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Abstract—In this research paper, we present an approach
for an analysis process, which can find confidentiality issues in
data-exchange, on the architectural level of Industrial Internet
of Things software systems. Existing approaches provide an
insufficient definition of dataflow or lack support of finely
granulated information for providing confidentiality. Based on an
existing modeling and analysis process for Data-Driven Software
Architecture, we extend the role-based approach for access
control, with a model to model transformation utilizing a context-
based approach. Using a case study based evaluation we show
that our approach works accurately and scales in a way that is
feasible for big organizations.

Index Terms—industrial IoT, software architecture, dataflow,
confidentiality

I. INTRODUCTION

Boyes et al. [1] define the Industrial Internet of Things
(IIoT) as a system comprising networked smart objects, cyber-
physical assets, associated generic information technologies,
and optional cloud or edge computing platforms. Combined,
the system enables real-time, intelligent, and autonomous
access, collection, analysis, communications, and exchange
of process, product and/or service information, within the
industrial environment, so as to optimize overall production
value. Organizations benefit from this value by being able
to implement self-organizing productions, and supply chains,
with ad-hoc cooperation between the machines, humans, and
organizations involved in the production process. This may
improve product or service delivery, boost overall productivity,
reduce labor cost and energy consumption, as well as offering
small-batch, and/or customized products more cost-efficiently.
Entities in these systems represent humans and machines,
or suppliers, producers, and processes. Humans communicate
with the system by using mobile end-user terminals, like
smartphones or notebooks. IIoT systems use and process the
data of these entities as decentralized resources that commu-
nicate with each other. Since in IIoT, the production process
is very dynamic, contexts of all participating entities often
change. As a lot of data exchange can happen with outside
organizations, like, for example, suppliers or producers, there
is much concern about unauthorized access to each other’s
data. The high flexibility, complexity and amount of data-
exchange, makes it more critical than ever to be able to ensure
the confidentiality and security of data [2].
An analysis process that can find confidentiality issues within
the system is needed. The architectural point of view allows for

easier modeling and analyzing software architecture regarding
performance prediction. However, to analyze confidentiality,
the flow and processing of data in the software system are
crucial. While there are existing approaches to dataflow mod-
eling on the architectural level, they lack the support for finely
granulated information to provide confidentiality.
Our approach introduces a model for providing context-based
confidentiality in dataflow modeling on the architectural level.
The model introduces a basic set of contexts as a way to rep-
resent properties of active system users (subjects), as well as
a way of adding information of the system’s or organization’s
environment to the software architecture. We extend the role-
based approach for access control of an existing modeling
approach for Data-Driven Software Architecture (DDSA) [3]
with our context-based approach. To integrate the context-
based information to the dataflow analysis of the DDSA
approach, we introduce a model to model transformation. The
transformation converts context-based access control data to
information which can be regarded by the DDSA analysis
process. We assume that our extension of the DDSA process
improves usability and reduces error-proneness in creating
context-dependent access control policies when compared
to the original approach for DDSA. Knowledge about the
meaning of each role could only be archived by either using
naming conventions or a manually managed table, mapping
roles to a written description. Changes to the access rights
might lead to inconsistencies or errors throughout the modeled
system. Analyzing a system with inconsistencies regarding
its access rights can yield invalid results, which are hard
to detect. The additional step we add to the DDSA process
automates the creation of the DDSA model elements used for
access control, removing the error-proneness. Additionally, we
believe the context-based extension provides a more natural
way of creating access control policies by defining the basic
properties of the system’s subjects.
For evaluation, we applied the transformation of our approach
to 17 scenarios. The scenarios represent equivalence classes of
possible context combinations to evaluate the accuracy of the
transformation. Models with an increasing number of various
context-based information are used to evaluate the scalability
of our transformation. The base for the evaluation scenarios
and models are the same two case studies that have already
been used to evaluate the DDSA [3] approach. A version of
the context-based meta-model, as well as the transformation



and evaluation source code has been made publicly available
in a data set1.
The remainder of this paper is structured as follows: We
discuss the state of the art in Section 2. In Section 3,
we explain Palladio and the DDSA process as foundations.
Section 4 presents an overview of our approach, as well
as a running example throughout the transformation process.
Section 5 covers the evaluation of the transformation. Section
6 concludes the paper.

II. FOUNDATION

Our approach relies on two main foundations, Palladio [4]
as a base for designing software architectures (SA) and the
Data-Driven Software Architecture (DDSA) [3], for a dataflow
definition and analysis on the architectural level.

Palladio is a tool-supported software architecture simulation
approach, that is used to predict an architectures Quality of
Software properties, like performance or reliability.
The Palladio Component Model (PCM) is a detailed meta-
model of component-based software architectures [5]. The
basic PCM is made up of a repository, system, resource envi-
ronment, allocation, and usage metamodel, each representing
a different architectural view on a system. The repository
model describes components and their interfaces, with the
inner behavior of components being described by service
effect specifications (SEFF). The system model combines
components that are described in the repository model to
specify the software architecture. The resource environment
model describes the specifications of available processing
resources. The allocation model describes which components
are deployed on which resource. The usage model describes
the behavior of users interacting with the system [4].

Data-Driven Software Architecture: To provide a software
architecture description, with a concept of dataflow, we use
an extension of the PCM, called Data-Driven Palladio. This
extension, together with an analysis process for confidentiality,
make up a development process of, so-called, Data-Driven
Software Architectures [3].
The Data-Driven Extension introduces data and data pro-
cessing operators as first-class entities. Data-Driven Palladio
supplies a metamodel, which defines how data is represented
and what kind of operations can be performed on data.
Each data can have sets of characteristics, which represent
abstract meta-data of the affiliated data [6]. The process, as
shown in Fig. 4, starts with defining and extending a software
architecture. The analysis is realized as queries to a Prolog
program that a transformation chain derives from the DDSA.
The confidentiality analysis uses a Role-Based Access Control
(RBAC) strategy to detect access right mismatches [3].

III. STATE OF THE ART

There is a wide range of approaches addressing confidential-
ity. We split these approaches in ones which focus on access
control strategies to achieve confidentiality and ones that focus

1https://doi.org/10.5281/zenodo.3732448

on the mostly model-based development of secure systems.
Access control strategies are used to selectively restrict access
to a resource if a user is not able to satisfy a predefined set of
access rules. Applying these rules to a dataflow provides con-
fidentiality of the accessed data. Kalam et al. [7] describe the
Organization Based Access Control (OrBAC) model, which
extends RBAC [8] by introducing the concept of organizations
and contexts. Organizations are a set of subjects, which can
be users, or other organizations, thereby forming a hierarchy.
F. Cuppens and A. Miège [9] have extended OrBAC by
modeling explicit contexts. OrBAC offers an implementation
of an OrBAC API and a policy editor with a GUI, called
MotOrBAC [10]. Attribute-Based Access Control (ABAC), as
described by V.C. Hu et al. [11], defines a way of access
control using policies. Policies combine attributes and can
either be access-granting or access-denying. Policies can work
together, build upon, or overwrite each other, thereby building
a complex boolean rule set. Attributes can be either atomic-
valued, only containing a single defining atomic value, or
set-valued, containing multiple atomic values to define the
attribute. Their attributes can be compared to static values or
each other, to evaluate policies.For the development of secure
systems, we focus on approaches that use structured system
descriptions to carry out automated analyses as described in
the survey of Nguyen et al. [12]. Therefore, we do not consider
broadly applicable approaches like Threat Modeling [13], as
one of our goals is to provide a more guided way of ensuring
confidentiality. UMLSec [14] defines a UML profile for speci-
fying security properties of systems. Even though systems can
be verified by the CARiSMA tool [15], UMLSec only supports
RBAC [8] for defining access rules. Additionally, different
from the DDSA approach (Sec. II) that works on the data path,
UMLSec only works on the control path, which makes the
dynamic formulation of constraints difficult. The SecureUML
[16] approach is set up similarly to UMLSec. It extends
UML diagrams with roles, permissions, and users, as well as
access control policy annotations for UML elements. Similar
to UMLSec, the SecureUML approach is based on the RBAC
strategy. Even though the RBAC strategy has been extended by
SecureUML, it cannot be easily extended to provide context-
based confidentiality. The iFlow approach [17] defines another
UML profile and the MODELFLOW language, which can be
used to model systems, including their behavior and security
requirements. The information flow analysis considers security
domains that can be mapped to access control. But setting up
such security domains and transitions in between domains,
on the granularity of methods can be challenging for users.
The SecDFD approach of K. Tuma, R. Scandariato, and
M. Balliu [18] defines a data flow diagram that has been
enriched with security concepts and an analysis process that
verifies the correctness of the concepts used. The approach
is implemented as a publicly available Eclipse plugin and is
supported by a Domain-Specific Language. For large systems,
like in the field of IIoT, describing the dataflow, as well as the
necessary software architecture elements, in a single SecDFD
can be difficult and obscure for users. Additionally, if an



architecture description of a system already exists, parts of
the architectural information need to be duplicated to realize
a SecDFD. This brings up the need and error-proneness of
keeping them consistent for each change in the architecture.
Although runtime is not in the scope of this work, we can
exploit our iObserve approach [19] in order to update design
time models by observations during runtime to make use of the
analysis process proposed in this paper based on architectural
runtime models.

IV. MODELING CONTEXTS FOR ASSURING
CONFIDENTIALITY

With our first contribution, we define a framework that
represents context-based confidentiality properties in IIoT sys-
tems in the form of an architectural meta-model of an IIoT
system. The architectural model extension is comprised of
two meta-models, the SubjectModel and ContextModel, and is
based on the PCM (Sec. II). The structure and contents of the
SubjectModel as well as the types of contexts modelled in the
ContextModel, have been abstracted and derived from work-
shops with industrial participants [20], [21]. The SubjectModel

Technician Worker PLC
- Room 1
- Swing shift

- Room 2
- Early shift

- Assembly
- State: fail

Fig. 1: Subjects of running example.

defines subjects that actively communicate via the IIoT system.
Subjects can either be human users, organizations, or non-
human resources like machines. Organizations may represent
a company, but can also be used to represent organizational
units. Organizations and organizational units form hierarchical
trees. Child nodes represent organizations that are owned by
the organization, represented by the parent node. Additionally,
organizations can own users and resources, representing that
they are associated with the organization.
The ContextModel predefines certain types of contexts, which

Context

HierarchicalContext EnvironmentalContext SimpleContext

RoleContext LocationContext

OrganizationContext

StateContext ShiftContextPrivacyLevelContext

Fig. 2: Class diagram excerpt of ContextModel.

represent properties. The contexts can be split up into three
types according to their underlying properties. An excerpt
showcasing the class structure of the ContextModel and all
context classes created for this paper are shown in Fig. 2.
Simple contexts represent a property based on a fixed global
value. An example is an affinity to a certain shift or privacy

level, where each shift or privacy level is represented by a
single enum literal.
Environment contexts represent a property that is dependent on
the property of another entity of the modeled system. These
contexts are mainly used for defining policies. StateContexts,
for example, reference an entity of the SubjectModel which
can hold a state property. Additionally, it defines a target
state, that can be matched with the state of the entity. For our
example in Fig. 1 we have created a resource which represents
a programmable logic controller (PLC). These resources can
hold a state property, which indicates whether the resource is
running or in a fail state. As shown in Fig. 3c we have also
created the policy ’PLC log access policy’, which contains a
StateContext and is meant to regulate access to the log files of
the PLC. This StateContext references the PLC resource and
has a defined target state of ’fail’, meaning that the log files
of the PLC should only be able to be accessed when the PLC
is in a fail state and requires technical support.
Hierarchical contexts represent properties that have hierar-
chical dependencies. An example is the current location of
a worker within a production plant. A production plant may
contain buildings which are made up of areas, which in turn
contain rooms. This make-up can be schematically represented
by a tree, as shown in the example in Fig. 3a, where child
nodes represent a more precise property than their parent
nodes.
Sets of multiple contexts are used in two ways. One is to

Warehouse

Production Plant

Assembly

Building A Building B

Room 1 Room 2

Locations

(a)

- Early shift

- Swing shift

- Night shift

Shifts

(b)

Policies

PLC log access policy:

- Location: Assembly
- State Resource PLC: fail

(c)

Fig. 3: Location hierarchy, shifts, and policies example.

model the current state of an entity in the SubjectModel, like
in our example in Fig. 1. The other is to define access control
rules (policies), defining the minimum required properties for
data access, to ensure confidentiality. An example policy is
shown on the right of Fig. 3c. It states that to access the log
files of the resource PLC, one has to be at least in the assembly
area and PLC needs to be in a fail state.
For our analysis, we use a non-invasive approach of extending
the DDSA analysis process described in Sec. II, with the new
information provided by the Context Extension meta-model.
Confidentiality analysis relevant information provided by the
Context Extension meta-model is added to the same modeling
entities, which are extended by the Data-Driven Extension.

V. AN APPROACH TO CONTEXT-BASED CONFIDENTIALITY
ANALYSIS

As our second contribution we implemented a model to
model transformation, that transforms an instance of our
extension to an instance of the Data-Driven Extension. This
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Fig. 4: Model view of the extended DDSA analysis process.

way we add our context-based confidentiality information
to the DDSA analysis process while further maintaining
the non-invasive approach. As shown in Fig. 4, the whole
DDSA analysis process is made up of an transformation
chain, transforming PCM instances with dataflow definition to
Prolog code. The analysis process relies on Characteristics and
CharacteristicTypes. Characteristics describe the properties of
data or resources. These Characteristics hold multiple values,
while the CharacteristicType defines the corresponding type.
In its current form the analysis process can only consider
fixed values for Characteristics, in the form of literals of an
predefined enumeration. The class diagram in Fig. 5 shows the
composition of the Characteristic specification. The running

Fig. 5: Meta-model excerpt of characteristic specification [3].

example, described in [3], defines CharacteristicTypes named
AccessRights and Roles that refer to an enumeration. This
enumeration holds a literal for every available role, which
represents the values of the corresponding Characteristic.
Roles are then set as a property for UsageScenarios in the
PCM UsageModel, while AccessRights are set for operations
on data. As Roles and AccessRights base on the same enu-
meration, the values can be compared, and a role-based access
control strategy is implemented.
As subject states and policies both consist of a set of contexts,
they will be considered as context sets. These context sets
build the base for a transformation. The transformation of our
approach maps the context set of subjects or policies to literals
of an enumeration. Subject states and policies later represent
CharacteristicTypes, similar to Roles and AccessRights in [3],
that base on the same enumeration.
As some contexts have dependencies that can not be repre-
sented in an enumeration literal, the dependencies have first to
be resolved. To do so, the contained contexts of each subject’s

and policy’s context set is iterated.
For a context with a hierarchical dependency, all parent nodes
of the hierarchical tree, are inferred by the context, as they
define a more general property. To resolve the dependency,
all more general subject states resulting from the dependency
have to be represented by a context set, which will have a
reference to the subject. A copy of the current context set is
created for each inferred context. For each copy, the original
context with hierarchical dependency is swapped for one of
the inferred contexts.
Considering the contexts of ’Technician’ from the running
example in Fig. 1 and the location hierarchy and shifts
shown in Fig. 3a and 3b, resolving the dependencies results
in nine context sets. As the ’Technician’ has a context set
that contains the location context for ’Room 1’ and a shift
context for ’Swing shift’, the context set has to be copied and
adjusted tree times. Once for each parent node when iterating
the hierarchical tree to its root, which in our example is
’Assembly’, ’Building A’, and ’Production Area’. The copies
contain their respective inferred location context, as well as
the shift context for ’Swing shift’.
Environment contexts are used to define a dependency to a
property of an entity in the system. They are mainly used
for creating policies. By resolving their dependency, they are
always removed from the context set, as they otherwise do not
provide any additional value for the further DDSA process
and analysis. The dependency of an environment context is
resolved by checking whether the referenced entity satisfies
the target attributes defined in the context. As the referenced
entities are fully modeled at the time of resolving dependencies
and will not change during the DDSA process, the entities
attribute is compared to the target attribute. If the defined
target attribute is satisfied, the context is removed from the
context set. If the attributes can not be satisfied, changes to
the current context set need to be made, depending on the type
of environment context. When used in a policy, unsatisfied
StateContexts remove the whole context set they are contained
in from the transformation, because the whole policy could
never be satisfied. While the policy still exists in the model, it
is thereby disregarded for the further DDSA analysis process.
For a subject in the system, this might result in an access



restriction.
In our example, the dependency of ’PLC log access policy’
from Fig. 3c needs to be resolved. As ’PLC’ is in a fail state, as
shown in 1, the StateContext from the policy can be removed
from further processing.
A pseudocode representation of the process is shown in line

Algorithm 1 Resolve context dependencies and create enu-
meration to represent properties.

1: contextSets = ∅
2: for all Subjects do
3: inferredContextSets ← subject.contexts
4: while inferredContextSets 6= ∅ do
5: for each inferredContextSet in inferredContextSets do
6: inferredContextSets.remove(inferredContextSet)
7: for each context in inferredContextSet do
8: if context is hierarchical then
9: inferredContextSets.add(hierarchical inferred sets)

10: contextSets += inferredContextSet
11: contextMappingTable.insert(subject, inferredContextSet)

12: for all Policies do
13: for each context in policy.contexts do
14: if context is environmental then
15: if environmental dependency is given then
16: policy.contexts.remove(context)
17: else
18: skip processing current policy
19: policySet = contextSets.getMatchingSet(policy.contexts)
20: if policy.contexts do not match a set in contextSets then
21: policySet = new ContextSet(policy.contexts)
22: contextSets.add(policySet)
23: policyMappingTable.insert(policy, policySet)

24: for each contextSet in contextSets do
25: literalMappingTable.insert(contextSet, new EnumLiteral)

1 - 23 in Algorithm 1. While resolving the hierarchical
dependencies in line 5 - 11, a new context set is additionally
created for each possible subset of contexts in each context set.
When creating a new contexts set, already existing context
sets are iterated and matched, to prevent the creation of
multiple context sets containing the same contexts. This way,
each occurring context combination is represented by a single
unique context set without dependencies. The resulting context
sets for each subject are saved using a mapping table. After
the dependencies of a policy are resolved in line 13 - 18, the
policy’s context set is matched to the unique context sets. If
no matching can be found, a new unique context set is created
specifically for the policy. A mapping table is used to save the
resulting context sets of each policy.
In lines 24 to 25 of Algorithm 1, the mapped context sets
of subjects and policies are mapped to a enumeration literal,
forming an enumeration that can be used for the DDSA
analysis process. By replacing the context sets with the cor-
responding literals, the modified model instances can than
be analyzed by the DDSA analysis process, without making
any changes to the analysis process itself. For our example,
the contexts of ’Technician’, ’Worker’, and ’PLC’ after the
transformation are shown in Fig. 6. For easier readability, the

literals are named according to the contexts in the context set
they represent.

Technician Worker PLC
- Room 1/Swing shift
- Assembly/Swing shift
- Building A/Swing shift
- Prod. Area/Swing shift
- Room 1
- Assembly
- Building A
- Prod. Area
- Swing shift

- Room 2/Early shift
- Assembly/Early shift
- Building A/Early shift
- Prod. Area/Early shift
- Room 2
- Assembly
- Building A
- Prod. Area
- Early shift

- Assembly
- Building A
- Prod. Area

Fig. 6: Subjects of running example after transformation.

VI. EVALUATION

The objective of this evaluation is to verify, that the general
functionality of our approach is working as intended. To do
so, the accuracy of the proposed model transformation and
the scalability of the whole analysis process are evaluated.
Our assumptions concerning improved usability and reduced
error-proneness are not evaluated in this paper. To gain a well-
designed evaluation structure, we used the goal question metric
approach [22]. The evaluation, thereby, can be split up in two
evaluation goals:

• EG-1: Examine the transformation accuracy in converting
modeled information.

• EG-2: Examine the scalability of the analysis process
when analyzing large systems.

A. Design of Evaluation of Transformation Accuracy

As we want to assure that the extended DDSA analysis
process still works accurately, the accuracy of our newly
added transformation needs to be evaluated. The resulting
evaluation question Q-1 is whether the transformation can
accurately transform context information, to be used in the
DDSA analysis process. For evaluating the accuracy of our
transformation, we compared the resulting DDSA model af-
ter executing the transformation to the expected model. We
implemented 17 minimalist scenarios, which cover the possi-
ble context combinations and equivalence classes of context
dependencies. After using our transformation on the models,
we compare the results with manually created models that
represent the same properties. As a base, we use the same
PCM model of the distance tracker case study, that has been
created and extended to evaluate the DDSA approach [3]. The
distance tracker case study consists of an app that tracks the
user, aggregates coordinates, and sends this information to a
tracking service, which shall not receive raw coordinates but
only the distance. This distance tracker application could be a
part of the industrial use case described by Al-Ali et al. [23],
where, in certain cases, the supervisor of a shift can see the
distance of workers to their workplace. We extend the model
with our approach and add various context information. All
contexts that are created for a scenario are used to define one
policy, as well as to represent a single user’s current state. The
user is set to perform a minimalist usage behavior, with six
calls to the system, as defined in the usage model. The policy



is applied to the repository model component resembling the
distance tracker service.
To evaluate the transformation of hierarchy contexts, we create
a binary context hierarchy tree. We refer to the root node as
’General’. The root is connected to two nodes. One of them
we call ’Middle’. ’Middle’ is connected to two further nodes.
We refer to one of them as ’Specific’. Using this hierarchy,
we create three scenarios. For scenario S1 the context set is
only made up of the context for ’General’. The context set
for S2 contains the context for ’Middle’ and S3 for ’Specific’.
To evaluate the transformation of environmental contexts, we
define two scenarios. S4 contains an environmental context that
defines a target attribute that is not satisfied, while the target
attribute in S5 is satisfied. We create an enumeration with two
literals and represent one of the literals with a simple context
for scenario S6. The remaining scenarios are all possible
combinations of the previous scenarios. S7 to S12 combine the
scenarios for hierarchical contexts and environmental contexts.
While S13 to S17 combine S1 to S5 with the scenario for
simple contexts S6.
As our contribution is strongly based on the DDSA approach
[3], we use the same metrics that have been used to evaluate
the accuracy of the DDSA approaches analysis, to evaluate
our questions concerned with EG-1:
The precision (TPF) metric M-1.1 calculates the ratio of
correctly created and set enumeration literals tp and number
of enumeration literals P that are set in the reference models
- TPF =

tp
P . [24]

The recall (PPV) metric M-1.2 calculates the ratio of correctly
created and set enumeration literals tp and the sum tp + fp
of correctly created and falsely created enumeration literals -
PPV =

tp
tp+fp

. [24]

B. Design of Evaluation of Analysis Scalability

Transforming a system model which has been extended
by our approach to the data-driven model, can result in an
enumeration with a high amount of literals. This is especially
true when a lot of users, contexts, and policies have been
modeled. Especially if looking at organizations with multiple
business associates and IIoT interconnectedness, the models
can increase in size and complexity. To achieve EG-2, we
want to examine how individual parts of the extended analysis
process scale with big enumerations used for access control.
The size of the enumeration created by our transformation
depends on the context sets that result from the information
added by our context-based extension. The amount of context
sets created by our transformation depends on two dimensions.
The number of modeled users and policies, as well as the depth
of hierarchies of subjects or contexts.
Our first two questions are how the model transformation
times scale when increasing the number of subjects (Q-2.1)
and policies (Q-2.2). While question Q-2.3 covers how the
model transformation times scale when increasing the depth
of hierarchic properties. The time includes the steps for
reprocessing such as solving the environmental contexts.
As a foundation to answer the questions, we use the same

distance tracker case study PCM model, that has been used
for evaluating goal EG-1. For question Q-2.1, we create a
Context-Based Extension model with an increasing number of
users (100, 101, 102, 103, 104). Each user has a single simple
context as a property that is unique to them. All users are set
to perform a minimalist usage behavior, with six calls to the
system, defined in the usage model. For question Q-2.2, we
increase the number of policies. Similar to the users created for
Q-2.1, each rule is made up of a single unique simple context.
All policies are applied to the repository model component
resembling the distance tracker service. The setup for question
Q-2.3 is mainly made up of a hierarchical property tree, with
increasing depth. The nodes of the hierarchy tree only have
one child node each. We create a single hierarchical context
resembling the bottom leaf of the hierarchical property tree
and a user that has that context. We set the user to perform
the same minimalist usage behavior used in the setup of Q-
2.1.
We use the time needed by each transformation run, as metric
M-2.1, to evaluate the questions concerned with EG-2. The
run times are measured for each transformation and increment
of scaling individually, excluding load times of the models
and are plotted to have a better view of the general tendency
of the runtime behavior. We average M-2.1 of multiple runs
with the same workload to get a mean value for a certain
workload, with good variance. We chose this way of evaluating
the scalability, as it is established and has been used to evaluate
other projects or approaches realized with the PCM, like for
example the iObserve approach [19].

C. Results of Evaluation of Transformation Accuracy

The results for the transformation accuracy show, that for
all scenarios the transformation was able to maintain a TPF
and PPV value of 1.0. A TPF value of 1.0 suggests, that
the transformation has created and set correct literals in the
resulting models. A PPV value of 1.0 suggests, that the
transformation did not falsely create and set more or less
literals than expected.
These results suggest, that the transformation, as described in
section V, correctly converts the context information added by
our approach. Additionally, this also suggests that the DDSA
process will be able to run the resulting model, given that a
correct PCM model is extended by our approach.

D. Results of Evaluation of Analysis Scalability

The result for scaling the number of users in the modeled
system (Q-2.1) shows that the transformation of our context-
based extension shows a superlinear runtime behavior. This
is as expected, due to matching of each user’s context set,
to prevent the creation of multiple literals with the same
meaning. We estimate a worst-case time complexity of O(n2).
This means the runtime behavior might scale quadratically for
higher numbers of users. The first transformation of the DDSA
process shows sublinear runtime, as shown in Fig. 7.
The results of scaling the number of applied policies (Q-
2.2) shows a linear runtime behavior for < 103 policies, for
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Fig. 9: Execution time with increasingly
deep hierarchies.

the transformation of our context-based extension (see Fig.
8). This was to be expected, as policies are only matched
to the already transformed context sets. The first DDSA
transformation shows constant runtime behavior. We suspect,
while each user’s dataflow is transformed separately for Q-2.1,
the first DDSA transformation treats a set of applied policies
as a single entity for Q-2.2.
When increasing the depth of a property hierarchy (Q-2.3),
the context-based extension transformation of our approach
and the first DDSA transformation show a similar execution
time behavior (see Fig. 9). Both have a linear behavior up to
a hierarchy depth of 102 but show a larger increase in the
needed time, suggesting an exponential runtime for deeper
hierarchies. When looking at the hierarchical properties we
implemented for this paper, we assume that it is unlikely for
hierarchies to exceed a depth of 102. Especially when focusing
on hierarchical trees for locations, there is a physical limit on
how fine-granulated a location can be modeled.
The case of application, which the analysis process is designed
for, currently only focuses on modeling and analysing pre-
defined scenarios. Even though the results suggest, that our
approach adds an overhead, that is double the runtime of the
first transformation of the DDSA process, for the use case this
is still acceptable.

E. Threads to Validity

As the accuracy of our approach is evaluated with a case
study, we discuss the internal and external validity of our study,
characterized by Runeson, Höst, Austen and Regnell [25].

Internal validity ensures that causal relations are valid, i.e.
the factor that is expected to have an influence is the only
influencing factor. In our study, we evaluate the accuracy and
scalability of our implemented model to model transformation.
We expect the creation of base models, selection of scenarios,
and the model layer only evaluation to be the main influence
factors. We mitigated the model creation bias by using one
of the case studies defined by the iFlow approach, which has
already been used to evaluate the DDSA approach, instead of

creating our own. The selection of scenarios is derived from
equivalence classes derived from the models in our approach.
In turn, the structure and design of our models are abstracted
from technical reports, as described in Sec. IV. This mitigates
the selection bias, as the equivalence classes used are also
based on the general descriptions in the technical reports.
We, therefore, expect that the selection is well-founded. The
accuracy of the resulting DDSA model was only validated on
a model layer. However, we assume that since they are valid
input models for the DDSA analysis, that the corresponding
results will also be correct. The DDSA analysis itself was
evaluated in [3]. Therefore the results should be valid. For
the scalability analysis, we make the same assumption. Kunz
[26] suggests that the transformation to Prolog scales at least
linearly. Hence, we assume that the DDSA process can handle
our increased number of enumerations.

External validity ensures that the findings can be applied
to other situations, groups, or events and that the results
are valuable for others. We believe that the results of our
evaluation hold for cases that base on the content of the
technical reports, as well as cases that allow representing its
confidentiality relevant properties with the tree context types
defined in Sec. IV. Additionally, we used precision, recall, and
execution time for the results of the evaluation. These metrics
provide no subjective interpretation by a researcher.

F. Assumptions and Limitations

The fundamental assumption of our approach is, that all pos-
sible contexts are known to a software architect that describes
a system. Dynamical changes in contexts during runtime can
not be regarded by our approach if they are not known during
design time. However, we assume that if a set of policies is
already known during design time, that in turn all necessary
contexts are known as well. The properties used for describing
the policies will match the minimum of contexts since our
approach mainly uses contexts to form policies. Changes of
contexts outside of the minimum set do consequently not carry
information used for the analysis process, and are thereby



optional.
Our main limitation is that currently there is no way to
represent active context changes of e.g. a subject within the
usage description of the PCM. A usage scenario that includes
multiple context changes, e.g. of a subject’s location, needs
to be split into separate sub-scenarios at each context change.
The model needs to be adjusted accordingly and each sub-
scenario is analyzed individually. While this limitation lowers
the usability of our approach, the overall analysis result of a
scenario stays the same.

VII. CONCLUSION

In this paper, we proposed our approach to representing
context-based confidentiality properties for a dataflow analysis
on the architectural level. We introduced a metamodel for
defining confidentiality relevant information. The metamodel
extends the Data-Driven Software Architecture (DDSA) mod-
eling language, which is an extension of the architectural de-
sign language PCM. We extended the existing DDSA analysis
process to use the confidentiality information for its dataflow
analysis by adding a model to model transformation. The
transformation converts the extended metamodel information
back to the plain DDSA modeling language. This way, the
DDSA analysis process can be used without any changes done
directly to it. The evaluation examines transformation accuracy
and scalability. The transformation converted all scenarios
accurately and scaled as expected.
The benefit of our approach is that we assume that software
architects that conduct confidentiality analyses in the design
phase have a more natural and less error-prone way of defining
access rights. Also, the model extension serves as a more
clearly laid out documentation of access rights, that can be
used for communication with other stakeholders.
In future work, we aim to evaluate our assumption concerning
usability and error-proneness in creating context-dependent
access control policies with a user study, as well as evaluating
the applicability of our approach using an automated imple-
mentation of the whole DDSA process. We plan to improve
the scalability of the transformation and expand the variety
of considered contexts. In the long run, we aim to integrate
the extended DDSA approach in an approach for automatic
system adaptation and evolution through run-time observation
and continuous quality analysis.
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