
1

Accelerated Deep Reinforcement Learning for
Fast Feedback of Beam Dynamics at KARA

Weijia Wang1, Michele Caselle1, Tobias Boltz2, Edmund Blomley2, Miram Brosi3, Timo Dritschler1,
Andreas Ebersoldt1, Andreas Kopmann1, Andrea Santamaria Garcia3, Patrick Schreiber3, Erik Bründermann2,

Marc Weber4, Anke-Susanne Müller2, Yangwang Fang5
1Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Institute for Beam Physics and Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
3Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe,

Germany 4Division V - Physics and Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
5Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, China

Coherent synchrotron radiation (CSR) is generated when
the electron bunch length is in the order of the mag-

nitude of the wavelength of the emitted radiation. The self-
interaction of short electron bunches with their own elec-
tromagnetic fields changes the longitudinal beam dynamics
significantly. Above a certain current threshold the micro-
bunching instability develops, characterized by the appear-
ance of distinguishable substructures in the longitudinal
phase space of the bunch. To stabilize the CSR emission,
a real-time feedback control loop based on Reinforcement
Learning (RL) is proposed. Informed by the available THz
diagnostics, the feedback is designed to act on the RF
system of the storage ring in order to mitigate the micro-
bunching dynamics. To satisfy low-latency requirements
given by the longitudinal beam dynamics, the RL controller
has been implemented on hardware (FPGA). In this paper,
a real-time feedback loop architecture and its performance
is presented and compared with a software implementation
using Keras-RL on CPU/GPU. The results obtained with the
CSR simulation Inovesa demonstrate that the functionality
of both platforms is equivalent. The training performance of
the hardware implementation is similar to software solution,
while it outperforms the Keras-RL implementation by an
order of magnitude. The presented RL hardware controller
is considered as an essential platform for the development
of intelligent CSR control systems.

I. MICRO-BUNCHING INSTABILITY

Coherent synchrotron radiation (CSR) in the terahertz
(THz) frequency range is produced by electrons when the
length of the bunches is in the range of a few millimetres and
below. At the Karlsruhe Research Accelerator (KARA), the
research electron storage ring and light source at KIT, the
low momentum compaction (αc) mode is used to produce
short electron bunches and to study THz emission [1]. As
shown in Fig (1), during the standard operation mode with

M. Caselle is with the Institute of Data Processing and Elec-
tronics, Karlsruhe Institute of Technology (KIT), Germany, e-mail:
michele.caselle@kit.edu

long electron bunches, incoherent synchrotron radiation is
emitted in the X-ray frequency range. In low αc mode, high
intensity CSR in the THz range is emitted.

∝ N2

∝ N

(compact mode )

Normal mode

low-αc optics

Fig. 1: In low αc mode the power is proportional to the
square of the number of particles; in standard operational
mode the power is proportional to the number of particles.

Recent years have seen an increased interest in higher-
power THz sources that open up a new range of research
fields. Applications including semiconductor and high-
temperature superconductor characterization, tomographic
imaging, label-free genetic analysis, cellular level imag-
ing, and chemical and biological sensing have transported
THz research from relative obscurity into the limelight [2].
Dynamically changing substructures that appear during the
micro-bunching instability translate into CSR power fluc-
tuations [3] and limit the use of the emitted THz light in
experiments that operate with the average intensity and work
on short time scales. The goal is to improve the stability of
the CSR emission and therefore improve the reproducibility
for time resolved THz experiments in the future. In this
paper, a novel system composed of a THz detector and high-
throughput readout electronics with embedded real-time data
processing based on AI algorithms is presented. It has
been demonstrated that by dynamically acting on the radio-
frequency (RF) cavities of the accelerator the fluctuations of



the CSR emission can be reduced and the stability of the
emission can be improved. In order to successfully control
the CSR power fluctuations a fast feedback system with
measurement of the CSR signal, intelligent controller, and
actuator with a total latency in the order of microseconds
is needed. A hardware platform for this purpose has been
developed that will serve to optimize the beam properties at
KARA.

The self-interaction in short electron bunches can be math-
ematically described by the CSR-induced wake potential [4]:

VCSR(q) =

∫ ∞
−∞

ρ̃(ω)ZCSR(ω)e
iωqdω. (1)

The CSR wake potential is added as a perturbation to
the Hamiltonian. Here, q = (z − zs)/σz,0 denotes the
generalized longitudinal position, ρ̃(ω) represent the Fourier-
transformed longitudinal bunch profile, and ZCSR(ω) is the
CSR-induced impedance of the storage ring. The additional
potential in Eq. (1) can be interpreted as a perturbation to the
accelerating RF potential, and thus results in a perturbation
of the synchrotron motion within the bunch. It causes the
formation of micro-structures with a dynamic evolution at
time scales in the order of the synchrotron period Ts.
The effect of the instability on the charge density in the
longitudinal phase space and the CSR power is shown in
Fig (2). The CSR self-interaction of the bunch causes the
formation of micro-structures in the longitudinal phase space
density shown in Fig (2a). Their continuous variation leads
to fluctuations in the emitted CSR power as a function
of time in Fig (2b). Real-time control of the longitudinal
beam dynamics during the occurrence of the micro-bunching
instabilities can stabilize the fluctuations of the emitted CSR
and therefore optimize and tailor the THz light for different
applications [4].

-4 -2 0 2 4

-4
-2
0
2
4

long. position (σz,0)

en
er
gy

de
vi
at
io
n
(σ

E
,0
)

(a) micro-bunching

0

5

10

15

ρ
(p

C/
(σ

z
,0
σ
E
,0

))

0 2 4 6 8 10 12
0.04
0.06
0.08
0.10
0.12
0.14
0.16

time (Ts)

CS
R
po
w
er

(W
)

(b) fluctuating CSR

Fig. 2: CSR micro-bunching structures in the longitudinal
phase space density ρ (a) and the resulting CSR power
variations over time (b), where Ts denotes the synchrotron
period (∼ 100 µs).

II. CONTROLLER DESIGN WITH REINFORCEMENT
LEARNING

In order to stabilize the CSR micro-bunching instability a
machine learning approach based on Reinforcement Learn-
ing (RL) is selected. The goal of RL is to find the optimal
sequence of decisions to maximize the expected reward by

interacting with the controlled system. The interactions with
a process make RL different to unsupervised and supervised
learning. Unsupervised learning is typically used to detect
intrinsic structures in a collection of unlabeled data while
supervised learning aims to learn a mapping from input to
output given as a collection of labeled examples. In contrast,
RL algorithms are capable to learn purely from interaction
with a real environment. As no classical controller design
for the CSR problem is currently available, RL seems to
be a promising approach. In the RL algorithm design there
are two major components as shown in Fig (3), namely
the agent and the environment. The state s is calculated
from the measured information that can be obtained from
the process. The state s is not necessarily equivalent to
the complete description of the dynamics of the controlled
system. The agent has a policy that maps the perceived
state of the environment to an appropriate action. The RL
agent interacts with its environment in discrete time steps.
At each time step t, the agent receives the current state
st and the reward rt. It then chooses an action a, which
is subsequently sent to the environment. The environment
moves to a new state st+1 and the reward rt+1 associated
with the transition (st, a, st+1) is determined. The goal
of an RL agent is to learn a policy which maximizes
the expected cumulative reward. Several RL algorithms are
available and currently under study, like Policy Gradient,
Proximal Policy Optimization (PPO) [5] and Trust Region
Policy Optimization (TRPO) [6]. For the development of a
hardware loop in this article the DDPG (Deep Deterministic
Policy Gradient) [7] algorithm has been employed.

Fig. 3: Agent-process interaction in a RL control loop [8].

III. HARDWARE IMPLEMENTATION

Preliminary studies demonstrate that the dynamic mod-
ulation of the RF amplitude seems to be a particularly
suitable and effective choice to counteract the CSR-induced
perturbation. The influence of RF modulations on the micro-
bunching dynamics has also been tested experimentally, for
example in [9, 10]. An adaptive RF modulation scheme is
a promising proposition to exert influence on the longitudi-
nal beam dynamics of the micro-bunching instability as it
provides the required flexibility to respond to the varying
perturbation by the CSR wake potential. In order to build
a control loop and to stabilize the CSR emission with high
intensity and low fluctuation, a fast detector for beam diag-
nostics, and an RL hardware platform are required. These



Fig. 4: Hardware implementation of the fast feedback loop
at KARA.

two components close the control loop as shown in Fig (4).
A commercial zero-biased Schottky barrier diode detector
is employed to measure the THz radiation. A quasi-optical
version with a silicon lense and a log-spiral antenna from
ACST GmbH is used due to its broad spectral sensitivity
from 50 GHz up to 2 THz [11]. The alternatives are a
wave-guide coupled Schottky barrier diode detectors from
Virginia Diodes, Inc. where the spectral sensitivity depends
on the chosen wave-guide and can range from WR15 (50-
75 GHz) to WR0.65 (1100-1700 GHz) [12]. This detector
is connected to the fast digitizer board KAPTURE- 2. The
fast electrical signal is digitized and transferred to the RL
platform HighFlex2. The incoming data is processed in real-
time and the feedback signal is sent to the bunch-by-bunch
control system which controls the RF kicker cavity of the
accelerator.

A. Front End Electronics for CSR bunch-by-bunch measure-
ments

For bunch-by-bunch measurements the ultrafast digitizer
KAPTURE-2 is employed. The KAPTURE-2 (Karlsruhe
Pulse Taking Ultra-fast Readout Electronics) [13] is a broad-
band picosecond sampling system for ultra-short pulses
operating at a pulse rate of up to 1 GPulse/s. KAPTURE-
2 is able to acquire and sample ultra-short pulses with a
local sampling rate that exceeds 300 GS/s. Up to 8 parallel
sampling channels are integrated in one system which are
used to digitize each pulse with 8 sampling points. The data
rate of the KAPTURE-2 is 8× 1GS/s× 12 bit per sample
point.

B. High-throughput DAQ board

To face the upcoming demand of high data throughput
and fast machine learning data processing close to the
data source, the readout board HighFlex2 shown in Fig (6)
based on PCIe generation 4 has been developed. The main
processor on HighFlex2 is a Xilinx ZYNQ UltraScale+.
It includes a 64-bit quad-core ARM processor with clock
rates of up to 1.5 GHz. This embedded processor is em-
ployed to implement the RL framework. The ZYNQ is

Fig. 5: KAPTURE-2 front-end card with 4 channels, several
cards can be combined together to increase the number of
the sampling channels.

equipped with an FPGA with up to 600 k Configurable
Logic Blocks (CLB), several tens of megabytes of block
RAM and UltraRAM and more than 2900 DSP slices [14].
This heterogeneous hardware is a promising platform to
implement machine learning algorithms.

Fig. 6: High-throughput DAQ board HighFlex2.

KAPTURE-2 and its readout card have been designed
with a modular approach which allows to scale-up the num-
ber of channels. The precise clock distribution implemented
in KAPTURE-2 guarantees the synchronous operation of
multiple devices with a precision of 25 ps. This modularity
can be used to scale-up the number of THz detectors or to
increase the number of sampling points per pulse.

C. Reinforcement Learning Hardware Implementation
The RL algorithms are difficult to implement in pro-

grammable logic but a variety of toolkits are available for
CPU and GPU. To ensure fast processing and low latencies
we consider two solutions for the implementation of RL.
The first is to implement the RL using the heterogeneous
FPGA-GPU infrastructure developed in [15] and the second
method employs the embedded ARM processors available
on HighFlex2. In the first architecture, the FPGA card is
connected to an external processing node where the machine
learning platform is installed. This infrastructure has been
designed to provide a scalable solution for future generations
of real-time data processing in photon sciences and high
energy physics in terms of data throughput and processing
performance. To meet real-time constraints, the data is
directly transferred from the FPGA into the GPU memories,
bypassing CPU memory system by high-performance ad-
hoc direct memory access (DMA). In this case, standard
frameworks like for example Tensorflow [16], Keras [17],
or Caffe [18] can be used. In the second method, a lite-
weight RL framework is implemented on the ARM processor



of the ZYNQ device. This approach is less scalable, but
offers the opportunity to realize the complete algorithms on-
chip without the need to transfer data to external processing
units. A RL software platform is already available on ARM
and tested with some textbook examples with the Policy
Gradient (PG) [19] method and could also successfully be
employed to implement the fast RL controller of KARA.
This controller uses an algorithm according to the Deep
Deterministic Policy Gradient, which is an extension of
the work in [19]. The framework is written in C/C++ and
is executed as bare-metal code without operating system
overhead on the ARM processor. The second solution has
been selected in this paper in order to achieve the best
performance of the bunch control system.

Fig. 7: Hardware solution for RL control.

To optimize the performance of the RL controller, the
hardware implementation on HighFlex2 has been divided
into two parts: the Actor neural network inference, located
in the FPGA, and the training policy with the Critic net-
work, located in the ARM processors. The RL hardware
implementation with the external interfaces to KARA are
shown in Fig (7). The THz pulse sampled by KAPTURE-2
is processed in the FPGA. The first processing step is the
extraction of eight features that define the state of the beam.
These include the mean and standard deviation of the CSR
power, as well as other additional parameters derived from
the CSR signal. To maintain a high flexibility concerning
both the modifications of the definition and calculation of
the features, the code is written in the high-level language
OpenCL/C++ and synthesized for execution on an FPGA
by Vivado-HLS (high Level synthesis) from Xilinx. At the
same time, also the logic for the calculation of the reward
function has been written in OpenCL/C++. Because the aim
is to stabilize the emitted CSR, a possible choice for the
reward function is:

Rt
.
= ω1µt′:t − ω2σt′:t , (2)

where µt′:t and σt′:t denote the normalized mean and
standard deviation of the time series Pt,CSR in the interval
[t′, t], and ω1,2 > 0 are simple weighting factors. This
definition of the reward reflects the goal of having a CSR
power signal of high intensity and a low fluctuation, and
corresponds to a smooth charge distribution that is not

significantly changing in time. Eq. (2) has proven up to
now to be a reasonable choice. The extracted features build
the state vector st with eight signals (s

(1)
t , . . . , s

(8)
t ), which

contains the beam physics information that is processed
by the Actor network. This network consists of a fully-
connected dense layer neural network on FPGA, optimized
to provide an output with very low latency. The output of the
Actor is defined within the so-called "action space". As the
additional CSR wake potential acts as a perturbation to the
RF potential, one promising approach seems to be centred
around the RF system. Therefore, the action space is defined
as a two dimensional vector, constituting an RF amplitude
modulation

a = (Amod, fmod). (3)

The action is mapped to the bunch-by-bunch system inter-
face, which will set a modulation signal to the RF driver
according to

VRF(t) = V̂ (t) sin(2πfRFt+ ϕRF), (4)

where VRF(t) is the RF signal applied to the RF cavity and
V̂ (t) is the RF amplitude modulation

V̂ (t) = V̂0Amod sin(2πfmodt+ φmod). (5)

Here, Amod and fmod denote the amplitude and frequency of
the applied RF amplitude modulation, which are dynamically
adjusted by the Actor network. The phase offset of the modu-
lation φmod is not changed by the feedback and set to zero in
the simulation. Dynamically modifying these two parameters
should provide the agent with a substantial amount of control
over the RF system. The global RF phase ϕRF remains
untouched in this study. Both parameters, the amplitude
Amod and the frequency fmod, are then sent to a commercial
signal processor for the bunch-by-bunch feedback system
(model dimtel iGp12-720F [20]). The HighFlex2 card is
connected to the bunch-by-bunch feedback system by a
custom parallel interface. Based on preliminary studies, the
dynamic modulation of the RF amplitude seems to be a
particularly suitable approach to effectively counteract the
CSR-induced perturbation. The influence of RF modulations
on the micro-bunching dynamics has also been tested exper-
imentally [9, 10].

The behavior of the Actor is fundamental for the training
phase. Therefore, a memory buffer has been instantiated at
the ARM processor to store the complete status of the actor.
In particular, the action a, the state st, the next state st+1,
and the reward calculated by the FPGA rt are stored.

The Critic network consists of a fully-connected dense
layer network inference implemented on the ARM processor.
It accesses the Actor status via the interface memory and
generates the so called "action-value function" Q(st, a). This
function represents an estimate of the reward the agent will
be able to receive after taking action a in state st.

As shown in Fig (7) the training process of the Actor is
performed by the policy gradient. The Actor training path
and its target will be shown in more detail in Fig (9).



1st layer 2nd layer

…

64 Units 64 Units

… … …

64 Units 64 Units

3rd layer 4th layer

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

𝑎1

𝑎2

𝑎 = 𝜇 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝜃𝜇)

Fig. 8: The DDPG Actor architecture.

D. Reinforcement Learning architecture and its training
process

The Actor network consists of four fully-connected dense
layers, each layer consists of 64 neurons using a rectified
linear unit (ReLU) as activation function, the most common
type in neural networks. It receives the 8-dimensional state
vector st = (s

(1)
t , . . . , s

(8)
t ) extracted from the recent CSR

power signal Pt,CSR and generates the action vector a with
the signals (a(1), a(2)) defined in Eq. 3 to be propagated
further to the bunch-by-bunch interface. The neural network
architecture is shown in Fig (8).

The training method of the Actor is based on the policy
gradient algorithm. As shown in Fig (9), the training process
receives the state st from the buffer memory. The Actor
network converts st in the action a. The action a and state
st are propagated to the Critic network to evaluate the action-
value function Q(st, a).

Fig. 9: Training process of the Actor network and the actor
target network. The update rate of the Actor target network
is reduced by soft target update coefficient.

The hardware implementation of the policy gradient is
developed in order to accelerate the processing of the action-
value function Q(st, a). In the DDPG algorithm the loss
function is defined as the sign-inverted action-value function,
therefore the loss-functions is: −Q(st, a) [19]. Because the
training process will calculate all weights and biases of the
neural network shown in Fig (8) by minimization of the
the loss function −Q(st, a), the training of the network is

also reached by an increased quantity Q(st, a). Then the
new value of both, weights and biases are updated by the
backward propagation through the Actor network.

𝑞

𝑄 𝑠 , 𝑎 𝜃𝑄)

1st layer 2nd layer

…

64 Units 64 Units

𝑎1

… … …

64 Units 64 Units

3rd layer 4th layer

𝑎2

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

Fig. 10: The DDPG Critic network architecture.

In the DDPG algorithm additional target networks for
Actor and Critic are used to improve the stability of the
optimization and their output is denoted with a′ and Q′. The
Actor target network is implemented in the ARM processor.
It represents a copy of the Actor network with both weights
and biases updated with a rate reduced by a factor, the
so called "soft target update" coefficient. In the current
implementation the "soft target update" is set to 0.001. The
final step of the Actor training will be the update of the Actor
target with a reduced update rate, as shown in Fig (9).

The Critic network consists of four fully-connected dense
layers, where each layer consists of 64 neurons with a ReLU
activation function. The Critic network in DDPG receives
as input the state vector st and the action a and generates
the output Q(st, a) as shown in Fig (10). An overview of
the training mechanism of both the Critic and Critic target
networks is shown in Fig (11). It is implemented in the
ARM processors and is based on the Temporal-Difference
(TD) method.

Fig. 11: Training process of the Critic network and the Critic
target. The update rate of the Critic target network is reduced
by soft target update coefficient.

The Critic network reads the states st from the buffer
memory and a from the FPGA Actor and generates the
output function Q(st, a). At the same time, also the target
Critic reads the state st+1 and a′ action generated by the
Actor target network and generates Q′. The TD-error is then



calculated by the difference between Q(st, a) and the so-
called target value rt+γ(Q′). Here γ is the discount factor,
which is set to 0.9 [7]. This difference is used to evaluate the
loss function of the Critic network. Finally, the new values of
the weights and biases are updated by backward propagation
of the Critic network. Similar to the Actor training, a further
Critic target network is also implemented on the ARM
processor. It represents a copy of the Critic network, where
weights and biases are updated with a rate reduced by the
"soft target update" coefficient.

IV. SIMULATION SETUP

The simplified simulation setup shown in Fig (12) is used
to develop, study, and measure the performance of the RL
controller. To improve the flexibility during development, the
Actor and Critic DDPG inferences and training networks are
implemented as bare-metal applications on the ARM pro-
cessors of the HighFlex2 readout card. The bunch structure
and the CSR behaviour are simulated by the beam physics
simulator Inovesa, solving the Vlasov-Fokker-Planck (VFP)
equation [21]. Inovesa and the calculation of features and
reward function are executed on a PC, which is connected
to HighFlex2 by an Ethernet link as shown in Fig (12).

Fig. 12: Configuration of the simulation setup with High-
Flex2 and Inovesa CSR simulation. Compared to the targeted
implementation shown in Fig (7), feature extraction, and
calculation of the reward function are shifted to the PC,
while both the Actor and Critic are implemented at the ARM
processor.

The HighFlex2 board acts as a server and responds to the
demands of the environment (Inovesa Beam Dynamics). The
Actor network is responsible of generating the proper action
a, corresponding to an amplitude and frequency modulation
of the RF signal, which is applied to the Inovesa simulation.
Because the Actor network will be implemented as fast
inference engine on FPGA, the floating-point precision of
the neural network has been reduced from 32bit (FTP32) to

8 bit fixed-point values (INT8). This quantization increases
significantly the performance of the neural networks, while
preserving sufficient accuracy [22]. The comparison of the
hardware controller with reduced precision and the software
implementation with full precision demonstrates the validity
of this approach for the control of the CSR micro-bunching.
This can be seen in Fig. 13, further described in the next
section.

V. RESULTS

In this section the performance of the RL controller
implemented as shown in Fig (12) is presented. The re-
sults of hardware (FPGA), CPU, and GPU implementations
are compared. The measurements are intended to evaluate
several aspects of the proposed RL implementation: the
learning behaviour and its comparison with a Keras-RL
implementation executed on GPU, the latency during the
training phase, and the latency of the trained Actor.

Fig. 13: Comparison of the CSR power stabilization achieved
with the hardware implementation on FPGA and the soft-
ware RL controller.

The RL training is characterized using a defined starting
point and a well-defined terminal state. The complete se-
quence, from the starting state to the end state, is called
an episode. One episode is a sequence that contains all
states, actions, and rewards, ending with the terminal state.
Fig (13) shows the CSR behaviour of a single episode during
the training phase. For each time step, a new value of the
amplitude modulation is generated by the Actor inference
and is applied to the RF cavity. As a result of the amplitude
modulation, the time behaviour of the fast CSR dynamics
changes as shown in the plots of Fig (13). As the RL
controller starts to interact with the environment and to
learn from it, the CSR fluctuation starts decreasing and
the rewards from the environment increase. The episode is
terminated when the fluctuation of the CSR reaches a certain
programmable threshold. The threshold value and its effect
on the learning phase is defined according to the minimum
reward that the RL agent reaches. More than 3500 episodes
have been simulated with Inovesa where for each episode
the RL agent learns how to interact with the accelerator.



Further studies are required to reach long-term stability of
the demonstrated mitigation. This preliminary result shows
that the DDPG algorithm and its hardware implementation
are able to learn from the simulation environment. The com-
parison of the hardware implementation and Keras on GPU
in Fig (13) shows a similar behaviour. The RL framework
developed on FPGA, that should approximate the behaviour
of the software implementation, works as expected. Fig (14)
shows the comparison between the amplitude modulation
generated by the Actor on HighFlex2 and on GPU.

Fig. 14: Comparison of the RF amplitude generated by the
RL controllers implemented on FPGA and in software.

The performance of both the training latency and the
Actor latency of the proposed RL have been compared with
the Keras-RL implemented on CPU and GPU. Each training
process has been repeated 50 times and the average of the
latency is calculated. Table (I) shows the resulting processing
times for DDPG for the KARA application. The GPU has
the worst performance, with a mean latency of 6037 µs,
and a large standard deviation (STD) of 55 µs. The results
of CPU and ZYNQ differ in mean and STD. The ZYNQ has
the lowest training latency with only 1648 µs and the CPU
has about 1800 µs. Although the average one-batch training
time is similar at CPU and ZYNQ, the ZYNQ values are
fluctuating less than the CPU values. The ZYNQ has a STD
of only 0.1343 µs while the CPU varies by ∼ 16 µs STD.

TABLE I: Comparison of training and inference performance
of ZYNC, CPU and GPU.

Property ZYNC CPU GPU
Training performance

mean 1648 µs 1800 µs 6037 µs
STD 0.1343 µs 16 µs 55 µs

Inference performance
mean 16.932 µs 200 µs 557 µs
STD 0 µs 3.52 µs 19 µs

The GPU inference time takes about 557 µs with 19 µs
STD and the CPU inference time is 200 µs with 3.52 µs
STD. The FPGA inference time is measured by Vivado HLS,
with a fixed latency 4233 clock cycle at 4 ns clock period.
Thus, the ZYNQ inference is expected to be 16.932 µs with
no STD.

VI. CONCLUSION

Driven by the self-interaction of electrons at high currents
in short bunch mode, the micro-bunching instability in
storage rings results in a fast and dynamic perturbation of
the longitudinal charge distribution, leading to fluctuations
of the emitted CSR. The goal is to stabilize the CSR
emitted in the THz range by controlling the longitudinal
phase space dynamics of the beam. To establish extensive
control over the dynamics, a fast feedback loop based on
RL processing is proposed and developed, which reacts to
small changes in the charge distribution and adjusts the
parameters of the RF system accordingly. In this paper, two
major steps towards a full control of the micro-bunching
instability are presented: the overall closed-loop hardware
design for the KARA experimental setup and the perfor-
mance evaluation using the physics simulation Inovesa. To
validate the concept, the full simulation of the physics of the
beam, including the fast dynamics of the THz emissions, has
been set up using Inovesa. It interacts with the HighFlex2
(RL agent) to mimic the micro-bunching instability. The RL
ZYNQ implementation on HighFlex2 has been compared
with the CPU/GPU inference based on Keras-RL. Both RL
implementations show a similar behaviour and same trend
of reward collection. The result confirms that the developed
RL framework to deploy a RL on ZYNQ devices is working
as expected. Furthermore, the comparison shows a drastic
reduction of the training time compared to the Keras-RL on
CPU/GPU. Moreover, a very-low and fixed latency is guar-
anteed when the Actor inference is deployed on the FPGA,
which ensures a reliable feedback for physics experiments.
Given the generality of the approach and the immanent
capability to learn from interaction with an environment,
the implementation reported in this paper could potentially
be employed to control the fast beam dynamics at other
accelerator facilities.

REFERENCES

[1] A.-S. Müller, “Accelerator-based sources of infrared and terahertz
radiation,” Reviews of Accelerator Science and Technology, vol. 03,
no. 01, pp. 165–183, 2010. [Online]. Available: https://doi.org/10.
1142/S1793626810000427

[2] M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum,
“DOE/NSF/NIH Workshop on Opportunities in THz
Science,” Washington, DC (United States), 2004, Available:
https://science.osti.gov/-/media/bes/pdf/reports/files/DOE-NSF-NIH_
Workshop_on_Opportunities_in_THz-Science_rpt.pdf.

[3] M. Brosi, J. L. Steinmann, E. Blomley, E. Bründermann, M. Caselle,
N. Hiller, B. Kehrer, Y.-L. Mathis, M. J. Nasse, L. Rota et al.,
“Fast mapping of terahertz bursting thresholds and characteristics at
synchrotron light sources,” Physical Review Accelerators and Beams,
vol. 19, no. 11, p. 110701, 2016.

[4] T. Boltz, T. Asfour, M. Brosi, E. Bründermann, B. Härer, P. Kaiser,
A.-S. Müller, C. Pohl, P. Schreiber, M. Yan et al., “Feedback design
for control of the micro-bunching instability based on reinforcement
learning,” in 10th Int. Partile Accelerator Conf.(IPAC’19), Melbourne,
Australia, 19-24 May 2019. JACOW Publishing, Geneva, Switzer-
land, 2019, pp. 104–107.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[6] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.



[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” 2011.

[9] Y. Shoji and T. Takahashi, “Coherent synchrotron radiation burst from
electron storage ring under external rf modulation,” in Conf. Proc.,
vol. 806233, no. EPAC08-MOPC048, 2008, p. MOPC048.

[10] J. L. Steinmann, Diagnostics of Short Electron Bunches with THz
Detectors in Particle Accelerators. KIT Scientific Publishing, 2019.

[11] Advanced Compound Semiconductor Technologies (ACST) GmbH.
[Online]. Available: http://www.acst.de/

[12] Virginia Diodes, Inc. [Online]. Available: http://vadiodes.com/
[13] M. Caselle, L. A. Perez, M. Balzer, A. Kopmann, L. Rota, M. Weber,

M. Brosi, J. Steinmann, E. Bründermann, and A.-S. Müller, “Kapture-
2. a picosecond sampling system for individual thz pulses with high
repetition rate,” Journal of Instrumentation, vol. 12, no. 01, p. C01040,
2017.

[14] Xilinx, “Zynq ultrascale+ mpsoc product tables and product selection
guide,” 2016.

[15] M. Caselle, L. A. Perez, M. Balzer, T. Dritschler, A. Kopmann,
H. Mohr, L. Rota, M. Vogelgesang, and M. Weber, “A high-speed daq
framework for future high-level trigger and event building clusters,”
Journal of Instrumentation, vol. 12, no. 03, p. C03015, 2017.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 265–283.

[17] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New
York, NY, USA: ACM, 2014, pp. 675–678. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

[19] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[20] D. Teytelman, “igp12-720f,” https://www.dimtel.com/_media/support/
manuals/manual12_720f_print.pdf, 2019.

[21] P. Schönfeldt, M. Brosi, M. Schwarz, J. L. Steinmann, and A.-S.
Müller, “Parallelized vlasov-fokker-planck solver for desktop personal
computers,” Physical Review Accelerators and Beams, vol. 20, no. 3,
p. 030704, 2017.

[22] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Wittig, “Deep
learning with int8 optimization on xilinx devices,” White Paper, 2016.


