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Abstract

A promising application of Process Analytical Technology to the downstream pro-

cess of monoclonal antibodies (mAbs) is the monitoring of the Protein A load phase

as its control promises economic benefits. Different spectroscopic techniques have

been evaluated in literature with regard to the ability to quantify the mAb con-

centration in the column effluent. Raman and Ultraviolet (UV) spectroscopy are

among the most promising techniques. In this study, both were investigated in an in‐

line setup and directly compared. The data of each sensor were analyzed in-

dependently with Partial‐Least‐Squares (PLS) models and Convolutional Neural

Networks (CNNs) for regression. Furthermore, data fusion strategies were in-

vestigated by combining both sensors in hierarchical PLS models or in CNNs. Among

the tested options, UV spectroscopy alone allowed for the most precise and accu-

rate prediction of the mAb concentration. A Root Mean Square Error of Prediction

(RMSEP) of 0.013 g L−1 was reached with the UV‐based PLS model. The Raman‐

based PLS model reached an RMSEP of 0.232 g L−1. The different data fusion

techniques did not improve the prediction accuracy above the prediction accuracy of

the UV‐based PLS model. Data fusion by PLS models seems meritless when com-

bining a very accurate sensor with a less accurate signal. Furthermore, the appli-

cation of CNNs for UV and Raman spectra did not yield significant improvements in

the prediction quality. For the presented application, linear regression techniques

seem to be better suited compared with advanced nonlinear regression techniques,

like, CNNs. In summary, the results support the application of UV spectroscopy and

PLS modeling for future research and development activities aiming to implement

spectroscopic real‐time monitoring of the Protein A load phase.
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1 | INTRODUCTION

In biopharmaceutical downstream processing of monoclonal an-

tibodies (mAbs), a focus of Process Analytical Technology (PAT)

research has been on the monitoring of the Protein A load phase

(Feidl, Garbellini, Luna, et al., 2019; Feidl, Garbellini, Vogg,

et al., 2019; Thakur et al., 2020; Rüdt et al., 2017) as this appli-

cation promises the most economic benefits due to the high costs

of Protein A resin (Rolinger et al., 2020b). Economic improve-

ments may be achieved due to multiple aspects. In conventional

batch production, the Protein A column capacity is typically un-

derused. The acceptance range for the column loading density is

set such that it can be kept constant during the resin lifetime. A

dynamic termination of the load phase by detecting product

breakthrough allows one to use the optimal column capacity

throughout resin life time. Furthermore, real‐time PAT eliminates

the need for completing at‐ or off‐line titer measurements before

starting the downstream process resulting in a more streamlined

production. As pharmaceutical companies move towards con-

tinuous processes, real‐time monitoring of the Protein A load

phase becomes more interesting to support robust process con-

trol. In continuous Protein A chromatography, the effluent of a

first column is commonly loaded onto a second column, which

allows one to overload the columns without losing product. If a

continuous load stream with a variable mAb titer is used, mon-

itoring the product concentration in the breakthrough con-

tinuously reduces the dependence of the process on at‐ or off‐

line analytics and thus improves the process control.

Different spectroscopic sensors, like, ultraviolet (UV) (Rolinger

et al., 2020b; Rüdt et al., 2017), Near‐Infrared (NIR; Thakur et al.,

2020), and Raman (Feidl, Garbellini, Luna, et al., 2019; Feidl,

Garbellini, Vogg, et al., 2019), have been investigated for the purpose

of quantifying the mAb concentration in the column effluent with

varying success. On the basis of the literature data, UV spectroscopy

and Raman spectroscopy seem to be the most promising techniques

for the breakthrough monitoring of the Protein A load.

Raman spectroscopy has been successfully implemented to

monitor various attributes during the upstream process of mAbs,

including the mAb concentration in the complex cell culture fluid

(Abu‐Absi et al., 2011; Buckley & Ryder, 2017; Li et al., 2013, 2010).

A limiting factor for the application of Raman spectroscopy to the

downstream process is the long acquisition times to derive a good

signal‐to‐noise ratio. This is important, because process steps in the

downstream take hours in comparison to days during the fermenta-

tion (Rolinger et al., 2020a). Therefore, Feidl et al. (2019, 2019) ap-

plied advanced preprocessing of the spectra and mechanistic

modeling the prediction of the mAb concentration to overcome the

noise limitation of the Raman spectra due to short measurement

times.

For monitoring the downstream process, the application of UV‐

based PAT methods was proven to be successful for selective mAb

concentration measurements (Brestrich et al., 2018, 2015; Rolinger

et al., 2020b; Rüdt et al., 2017; Zobel‐Roos et al., 2017). Raman

spectroscopy has been proven to selectively quantify protein

(Wen, 2007) and different buffer components (Saggu et al., 2015),

which can be interesting for Ultrafiltration/Diafiltration (UF/DF)

steps and formulation. In comparison to Raman‐based techniques,

UV spectroscopy offers a higher measurement speed and a better

signal‐to‐noise ratio for quantification of proteins in aqueous solu-

tions with the drawback of less selectivity for different protein fea-

tures (Rolinger et al., 2020a). To compensate the lower selectivity and

thereby improve the prediction of the UV‐based PAT methods, dy-

namic background subtraction methods have been investigated to

remove the influence of process‐related impurities on the UV spectra

(Rolinger et al., 2020b; Rüdt et al., 2017). Another drawback of the

UV spectroscopy in comparison to Raman spectroscopy is the de-

tector saturation at high protein concentrations. To resolve this, a

flow cell with adequate pathlength or with variable pathlength needs

to be chosen. Raman spectroscopy has a larger working range due to

more possibilities in laser and detector settings to avoid the satura-

tion of the detector.

The comparison of the techniques with results from different

studies remains difficult as different sample conditions and different

methods for model optimization and model validation can influence

the results dramatically. Therefore, a final conclusion can only be

drawn, when using the different sensors on the same sample set and

by applying the same model methodology. An application to the same

sample set can be realized by serial in‐line measurements with both

sensors. This also enables the application of data fusion algorithms on

the multimodal data set. Data fusion from multiple sensors promises

advantages over data from a single source, like, the statistical ad-

vantage of improving the number of measurements and the improved

observability by combining multimodal measurement data (Liggins

et al., 2017). The development and use of chemometric data fusion

algorithms of multimodal spectroscopic sensors have been driven by

food science (Biancolillo et al., 2016; Borràs et al., 2015), but data

fusion is starting to be used in biopharmaceutical production as well

(Rolinger et al., 2020a). Up to the present, mostly low‐level data

fusion is used and a thorough investigation into the improved pre-

diction by data fusion methods in comparison to single sensor models

is missing.

In this study, Raman spectroscopy and UV spectroscopy are

evaluated based on their ability to quantify the mAb concentration in

the column effluent of the Protein A column. It is discussed what

molecular features the spectroscopic techniques measures to quan-

tify the mAb concentration of complex mixtures. Additionally, data

fusion techniques are applied to evaluate the benefit of two ortho-

gonal sensors. First, traditional data fusion techniques, which are

based on Partial‐Least‐Squares (PLS) modeling, are compared with

the base PLS models of the individual sensors. Special emphasis is put

on the considerations for variable and data block scaling, and on the

comparison to the single sensor models. In a second step, the ap-

plication of Convolutional Neural Networks (CNNs) as nonlinear re-

gression techniques is evaluated for Raman and UV spectroscopy.

Lastly, the potential of CNNs as a data fusion technique is explored

and compared with the traditional PLS‐based data fusion techniques.
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2 | MATERIALS AND METHODS

2.1 | Biologic material

All biologic material was stored at ∘5 C before experimentation after

delivery from our industry partner Sanofi‐Aventis. To obtain a vari-

able mAb concentration and a variable impurity profile in the load

material, the product containing Harvested Cell Culture Fluid (HCCF)

with a product concentration of 2 g L−1 (Feedstock 1) was mixed with

purified product (Feedstock 2) and three different mock HCCF so-

lutions (Feedstocks 3–5). One mock solution was cultivated with a

nonproducing cell line. The other two mock solutions were prepared

as flow‐through by preparative Protein A chromatography. These

two mock solutions were derived from HCCFs of two different cell

lines which produce two different mAbs, respectively. Before this

study, it was ensured that the Protein A flow‐through did not contain

antibodies in detectable concentrations (based on analytical Protein

A chromatography). For product spiking, the used mAb (Feedstock 2)

was purified to the second polishing step by our industry partner and

was concentrated up to 20 g L−1 to reduce dilution effects of the

impurities by addition of the concentrated product.

The product containing HCCF, purified mAb, and mock HCCFs

was filtered with a cellulose acetate filter with a pore size of 0.22μm

(Pall) before mixing. In Table 1, the used volumina of the different

stock materials for each run are shown. The composition of the

mixtures between the three mock materials was determined by Latin

Hypercube Sampling to provide a random multidimensional

distribution.

2.2 | Chromatography runs and sensors

All preparative runs were realized with an Äkta Pure 25 purification

system controlled by Unicorn 6.4.1 (Cytiva). The system was equip-

ped with a sample pump S9, a fraction collector F9‐C, a column valve

kit (V9‐C, for up to five columns), a UV‐monitor U9‐M (2mm path-

length), a conductivity monitor C9, a pH valve kit (V9‐pH) and an

I/O‐box E9. To monitor the breakthrough by Raman spectroscopy, a

MarqMetrix BioReactor Ballprobe (MarqMetrix) was inserted into an

in‐house made flow cell. The probe was connected to a HyperFlux

PRO Plus 785 Raman analyzer with Spectralsoft 2.8.0 (Tornado

Spectral Systems). The laser power during acquisition was set to

495mW with an acquisition time of 800ms and 10 acquisitions per

spectrum. The flow cell was placed after the conductivity monitor of

the Äkta system. In Figure 1 the flow cell is displayed. X‐, Y‐ and laser

calibration were done before the experiment according to the man-

ual. More information on the Raman measurement setup is given in

the Supporting Information Data A.

Additionally, an UltiMate 3000 Diode Array Detector (DAD)

equipped with a semipreparative flow cell (0.4 mm optical pathlength)

and operated with Chromeleon 6.8 (Thermo Fisher Scientific) was

connected to the Äkta Pure. The DAD was positioned between the

Raman flow cell and the V9‐pH valve.

For the PLS model calibration and validation, breakthrough ex-

periments with variable mAb titers in the feed were performed. The

mAb titers in the different load materials were 1, 1.5, 2, 2.5, and

3 g L−1. For each experiment, a prepacked 5mm× 50mm, MabSelect

SuRe column (0.982ml; Repligen) was first equilibrated for 5 Column

Volumes (CVs) with a 25mM Tris(hydroxymethyl)aminomethane

(TRIS) and 0.1 mM sodium chloride buffer at pH 7.4, and then loaded

with 100mg of mAb. At the beginning of the load phase, the DAD

equipped with a semipreparative flow cell (optical pathlength 0.4 mm)

was triggered to record absorption spectra between 200 and 800 nm

and the column flow‐through was collected in 200μl fractions, as

explained in more detail by Rüdt et al. (2017). An additional command

was inserted into the MATLAB script (MATLAB version R2019b from

the MathWorks Inc.) to trigger the Raman measurements over

Transmission Control Protocol/Internet Protocol (TCP/IP).

After the load phase, the column was washed for 4.5 CVs with

equilibration buffer, before the mAb was eluted with 20mM citric

acid at pH 3.6. A sanitization was conducted with 50mM sodium

hydroxide and 1mM sodium chloride for 5 CVs after each run.

2.3 | Analytical chromatography

Reference analysis of the collected fractions was performed using a

Vanquish Flex Binary High‐Performance Liquid Chromatography

(HPLC) system (Thermo Fisher Scientific) by analytical Protein A

chromatography. The system consisted of a Binary Pump F,

TABLE 1 Sample composition for the calibration runs 1–4 and the validation run 5 with volumes of the product containing HCCF
(Feedstock 1), purified mAb (Feedstock 2), mock HCCF (Feedstock 3), and flow‐through 1 and 2 (Feedstocks 4 and 5)

Run
number (ml) Data usage – HCCF (ml) mAb (ml)

Flow‐through
1 (ml)

Flow‐through
2 (ml)

mock
HCCF (ml)

Final mAb
concentration
(g L−1)

Run 1 Calibration 52.50 0.00 9.85 21.91 20.74 1.0

Run 2 Calibration 35.00 1.75 14.82 1.36 17.08 1.5

Run 3 Calibration 21.00 3.15 6.48 3.93 7.44 2.5

Run 4 Calibration 17.50 3.50 6.57 6.13 1.30 3.0

Run 5 Validation 26.25 2.63 2.01 12.65 8.96 2.0

Abbreviations: HCCF, Harvested Cell Culture Fluid; mAb, monoclonal antibody.
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F IGURE 1 Cut of the (a) and exploded view of the in‐house made flow cell, O‐ring, and MarqMetrix Ballprobe with welded flange (b). The
flow cell consists of a block of stainless steel with a PG 13.5‐sized threaded borehole to insert the Ballprobe and two boreholes for 1/16 inch
Äkta fingertight connectors

F IGURE 2 Methodology for the applied model building in low‐level, midlevel, and high‐level data fusion and, additionally, deep learning
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Split Sampler FT, Column Compartment H, and a Diode Array De-

tector HL. Chromeleon Version 7.2 SR4 (Thermo Fisher Scientific)

was used to control the HPLC. The collected fractions of all runs

were examined by analytical Protein A chromatography to obtain the

mAb concentrations. For each sample, a 2.1 mm× 30mm POROS

prepacked Protein A column (Applied Biosystems) was equilibrated

with 2 CVs of equilibration buffer, followed by an injection of 20μl of

sample. The column was then equilibrated with 0.8 CVs of equili-

bration buffer and eluted with 1.4 CVs of elution buffer. The flow

rate was 2ml min−1 for all phases and experiments.

Column equilibration was carried out using a buffer with 10mM

phosphate (from sodium phosphate and potassium phosphate) with

0.65M chloride ions (from sodium chloride and potassium chloride) at

pH 7.1. Elution was performed with the same buffer, but titrated to

pH 2.6 with hydrochloric acid. All buffer components were purchased

from VWR. The buffers were prepared with Ultrapure Water

(PURELAB Ultra, ELGA LabWater, Viola Water Technologies), fil-

trated with a cellulose acetate filter with a pore size of 0.22μm (Pall),

and degassed by sonification.

2.4 | Data analysis

Figure 2 shows an overview of the applied data analysis. First, the

sensor signals were gathered and combined with the mAb con-

centration. For the UV and Raman spectra, various types of pre-

processing were evaluated by two‐block PLS modeling.

Subsequently, the best preprocessing technique was applied to the

raw data resulting in the data used for both data fusion by PLS

modeling and CNN regression. These data were concatenated and

pretreated for low‐level data fusion by PLS modeling. Additionally the

data were used to build the base PLS model for each spectroscopic

technique. From the base models, the scores were concatenated and

pretreated for midlevel data fusion by PLS modeling. Additionally, the

predictions of the hierarchical models were taken for decision fusion

PLS modeling for high‐level data fusion. Further details on the raw

data analysis, PLS model calibration and evaluation, and CNN training

are given below.

2.4.1 | Raw data analysis

The recorded Raman and UV spectra, the measured mAb con-

centration by analytical chromatography, and run data from the Äkta

system were read in and processed with MATLAB R2019b (The

MathWorks Inc.). A background subtraction to remove the influence

of contaminants on the spectra was evaluated for both spectra sets

as described in Rolinger et al. (2020b). After the background sub-

traction, the spectra were averaged according to the fraction size

data from the Äkta. For the calibration/training of the different

models, Runs 1, 2, 4, and 5 were used as calibration data set. Run 3

was always used as external validation, because it is the center point

of the design space.

2.4.2 | PLS modeling

For the calibration of PLS models, SIMCA 13.0.3 (Sartorius) was used.

SIMCA applies a 7‐fold cross‐validation as internal validation, by

splitting the calibration data set into seven parts and leaving each

part out of the calibration once. SIMCA applies the Nonlinear Itera-

tive Partial‐Least‐Squares (NIPALS)‐algorithm for PLS model building

(Eriksson et al., 2006a). For the UV‐based model, no spectral pre-

processing was done except the previously explained subtraction of

the background. All spectra and the mAb concentration were pre-

treated by mean‐centering. The resulting model was chosen as the

base model for all PLS‐based data fusion efforts.

For the Raman‐based models, first, different spectral pre-

processing steps were evaluated to improve the model prediction and

linearity during calibration. This involved the use of an Extended

Multiplicative Signal Correction (EMSC) filter, first and second deri-

vation, baseline removal, and a background subtraction. Additionally,

the different spectral preprocessing options were compared in Solo

8.9 (Eigenvector Research Inc.) with the optimization tool. After the

evaluation of different preprocessing options, the best Raman model

was chosen as base data along with the UV model for comparing the

prediction quality and data fusion purposes.

Often data fusion is grouped into three different levels, namely,

low‐level, midlevel, and high‐level data fusion (Borràs et al., 2015;

Cocchi, 2019). In this study, the results of the different fusion levels

will be compared with each other. Low‐level data fusion is the con-

catenation of the preprocessed UV and Raman spectra. Midlevel data

fusion refers to additional variable selection before the concatenation

of the spectra. In this study, hierarchical PLS modeling will be used as

the main variable selection technique. With hierarchical PLS model-

ing, the score vectors of the base model are taken as input variables,

also referred to as “super variables,” for a new PLS model (Wold

et al., 1996). For high‐level data fusion, an output fusion of the base

PLS models was carried out by hierarchical PLS modeling.

The basis for successful data fusion is proper data alignment

(Liggins et al., 2017). Here, both data sets were already aligned

timewise and averaged according to the collected fractions before

preprocessing or concatenation. Due to the two‐dimensional nature

of the UV and Raman spectra, no dimension reduction before con-

catenation was necessary. However, the UV and Raman spectra

differ in the number of variables and in the total value of the vari-

ables. To prevent the greater influence of one data set onto the

model by either the total value of the variables or the number of

variables in the data set, proper scaling is important (Eriksson

et al., 2006a).

The preprocessing methods used in this study are mean‐

centering, unit variance scaling, and Pareto scaling. Mean‐centering

performs a subtraction of the mean value of a signal x̄ j (Equation 1)

from the measured values xij with i being the sample number and j

being the signal number. In case of unit variance scaling, the mean‐

centered value is divided by the standard deviation of the signal sj

(Equation 2) to account for any difference in the signal variance.

Pareto scaling is an intermediate between mean‐centering and unit
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variance scaling, as the mean‐centered values are divided by the

square root of the standard deviation sj (van den Berg et al., 2006).
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2.4.3 | CNN

The neural networks were built in Python version 3.6 (Python Soft-

ware Foundation) using NumPy version 1.18.5 (Harris et al., 2020),

pandas version 1.0.5 (McKinney, 2010), and TensorFlow version

2.2.0 (Abadi et al., 2015) as libraries. For all models, a hyperparameter

optimization was done via Bayesian optimization (Keras Tuner, ver-

sion 1.0.1; O'Malley et al., 2019).

The structure of the used CNNs may be broadly split into

convolutional blocks and a fully connected block. Every con-

volutional block consisted of a convolutional layer, a pooling

layer, and a dropout layer. The number of such convolutional

blocks was optimized in the range from 1 to 3 and from 1 to 2 for

the Raman‐ and UV‐based model, respectively. The window

width of the first convolutional layer was allowed to change from

60 to 130 for the Raman‐based model and from 4 to 30 for the

UV‐based model. To initialize the kernel of the first convolutional

layer of the Raman model, a first and second derivative Gaussian

wavelet was used. Thereafter, a dense layer with 1–52 neurons

was optimized. Swish was used as an activation function

(Ramachandran et al., 2017). As beta was not specified, Swish is

equivalent to a Sigmoid‐weighted Linear Unit. The output layer

was fixed with one densely connected neuron with a leaky rec-

tified linear unit (ReLu) activation function (alpha of 0.1) and a

bias. This was chosen due to the linearity of the ReLu function in

the positive domain and the attenuation of negative values. The

weights of the neurons were optimized with Adaptive Moment

Estimation (Adam; Kingma & Ba, 2017). The learning rate of Adam

optimizer was a further hyperparameter varied by Bayesian op-

timization. As loss function Mean Square Error (MSE) was used.

For the combined Raman and UV‐based CNN model, only a

hyperparameter optimization of an additional dense layer on top of

the individual dense layers was done to combine both models.

Bayesian optimization was used again with a range between 12 and

64 neurons in the dense layer and the same conditions on the

learning rate as for single sensor models

3 | RESULTS AND DISCUSSION

This paper focuses on a comparison of UV‐ and Raman‐based mon-

itoring of the Protein A breakthrough as well as the evaluation of data

fusion techniques for both sensor signals. UV data were pre-

processed as described by Rolinger et al. (2020b), which leads to a

significantly improved prediction as it suppresses absorption from

interfering co‐eluting species. For an analysis of the UV spectra

during the load phase, a comparison to elution spectra, and a detailed

discussion on the effects of the preprocessing, we refer to Rolinger

et al. In the following, the focus is set towards an analysis of the

Raman spectra and the comparison of the prediction quality based on

UV‐ and Raman‐based models. First, the observable features of

Raman spectra will be analyzed followed by a discussion on the

performance of the different PLS models for the Raman spectra and

data fusion. Finally, the results from the CNN models are introduced

and discussed for the individual sensors and the fused data.

3.1 | Raman spectra

Figure 3 shows the Raman raw spectra, the first and second deriva-

tives colored according to mAb concentration. For further data

analysis, only the raw spectra were used. The first and second deri-

vatives are plotted to show the influence of the background removal

on the spectra. It is interesting to note that the raw spectra show an

underlying baseline effect that increases with increasing run time.

The intensity of this effect varies for every feedstock. The back-

ground spectra for each run are shown in the Supporting Information

Data B. Therefore, when looking at multiple runs, the raw spectra are

not primarily sorted by mAb concentration but rather by run‐specific

baseline effects. For every individual run, a trend of increasing

baseline with increasing run time after the impurity breakthrough is

apparent. Within each run, the baseline increase is visually the

strongest effect over the run time in the spectra. The first derivative

mostly removes the baseline effects except for the steep increase

below 400 cm−1. The second derivative removes the baseline effect

completely. However, it also becomes obvious that very little change

remains in the spectra after removal of the baseline by derivation.

Additionally, the signal‐to‐noise ratio is decreased by the derivation.

In Figure 4 the Raman spectra over the course of Run 2 are

plotted to show the formation of the Raman bands over the process

time. The most prominent effect, which also partly correlates with

the mAb concentration, is the increase in background scattering. The

spectrum with the lowest overall intensities is the first spectrum of

the run, where only buffer is measured. The sapphire band at

418 cm−1 is the strongest band in the spectrum. No wavenumber‐

dependent intensity correction was performed. Otherwise the water

bands around 3000 cm−1 would be more prominent as well. Proteins

have low Raman scatter efficiencies (Rolinger et al., 2020a),

which makes the contribution of water in the spectrum more pro-

minent. The strongest protein bands seem to be caused by pheny-

lalanine (1006 cm−1), tryptophan (1360 cm−1), CH deformations
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(1421 and1468 cm−1; Rygula et al., 2013; Silveira et al., 2019) and

C–H stretching at 2952 cm−1 (Jiskoot & Crommelin, 2005). Overall,

with increasing run time there are more weak protein‐based peaks

present in the spectral range 500–1700 cm−1, which are corrupted by

noise.

Jiskoot et al. estimate the limit of quantification for proteins in

aqueous solutions to range between 1% and 5% (Jiskoot &

Crommelin, 2005) which corresponds to a concentration 10–50 g L−1.

Wen et al. claim that therapeutical proteins can be quantified from

1 g L−1 due to significant instrument improvements (Wen, 2007).

From the shown spectra, it seems that a quantification to lower

concentrations is possible with our setup. In general, the quantifica-

tion does not seem to rest on features generated by the protein

backbone, that is, the amid bands, but rather on bands related to

(a)

(b)

(c)

F IGURE 3 The raw (a), first derivative (b), and second derivative (c) spectra of the calibration runs. The spectra are colored by mAb
concentration
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aromatic groups and C–H vibrations. A selective quantification by

Raman spectroscopy between different protein species, based on

other protein structure elements than aromatic groups and C–H vi-

brations, in the investigated concentration range seems difficult due

to the low signal‐to‐noise ratio of the amide bands.

Figure 5 compares the raw signals of UV absorption at 280 nm

with the Raman intensity at 400 cm−1 over the run time. At a wa-

venumber of 400 cm−1, no relevant Raman scattering of proteins

exists (Rygula et al., 2013; Wen, 2007), that is, any change may be

considered a background effect. A distinct increase over the process

run time is visible for the Raman intensity similar to the trend of the

UV absorption. This background effect is sometimes attributed to the

fluorescence of cell culture components (Goldrick et al., 2020;

Whelan et al., 2012). However, the same background effect is seen in

aqueous protein solutions with increasing protein concentration

(Parachalil et al., 2018). As the intrinsic protein fluorescence does not

reach above 500 nm, the observed background effect is probably not

caused by fluorescence (Lakowicz, 2013). It seems more likely that

Rayleigh's scattered light is the incomplete blocking of the Rayleigh

scattered light by the notch filter and optical grating (Parachalil

et al., 2018). The increase in scattered light could also be attributed to

the change in refractive index, which is correlated to protein con-

centration. During the load phase, impurities with large molecular

weight (e.g., deoxyribonucleic acid [DNA] and Host Cell Proteins

[HCPs]) elute from the column and lead to an increased amount of

Rayleigh scattering, before the mAb breaks through.

3.2 | Comparison of UV‐ and Raman‐based PLS
models

For the UV‐based PLS model, it was previously established that a

background subtraction significantly improves the precision of the

UV‐based PLS model (Rolinger et al., 2020b; Rüdt et al., 2017). On

the basis of the high quality of the prediction, the conductivity‐based

background subtraction was chosen as preprocessing. No further

preprocessing was performed for the UV spectra.

For the calibration of the Raman‐based PLS model, different

preprocessing methods were evaluated. The model with the best

calibration results by cross‐validation was chosen as base model. The

tested preprocessing methods were conductivity‐based background

subtraction, derivatives, and baseline removal by extended multi-

plicative scatter correction and asymmetric Whittaker smoothing.

However, the raw data provided the best results during cross‐

validation. This could be caused by the noise increase in the data due

to a subtraction of a noisy background spectrum or due to the am-

plification of noise by derivation, respectively. It is also interesting,

that a baseline removal did not yield a better model compared with

the raw data. Apparently, the PLS model uses the background scat-

tering effect to improve the prediction quality.

In Figure 5, the calibration results of the UV‐based and the

Raman‐based PLS models are plotted and compared with the re-

ference analytics. Additionally, as discussed in Section 3.1, the UV

absorption at 280 nm and the Raman intensity at 400 cm−1 are

compared. The results of the UV‐based and Raman‐based PLS

models are listed in Table 2.

The UV‐based PLS model has a better prediction accuracy with a

higher coefficient of determination R2, a higher coefficient of determi-

nation during cross‐validation Q2, and a lower Root Mean Square Error of

Cross‐Validation (RMSECV). Regarding the Root Mean Square Error of

Prediction (RMSEP), the difference between the models is even more

pronounced. The RMSEP of the UV‐based PLS model is 0.013 g L−1

while it is 0.232 g L−1 for the Raman‐based PLS model. In Figure 6, the

model predictions are depicted. The UV‐based model prediction and the

reference mAb concentration show only minimal differences. The Raman‐

based prediction shows an offset to the reference mAb concentration.

Additionally, the difference between prediction and measured con-

centration increases starting at a mAb concentration higher than

F IGURE 4 Every 10th Raman spectrum of Run 2 is plotted and colored by the mAb concentration. The prominent bands in the spectra are
assigned to the generating species sapphire glass, water, buffer, and protein
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1.9 g L−1. This seems to be a nonlinear behavior. When looking at the

loadings of the Raman‐based PLS model, the first loading has a high

similarity to the background effect and the following loadings show

protein bands. It seems, that the PLS model uses both the background

effect and the protein bands to estimate the mAb concentration. Even

though the background effect increases with increasing mAb con-

centration, the background effect alone cannot be used as a sole pre-

dictor for the mAb concentration in this data set, because the initial

intensity of the background spectrum depends on the feedstock com-

position. The use of the background effect, which has an offset between

the different runs, could impede the linearity between spectra and protein

concentration. The deviation from the linearity between concentration

and certain Raman peaks could also be caused by the measurement with

the ball probe, the influence of the refractive index when protein con-

centration is increasing or inhomogeneities in the sample flow in the

flow cell.

In the performed experiments, the RMSEPs of both PLS models

are expected to be comparable with the RMSECV or lower, because

the validation run lays in the middle of the calibration design space.

For the Raman‐based model, the RMSEP is, however, higher

compared with RMSECV, which indicates an overfitting as the vali-

dation run should be in the center of the design space. The increased

RMSEP of the Raman‐based model could be caused by the relatively

high number of seven Latent Variables (LVs) in comparison to two

LVs used by the UV‐based PLS model.

It is also worth noting that the prediction of the Raman‐based model

appears to be more corrupted by white noise (less precise) than the

prediction of the UV‐based model. This indicates that the Raman‐based

prediction is more strongly affected by measurement noise than the UV‐

based predictions. Improvements in measurement quality of the Raman

spectra could thus potentially improve the prediction quality.

Additionally, the correlation of prediction of the Raman‐based

model and mAb reference concentration starts to deviate from the

linear relation, especially for Run 3 and mAb concentration above

1.9 g L−1 (see also Supporting Information Data D for an observed vs.

predicted plot). The UV‐based model shows only very little deviation

from the linear relation, probably caused by errors in the reference

analytic. The stronger deviation from the linear correlation of the

Raman‐based model could explain why a higher number of

LVs is necessary for the Raman‐based model in comparison to the

(a) (b)

(d)(c)

F IGURE 5 Results of the PLS model calibration for Raman and UV‐based PLS models. The UV absorption at 280 nm A280 (displayed as
dashed blue line) and Raman intensity at 400 cm−1 (displayed as a solid cerulean line) are compared with the results of the off‐line analytics for
mAb quantification (orange bars). The UV‐based PLS model prediction is illustrated as dashed orange line. The Raman‐based PLS model
prediction is illustrated as orange line. The four runs exhibited variable mAb titers in the feed (a) 1 g L−1, (b) 1.5 g L−1, (c) 2.5 g L−1, and
(d) 3 g L−1. mAb, monoclonal antibody; PLS, Partial‐Least‐Square; UV, ultraviolet
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UV‐based model. PLS models can approximate nonlinearities by in-

cluding additional LVs (Martens & Naes, 1992).

In summary, for the investigated experimental conditions, UV

spectroscopy is better suited for monitoring the mAb breakthrough

during Protein A chromatography than used Raman spectroscopy

setup. The UV‐based PLS model reaches a more than 10‐fold lower

RMSEP compared with the Raman‐based PLS model. While there

might still be chromatographic capture steps, where a Raman‐based

PLS model performs better (e.g., high mAb concentration and high

variation in UV absorbing background species), the distinctively lower

RMSEP of the UV‐based model indicates a competitive advantage for

most applications involving mAbs. The competitive advantage is

further supported by the simpler equipment requirements for UV

spectroscopy which may simplify implementation in production en-

vironments. Additionally, the used Raman setup might not work for

all feedstocks due to autofluorescence (Matthews et al., 2018). The

only solution in the case of large autofluorescence is to switch to a

longer laser wavelength by using a different equipment. As longer

laser wavelengths will cause a weaker Raman signal, the exposure

times need to be longer to achieve the same signal‐to‐noise ratio,

which might not be feasible for the typical measurement times in

chromatography.

TABLE 2 Input data, data fusion level, scaling, block scaling, R Q,2 2, RMSEC, RMSECV, RMSEP, and number of LVs for the PLS models

Input data
Data fusion
level

Hierarchical
level Scaling

Block
scaling R2 Q2

RMSEC
(g L−1)

RMSECV
(g L−1)

RMSEP
(g L−1)

Number
of LVs

UV – Base Center – 0.999 0.999 0.025 0.025 0.013 2

Raman – Base Center – 0.992 0.992 0.073 0.076 0.232 7

Both Low – Center – 0.986 0.986 0.100 0.101 0.290 6

Both Low – Pareto – 0.976 0.976 0.129 0.129 0.092 4

Both Low – Unit var. – 0.999 0.999 0.025 0.025 0.044 5

Both Low – Center 1/sqrt 0.987 0.987 0.096 0.096 0.155 4

Scores Mid Top Center – 0.976 0.975 0.013 0.131 0.433 4

Scores Mid Top Pareto – 0.986 0.986 0.100 0.100 0.313 3

Scores Mid Top Pareto 1/sqrt 0.990 0.990 0.082 0.082 0.231 3

Scores Mid Top Unit var. – 0.998 0.998 0.040 0.040 0.118 1

Scores Mid Top Unit var. 1/sqrt 0.998 0.998 0.040 0.040 0.129 2

Output High Top Center – 0.998 0.998 0.040 0.040 0.129 1

Output High Top Unit var. – 0.998 0.998 0.040 0.040 0.129 1

Abbreviations: LV, Latent Variable; PLS, Partial‐Least‐Square; RMSEC, Root Mean Square Error of Calibration; RMSECV, Root Mean Square Error of
Cross‐Validation; RMSEP, Root Mean Square Error of Prediction; UV, ultraviolet.

F IGURE 6 Results of the PLS model validation of Run 4 for Raman and UV‐based PLS models. The UV absorption at 280 nm A280 (displayed as
dashed blue line) and Raman intensity at 400 cm−1 (displayed as solid cerulean line) are compared with the results of the off‐line analytics for mAb
quantification (orange bars). The UV‐based PLS model prediction is illustrated as dashed orange line. The Raman‐based PLS model prediction is illustrated
as an orange line. mAb, monoclonal antibody; PLS, Partial‐Least‐Square; UV, ultraviolet
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3.3 | Data fusion for UV‐ and Raman‐based PLS
models

The results of the different data fusion levels and data pretreatments

are compared inTable 2. For low‐level data fusion, both spectra were

scaled individually and block scaling was eventually applied. With

only mean‐centering, an RMSEP of 0.290 g L−1 is achieved in com-

parison to an RMSEP of 0.092 g L−1 with Pareto scaling and an

RMSEP of 0.044 g L−1 with unit variance scaling. When comparing

the results of the low‐level data fusion models without block‐scaling,

it is noticeable, that the less influence the Raman data have on the

model prediction, the better the fused model gets. This is expected as

the solely UV‐based model has better performance than the corre-

sponding Raman model. Without scaling, the Raman spectra reach

intensities of more than 30,000 counts in comparison to the around

200mAU reached by the UV spectra. The absolute change in vari-

ables of the Raman spectra is larger as well due to the scale of the

spectra. When only applying mean‐centering, this larger variance in

the Raman spectra biases the PLS model to mostly include Raman‐

based signals into the first LVs (i.e., the high variance variables).

In contrast to mean‐centering, unit variance scaling additionally

divides each variable by their standard deviation. Therefore, the scale

of the variables gets removed. The advantage of unit variance scaling

is, that not a few variables dominate the total variance of all variables.

Thus, also variables with smaller variance and a good correlation to

the response may become relevant for model building. The dis-

advantage of the unit variance scaling is the noise inflation, which

usually reduces the performance of PLS models (van den Berg

et al., 2006). Pareto scaling is an intermediate between mean‐

centering and unit variance scaling as variables are scaled by

the square root of the standard deviation. When little is known

about the importance of the different blocks for the response

prediction, unit variance scaling seems a good option even though a

less accurate model is achieved than by only using the UV block for

prediction.

As the Raman spectra have 3101 variables in comparison to

the UV spectra with 171 variables, the contributed variance of

the Raman spectra to the complete X block is larger even after

unit variance scaling. To avoid this bias after preprocessing, the

different blocks can be multiplied by different weights. These

weights typically consist of a term to make the scale of the dif-

ferent blocks more even. Here, the mean‐centered blocks were

scaled by the reciprocal square root of the number of variables in

each block (Eriksson et al., 2006b). By block scaling, the RMSEP

of 0.290 g L−1 of the mean‐centered model was lowered to

0.155 g L−1 as a large number of variables from the Raman spec-

trum had less influence on the prediction.

As an approach for midlevel data fusion, hierarchical PLS

modeling was chosen. In hierarchical modeling, the individual

spectra are multiplied by the loadings of each LV to calculate the

scores of each spectrum. The different loadings of the UV‐ and

Raman‐based PLS model are displayed in the Supporting In-

formation Data C. When using hierarchical modeling, the same

consideration for the scaling are necessary as in low‐level data

fusion. Again, as with low‐level data fusion, the closer the scores

are scaled to unit variance, the lower the RMSEP becomes. With

only mean‐centering and midlevel data fusion, an RMSEP of

0.433 g L−1 is achieved in comparison to an RMSEP of 0.313 g L−1

with Pareto scaling and an RMSEP of 0.118 g L−1 with unit var-

iance scaling. Interestingly, the RMSEPs of the unit variance

scaled and Pareto scaled midlevel data fusion models are higher

than the original RMSEP of the Raman‐based PLS model. An ex-

planation for this could the low linearity of the Raman spectrum

with regard to the mAb concentration. The Raman‐based model

uses the background effect to a certain degree to allow for a

better prediction. With midlevel data fusion, the number of LVs

are generally lower and an approximation of the nonlinearities is

more difficult, because fewer colinear parameters are available

for the fit.

High‐level data fusion was realized as output fusion in this

study, where the predictions of the base models were fused by a

PLS model. In the case of output fusion, the scaling of the vari-

ables is not important as they are already on the same scale.

Therefore, different scaling methods, have the same result in our

case. An RMSEP of 0.118 g L−1 is achieved. This RMSEP is almost

the average of the two base models with leveraging the UV‐based

model more due to a regression coefficient of 0.503 in compar-

ison to 0.497. As an alternative to PLS, other techniques, like,

Bayesian belief networks could be used as well.

We conclude, that the best way of optimizing a prediction is

to choose the right sensor from the start (Andersen & Bro, 2010;

Hall & Steinberg, 2001). For the purpose of monitoring the mAb

concentration in the effluent of a Protein A column, UV spec-

troscopy is better suited than Raman spectroscopy due to a

higher sensitivity and better linearity. Often the limited se-

lectivity of UV spectroscopy is mentioned as a drawback, but for

this application case the sensitivity seems to be no issue possibly

due to the applied background subtraction. Even though data

fusion has been reported as a useful tool, when combining a good

sensor with a sensor with limited observation ability of the effect

in focus, data fusion can do very little beyond the capacity of the

best sensor. We therefore would like to issue a word of caution

on the application of data fusion for data sets with poor sensors

or without understanding the possible benefit of data fusion.

Even though we have seen an increasing body of literature where

data fusion is applied (Felfödi et al., 2020; Sauer et al., 2019;

Walch et al., 2019), data fusion methods should be considered

skeptically. If a sensor cannot quantify a concentration on its

own, a fusion with a different sensor will likely not lead to

meaningful results in regression. The risk of coincidental corre-

lations and overfitting is increased. In our case, the prediction

was always worse when combining UV and Raman spectra

than the UV‐based prediction alone. A solution could be the

application of nonlinear models, like, Artificial Neural Networks

(ANNs) to improve the prediction ability of the Raman models and

thereby the accuracy of the fusion models.
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3.4 | CNNs for UV and Raman data

Table 3 shows the hyperparameters after the Bayesian optimization.

Even though the UV‐based CNN and Raman‐based CNN were

given similar boundaries for the optimization, the optimum of the

UV‐based CNN has less convolutional layers, less filters, and

smaller window widths, which implies that less data ‘preproces-

sing’ is required for the UV‐based CNN. The first convolutional

layer in the Raman‐based CNN was initialized by wavelets which

imitate a first and second derivation. Otherwise the optimization

did not converge on an optimum of comparable quality as a PLS

model. The output of the convolutional layers for the UV‐ and

Raman‐based model are displayed in Section E. Figure 7 shows

the predictions of the UV‐based, Raman‐based, and combined

CNN model for the external validation run.

Table 4 lists the Root Mean Square Error of Calibration

(RMSEC) and RMSEP of the CNN models. The UV‐based CNN

predicts the mAb concentration accurately with an RMSEP of

0.013 g L−1. The Raman‐based CNN has a prediction, which is

more corrupted by noise in comparison to the UV‐based CNN.

The higher RMSEP of 0.220 g L−1 is not only caused by the in-

creased noise, but also by an offset. Both CNNs deliver com-

parable results to the base PLS models. The CNN with the

combined data had 21 neurons in the additional fully connected

layer after optimization. With this, an RMSEP of 0.050 g L−1 was

reached. The CNN with the combined data lays between the re-

sults of the individual models with regard to noise in the pre-

diction and RMSEP.

For the presented study, the use of CNNs in comparison to

PLS models only offers a limited benefit. The training of CNNs

needs more resources and wrong setting of the initial start con-

ditions can lead to a divergence of the training. In our case, the

training set with 1169 training spectra was bigger compared with

usual spectroscopic training sets. A lower amount of training

spectra will probably cause problems for CNNs due to the high

number of parameters.

4 | CONCLUSION AND OUTLOOK

In this study, Raman and UV spectroscopy have been compared in

their ability to predict the mAb concentration in the column effluent

during the load phase of the Protein A capture step. Additionally, data

fusion strategies based on PLS models and CNNs were presented and

compared with the single sensor models.

We conclude that UV spectroscopy achieves a better prediction

accuracy in comparison to Raman spectroscopy. UV‐ and Raman‐

TABLE 3 Hyperparameter found by Bayesian optimization for
the Raman and the UV‐based CNNs

Hyperparameter Raman UV

Number of convolutional layers 3 2

Window width convolutional layer zero 90 4

Pooling width convolutional layer zero 11 1

Number of filters in convolutional layer zero 8 2

Window width convolutional layer one 16 6

Pooling width convolutional layer one 1 1

Number of filters in convolutional layer one 8 8

Window width convolutional layer two 28 –

Pooling width convolutional layer two 1 –

Number of filters in convolutional layer two 6 –

Number of neurons in fully connected layer 46 31

Learning rate 0.001 0.001

Abbreviations: CNN, Convolutional Neural Network; UV, ultraviolet.

F IGURE 7 Results of the CNN model validation of Run 4 for
the Raman, UV‐based and combined CNN models. The UV‐based
model prediction (displayed as solid blue line), the Raman‐based model
prediction (displayed as solid teal line), and the combined model
prediction (displayed as solid cerulean line) are compared with the results
of the off‐line analytics for mAb quantification (orange bars). CNN,
Convolutional Neural Network; mAb, monoclonal antibody; UV,
ultraviolet

TABLE 4 RMSEC, RMSEP of the Raman, UV‐based and
combined CNNs

Input data RMSEC (g L−1) RMSEP (g L−1)

UV 0.019 0.013

Raman 0.078 0.220

both 0.047 0.050

Abbreviations: CNN, Convolutional Neural Network; RMSEC, Root Mean
Square Error of Calibration; RMSEP, Root Mean Square Error of
Prediction; UV, ultraviolet.
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based PLS models required two, respectively, seven LVs. The high

number of LVs of the Raman‐based PLS model may be related to

nonlinearities, which are more difficult to fit by the linear PLS model.

Of all fusion approaches, no model was better than the simple UV

PLS model or the corresponding CNN model, which both achieved an

RMSEP of 0.013 g L−1. Data fusion for regression purposes seems not

to be beneficial, if one sensor already provides a very good accuracy

and an additional sensor could only contribute noise. For Raman

spectroscopy, the application of CNNs in comparison to traditional

PLS models improved the prediction of the mAb concentration from

0.232 g L−1 (PLS model) to 0.220 g L−1. The training and optimization

of CNNs for both UV and Raman data was time‐consuming. The

success was dependent on establishing proper boundaries and

starting conditions for model optimization. In our opinion, it seems

generally not worth the effort to apply nonlinear models to the

monitoring of the mAb breakthrough, because a similar prediction

accuracy can be reached with traditional PLS models (Kjeldahl &

Bro, 2010).

For future technology evaluations for the implementation of real‐

time monitoring of the Protein A capture step, we consider UV spec-

troscopy to have a competitive advantage compared with Raman spec-

troscopy due to the better prediction quality and the simpler equipment.

Raman spectroscopy may be of interest, if alternative chemicals should be

monitored in the column effluent which does not have a UV absorption.
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