
This is the accepted version of 10.1109/DSD51259.2020.00103. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

An Approach to Cost-Efficient Fault Tolerance in
Inherently Redundant Fail-Operational Systems

Tobias Dörr∗, Timo Sandmann∗, Patrick Friederich†, Arnd Leitner‡, and Jürgen Becker∗
∗Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Email: {tobias.doerr, sandmann, becker}@kit.edu
†Vector Informatik GmbH, Stuttgart, Germany

‡Schaeffler Automotive Buehl GmbH & Co. KG, Bühl, Germany

Abstract—Embedded systems in safety-critical environments
are often subject to strict reliability requirements. This holds
particularly true for modern fail-operational systems. In order
to deliver a guaranteed minimum functionality at all times, these
systems are often based on expensive fault tolerance mechanisms.
In this work, we consider fail-operational systems with inherent
redundancy. This property describes the presence of multiple
hardware components, each of which is underutilized to a certain
degree and thus able to serve as a fallback for one of the other
components. We propose an off-chip fault tolerance mechanism
for a pair of inherently redundant execution units that requires
no further replication of these expensive resources. The key
component of this concept is a lightweight proxy unit that
handles faults of one execution unit by dynamically migrating
the safety-critical portion of its functionality to its redundant
counterpart. We present a prototypical implementation of this
concept and evaluate the fault handling time of the resulting
system experimentally. The results show that for an exemplary,
processor-based control system with 256 bits of internal state,
a cycle time of four milliseconds, and 64 bits of payload data
that are read from or written to attached devices per cycle, the
presented implementation is able to detect the failure of a unit,
activate a fallback functionality on the complementary unit, and
restore the internal state variables within five milliseconds.

Index Terms—Fail-operational systems, embedded processors,
simplex architecture, fault tolerance, dynamic redundancy, emer-
gency operation, FPGA prototype, CAN bus, safety.

I. INTRODUCTION

Since the advent of the first commercially available mi-
croprocessor, the computational power that such integrated
circuits are able to deliver has increased by several orders
of magnitude. This has led to a world in which embedded
systems are ubiquitous and fulfill an ever-increasing number
of functions in the most diverse fields of human life. In
safety-critical environments, however, an embedded system
must also meet certain dependability requirements. A common
example of such an environment is the automotive domain, in
which the increasing popularity of drive-by-wire systems [1]
and trends such as autonomous driving [2] require the electri-
cal/electronic (E/E) architecture of modern vehicles to exhibit
both a high performance and fail-operational behavior.

Fail-operational behavior refers to the property that even
if a considered system is affected by errors, it remains able
to deliver a certain minimum level of functionality [2], [3].
We refer to a system that is free of catastrophic conse-
quences on users or the environment as safe [4] and define

a fail-operational system as a system that can be safe only
if it exhibits fail-operational behavior. It is important to note
that for fail-operational systems, it is not possible to identify
a safe state that can simply be entered in response to a fault.
Therefore, they are generally more challenging to design than
conventional, more manageable fail-safe systems.

To achieve fail-operational behavior, suitable fault toler-
ance techniques must be applied. A fault tolerance technique
handles faults of the system in such a way that a specified
functionality is maintained [5]. Such a technique is usually
based on hardware redundancy, software redundancy, time re-
dundancy or information redundancy [6]. A popular hardware
redundancy technique that is able to mask single faults is the
triple modular redundancy (TMR) scheme [7]. A drawback of
this approach, however, is its significant hardware overhead.

A cost-efficient alternative to TMR are dynamic hardware
redundancy techniques. They aim to provide fault tolerance by
detecting faults and reconfiguring the system in an appropriate
manner—usually by logically removing faulty components
from the system and activating suitable spares [7].

In this work, we consider fail-operational systems that
comprise a certain degree of inherent redundancy and propose
a system-level concept that utilizes this redundancy to provide
tolerance against a certain kind of permanent, intermittent, and
transient faults. The key aspect of this concept is the intro-
duction of a proxy unit that imposes a dynamic redundancy
scheme upon the existing hardware redundancy.

After a review of previous and related work (Section II),
we describe the considered fault model and define the prob-
lem that this work intends to solve (Section III). Following
this, the system-level concept (Section IV), our prototypical
implementation (Section V), and the results of its experimental
evaluation (Section VI) are presented. As part of the evalua-
tion, we discuss the application of the presented approach to
a particular scenario from the automotive domain.

II. RELATED WORK

The use of dynamic hardware redundancy techniques to tol-
erate permanent, intermittent, and transient faults has already
been studied intensively. The scheme that is presented in [8],
for instance, protects a message-based multiprocessor system
from physical faults of individual processors or their commu-
nication links. The author separates the system’s functional
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layer, which can be viewed as a set of processes and their
interactions, from the underlying hardware. A certain degree
of redundancy is introduced into the latter. When a physical
fault occurs, the affected component is logically removed from
the system and its functionality is distributed among the re-
maining hardware. Therefore, this approach allows the system
to maintain its full functionality even after being affected by
a certain number of permanent faults in its hardware.

The authors of [9] present a fault tolerance approach that
focuses on the uniform treatment of transient and perma-
nent faults in a multiprocessor environment. It is based on
a reliability-aware task scheduler that makes use of spare
resources to ensure the successful execution of the system’s
real-time tasks. Another fault tolerance approach for real-time
tasks is described in [10]. This approach, however, considers
transient faults of homogenous cores in a multicore processor.
It makes use of spare resources to execute critical tasks redun-
dantly and employs checkpointing with a rollback mechanism
for non-critical tasks without real-time requirements.

It is important to note that a fail-operational system does not
necessarily require its full functionality to be maintained after
being affected by a fault. Instead, a degraded functionality
might be sufficient to preserve its safety. The system-level
simplex architecture [11], for instance, makes use of degrada-
tion to achieve fail-operational behavior in a control system
context. It is based on the general idea of “using simplicity
to control complexity” [12] and assumes that two controllers
are available to drive a plant: One of them provides a high
performance, while the other one is very simple and more re-
liable. A decision logic module monitors the plant and, at any
time, selects one of the controllers as the active one. Whenever
the high-performance controller fails to keep the system safe,
the simple controller is activated. This dynamic redundancy
scheme along with a suitable hardware deployment of the con-
trollers ensures that faults of the high-performance controller
cannot impair the safety of the overall system.

Conceptually very similar but defined in the context of au-
tomotive electronics is the fault tolerance approach from [13].
It comprises a self-checking main controller and a so-called
limp-home controller. Failures of the former are handled by
activating a degraded functionality on the latter.

The approach described in [3] is similar to those presented
in [11] and [13] in the sense that a failure of a complex proces-
sor is handled by migrating its safety-critical functionality to a
fallback processor. To reduce the resource consumption of the
overall system, however, this fallback processor is not present
in the fault-free case but introduced on demand by partially
reconfiguring a field-programmable gate array (FPGA).

The formal model described in [14] regards the functionality
of a system as a set of so-called features and its underlying
hardware as a set of homogeneous, interconnected execution
units. The execution units are assumed to contain a certain
amount of spare resources. To a certain degree, the failure
of such units can therefore be tolerated without degradation.
If the available resources are no longer sufficient, individual
features can be replaced by their degraded versions.

Scope of this work
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Fig. 1. Inherently redundant system with n execution units

III. MOTIVATION AND PROBLEM STATEMENT

This work is focused on fail-operational systems that com-
prise a certain degree of inherent redundancy in their execution
units. We define an execution unit as a processor-based inte-
grated circuit (IC) with all of its internal components (such as
flash memory or an input/output controller) and the off-chip
peripherals that are immediately attached to it (such as
a CAN transceiver). Furthermore, we refer to inherent re-
dundancy as the property that a system comprises n > 1
execution units, each of which with a certain amount of
spare resources that cannot be optimized away and are able
to execute additional tasks in case another unit fails. We
distinguish two manifestations of these resources:

1) The resources are entirely unused during normal oper-
ation of the system, but external factors prevent them
from being removed. An execution unit could, for in-
stance, be a commercial off-the-shelf (COTS) product
whose configuration cannot be influenced by the devel-
oper of the system under consideration.

2) The resources are utilized during normal operation but
fulfill only tasks that can safely be suspended at any
time. An example of such a task is one whose sole pur-
pose it is to fulfill a non-critical convenience application,
such as an infotainment system.

For the purposes of this work, we refer to both of them as spare
resources and assume that they are or can be made available
at any time, especially after the occurrence of a fault.

To fulfill its intended functionality, an execution unit makes
use of its input/output controllers and transceivers to interact
with a set of so-called devices. Some of these devices, such as
sensors or actuators, are assumed to be physically constrained
to certain locations of the system. Without loss of generality,
we assume further that there is a limit to the physical distance
that is permitted between an execution unit and its devices.
An execution unit that is connected to a device via a con-
ventional Serial Peripheral Interface (SPI) bus, for instance,
needs to be within a comparably short distance of the device.
Otherwise, issues such as the clock skew that is induced by
the propagation delays [15] can render the bus unusable.

A system with n redundant execution units and their respec-
tive device sets is shown in Fig. 1. For brevity, the visualization
refers to the i-th execution unit as EXi and to its set of devices
as DEVi. The communication channels shown in gray repre-
sent all connections between an execution unit and the overall
system that are excluded from the following considerations, for



example because they are entirely unaffected by the behavior
of an execution unit. Note that the device sets are included in
the scope of this work only due to the fact that their interaction
with the execution units is subject to the physical constraints
described above. The dependability of the devices per se is
again beyond the scope of this work. In the following, we
consider only systems with n = 2 execution units.

A. Definition of the Fault Model

The fault model that serves as the basis for the presented
approach can be described as follows: From the system-level
perspective, a fault is the complete failure of an execution
unit. Such a complete failure can be caused by any number
of random and systematic faults within this execution unit.
Random faults affect only the hardware portion of the unit
and can be of permanent, intermittent, or transient nature.
Examples of such random hardware faults are
• the complete and permanent loss of supply voltage,
• a permanent defect of the digital logic within a processing

core that causes all its computations to be incorrect, or
• intermittent single-event upsets that repeatedly cause the

control flow of a processing core to entirely deviate from
its intended execution path.

Systematic faults can affect both the hardware and the software
portion of an execution unit. Examples of such faults are
• a hardware issue that in combination with a specific input

pattern leads to a deadlock within the digital logic or
• a software bug that in combination with a specific input

pattern causes the control flow of a processing core to
entirely deviate from its intended execution path.

A single-event upset that causes an incorrect calculation result
but not a complete failure of an execution unit does not lead
to a system-level fault that this fault model captures. Note that
malicious attacks on an execution unit are also not considered
as part of this work. The fault model assumes that at any
point in time, at most one of the two execution units is
faulty, i.e., suffers from a complete failure according to the
definition above. Components that are explicitly introduced
into the system as part of the proposed concept (such as the
lightweight proxy unit) are assumed to be free of systematic
faults but susceptible to random hardware faults.

B. Definition of the Considered Problem

Based on the previous definitions and assumptions, we
formulate the problem that this work is looking to solve as
follows: Given a fail-operational system with two inherently
redundant execution units, modify the system in such a way
that it exhibits fail-operational behavior with respect to the
complete failure of a single execution unit, does not require
the replication of an execution unit, and is able to handle a
certain number of random hardware faults within the explicitly
introduced components. The second requirement is based on
the observation that increasingly complex execution units are
being employed in modern embedded systems. This makes
their replication more and more expensive. For cost-sensitive
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Fig. 2. Introduction of proxy units

applications, it is therefore interesting to research approaches
that make use of the existing redundancy.

The limitation that only one execution unit can become
faulty at a time is made with a certain kind of scenarios
in mind: In applications in which cost-efficient handling of
hazardous situations is more valuable than maintaining opera-
tional capability over a long period of time, avoiding physical
harm for a short time interval (such as seconds or minutes)
and taking other actions might be favorable over tolerating
a fault and restoring the initial or comparable fault tolerance
characteristics. This kind of fail-operational behavior is similar
to the emergency operation from ISO 26262 [5]. Therefore, the
underlying assumption of this work is that the simultaneous
failure of both execution units is sufficiently unlikely.

IV. SYSTEM-LEVEL CONCEPT

The concept that we propose is based on the idea that
whenever one execution unit fails, the safety-relevant portion
of its functionality can be provided by the spare resources of
the other one. From the perspective of a set of devices, this
is comparable to the system-level simplex architecture: Two
execution units (controllers) are available to control the device
set (plant). If one execution unit becomes faulty, the other one
ensures that the guaranteed minimum functionality is main-
tained. To reuse the inherent redundancy of the execution units,
however, we suggest to superimpose two mirrored instances
of this approach. We refer to one such instance (DEVi, EXi

and EX1−i) as a channel and to the presented concept in its
entirety as the mirrored simplex architecture.

The key component of the mirrored simplex architecture is a
lightweight but sufficiently reliable proxy unit that is inserted
into each channel. This results in the system visualized in
Fig. 2. A channel is numbered according to the device set
that it contains. A proxy unit consists of the so-called simplex
logic (SL) and the I/O components (IOC) that are necessary
to connect to the device set. IOCi logically replaces the
I/O components (such as I/O controllers and transceivers) that
were previously part of EXi. Therefore, the maximum distance
between a set of devices and its proxy unit is limited in
the same way as it was previously limited between the set
of devices and its execution unit. Via its primary port (P)
and its secondary port (S), the simplex logic is connected to
both execution units through communication links (CL) whose
length limitations are negligible in the considered context.
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Fig. 3. Transitions between the system modes (m0,m1)

Therefore, the introduction of the proxy unit lifts the restriction
that an execution unit needs to be close to its devices.

The purpose of SLi is to orchestrate and enable the dy-
namic behavior of channel i. To achieve this, it activates and
deactivates functions on the execution units, detects faults and
the recovery of EXi, and serves as a buffer for DEVi-related
state variables of the execution units. Furthermore, it forwards
application-specific payload messages between the active ex-
ecution unit and IOCi, thereby enabling an execution unit to
control even distant devices that it would not be able to control
without this eponymous proxy functionality. Since a proxy
unit is in full control of the respective channel, its failure
can easily lead to a violation of the overall system’s safety
requirements. It is therefore necessary to ensure that a proxy
unit itself is sufficiently reliable. As part of this concept, we
propose to implement it using a TMR scheme to ensure that it
is able to mask any kind of single random hardware fault.
Note that depending on the exact safety requirements, the
application of N -modular redundancy schemes with N > 3
is also conceivable. In any case, it is of vital importance to
minimize the complexity of the SL and IOC blocks to keep
the costs of the overall approach at an acceptable level.

A. Dynamics of the Architecture

At any point in time, an SLi block is in one of two
possible modes. They are given by M = {P, S} and can be
described as follows: P refers to the normal mode in which the
simplex logic assumes the execution unit at its primary port
to be free of faults and therefore selects it as the component
to control DEVi. S describes the case in which the simplex
logic recognizes that the execution unit at its primary port is
affected by faults and therefore selects the execution unit at
its secondary port to control DEVi in a degraded manner. The
functionality that this unit delivers in this case will be referred
to as the fallback functionality. A switch to this functionality
corresponds to the activation of an emergency operation.

We use the variable mi ∈ M to refer to the mode that the
simplex logic of channel i is currently in. Fig. 3 shows the
possible mode combinations (m0,m1) of the overall system.
In the figure, F (·) refers to the detection of faults within a
component and R (·) to the recognition that a component is
not or no longer faulty. Self-transitions are hidden for clarity.
In (P, P ), the initial mode, every device set is controlled by the
execution unit at the primary port of its proxy unit. Detected
faults within an execution unit or a communication link lead
to the degraded modes (S, P ) and (P, S), respectively. In the
first case, for instance, EX1 continues to control DEV1 while

IOCi
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Fig. 4. Functional architecture of the simplex logic (SLi)

using its spare resources to deliver a fallback functionality
for DEV0. If these resources are made available by suspending
non-critical tasks, this corresponds to a degradation of the
functionality that EX1 delivers for DEV1. It should be noted
that the mere selection of an execution unit does not mean
that it is actually able to deliver the required functionality.
If, e.g., EX0 is affected by a fault that the simplex logic
cannot detect, DEV0 might be uncontrolled even if m0 = P .
Therefore, the capabilities and a sufficient diagnostic coverage
of the employed fault detection mechanism are of major
importance to achieve fail-operational behavior.

A transition back to (P, P ) can restore the initial fault
tolerance characteristics after intermittent and transient ran-
dom or the effects of systematic faults, but it is entirely
optional. The underlying worst-case assumption remains that
faults are permanent and the system is required to deliver only
an emergency operation for a limited amount of time. In such
a case, the respective degraded mode is retained.

In order to handle intermittent, transient, or the effects of
systematic faults, a temporary switch to one of the degraded
modes is not strictly necessary and can create a time overhead.
Nevertheless, this architecture treats all kinds of faults in a
uniform manner: As soon as a fault is detected, a switch to one
of the degraded system modes is performed. This means that
the respective simplex logic will immediately isolate the faulty
execution unit from its device set by no longer forwarding
its messages and request the degraded functionality from the
complementary execution unit. The health of the initial exe-
cution unit is re-examined only after this switch has occurred.
The reason for this procedure is that this health examination
takes a certain amount of time. Checking for a certain kind
of fault before switching to a degraded mode would create
an unnecessary delay in the handling of permanent faults and
might take longer than the set of devices is allowed to be in
an uncontrolled state.

B. Interaction with the Simplex Logic (SL)

The functional architecture of the simplex logic is visu-
alized in Fig. 4. Two main paths can be identified from the
figure: One path leads from the primary port (P) to the STATE
block and the IOC output, respectively. The other one leads
from the secondary port (S) to these destinations. At any point



TABLE I
CONTROL MESSAGES ON THE CL S

Message Sender Receiver

RESET SLi EXi

ACTIVATE SLi EXi, EXΦ(i)

DEACTIVATE SLi EXΦ(i)

WDG_CHALLENGE SLi EXi

WDG_RESPONSE EXi SLi

STATE_REQUEST EXi SLi, SLΦ(i)

STATE_RESPONSE SLi EXi, EXΦ(i)

STATE_WRITE EXi SLi, SLΦ(i)

in time, mi decides which of these paths is the active one.
For mi = P , it is the former, and for mi = S, the latter.
Whenever mi = P , CTRLP is in control of channel i. For this
purpose, it periodically reads from and writes to CLi to

1) forward messages between EXi and IOCi,
2) receive internal state variables of EXi, and
3) detect faults of EXi and CLi.

CONVP is an adapter for the forwarded messages. The
received state variables are written into the STATE block,
whose purpose it is to prevent the loss of the internal state
of EXi when it or its CL becomes faulty. The fault detection
is performed by the HEALTH block. This block triggers
watchdog challenges that EXi has to respond to in a certain
manner and within a specified deadline. The execution unit
receives a token as part of the challenge and, to determine
the correct response, has to perform a pre-defined sequence
of computational steps on it. These steps should be simple
but involve all the components (such as the arithmetic logic
units of all involved processing cores) that are relevant for the
detection of a fault according to the fault model.

The detection of a fault activates the secondary path. CTRLS
will then request the EX at the secondary port, EX1−i, to
launch the fallback functionality of the channel. For brevity,
we define Φ (i) := 1 − i and refer to this EX as EXΦ(i).
After this request, EXΦ(i) will read the most recently saved
state from the STATE block and start to deliver the fallback
functionality of channel i. Note that this fallback functionality
continues to update the STATE block to allow for a possible
switch back. As soon as EXΦ(i) controls the channel, CTRLP
resets EXi and uses the HEALTH block to check if this
eliminates the fault that caused the mode transition. In this
case, it can switch back to mi = P by requesting EXi to
resume the full functionality. EXi will then once again read the
most recently saved state from STATE and do so. At the same
time, CTRLS notifies EXΦ(i) that it is no longer required to de-
liver the fallback functionality. After this, (m0,m1) = (P, P )
and both execution units communicate with the SL block of
their corresponding channel only.

C. Signals on the Communication Link (CL)

From the perspective of an application, the CL serves
as the communication path that it needs to read from and
write to its devices. However, a CL also transmits the eight
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Fig. 5. Prototypical implementation of the proposed concept

architecture-specific control signals shown in Table I. Using
the RESET message, the SL block resets the EX at its primary
port after switching to the fallback functionality. ACTIVATE
refers to the message that SLi sends to EXi or EXΦ(i) to
request the delivery of the respective functionality for DEVi.
DEACTIVATE is sent to EXΦ(i) to terminate its fallback
functionality. WDG_CHALLENGE and WDG_RESPONSE transmit
the watchdog interactions. STATE_REQUEST requests the most
recently saved state from an SL block. After receiving such
a request, the SL block uses the STATE_RESPONSE message
to return this state. State variables are written to an SL block
using the STATE_WRITE message. Note that an EX needs to
be able to distinguish if a message originates from a primary
or a secondary port to determine its exact meaning.

V. PROTOTYPICAL IMPLEMENTATION

For a practical implementation of the concept, the execution
units of the original system need to be modified in such
a way that they are connected to the CLs and conform to
the protocol that the mirrored simplex architecture imposes
upon them. Furthermore, the proxy units have to be designed
and manufactured using a suitable technology. Due to its
application-specific nature and the requirement to be both
cost-efficient and reliable, we propose to implement a proxy
unit as an application-specific integrated circuit (ASIC) in
a TMR arrangement with attached I/O transceivers. This way,
it can be optimized for reliability while keeping the production
costs small—especially for large quantities.

As part of this work, we performed a prototypical im-
plementation of the concept. It is based on the following
example scenario from the automotive domain: A front-wheel
drive vehicle with electric wheel hub motors comprises an
electronic control unit (ECU) for each of the two motors.
Each of the ECUs receives an individual setpoint such as
the target rotation speed, reads in measurement values from
the sensors of its respective motor, and transmits pulse-width
modulation (PWM) signals to the power electronics of its re-
spective motor. Note that this setup is symmetrical in the sense
that both ECUs perform the same functionality with respect to
the motor they control. To avoid faults of an ECU leading to
catastrophic consequences, the mirrored simplex architecture
shall be applied. In this scenario, the ECUs correspond to
the execution units, while the protected devices are the power
electronics and sensors on either side of the vehicle. The
architecture of our implementation is visualized in Fig. 5.
We employed an AURIX microcontroller from Infineon as



execution unit and the FPGA portion of a Zynq-7000 device
from Xilinx as the platform to realize the TMR arrangement
of proxy units.1 A reset wire and its corresponding CAN bus
represent a CL. Note that the Zynq itself is a system on
chip (SoC) that comprises not only the FPGA. Its hard-wired
processor will be used during the experimental evaluation.

We used the above-mentioned example scenario as a starting
point and extended the generic framework with the following
application-specific functionality: Each proxy unit’s IOC block
consists of a PWM controller and a set of general-purpose
inputs. Both the full and the degraded AURIX applications
run with a period of Tcycle to repeatedly

1) read 32 bits of payload data from their IOC block,
2) write 32 bits of payload data to their IOC block, and
3) write Nstate variables (32 bit) to their STATE block.

We assume that the computational effort of the degraded
functionality is considerably smaller than that of the full one
and, therefore, that an execution unit is able to deliver both
functionalities at the same time. For the implementation, this
means that if a proxy unit requests the degraded functionality
from its complementary AURIX, this execution unit continues
to deliver the full functionality for its primary device set.
The employed AURIX is a multicore platform that comprises
three processing cores. On such a platform, it is conceivable
to execute the two functionalities truly in parallel. In this
implementation, however, they share the same core.

Except for the RESET message, all control messages from
Table I as well as the application-specific payload messages
are exchanged using one of the CAN buses. The message IDs
have been chosen so that transmissions between SLi and EXi

take precedence over transmissions between SLi and EXΦ(i).
The watchdog challenges that a processor has to respond to

are issued by the HEALTH block with a configurable period
of Twdg ≤ Tcycle. Such a challenge consists of a randomly
generated 8-bit token that the processor needs to modify in
a predefined way. After issuing a challenge, the HEALTH
block expects to receive the modified token from the processor
within a specified deadline. If this deadline is missed or
the HEALTH block receives an incorrect response, a fault of
the processor or the CAN bus that it connects to is assumed.

As soon as SLi requests a degraded functionality from
the execution unit at its secondary port, the load on CLΦ(i)

increases significantly. For the implementation, we assume that
within one Tcycle-interval, CANΦ(i) is able to transmit

1) all the messages between EXΦ(i) and SLΦ(i) that are
nominally scheduled for this interval,

2) the messages that EXΦ(i) and SLi exchange solely for
the purpose of the mode transition, and

3) the first sequence of payload and state messages that are
exchanged between EXΦ(i) and SLi.

According to [16], the maximum transmission time of
a CAN message with an 11-bit identifier and s data bytes

1The execution and proxy units comprise not only these ICs but also their
directly attached components (such as I/O transceivers). For brevity, these
components are regarded as logically belonging to the ICs.

TABLE II
LOAD FACTOR VALUES FOR DIFFERENT CONFIGURATIONS

Number of 32-bit state variables (Nstate)

Tcycle Twdg 1 2 4 8 16

1 ms 1 ms 0.92 1.20 1.77 2.91 5.19

2 ms 1 ms 0.52 0.67 0.95 1.52 2.66
2 ms 2 ms 0.46 0.60 0.89 1.46 2.60

4 ms 1 ms 0.33 0.40 0.54 0.83 1.40
4 ms 2 ms 0.26 0.33 0.48 0.76 1.33
4 ms 4 ms 0.23 0.30 0.44 0.73 1.30

is given by Cm(s) := (55 + 10s) τbit, where τbit describes
the transmission time of one bit. Since the implementation
uses 11-bit identifiers, this formula can be used to calculate
the portion of the considered Tcycle-interval with messages
on CANΦ(i). With kwdg := dTcycle/Twdge watchdog challenges
during the interval and under the assumption that no messages
need to be retransmitted, the utilized time is given by

τsum = τwdg + τstate + τpayload︸ ︷︷ ︸
(1)

+ τactivation + τstate︸ ︷︷ ︸
(2)

+ τpayload + τstate︸ ︷︷ ︸
(3)

= 2Cm(1) · kwdg + 3Cm(4) ·Nstate + 4Cm(4)

+ Cm(1) + Cm(0)

= (130kwdg + 285Nstate + 500) τbit.

This corresponds to a relative utilization or a load factor of

η =
τsum

Tcycle
=

(130kwdg + 285Nstate + 500) τbit

Tcycle
.

Table II shows the load factor for a CAN frequency of 1 MHz
and various combinations of Tcycle, Twdg, and Nstate. Scenarios
with a load factor of η > 1 are grayed out as they violate the
requirement defined above and are considered infeasible.

VI. EVALUATION AND RESULTS

To evaluate the prototypical implementation, we created a
setup based on two TriBoards and two ZedBoards. Each of
the TriBoards was mounted with an AURIX of type TC277,
while the ZedBoards featured a Zynq device of type XC7Z020.
Synthesizing the RTL description of a single proxy unit for
the FPGA portion of an XC7Z020 leads to the resource
utilization values shown in Table III. As shown in the table,
the CAN controllers for the primary and secondary ports are
the most resource-intensive components of this design. The
actual simplex logic consumes less than half of the total
number of required LUTs, registers, and BRAMs. Note that
the “interconnections” category comprises the logic that serves
as an adapter between the custom modules and the IP cores
that implement the primary and secondary CAN ports.

In the evaluation setup, an FPGA comprises a TMR ar-
rangement of proxy units and a fault injection module. The
resource utilization of one such FPGA is shown in Table IV.



TABLE III
RESOURCE UTILIZATION OF THE PROXY UNIT

Resource type

Module LUTs Registers BRAMs

CANi controller 659 536 2
CANΦ(i) controller 661 536 2

CTRLP, CONVP, HEALTH 333 348 0
CTRLS, CONVS 124 246 0
STATE 69 3 1

PWM controller 28 22 0
Interconnections 108 121 0

Total 1,982 1,812 5

TABLE IV
RESOURCE UTILIZATION IN THE EVALUATION SETUP

Resource type

Module LUTs Registers BRAMs

TMR arrangement 6,037 5,538 15
Fault injection module 904 1,875 0

Total 6,941 7,413 15

It corresponds to 13.05 % of the LUTs, 6.97 % of the registers,
and 10.71 % of the BRAM tiles available on the XC7Z020.

When the concept was described in Section IV, we referred
to the modes that an SL block can be in as P and S. It
is important to understand, however, that when a channel
experiences a transition from P to S or vice versa, there is
a certain amount of time in which neither the full nor the
degraded functionality of the channel is delivered. We refer to
such an interval as a mode transition. The duration of these
transitions is crucial when deciding whether a system meets its
fail-operational requirements. This is especially true for a tran-
sition from P to S, most importantly because random or the
effects of systematic faults appear unexpectedly and require
immediate initiation of such a transition. Transitions into the
opposite direction, i.e., after the recovery of an execution unit,
can be performed in a more controlled manner. We therefore
focused on the P → S transition of the implementation and
performed an experimental evaluation of its duration.

Fig. 6 illustrates the steps that constitute a mode transition of
channel i in the P → S direction. A fault occurring at t = t0
must first be detected by the HEALTH block of the respective
simplex logic (SLi). As soon as this has happened, from t = t1
onwards, SLi stops to react to messages from EXi and requests
the fallback functionality from EXΦ(i). Then, from t = t2
to t = t3, it transfers the most recently written set of state
variables to EXΦ(i). Based on the definitions from [5], we
refer to the duration of the first interval as fault detection time,
to the combined duration of the latter two intervals as fault
reaction time, and to their sum as fault handling time.

Due to symmetry in the setup, our evaluation focused
on the fault handling characteristics of only one channel.
More specifically, we used the hard-wired processor of and

t

E

t0 t1 t2 t3

Detection of
the EXi fault

Activation of the
fallback system

on EXΦ(i)

Transfer of state
variables from

SLi to EXΦ(i)

Fault reaction time

P Mode transition (P → S) S

Fig. 6. Schematic visualization of the P → S mode transition intervals
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Fig. 7. Measured fault handling times for a system with Tcycle = 4ms

the fault injection module implemented on the Zynq0 device
to temporarily interrupt the supply voltage of AURIX0 and
perform an automated measurement of the individual fault
handling intervals. For every combination of Tcycle, Tperiod,
and Nstate that is not grayed out in Table II, 300 independent
measurements of this kind were performed. In all cases, a
watchdog tolerance of 500 µs was used. For the sake of brevity,
only the results for a cycle time of Tcycle = 4 ms will be
considered in the following. These results are shown in Fig. 7,
where square markers indicate the average values and vertical
bars represent the measured range of values.



As shown in the first plot, the fault detection times did not
exceed 1.5 ms for Twdg = 1 ms, 2.5 ms for Twdg = 2 ms, and
4.5 ms for Twdg = 4 ms. Furthermore, the plot demonstrates
that the size of the synchronized internal state of an application
had no significant influence on the fault detection time.

The second plot shows that the average fault reaction time
increased with the size of the synchronized internal state. This
is not only due to the increased number of messages that
are necessary to read the state from SLi but also due to the
fact that for higher Nstate values, more state messages will be
exchanged between EXΦ(i) and SLΦ(i). Since they belong to
the primary port of SLΦ(i), they have a higher priority than
the messages between EXΦ(i) and SLi. For the same reason,
an increase of Twdg, i.e., issuing watchdog challenges less
frequently, resulted in less messages with a higher priority and,
therefore, decreased the average fault reaction time slightly.

In a realistic implementation of the wheel hub motor con-
trol, the payload data that is exchanged between an EX and its
IOC amounts to approximately 32 bits per cycle and direction.
The internal state variables that need to be repeatedly written
to the SL block do not exceed 256 bits, which corresponds
to Nstate = 8. Such a system can operate with Tcycle = 4 ms
and Tperiod = 1 ms. During the evaluation, it showed a maxi-
mum fault detection time of 1.380 ms as well as a maximum
fault reaction time of 3.187 ms. This corresponds to a fault
handling time of no more than 4.567 ms. The length of the
example scenario’s fault tolerant time interval (FTTI), which
is defined as the “minimum time-span from the occurrence of
a fault in an item to a possible occurrence of a hazardous
event, if the safety mechanisms are not activated” in [5],
ranges between 50 ms and 100 ms. Therefore, we consider the
achieved fault handling time to be sufficiently small to achieve
fail-operational behavior in this specific context.

VII. CONCLUSION AND FUTURE WORK

In this work, we focused on fail-operational systems with
a certain degree of inherent redundancy and proposed the
concept of the mirrored simplex architecture. It makes use
of spare resources in a pair of redundant execution units
and dynamically migrates essential functions of a completely
failed unit to its redundant counterpart. Our prototypical
implementation of the concept shows that it exhibits short
fault handling times and—given that at most one unit fails
at a time and that the employed challenge-response watchdog
exhibits a sufficient diagnostic coverage with respect to the
relevant safety requirements—eliminates the need to replicate
the execution units in order to achieve fail-operational behav-
ior. Therefore, the presented approach is particularly suited to
meet fault tolerance requirements of fail-operational systems
in cost-sensitive fields such as the automotive domain.

A possible starting point for further research activities is
the question of how to scale this approach up to an arbitrary
number of channels. A scalable concept with n > 2 channels
could, most importantly, remove the current limitation that
only one execution unit at a time may fail. Furthermore,
adapting the concept to handle certain types of transient and

intermittent faults more efficiently or replacing the CAN bus
of the current implementation with different alternatives to
optimize the achievable throughput and to provide rigorous
real-time guarantees are further topics for future work.
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