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a b s t r a c t 

A multi scale multi domain (MSMD) model for large format lithium-ion battery (LIB) cells is presented. 

In our approach the homogenization is performed on two scales (i) from the particulate electrodes to ho- 

mogenized electrode materials using an extended Newman model and (ii) from individual cell layer mate- 

rials to a homogenized battery material with anisotropic electrical and thermal transport properties. Both 

intertwined homogenizations are necessary for considering electrochemical-thermal details related to mi- 

crostructural and material features of electrode and electrolyte layers at affordable comput ational cost s. 

Simulation results validate the MSMD model compared to the homogenized Newman model for isother- 

mal cases. The strength of the MSMD model is demonstrated for non-isothermal conditions, namely for 

a 120 Ah cell discharged with four different cooling concepts: (i) without cooling (ii) with a base plate 

cooling (iii) with a tab cooling and (iv) with a side cooling. As one result, temperature gradients cause a 

local peak discharge up to 2.8 C for a global 2 C discharge rate. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The increasing demand for electric mobility results in the grow- 

ng relevance of large-format battery cells for electric vehicles. In 

his case, electrode potentials and temperatures become hetero- 

eneous at charging and discharging, as shown by Guo et al. [1] . 

odeling these heterogeneities for a lithium-ion battery cell (LIB) 

rom the macroscale, i.e. the surface temperature of the cell case, 

o the microscale, i.e. the state of charge (SOC) of a single active 

aterial particle, is a challenge. 

The widely accepted electrochemical LIB model is the homoge- 

ized Newman model [2] , which has been derived first by volume 

veraging and then formally by two-scale expansion. Herein, the 

istinctive features of a porous electrode structure are not spatially 

esolved. The potential of the solid active material phase and the 

iquid electrolyte phase are assumed to be continuous functions of 

ime and space coordinates. Thus, the simulation of ionic trans- 

ort is simplified to a one-dimensional transport equation, while 

he characteristics of the porous electrode structure are described 

y effective transport parameters. The lithium diffusion in the ac- 

ive material phase is considered by an additional model calcu- 

ating solid state diffusion in spherical particles. In this way, the 
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omogenized Newman model is a pseudo two-dimensional (P2D) 

odel, where one dimension is the electrode, and the other direc- 

ion is the effective spherical particle. The P2D model is state-of- 

he-art for calculating the electrochemistry in LIB batteries with a 

ow computational effort [3–9] . 

The Newman model considers transport phenomena in elec- 

rodes and electrode pairs only at the micrometer scale. Processes 

n larger length scales, such as heat or electronic transport in 

arge format battery cells, is disregarded. A way out are multi scale 

ulti domain (MSMD) models, as introduced by the battery mod- 

ling group at the National Renewable Energy Lab (NREL) about 

en years ago [10] . MSMD models calculate the electrochemistry on 

he micrometer scale and map e.g. the temperature distribution in 

he entire battery cell on the mesoscale at the same time, by com- 

rising separate solution domains for different length scales. Each 

omain uses its own independent system of the variables solved in 

hat domain. Commonly, the solution domains are (i) the cell level 

or physical processes in the 10 cm scale, (ii) the electrode level 

or electrochemical processes in the 100 μm scale and (iii) the (ac- 

ive material) particle level for the solid-state diffusion in the 1 μm 

cale. 

Two challenges remain for modeling large format cells: (i) a 

omplex model geometry representing hundred(s) of electrochem- 

cally active layers (ii) a physicochemical submodel requiring a 

ystem of nonlinear partial differential equations, i.e., as the P2D 
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Fig. 1. Illustration of the homogenization of (a) porous electrodes in the Newman model and (b) the internal layer structure in the MSMD approach. 
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odel. Electrochemical heterogeneities, always present in large for- 

at cells, would require an indefensible computational effort, if 

olved by a matrix of P2D submodels. A way out is using either 

implified model approaches or electrochemical submodels partly 

oupled to the MSMD framework [ 1 , 11–18 ]. Always, the chosen 

lectrochemical submodel has to guarantee high-quality simulation 

esults, especially at high C-rates. Evolving heterogeneities inside a 

arge format battery cell demand for a locally evaluated and fully 

oupled electrochemical submodel. 

There are commercial model frameworks as Batemo Cells 

19] or Simcenter BDS [20] , aiming an accurate modeling of whole 

attery cells and may use multi scale model couplings. But since 

sers only have restricted opportunities to insight, modify or ex- 

end the model equations, the scientific utility of these tools is lim- 

ted. 

Our MSMD model shall meet all of these above described de- 

ands as perfect as possible. The electrochemical submodel is us- 

ng an development of the Newman model by Ender [21] , which 

andles the active particles as spherical ones, but extends the P2D 

odel to a distribution of particle sizes. Thereby, the electrochem- 

cal coupling between different fractions of the particle size distri- 

ution is considered. The computational effort of our MSMD model 

s reduced by homogenizing the multilayer structure in large for- 

at cells. The detailed model description including field variables 

nd exchange variables is given in the following chapter 2. The pa- 

ameterization of our MSMD model to a large format cell (120 Ah) 

ith graphite anode and NCA/LCO blend cathode is presented in 

hapter 3. The model’s capability is demonstrated in the results 

ection, where a comparison with the Newman model is made for 

sothermal und non-isothermal cases as well as a simulation study 

omparing four different cooling conditions: (i) without cooling (ii) 

ith a base plate cooling (iii) with a tab cooling and (iv) with a 

ide cooling. 
2 
. Model description 

The multilayer structure in large format cells, i.e., electrodes, 

lectrolyte, separator and current collectors, is homogenized by 

dapting the approach of Newman and Tiedemann [2] . The 

chematic model structure is sketched in Fig. 1 . On the left- 

and side, the homogenization of porous electrode structures to 

 pseudo-two-dimensional (P2D) model according to Newman is 

hown. Here ϕ correponds to the electric potential, c to the lithium 

oncentration and i to the current density of solid phase (s), liq- 

id phase (l) and the charge transfer (ct) on their interface. On 

he right hand side the stacked layer structure of a LIB is anal- 

gously homogenized resulting in a “homogenized cell material”

ith anisotropic transport parameters in the MSMD model (rep- 

esented by the colored hatching). Here T represents the tem- 

erature, i ec the current density calculated by the electrochemical 

odel and q the heat source, while the superscripts refer to the 

node side (-) or the cathode side ( + ) 

Equivalent to the homogenization of porous electrode structures 

n the Newman model, the layered structure of the cell is treated 

s a homogenized superposition of the properties of all layers in 

he MSMD model. Thus, mathematically, each point of the cell con- 

ists simultaneously of positive and negative current collector, as 

ell as porous cathode, separator and anode layers and the idea 

f the homogenized porous electrode of the Newman model is 

ransferred to a homogenized cell material. Furthermore, follow- 

ng the Newman model, the transport properties of the materi- 

ls contained in the homogenized phase are represented by ef- 

ective transport parameters. However, a distinguishing feature is 

he directional dependence of these transport parameters. Since 

oth, electrical and thermal transport parallel to the layers, differs 

trongly from the transport perpendicular to the layers, anisotropic 

ffective transport parameters are introduced. In correspondence 
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Fig. 2. Model structure, field variables and exchange parameters of the MSMD model. 
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o the coupled diffusion model in the Newman model, a coupled 

lectrochemical model considers the transport and exchange pro- 

esses on the microscale. 

Our model is subdivided into three length scales: the cell level, 

he electrode level and the particle level, as shown in Fig. 2 . At cell

evel, the field variables temperature T and current collector po- 

entials ϕ + and ϕ − are calculated as well as the external boundary 

onditions (charge-/discharge currents and ambient heat transfer) 

re applied. These field variables on the cell level are averaged sec- 

ion wise and serve as boundary conditions for the electrode level. 

he electrode level is implemented through two extended homog- 

nized models according to Ender [21] for cathode and anode re- 

pectively, representing an electrochemical submodel that can rep- 

esent microstructural and material features of electrode and elec- 

rolyte layers including the impact of particle size distributions. 

t calculates the field variables of the potential in solid- and liq- 

id phase ϕ s and ϕ l as well as the lithium concentration in the 

lectrolyte c l . The resulting current density i ec and the generated 

eat q ec are calculated and returned to the cell level. At discrete 

ode points the solution of the field variables is further transferred 

o the particle level, where the diffusion in the particles and the 

harge transfer current density i ct through their surfaces is solved. 

he implementation of the three submodels is presented in the fol- 

owing. 

.1. Cell level 

.1.1. Electrical model 

The electrical model of the cell level calculates the potential of 

he current collectors. Thereby, it is distinguished between the po- 

ential of the negative current collector ϕ − and the positive cur- 

ent collector ϕ + . For each of the two current collectors the charge 

ransport is described by the ohmic law. 

 + = −σeff, + ∇ϕ + (1) 

 − = −σeff, −∇ϕ − (2) 
3 
here σeff , + and σeff , − are the direction-dependent effective con- 

uctivities of the associated current collector Eqs. (10) and ( (11) ) 

nd i + respectively i − are the corresponding current densities. The 

urrent from negative to positive current collector i ec is calculated 

y the electrochemical model and serves as current source in the 

ositive current collector and as a current sink in the negative cur- 

ent collector. 

 · i + = i ec (3) 

 · i − = −i ec (4) 

.1.2. Thermal model 

The temperature distribution within the cell level is calculated 

sing the transient heat conduction equation. 

effc p , eff

∂T 

∂t 
+ ∇ · ( −k eff∇T ) = q (5) 

Here, ρeff is the effective volume-averaged density, c p , eff is the 

ffective volume-averaged heat capacity, T is the temperature, and 

 eff is the effective thermal conductivity of the cell stack. The vol- 

me specific heat source q is composed of the ohmic heat in 

he current collectors and the heat source from the electrochem- 

cal processes q ec . The latter are calculated by the electrochemical 

odel. 

 = i + · ∇ϕ + + i − · ∇ϕ − + q ec (6) 

Ohmic losses at the cell tabs cause a significant heat source Q tab 

22] , which is approximated in the model by Eq. (7) . 

 tab = 

(
I 2 h tab 

w tab d tab 

)(
1 

σtab 

+ 

2 

σct 

)
(7) 

here I is the applied current at the tabs with the dimensions 

eight h x width w x thickness d, σtab represents the elec- 

rical conductivity of the tab material and σct is an equivalent 

onductivity which considers the electrical contact between the 

ab and the leading cable. The latter two values are taken from 

22] . 
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Fig. 3. Illustration of the cell level, the boundary conditions and the homogenized layered structure. 
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.1.3. Effective transport parameters of electrical and thermal model 

Fig. 3 shows the layered structure and the corresponding coor- 

inate system at cell level, wherein CC stands for current collector. 

or sake of simplicity a stacked layer structure is considered in this 

aper. The transport properties in x direction, perpendicular to the 

ayers, differ strongly to the properties in y and z direction, planar 

o the layer structure. In the x direction the transport properties of 

he individual layers can be approximated as a series connection 

f resistors. Therefore, the effective electronic respectively thermal 

onductivity in this direction is described by Eq. (8) . 

 x, eff = 

d −, cc + d − + d sep + d + + d + , cc 

d −, cc 

k −, cc 
+ 

d −
k −

+ 

d sep 

k sep 
+ 

d + 
k + 

+ 

d + , cc 

k + , cc 

(8) 

here d is the thickness and k the individual conductivity of the 

node layer (-), the cathode layer ( + ), the respective current col- 

ectors (subscript with cc) and the separator. In y and z direction 

he conductivity of the individual layers can be approximated as a 

arallel connection of resistors according to Eq. (9) . 

 j , eff = 

d −, cc k −, cc + d −k − + d sep k sep 

d −, cc + d − + d sep + d + + d + , cc 

+ 

d + k + + d + , cc k + , cc 

d −, cc + d − + d sep + d + + d + , cc 
; j = y, z (9) 

The separator is assumed to be electronically insulating, con- 

ucting no electronic current transport through the layers (in the 

-direction) which simplifies Eq. (8) for the case of electrical con- 

uctivity σ to: 

i , x , eff = 0 ; i = + , −; (10) 

Within the layers, only the corresponding current collector and 

he respective active material contribute to the electric current 

ransport, which simplifies Eq. (9) to: 

i , j , eff = 

d i , cc σi , cc + d i σi 

d −, cc + d −+ d sep + d + + d + , cc 

i = + , −; j = y , z 
(11) 

The effective heat capacity of the cell is calculated by multi- 

lying the effective density ρeff and the effective specific heat 

apacity c p , eff . The density is the mean value of the densities of 

he individual layers following Eq. (12) , wherein the densities of 

he porous layers are the mean value of the liquid phase with the 

olume fraction ε l and solid phase with the volume fraction ε s 
 Eq. (13) ). 

eff = 

∑ 

i ρi ·
d i 

d −, cc + d − + d sep + d + + d + , cc 

 = −, cc ; −; sep ; + ; + , cc 

(12) 

i , eff = ε s ρs + ε l ρl ; i = −, sep , + (13) 
4 
The effective specific heat capacity c p , eff considers the specific 

eat capacity c p , i , the density ρi and the thickness d i of each layer 

ollowing Eq. (14) . Eq. (15) applies to the specific heat capacity of 

he porous layers. 

 p , eff = 

∑ 

i ρi c p , i 
d i 

d −, cc + d −+ d sep + d + + d + , cc ∑ 

i ρi 
d i 

d −, cc + d −+ d sep + d + + d + , cc 

 = −, cc ; −; sep ; + ; + , cc 

(14) 

 p , i = 

ε s ρs c p , s + ε l ρl c p , l 

ε s ρs + ε l .ρl 

; i = −, sep , + (15) 

.1.4. Boundary conditions 

As indicated in Fig. 3 , the boundary conditions of the model 

re the applied current on the positive tab I tab , + and the applied 

otential at the negative tab, which is usually set to ϕ tab , − = 0 . 

n addition, the initial and ambient temperature T ext of the cell 

s assigned and the heat transfer coefficient h therm 

according to 

q. (16) can be defined individually on each outer surface. 

 ext = h therm 

( T − T ext ) (16) 

.2. Electrode and particle level 

The extended homogenized (P2D) model according to Ender 

21] is the electrochemical submodel in our MSMD framework. In 

ontrast to the Newman model, the particle size distribution of the 

pherical particles is considered herein. Thereby, the electrochem- 

cal coupling between different sized active material particles, of- 

en a cause of inhomogeneities in technical electrodes, is included. 

he relevance for discharge was shown by Ender [21] for anode 

tructures and by Schmidt et al. [23] for cathode structures, but is 

mitted in this paper. The extended homogenized (P2D) model is 

epicted in Fig. 4 . The electrode pair level describes the electronic 

 ionic current flow and the electrolyte diffusion between the cur- 

ent collectors. The particle level considers the charge transfer re- 

ction at the electrolyte / active material interface and the solid- 

tate diffusion in the active material. 

The electrode pair level is further subdivided into cathode d + , 
eparator d sep , and anode d − domain. Therein, i s corresponds to 

he electronic current density in the solid phases of the electrode 

ayers. It should be noted that there are two i s values for the pos- 

tive and the negative electrode domains. As the separator is elec- 

ronically insulating, i s is set to zero in this region. The ionic cur- 

ent density i l is considered in the separator as well as in the 

orous electrodes as they are all soaked with electrolyte. 
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Fig. 4. Model structure of the extended homogenized model. 
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Fig. 5. Model parameterization: (a) outer dimensions and capacity (b) open circuit 

voltage of the NCA/LCO cathode (c) open circuit voltage of the graphite anode. 

D

O

c

∂x ∂x 
At the particle level the lithium diffusion is calculated for dif- 

erent particle sizes at every node of the discretized electrode do- 

ain. This results in particle size dependent surface concentra- 

ions c s , i and consequently different charge transfer current densi- 

ies i ct , i . The specific surface-weighted (A spec ) sum of the individ- 

al charge transfer current densities gives the total charge trans- 

er current i ct , which serves as the coupling condition to the elec- 

rode pair model. The detailed model description and the underly- 

ng equations are presented below. 

.2.1. Transport processes in the electrolyte phase 

The processes in the electrolyte phase are described by the the- 

ry of concentrated binary electrolyte, as developed by Newman 

nd Thomas-Alyea [24] . The conservation of mass in the electrolyte 

hase leads to: 

∂c l 
∂t 

= 

∂ 

∂x 

(
D l , eff

∂c l 
∂x 

)
− i l 

F 

∂t + 
∂x 

− 1 − t + 
F 

i ct (17) 

here c l is the lithium concentration in the electrolyte, D l , eff is 

he effective diffusion coefficient in the electrolyte, F is the Faraday 

onstant, t + is the transference number and i ct the charge transfer 

urrent density. 

The electrolyte current density is described by the charge bal- 

nce in the electrolyte: 

 l = −κeff

∂φl 

∂x 
+ 

2 κeffR g T 

F 

(
1 + 

∂ ln f 

∂ ln c l 

)
( 1 − t + ) ∇ ln c l − i ct (18) 

here κeff is the effective ionic conductivity, φl the potential and 

∂ ln f 
∂ ln c l 

is the thermodynamic factor of the electrolyte. R g is the uni- 

ersal gas constant. 

.2.2. Transport processes in the active material phase 

The diffusion in the active material is based on the assumption 

f spherical particles. Thus, Fick’s law can be formulated as a one- 

imensional problem by transformation into spherical coordinates 

s shown in Eq. (19) . This equation has to be solved separately for

ach of the N particles in the considered particle size distribution. 

urther, c s , i is the lithium concentration in particle i , and D s is the 

iffusion coefficient in the active material. The individual charge 

ransfer current density i ct , i defines the flux of lithium-ions at the 

uter surface of each particle and determines the boundary condi- 

ion for the diffusion equation according to Eq. (21) . Therein, the 

ux of lithium-ions must be scaled from the surface-volume ratio 

f a sphere ( 3 /R i ) to that of the active material (A spec , i /ε s , i ). 

∂c s , i 
∂t 

= 

∂ 

∂r i 

(
D s 

∂c s , i 
∂r i 

)
+ 

2 D s 

r i 

∂c s , i 
∂r i 

for i = 1 , . . . , N (19) 
5 
 s 
∂c s , i 
∂t 

= −A spec , i R i 

3 ε s , i 

i ct , i 

F 
(20) 

The electron transport in the active material is described by 

hm’s law along the x-axis, where σs , eff is the effective electronic 

onductivity in the solid phase: 

∂ 
(

σs , eff 

∂ φs 

)
= i ct (21) 



A. Schmidt, D. Oehler, A. Weber et al. Electrochimica Acta 393 (2021) 139046 

Table 1 

Thermal transport parameters of the battery components for T = 25 °C and a state of charge 

of SOC 50 %. 

thermal conductivity density specific heat capacity 

k / W(m �K) −1 ρ / kg m 

−3 c p / J (kg �K) −1 

anode bulk - 2071 [a] 843 [a] 

cathode bulk - 4136 [a] 723 [a] 

anode coating 3.63 [a] 1812 [a] 981 [a] 

cathode coating 0.58 [a] 3392 [a] 815 [a] 

separator 0.3 [c] 

[25] 

1072 1649 [b] 

electrolyte 1285 [b] 1648 [b] 

current collector anode 401 [26] 8960 [26] 384 [b] 

current collector cathode 236 [26] 2700 [26] 904 [b] 

[a] experimentally determined value, temperature and SOC dependent. 
[b] experimentally determined value, temperature dependent. 
[c] combined value as wetted separator 

Table 2 

Thermal and electrochemical parameters of the modeled graphite anode, LCO/NCA-Cathode and separator. 

parameter symbol anode separator cathode 

layer thickness d / μm 90 [27] 25 [d] 75 [28] 

volume fraction of active material εs / - 0.75 [27] - 0.569 [28] 

porosity εl / - 0.25 [27] 0.5 [d] 0.261 [28] 

tortuosity of pore space τl / - 4.17 [27] 1.4 [d] 4.29 [28] 

volume specific active surface area A spec / μm 

−1 0.31 [27] - 0.65 [28] 

mean particle radius r p / μm 6.27 [21] - 4.06 [28] 

electric conductivity σ / S m 

−1 2203.8 [29] - 166 [e] 

reaction rate constant k BV / m s −1 4.038 •10 −8 [27] - 2.319 •10 −9 [27] 

activation energy of charge transfer reaction E act , ct / eV 0.52 [27] - 0.52 [27] 

area specific resistance of solid electrolyte interface R SEI / � cm 

2 86.769 [27] - - 

activation energy of solid electrolyte interface E act , SEI / eV 0.82 [27] - 0.82 [27] 

activation energy of solid-state diffusion E act , D / eV 0.36 [30] - 0.33 [31] 

entropy term d E eq /dT / V K −1 f(SOC) [32] - f(SOC) [33] 

[d] assumed value, based on experience and literature values of different separators. 
[e] measured value 

2

p

p
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.2.3. Charge transfer reaction 

As coupling condition between active material and electrolyte 

hase the charge transfer kinetics according to Butler-Volmer is ap- 

lied Eqs. (22) and ( (23) ). These are as well evaluated individually 

or each particle size. Here, k BV corresponds to the reaction rate 

onstant, α to the charge transfer coefficient, η to the overpoten- 

ial of charge transfer reaction, R SEI to the area specific resistance 

f solid electrolyte interface and φocv to the open circuit poten- 

ial of the electrode. The charge transfer currents of the individual 

articles i ct , i are then summed up according to Eq. (24) to calcu- 

ate the total charge transfer current density, which appears in the 

qs. (17) , (18) and (21) . Here, the active surfaces fraction of each

articular particle size A spec , i / A spec is taken into account. 

 ct , i = F · k BV · c αl · c 1 −α
s , i 

(
1 − c s , i 

c s , max 

)α

·
(

exp 

(
( 1 − α) F ηi 

R g T 

)
− e xp 

(
−αF ηi 

R g T 

))
(22) 

i = φs − φl − R SEI · i ct , i − φocv (23) 

 ct = 

∑ 

i 

A spec , i · i ct , i 

A spec 
(24) 

.2.4. Effective transport parameters and temperature dependence 

The properties of the porous microstructure are included in the 

odel by effective transport parameters, considering the volume 

raction of the respective phase ε and the lengthening of the trans- 

ort path due to the tortuosity τ according to Eqs. (25) –(27) . 

eff = 

ε s 
τ

σ (25) 

s 

6 
eff = 

ε l 
τl 

κ (26) 

 l , eff = 

ε l 
τl 

D l (27) 

The temperature dependence of diffusion, charge transfer and 

EI resistance are implemented by the Arrhenius Eq. (31) . The cor- 

esponding quantities X are calculated based on their value at 

5 °C, where E act is the activation energy and k b is the Boltzmann 

onstant. 

 = X 25 ◦C exp 

(−E act 

k b T 
− −E act 

k b 298 . 15 K 

)
(28) 

. Experimental 

The model is parameterized to a prismatic large format (120 

h) cell with graphite as anode material and an NCA/LCO blend 

s cathode material. All model parameters are given in Fig. 5 , 

able 1 and Table 2 . Whereas microstructural parameters as well as 

ost electrochemical and thermal parameters are measured by our 

roup [ 21 , 27–29 , 34 ], further necessary parameters are from litera- 

ure [ 25 , 26 , 30–33 ]. In the following, the measurement or selection

f the model parameters will be discussed in more detail. 

.1. Cell level 

In this section the experimental determination of the ther- 

al transport properties according to Table 1 is presented. While 

able 1 shows the thermal transport properties of the battery com- 

onents for a state of charge (SOC) of 50 % and a temperature of 



A. Schmidt, D. Oehler, A. Weber et al. Electrochimica Acta 393 (2021) 139046 

Table 3 

Device and temperature range of the measured thermal parameters. 

parameter symbol device temperature range 

density of the solid phase in the 

porous electrodes 

ρs gas pycnometer of the type Ultrapyc 1200e 

from Quantachrome 

10 °C to 40 °C 

density of the electrolyte ρl density meter DMA5000 from Anton Paar 10 °C to 60 °C 
heat capacity of the current collector c p , cc differential dynamic scanning calorimetry 

(DSC) Q2000 from TA-Instruments 

-20 °C to 60 °C 

heat capacity of the solid phase 

material of the porous electrodes 

c p , s differential dynamic scanning calorimetry 

(DSC) Q2000 from TA-Instruments 

-20 °C to 60 °C 

heat capacity of the electrolyte c p , l differential dynamic scanning calorimetry 

(DSC) Q2000 from TA-Instruments 

-20 °C to 60 °C 

Fig. 6. Literature values of lithium diffusion coefficients D s for NCA, LCO and graphite as function of the lithiation of the active materials [45–63] . 
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5 °C, these values have been measured and implemented in de- 

endence of the temperature and the state of charge. 

The thermal conductivity of the materials is obtained by mul- 

iplying the density ρ , the specific heat capacity c p as well as the 

hermal diffusivity a according to Eq. (29) [35] . The devices and 

emperature ranges for the experimentally determined density and 

eat capacity parameters are listed in Table 3 . A more detailed de- 

cription of the methodology for the determination of the specific 

eat capacity of porous electrode coatings is given by Loges et al. 

36] . 

 = ρ · c p · a (29) 

For the challenging task of determining the thermal diffusivity 

nd the effective thermal conductivity of porous electrodes a new 

xperimental method was developed using a 467-HyperFlash from 

etzsch in a temperature range of -20 °C – 60 °C. Hereby, the elec- 

rode sample is thermally excited on the front side by a light pulse 

f a xenon flash lamp. The induced heat pulse penetrates the sam- 

le and an infrared sensor detects the temperature increase of the 

ackside [ 37 , 38 ]. The average thermal conductivity is determined 

y evaluating the resulting time-dependent signal using a suitable 

odel. 

The commonly used adiabatic model of Parker et al. [37] as- 

umes that the energy of the laser pulse is completely absorbed 

n the front of the sample without penetrating the material. This 

oes not hold true for porous electrodes since the xenon flash par- 

ially penetrates surface and leads to a premature temperature in- 

rease on the sample backside. Therefore, the McMasters pene- 

ration model [38] is applied to determine the thermal diffusiv- 

ty of the electrode stack, which considers the thickness of the ab- 

orption layer, predicts the premature temperature increase and is 

herefore suitable for porous electrode stacks. Liquid electrolytes 

vaporate even below room temperature. For the considered tem- 

erature range, helium ( ∼0,15 W (m �K) −1 [39] ) has a similar ther-

al conductivity as the electrolyte (e.g. LP30: ∼0,18 W (m �K) −1 

40] ) and is therefore found to be a suitable substitute filling fluid. 

ue to the negligible density of helium (0,16 kg m 

−3 [41] ) com- 

ared to the bulk material of the coating ( ρs � ρ ), the effective 
He 

7 
hermal conductivity of the electrode sample ( Eq. 30 ) results by 

nserting the Eqs. (14) and (15) in Eq. (29) . 

 sample = a sample 

(
ε s ρs c p , s 

d coating 

d sample 

+ ρcc c p , cc 
d cc 

d sample 

)
(30) 

The total thermal resistance of the electrode sample can be ap- 

roximated by a series connection of thermal resistances of the 

urrent collector and the electrode coating. Therefore, with knowl- 

dge of the thermal conductivity of the current collector material, 

q. (31) yields the effective thermal conductivity of the electrode 

oating. 

 coating = 

d coating 

d sample 

k sample 
− d cc 

k cc 

(31) 

.2. Electrode and particle level 

In the following the parameterization of the electrochemical 

odel according to Table 2 is explained. The microstructure pa- 

ameters (volume fractions, porosity, tortuosity, active surface area 

nd particle size distributions) were obtained from focused ion 

eam (FIB) tomography [28] in case of the cathode and from X-ray 

omography [42] in case of the anode. 

The electronic conductivity of the active materials σs was de- 

ermined using the method described in [29] . The exchange coef- 

cient k BV is determined by combining electrochemical impedance 

pectroscopy (hereinafter referred to as EIS) with an equivalent cir- 

uit model fit, as described by Costard et al. [43] . The impedance 

pectra of the individual electrodes are measured in an in-house 

eveloped cell housing and fitted to a physical motivated trans- 

ission line model. The fit enables the determination of the charge 

ransfer resistance and, in the case of the anode, the SEI resistance 

f the electrode. With information about the active surface area 

f the electrode, the exchange current density and finally the ex- 

hange coefficient can be calculated. This method was applied in 

27] for the modeled material system at different tem peratures and 

hus not only the exchange current density and the SEI resistance 

ut also their activation energy was determined. 
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Fig. 7. Comparison of simulated discharge curves (a) and the respective model deviation (b) of the Newman model, the MSMD model with fixed temperature (isothermal) 

and the MSMD model including self-heating of the cell (non-isothermal). 
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The equilibrium potential in Fig. 5 b and c was measured in ex- 

erimental cells of the type ECC-PAT-Core from EL-CELL in half- 

ell configuration against metallic lithium. Slow charge/discharge 

xperiments with C/40 were performed four times in two individ- 

al experimental cells for each electrode. Thus, the reproducibility 

s well as the requirement for a quasi-static state of the electrodes 

as verified before averaging the curves to yield the equilibrium 

otential. 

The parameters for a solution of 1 M LiPF 6 in EC:EMC (3:7 w:w) 

re taken from [44] . Therein, functions for the description of the 

onic conductivity κ , the salt diffusivity D l , the thermodynamic fac- 

or ( 1 + ∂ ln f/∂ ln c l ) and the transference number t + are intro- 

uced as a function of temperature and salt concentration. These 

quations from [44] were implemented into the model without 

isplaying them here once again. 

In Fig. 6 literature values of lithium diffusion coefficients for 

CA, LCO and graphite are summarized. The literature values for 

CA and LCO range from 10 -7 cm ² s −1 [ 53 , 57 , 59 ] to 10 -12 cm ² s −1 

61–63] . Therefore, an average literature value of 10 -10 cm ² s −1 

 55 , 58 ] is chosen for the simulations in this work. The literature

alues for the diffusion coefficient in graphite also vary between 

0 -5 cm ² s −1 [46] and 10 -11 cm ² s −1 [47] . An average literature 

alue of 10 -9 cm ² s −1 is assumed according to Nishizawa [ 48 , 52 ].

t should be noted that these are by far the most uncertain param- 

ters applied in the model having a significant influence on the 

imulation results since low diffusion coefficients lowering the dis- 

harge capacity as shown in [21] . The comparative methodology of 

ooling concepts shown here is still applicable since all modeled 

ells use the same parameters. A more detailed discussion about 

he validity is given at the end of the results section. 

.3. Model implementation 

Our MSMD model was implemented in COMSOL Multiphysics 

.3 using the Batteries & Fuel Cells module, the Heat Transfer mod- 

le and the Transport of Diluted Species interface. The model setup 

s controlled by MATLAB via the COMSOL Livelink for MATLAB in- 

erface. Thereby the partitioning of the battery cell into sections, 

or each of which an electrochemical submodel is implemented 

compare Fig. 2 ), is fully arbitrary. In this work the cell is divided

nto 4 × 4 × 4 sections. Thus, 64 electrochemical submodels are 

olved in parallel when calculating the model. At cell level we use 

n extruded free quad mesh with 635 vertices, while the electrode 

evel is divided in 46 mesh elements, and each particle contains 

0 mesh elements. The resulting 66,384 degrees of freedom are 

olved fully coupled using MUMPS (multifrontal massively paral- 
8 
el sparse direct solver) with a relative tolerance of 10 −3 and BDF 

backward differentiation formula) free time stepping. The simu- 

ation of a complete discharge with this setup takes approximately 

7 min and 5 GB RAM on a standard laptop with an Intel i7-8550U 

PU (4 × 1.8 GHz). A subdivision into 3 × 3 × 3 electrochemical 

ections takes approximately 8 min and 3 GB RAM, while a model 

ith 5 × 5 × 5 electrochemical submodels takes approximately 

1 min and 9 GB RAM. For the shown cases, there was no signifi- 

ant improvement in accuracy between the 4 × 4 × 4 model and 

he 5 × 5 × 5 model. The resolution chosen in this paper there- 

ore represents a good trade-off between computing time and elec- 

rochemical resolution. Generally, the model provides short com- 

uting times and can be executed on standard PC’s and laptops. 

urthermore, the complex interactions between the temperature 

istribution and the local electrochemistry can be modeled, which 

ill be exemplified in two presented studies: A comparison of our 

SMD model with the Newman type P2D model for model valida- 

ion and a simulation study of four different cooling concepts for 

enchmarking. 

. Results and discussion 

.1. Isothermal and non-isothermal model comparison for 1 C 

nd 2 C discharge with the Newman model at 25 °C 

.1.1. Isothermal 

The correct implementation of our model is validated versus 

he Newman (P2D) model by using the model parameters (cf. 

able 2 ) for both. Since the Newman model does not provide ther- 

al transport paths and thus is isothermal, the temperature of 

he “MSMD model isothermal” is set to the initial temperature 

 ext = cons tant = 25 °C . The calculated discharge curves are com- 

ared in Fig. 7 a showing excellent agreement between the MSMD 

odel isothermal and the Newman model. Among them, the de- 

iation for 1 C is as small as 4.4 mV from SOC 100% to SOC 0%,

espectively 8.8 mV for 2 C. It originates from the ohmic drop 

n the current collectors, which is unconsidered in the Newman 

odel. 

.1.2. Non-isothermal 

The influence of the cell’s self-heating is demonstrated by a 

on-isothermal MSMD model calculation under adiabatic bound- 

ry conditions. 

The non-isothermal MSMD model shows significant deviations 

rom the isothermal approach with an increasing voltage differ- 

nce from -4.4 mV to 90.7 mV between SOC 100% and SOC 0%. 
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Fig. 8. Different cooling concepts: (a) no cooling (b) base cooling, (c) tab cooling and (d) side cooling, the resulting temperature distribution at the end of a 2 C discharge 

(e–h), and the average temperature progression (i) as well as the temperature inhomogeneity (j) during a 2 C discharge. 
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cf. Fig. 7 a and b). Naturally, the voltage differences further in- 

rease from -1 mV to over 200 mV at a discharge with 2 C. The

nderlying self-heating process elevates the averaged cell temper- 

ture from 25 °C to about 57 °C at 1 C, respectively 67 °C for 2 C

cf. Fig. 8 ). This goes hand-in-hand with decreasing internal resis- 

ances, which are considered in the non-isothermal MSMD model. 

Diffusion, transport and transfer of lithium and lithium-ions are 

mproved in the electrolyte, the active material and at the inter- 

aces between them. This is connected to a lower overvoltage and 

hus a higher discharge capacity. The distinct influence of the ther- 

ally activated processes on the battery behavior and thus the rel- 

vance of non-isothermal modeling will become even clearer in 

he next section. 

.2. Simulation study of different cooling concepts 

Four cooling scenarios are compared for a large format cell 

120 Ah) using the non-isothermal MSMD model: (i) without cool- 
9 
ng (ii) with a base plate cooling (iii) with a tab cooling and (iv) 

ith a side cooling (cf. Fig. 8 a–d). Case (i) as the simplest scenario

s only applicable for small charge and discharge rates. Case (ii) is 

 state-of-the art cooling concept which applies for numerous au- 

omotive applications because of its still simple and cost-effective 

ealization. The cases (iii) and (iv) are rather complex in realization 

ut are herein assessed to be more efficient and cause less thermal 

nhomogeneities. 

For comparison, a complete discharge is simulated, starting at 

 homogeneous temperature of T = 25 ◦C with a discharge rate 

f 2 C. In the no cooling scenario, adiabatic boundary condi- 

ions are applied, assuming the cell is surrounded by other cells 

ith the same temperature evolution. The other thermal bound- 

ry conditions are taken from Worwood et al. [64] : For base 

late cooling and tab cooling, the dissipation heat is carried 

ut by a liquid cooling system, assuming a heat pipe system 

ith a water glycol mixture. The heat coefficient at the empha- 

ized surfaces is 875 W m 

-2 K 

-1 . Side cooling is realized by an
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Fig. 9. (a) Cell voltage (b) SOC inhomogeneity and (c) C-rate inhomogeneity during 

2 C discharge for the different cooling concepts with marked characteristic time 

points t1-t4. 
ir-cooling system with an assumed heat transfer coefficient of 

0 W m 

-2 K 

-1 . 

Fig. 8 e–h presents the local cell temperatures after a 2 C dis- 

harge with different cooling concepts (i) to (iv). Fig. 8 i–j shows 

he related average temperature progression as well as the temper- 

ture inhomogeneity during a 2 C discharge. The inhomogeneity of 

OC, C-rate and temperature at a time t i is calculated according to 

q. (32) . 

X ( t i ) = max ( X ( t i , x, y, z ) ) − min ( X ( t i , x, y, z ) ) 
for X = T , SOC , C − rate 

(32) 

The no cooling case (i) results in the highest average tempera- 

ure of up to 67.4 °C, with a rather small inhomogeneity of about 

 K. The maximum temperature is located at the positive tab (the 

ight tab in the image). 

The base cooling case (ii) results in the lowest average temper- 

ture being the only concept staying below 50 °C. At the same 

ime, however, base cooling causes the largest inhomogeneity up 

o 25.6 K. The maximum temperature is located at the positive tab 

ith up to 58.8 °C, while the lowest temperature is at the bottom 

ith only 34.3 °C at the same time. 

The tab cooling case (iii) results in an average temperature of 

p to 55.4 °C, caused by rather small cooling surfaces. The tem- 

erature inhomogeneities remain until SOC 50 % below 5 K. There- 

fter, a pronounced increase up to 16.4 K is predicted (cf. Fig. 8 j). It

ecomes obvious, that the temperature increases with the distance 

rom the tabs, the warmest area is at the bottom of the cell. 

The side cooling case (iv) has a similar average temperature 

ourse as the base cooling with a maximum of 51.1 °C. The tem- 

erature inhomogeneity raises up to 15.5 K, which is lowest for all 

ctively cooled concepts. The temperature gradient proceeds from 

he center to the outer cell surfaces, with the warmest point lo- 

ated at the positive tab. 

The non-isothermal MSMD model impressively differentiates 

etween the four cooling concepts. It is demonstrated, that calcu- 

ating the cell’s average temperature or measuring the cell’s tem- 

erature at a single point is not sufficient, as the spatial distribu- 

ion of the possible temperatures varies significantly. 

As a next step, consequences of the raising temperatures on 

he electrochemical cell behavior are presented. Fig. 9 . shows the 

ourse of (a) cell voltage (b) SOC inhomogeneity and (c) C-rate 

nhomogeneity during a 2 C discharge at four characteristic time 

oints t1-t4. 

The course of the cell voltage (cf. Fig. 9 a) is only minor influ-

nced by the chosen cooling concept. 

The SOC inhomogeneities are shown in Fig. 9 b. Base cooling has 

he highest maximum with up to 8.5 %, followed by 4.2 % for side

ooling, 2.9 % without cooling and 1.6 % for tab cooling. 

The C-rate inhomogeneities are shown in Fig. 9 c. The courses of 

o cooling, base cooling and side cooling agree qualitatively, with 

hree maxima located at SOC 50 % (t1), SOC 24 % (t2) and SOC 4

 (t4), and a minimum at SOC 13 % (t3). In contrast, the tab cool-

ng differs by the absence of the peak at t1, and a slightly shifted

aximum after t2. 

These results necessitate a deeper analysis of both, the location- 

ependent C-rate and the location-dependent SOC, explicitly eval- 

ated for the base cooled concept at t0 = 0s, t1 = 900s, t2 = 1364s

nd t4 = 1728s (cf. Fig. 11 ). 

Initially, the cell is in equilibrium state and the SOC in Fig. 10 b

s uniformly at 100 %. At the same time t0, the C-rate in Fig. 10 a

iffers by 4 %, arising from the ohmic voltage losses in the cur- 

ent collectors: the voltage between positive and negative current 

ollectors drops gradually with increasing distance from the tabs. 

ince the temperature at t0 is the same, the C-rate distribution 

olds true for all cooling concepts (cf. Fig. 9 c). 
10 
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Fig. 10. Local distribution of inhomogeneities regarding C-rate and SOC in the base cooled cell during a 2 C discharge, evaluated at t0 = 0 s (a + b), t1 = 900 s (c + d), t2 = 1364 

s (e + f) and t4 = 1728 s (g + h). 
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The faster discharge in the tab area until time t1 ( Fig. 10 c)

s associated with a lower SOC ( Fig. 10 d). This is in turn con-

ected with a locally lower equilibrium voltage, counteracting the 

levated discharge rate and thus also the prevailing SOC inhomo- 

eneity. Crucial for the counteracting process of the SOC inhomo- 

eneities is therefore the derivation of the equilibrium voltage with 

he SOC, which is rather small at t1 (revealed by the flat voltage 

urve in Fig. 9 a). As a result, the C-rate inhomogeneities reach their 

rst maximum and the SOC inhomogeneities increase further (cf. 

ig. 9 b and c). 

At time t2, the discharge curve (cf. Fig. 9 a) is much steeper, 

evealing larger equilibrium voltage differences induced by the 

uctuating local SOC in Fig. 10 f. Thus, the counteracting process 

gainst the SOC inhomogeneities predominate, the SOC inhomo- 

eneities decrease (cf. Fig. 9 b), resulting in a reversal of the C-rate 

nhomogeneities: Fig. 10 e now shows an excessed discharge rate at 

he base region of the cell. 

At time t3 = 1564s, the discharge curve flattens briefly. The SOC 

nhomogeneities of the cell momentarily persist, resulting in a 

emporary homogeneous discharge (cf. Fig. 9 ). 

From time t4, the cell voltage curve is very steep, revealing sud- 

en large equilibrium voltage differences induced by the SOC in- 

omogeneities in Fig. 10 h. The resulting fast decay of the SOC in- 

omogeneities leads to a strong excess of the discharge rate up 

o 2.8 C in Fig. 10 e, respectively to the sharp peak at time t4 in

ig. 9 c. 

The sharp peak in Fig. 9 c at time t4 is evident in all cooling

oncepts. Fig. 11 depicts the local distribution of the elevated dis- 

harge rates for the cooling concepts. The point of highest dis- 

harge rate correlates significantly with the point of lowest tem- 

erature of the cell in Fig. 8 e–h: For no cooling and base cooling
11 
t the bottom of the cell, for tab cooling at the tabs and for side

ooling at the outer surfaces. 

Furthermore, a quantitative correlation exists between the tem- 

erature inhomogeneity in Fig. 8 j and the electrochemical inho- 

ogeneities in Fig. 9 . The base cooling has the highest inhomo- 

eneities throughout the discharge, followed by the side cooling. 

he smallest thermal inhomogeneities of tab cooling in the first 

alf of the discharge and the subsequent exceeding of the no 

ooling curve are likewise evident in the electrochemical inhomo- 

eneities: In Fig. 9 b the tab cooling exceeds the no cooling curve 

t SOC 24 %; in Fig. 9 c the peak of tab cooling at time t2 is the

mallest, while at time t4 it exceeds the no cooling curve. More- 

ver, isothermal simulations reveal SOC inhomogeneities below 0.5 

 and C-rate inhomogeneities below 0.11 h 

−1 , which further un- 

erlines the strong temperature-dependent nature of the inhomo- 

eneities. 

While comparable previous model studies [ 1 , 12 , 13 , 18 , 22 ] focus

n thermal inhomogeneities, the last part of our study impressively 

emonstrates how inhomogeneous cell conditions and local dis- 

harge rates are interlinked. Doubtless, this kind of timewise over- 

oading is associated with local cell aging. This is experimentally 

onfirmed by Werner et al. in [65] and [66] , wherein the cycle ag- 

ng of consumer cells (3.2 Ah) is studied at different cooling con- 

epts. In particular, temperature gradients strongly accelerate aging 

f capacity and polarization resistance. 

The plausibility of our simulation results is underlined by fur- 

her experimental results. After a cell discharge with 1 C at an am- 

ient temperature of 25 °C, a temperature increase of 11.15 K and 

1.45 K is reported in [67] and [68] at the surface of consumer cells 

1.65 Ah pouch cell and 1.8 Ah cylidrical cell) without cooling. Our 

SMD model predicts a temperature increase of 13,6 K for base 
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Fig. 11. Local discharge rate distribution of the four cooling concepts during 2C discharge at t4 = 1728 s. 
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ooling and 32.8 K without cooling, using the LIB cell parameters 

iven in Tables 1 and 2 . Since the temperature increase depends 

ery much on the selected cooling concept, also the heat gener- 

tion is calculated. Here, Vaidyanathan et al. [69] reports a heat 

eneration of 11.2 mW cm 

−3 at a 0.5 C discharge of a LCO/LNO 

ell, which is in good agreement with this work (9.35 mW cm 

−3 

 0.5C discharge and a NCA/LCO cathode). Nevertheless, the ex- 

erimental validation with a large format prismatic LIB cell of the 

ame material composition is planned in future. 

. Conclusions 

Our multi scale multi domain model (MSMD) for large sized 

ithium-ion battery cells applies separate solution domains for (i) 

he cell level, (ii) the electrode level and (iii) the particle level. 

e introduce novel homogenization approaches on two scales: (1) 

rom the particulate electrodes to homogenized electrode materi- 

ls using an extended Newman model and (2) from different ma- 

erial layers in the cell to a homogenized battery material with 

nisotropic electrical and thermal transport properties. In fact, the 

ow RAM requirement makes it executable on standard laptops at 

ffordable computational times. 

Discharge characteristics are simulated using the following pa- 

ameters: (a) cell geometry, dimensions and capacity, (b) thermal 

ransport properties, (c) open circuit voltage of the NCA/LCO cath- 

de, (d) microstructural and electrochemical parameters and (e) 

pen circuit voltage of the graphite anode. 

For the isothermal case, our MSMD model is in excellent agree- 

ent with discharge simulations made with the Newman model, 

ut is superior for the non-isothermal case, as it considers self- 

eating effects. 

This superiority is demonstrated for a 2 C discharge of a 120 Ah 

IB cell, while applying four different cooling concepts: (i) with- 

ut cooling (ii) with a base plate cooling (iii) with a tab cooling 

nd (iv) with a side cooling. The arising temperature gradients are 

alculated and, i.e., the coupled SOC inhomogeneities and locally 

iffering dischar ge rates are evaluated for all cooling concepts. 

or example, a local peak discharge rate of 2.8 C is proven for 

ase cooling, potentially connected with excessive aging of the LIB 

ell. 

In conclusion, our comparative study confirms, that induced in- 

omogeneous discharge rates originate from the interaction of (i) 

oltage losses in the current collectors (ii) emerging and decay- 

ng SOC inhomogeneities (iii) the slope of the discharge curve and 

iv) the temperature profile of the cell. Even more important is the 

utcome, that the local distribution and the magnitude of excessive 
12 
ischarge rates develops counterintuitively. This underlines the ne- 

essity for fully coupled MSMD models. 

The MSMD model presented is not only suitable for the identifi- 

ation of the best cooling concept for a specific cell design, but also 

or discovering the optimum cell design at given external bound- 

ry conditions and for defining safe operating conditions at locally 

rising overloads. 
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