in Fig. 7(a) where the sensitivity in the rear part of the pin
is either negative or zero. Therefore, we also consider the case in which
the parametric optimization is carried out by placing texture elements
only in regions of positive sensitivity, see Fig. 7(a). The normal force of
this case is shown in the third last column where we can observe that
thanks to the additional information provided by the computation of
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Fig. 11. Optimization of texture on the pin surface. The texture has a pseudo-hexagonal pattern and the dimples are constrained to have a maximal diameter 𝐷 = 200 μm. a,
Sensitivity over the textured pin surface with low smoothing amplitude 𝜎 = 0.3. The vertical 𝑦 axis is 1000 magnified in comparison to the other two ones. b, Pressure distribution.
The cavitation region is delimited by a red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Analysis of the impact of the smoothing amplitude 𝜎. a, Sensitivity over the pin geometry. With high smoothing amplitude 𝜎 = 1.2. The vertical 𝑦 axis is 1000 magnified
in comparison to the other two ones. b, Comparison of the centerline gap height for different values of smoothing amplitude 𝜎. The gap height is 1000 magnified in comparison
to length of the pin.

the sensitivity, this case is the best among the parametrically optimized
ones. However, the texture optimized with the adjoint method performs
better since it can find the optimal shape and depth of every texture
element according to their position on the surface.

It is important to notice that, for the chosen operating parameters
and geometry, the absolute improvement in load carrying capacity is
small (< 7%) with every optimization techniques shown in Fig. 13.
This could be due to the fact that the simulations are carried out in the
hydrodynamic regime. An higher impact of the texture may be encoun-
tered in the mixed lubrication regime, as found both experimentally
and numerically in previous works [34,52,53].

As final remark for this section we would like to underline that,
although the practical realization of textures with different element
size may result challenging [54,55], a great improvement can be still
achieved through the sensitivity analysis and assuming a constant shape
for each texture element as shown in Fig. 13 column f.

4.5. Generalization of the optimized geometry for different operating con-
ditions

As seen in the previous subsection, the adjoint method finds optimal
texture elements which have different shape and depth according to

their position on the macro geometry. Nonetheless some characteristics
of the optimized texture can be generalized as function of the operating
conditions so that some general design rules can be defined. This can
be done for example by analyzing the average depth of the texture
elements as a function of the gap height for different combinations of
viscosity and velocity as shown in Fig. 14. The dynamic viscosity is
varied in the range 0.0028 < 𝜇 < 0.28 Pa⋅s while the wall velocity
ranges between 0.01 and 1 m∕s. The simulations are carried at imposed
gap height from 0.5 to 10 μm. This results in a variation of the
Sommerfeld number based on the gap height between 0.092 ⋅ 106 and
8.49 ⋅106. As one can see the optimal depth varies linearly with the gap
height. This linear behavior has been found also by parametric studies
in literature [8,14,53]. Nonetheless, the particularity of the adjoint
method is that the texture elements appear only where the sensitivity is
positive, hence avoiding to have texture elements which actually have
a detrimental effects on the load carrying capacity.

5. Conclusion

We present for the first time the implementation of the adjoint
method for the optimization of surface textures in hydrodynamically
lubricated contacts with cavitation and its validation. This method
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Fig. 13. Performance of the adjoint optimization for different constraints. The figure shows also the comparison with parametric studies for textured surfaces done in this work.
The normal force is displayed as percentage of the untextured case a. The operating parameters of this comparison are reported in Table 1.

Fig. 14. Average dimple depth as function of the gap height. Each point represent
a different combinations of velocity and viscosity so that the following range of
Sommerfeld number is swept: 0.092 ⋅ 106 < 𝑆 < 8.49 ⋅ 106. The simulations are carried
out at constant gap height.

allows to fine-tune each single texture element individually rather than
through a trial and error approach with dimples of identical geome-
try. The adjoint method is more effective than traditional parametric
approaches for the optimization of the texture shape. This is because
it can determine where textures should be and how the texture shape
should look like in a single simulation without the need to parametrize
the texture with elementary shapes. This allows to carry out free-form
optimizations in a computationally efficient manner.

We find that the traditional approach to texture the full front of the
pin does not lead to an ideal increase in load carrying capacity. The
sensitivity analysis reveals that it is beneficial to texture only part of

the front portion of the pin. We carried out these optimizations as a
function of operating conditions, confirming a linear relationship be-
tween the gap height and optimal texture depth. Further development
of this work should include also thermal effects and the elasticity of the
contact surfaces [56–59].
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Appendix. Derivation of the discrete adjoint method

In this appendix we show the detailed derivation of the discrete
adjoint method for the Reynolds equation with mass-conserving cavita-
tion. The Reynolds equation (1) can be written in its linear formulation
with the discretized unknown 𝐩 and 𝜽:

𝐠 = 𝐀𝐩 + 𝐁𝜽 − 𝐜 = 0 (23)
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where 𝐠 is a vector containing the residuum of the Reynolds equation.
The discretization is performed with the finite volume method [60].
The complementarity constraint in Eq. (4) is discretized by defining its
residuum 𝐟 in the following way:

𝐟 = �̄� + 𝜽 −
√

�̄�2 + 𝜽2 = 0. (24)

The nonlinear system can be solved with the Newton–Raphson method
and its corresponding Jacobian matrix can be written in the following
way [36]:

𝐉
(

𝛿𝒑
𝛿𝜽

)

=
[

𝐉𝐟 ,𝑝 𝐉𝐟 ,𝜃
𝐉𝐠,𝑝 𝐉𝐠,𝜃

](

𝛿�̄�
𝛿𝜽

)

= −
(

𝐟
𝐠

)

. (25)

The computation of the Jacobian matrix is eased by the fact that its
submatrices are already known from the discretization of the Reynolds
equation (e.g. 𝐉𝐠,𝐩 = 𝐀).

After having discretized the direct problem we can rewrite the
Lagrangian formulation in its discrete formulation:

 = −𝑓obj + 𝝀𝑇𝑝 𝐠 + 𝝀𝑇𝜃 𝐟 (26)

where 𝝀𝑝 and 𝝀𝜃 are vectors of Lagrangian multipliers. Since 𝒈 and 𝒇
are zero everywhere by definition, one can choose 𝝀𝑝 and 𝝀𝜃 freely so
that  = −𝑓obj. This allows us to rewrite the sensitivity as

 ≡
𝑑𝑓obj

𝑑ℎ
= 𝑑

𝑑ℎ
=
(

−
𝜕𝑓obj

𝜕�̄�
+ 𝝀𝑇𝑝

𝜕𝒈
𝜕�̄�

+ 𝝀𝑇𝜃
𝜕𝒇
𝜕�̄�

)

𝑑�̄�
𝑑ℎ

+
(

−
𝜕𝑓obj

𝜕𝜽
+ 𝝀𝑇𝑝

𝜕𝒈
𝜕𝜽

+ 𝝀𝑇𝜃
𝜕𝒇
𝜕𝜽

)

𝑑𝜽
𝑑ℎ

+𝝀𝑇𝑝
𝜕𝒈
𝜕ℎ

+ 𝝀𝑇𝜃
𝜕𝒇
𝜕ℎ

.

(27)

By setting the two terms in the brackets on the right hand side to zero
we obtain the system of the adjoint equations:
[ 𝜕𝒈

𝜕�̄�
𝜕𝒇
𝜕�̄�

𝜕𝒈
𝜕𝜽

𝜕𝒇
𝜕𝜽

]

(

𝝀𝒑
𝝀𝜽

)

=

( 𝜕𝑓obj
𝜕�̄�
𝟎

)

(28)

where the term 𝜕𝑓obj
𝜕𝜽 is set to zero since the objective function does not

depend on the gap height. The remaining right hand side term 𝜕𝑓obj
𝜕�̄�

can be easily computed from the analytical definition of normal force
in Eq. (5):
𝜕𝑓obj

𝜕𝑝
= 𝜕𝑊

𝜕𝑝
= 𝜕

𝜕𝑝 ∫𝛺

(

𝑝 − 𝑝ext
)

𝑑𝛺 = ∫𝛺
1 𝑑𝛺. (29)

Therefore 𝜕𝑓obj
𝜕�̄� is a 1D array which contains the area of the each single

cell 𝑑𝛺. Eq. (28) is a linear algebraic equation whose solution can be
obtained per substitution after having preconditioned the system in a
similar manner as presented by Wolozynski et al. [36] for the cavitation
algorithm.

The next step is to compute the sensitivity by solving the algebraic
equation (27) which now reduces to:

 = 𝝀𝑇𝑝
𝜕𝒈
𝜕ℎ

(30)

since the term 𝝀𝑇𝜃
𝜕𝒇
𝜕ℎ is zero because the complementarity constraint

does not depend on the gap height. In order to compute the sensitivity
we first compute the analytical derivative of the Reynolds equation
with respect to the gap height, i.d. the term 𝜕𝒈

𝜕ℎ :

𝜕𝒈
𝜕ℎ

= 𝜕𝑨
𝜕ℎ

�̄� + 𝜕𝑩
𝜕ℎ

𝜽 (31)

where 𝜕𝑨
𝜕ℎ and 𝜕𝑩

𝜕ℎ can be easily obtained from the implementation of
the Reynolds equation (23).

The optimization can be now performed in an iterative way as
explained in the flowchart in Fig. 2 in Section 2.
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