
Accelerating Neural Network Training with
Distributed Asynchronous and Selective
Optimization (DASO)
Daniel Coquelin (daniel.coquelin@kit.edu)

Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie https://orcid.org/0000-0001-
8552-5153
Charlotte Debus

KIT: Karlsruher Institut fur Technologie
Markus Götz

KIT: Karlsruher Institut fur Technologie
Fabrice von der Lehr

German Aerospace Center: Deutsches Zentrum fur Luft- und Raumfahrt
James Kahn

KIT: Karlsruher Institut fur Technologie
Martin Siggel

German Aerospace Center: Deutsches Zentrum fur Luft- und Raumfahrt
Achim Streit

KIT: Karlsruher Institut fur Technologie

Research

Keywords: machine learning, neural networks, data parallel training, multi-node, multi-GPU, stale gradients

DOI: https://doi.org/10.21203/rs.3.rs-832355/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-832355/v1
mailto:daniel.coquelin@kit.edu
https://orcid.org/0000-0001-8552-5153
https://doi.org/10.21203/rs.3.rs-832355/v1
https://creativecommons.org/licenses/by/4.0/

Coquelin et al.

RESEARCH

Accelerating Neural Network Training with
Distributed Asynchronous and Selective
Optimization (DASO)
Daniel Coquelin1*, Charlotte Debus1, Markus Götz1, Fabrice von der Lehr2, James Kahn1, Martin

Siggel2 and Achim Streit1

*Correspondence:

daniel.coquelin@kit.edu
1Karlsruhe Institute of Technology,

Hermann-von-Helmholtz-Platz 1,

76344 Eggenstein-Leopoldshafen,

Germany

Full list of author information is

available at the end of the article

Abstract

With increasing data and model complexities, the time required to train neural
networks has become prohibitively large. To address the exponential rise in
training time, users are turning to data parallel neural networks (DPNN) and
large-scale distributed resources on computer clusters. Current DPNN approaches
implement the network parameter updates by synchronizing and averaging
gradients across all processes with blocking communication operations after each
forward-backward pass. This synchronization is the central algorithmic
bottleneck. We introduce the Distributed Asynchronous and Selective
Optimization (DASO) method, which leverages multi-GPU compute node
architectures to accelerate network training while maintaining accuracy. DASO
uses a hierarchical and asynchronous communication scheme comprised of
node-local and global networks while adjusting the global synchronization rate
during the learning process. We show that DASO yields a reduction in training
time of up to 34% on classical and state-of-the-art networks, as compared to
current optimized data parallel training methods.

Keywords: machine learning; neural networks; data parallel training; multi-node;
multi-GPU; stale gradients

1 Introduction

Recent advances in deep learning have thrived under the theme ”bigger is better”.

Modern neural networks yield super-human performance on problems such as image

classification and semantic segmentation by introducing higher model complexity [1,

2]. However, the training of large networks requires large datasets. As the sizes

of models and datasets increase, so do the computational resources required. Put

simply, today’s deep learning tasks are limited by the hardware and computing time

available. In response, parallel training methods have been developed to enable the

concurrent use of multiple (distributed) hardware devices.

In general, there are three approaches to parallel training [3]: model parallelism,

pipelining, and data parallelism. The model parallel approach distributes the net-

work across multiple computing devices, for example two GPUs with half of the

network each. Pipelining is a special case of model parallelism. In the context of

neural networks it refers to placing entire model components, e.g. layers, on differ-

ent devices then sending the results from one device to the next sequentially. In the

Coquelin et al. Page 2 of 17

data parallel approach, each available computing device trains an identical copy of

the network and synchronizes its model state with the other devices.

Data parallel neural networks (DPNNs) have been used on various architectures

and data types to train state-of-the-art models in a fraction of the time required

to train a model traditionally [4, 5]. Each model instance in a DPNN performs a

forward-backward pass over a unique and disjoint portion of the data, called a shard,

after which the parameters of all networks are synchronized using a global collective

operation. This can be effectively viewed as one batch distributed across the de-

vices, i.e. a distributed batch. Typically, the synchronization of network parameters

is a blocking averaging operation [3]. This collective blocking operation comprises

an inherent bottleneck as it waits for all models to exchange network parameters or

gradients before further calculations can occur. Using non-blocking communication

operations can provide some relief as the next forward-backward step can begin

while communication is ongoing. However, as global parameter updates are run-

ning asynchronously, parameters found by individual network instances are always

slightly out-of-date, or stale.

Although computing devices can take many forms, GPUs are currently the most

efficient and powerful for training neural networks. Therefore, we will refer to com-

puting devices as GPUs throughout this paper. Commonly, the standard commu-

nication structure communicates with GPUs individually to synchronize network

parameters. This neglects the structure of most computer clusters, where multiple

GPUs are grouped on computing nodes with significantly faster node-local connec-

tions as compared to inter-node communication. Large multi-node DPNNs can in-

stead be divided into node-local DPNNs which are themselves members of a global

DPNN. This hierarchical approach could significantly reduce the communication

overhead, as less data is sent between nodes. Furthermore, what if global parameter

synchronization did not occur after every batch and instead, the average was cal-

culated asynchronously every Bth batch? This would help to further alleviate the

aforementioned communication bottleneck and could greatly accelerate training.

To this end, we present our key contribution: the distributed selective and asyn-

chronous optimization (DASO) method. DASO performs communication for net-

work parameter updates in a hierarchical manner: on the node-local level, in the

form of GPU-to-GPU communication operations, and on the global level, where

computing nodes are treated as individual entities. This approach allows DASO to

perform the time-expensive global synchronization step asynchronously, with stale

gradients, and after multiple batches instead of after every forward-backward pass,

thus leveraging the potential of acceleration via parallel computation on modern

computer clusters.

The remainder of this paper is organized as follows. In Section 2 we will discuss

relevant work previously done in the area of data parallel model training. Section 3

introduces the concept of distributed asynchronous and selective optimization, fol-

lowed by a parameter study and two performance evaluations on the tasks of image

classification and semantic segmentation in Section 4. Our results are summarized

and discussed in Section 5, which also gives an outlook towards further improvement

and application of the method.

Coquelin et al. Page 3 of 17

2 Related Work
Data parallelism is the go-to option for accelerating neural network training on large

datasets. In DPNNs, each local network is optimized locally, e.g using mini-batch

stochastic gradient descent (SGD), before the optimization results are synchronized

with all other networks. The most straightforward approach to global synchroniza-

tion is a collective blocking, average operation after every forward-backward step.

This inherently limits the speed of the data parallel training.

Recently, advancements have been made in accelerating the synchronization pro-

cess by starting the communication of gradient updates while the backward pass

is ongoing, with one reporting training times of only 74.7 s on the ImageNet data

set [4]. This approach has been shown to be quite effective, but the process of tuning

the communication patterns does not generalize well, as it is highly dependent on

the specific neural network architecture.

Several works have investigated the use of asynchronous SGD (ASGD) [6, 7, 8],

which updates the parameters whenever a network finishes a backward pass. Each

network retrieves the current model parameters from a parameter server before per-

forming a forward-backward pass. After finishing the backward step, the network

sends its updated parameters to the server, which determines the new global param-

eters using the updates from all processes. However, if a network is still computing

the forward-backward pass when the parameter server is updated, the network’s

current parameters become stale.

Stale gradients can be leveraged to approximate accurate network parameters

in a variety of SGD variants [9], and ASGD has been shown to yield consistent

convergence [10]. Recent attempts at further accelerating ASGD have been made

using individual network optimizers for a warm-up phase and delayed updates to

the parameter server [11].

Hierarchical algorithms are a typical approach for maximizing the usage of com-

puting clusters. This approach has been used to accelerate synchronous SGD with

positive results. Local SGD, post-local SGD, and hierarchical SGD [12] propose

methods of local and global update steps, each occurring after a fixed number of

forward-backward passes.

PyTorch [13] and TensorFlow [14] are currently the most widely used machine

learning frameworks. Both offer options for traditional data parallel training. For

large systems, a global communication protocol, such as MPI [15], is often required

to leverage specialized inter-node connections. Recently, there have been many ad-

vancements in the optimization of the global parameter synchronization operation

by using MPI with multiple network topologies [16, 17]. These approaches have

shown promising results, but remain centered around the idea of a global synchro-

nization for each forward-backward pass.

Currently, the most popular MPI-enabled DPNN framework is Horovod [18]. To

reduce the size of data sent via the communication network, Horovod uses tensor

fusion, or grouping parameters together to be communicated in a larger chunk of

data, and data compression. Using the grouped parameters, communication can be

started during the backward pass and the data within the buckets can be received

during the next forward pass. The data compression in Horovod is frequently done

by quantizing the network parameters into 16-bit floating-point format.

Coquelin et al. Page 4 of 17

3 Distributed Asynchronous and Selective Optimization (DASO)
The common approach to training DPNNs is to perform a forward-backward pass on

each network instance with one portion of the distributed batch, then synchronize

the network parameters via a global averaging operation. The averaging of gradients

is only an approximation of the true gradients that would be calculated for the

entire dataset. This approximation is made under the assumption that each portion

of the distributed batch is independent and identically distributed (iid) [19], i.e. the

disjoint subsets are representative of the dataset as a whole.

Under the iid assumption, another approximation can be made: the average pa-

rameters of a subset of networks are not significantly different than the average

parameters of the complete set of networks. Recalling that modern cloud systems,

clusters, and supercomputers have different inter- and intra-node communication

capabilities (with different bandwidths and latencies), we can utilize this approxi-

mation to reduce the communication needed for parallel training, thereby alleviating

the intrinsic bottleneck of blocking synchronizations.

Based on these foundational concepts we propose the Distributed Asynchronous

and Selective Optimization (DASO) method. Instead of a uniform communications

network across multiple multi-GPU nodes, DASO employs a hierarchical network

model with node-local networks and a global network.

Interconnect Fabric

Node 1
GPU:A

GPU:C

GPU:B

GPU:D

Node P
GPU:A

GPU:C

GPU:B

GPU:D

Figure 1: MPI Groups An overview of a common node-based computer cluster

with P nodes and four GPUs per node. GPU colors represent group membership.

The dashed lines indicate GPU-to-GPU communication channels.

The global network spans all GPUs on all nodes, while the node-local networks

are composed of the GPUs on each individual node. The global network is divided

into multiple communication groups, with each group containing a single GPU from

every node. Global communication takes place exclusively within a group, i.e. only

group members exchange data, while members of other groups do not participate.

Communication between the node-local GPUs is then handled by the local net-

work, which benefits from high-speed GPU-to-GPU interconnects and optimized

communication packages (e.g. NCCL [20]). Under the assumption that the cluster

node configurations are homogeneous, DASO creates groups between GPUs with

the same node-local identifier as is shown in Figure 1. With this approach, inter-

node communication can be reduced by a factor equal to the minimum number of

GPUs per node.

Similarly to local-SGD [12], DASO utilizes a multi-step synchronization. Local

synchronization (Figure 2) occurs after each batch and uses the node-local network

Coquelin et al. Page 5 of 17

Node X
GPU:A GPU:CGPU:B GPU:D

Local Synchronization

Average

GPU:DGPU:CGPU:BGPU:A

Figure 2: Local Synchronization Schematic of the local synchronization step

for a single node with four GPUs. The gradients from each GPU are averaged,

then each GPU’s gradients are set to the result.

to do gradient-averaging between the local GPUs. Global synchronization (Figure 3)

occurs after one or more local synchronizations, in which the network parameters

of all members of a single global group are shared and averaged. Following every

global synchronization, a local update function broadcasts the averaged parameters

from the local group member to all other node-local GPUs (Figure 4). The role of

global synchronization rotates between groups to balance the communications load.

Node 1
GPU:A

GPU:C

GPU:B

GPU:D

Global Synchronization

Node 2

GPU:C

GPU:B

GPU:D

Node P
GPU:A

GPU:C

GPU:B

GPU:D

GPU:A

Node 2

GPU:C

GPU:B

GPU:D

GPU:A

GPU:A

Node 1

GPU:C

GPU:B

GPU:D

GPU:A

Node P

GPU:C

GPU:B

GPU:D

Average

Figure 3: Global Synchronization Schematic of the global synchronization

step performed by the global communication group consisting of GPU:A on each

node. The network parameters are averaged by each GPU in the group, and the

network parameters of each group member are set to the result.

Global synchronization can be performed in a blocking or non-blocking manner.

In the blocking case, all synchronization steps are performed after each batch. To

reduce the amount of data transferred, parameters are cast to a 16-bit datatype

representation during buffer packaging. This operation does not greatly affect con-

vergence, as shown by Alistarh et al. [21]. Once received, the parameters are cast

Coquelin et al. Page 6 of 17

Node X

GPU:A GPU:CGPU:B GPU:D

Local Update

Broadcast

GPU:A GPU:B GPU:C GPU:D

Figure 4: Local Update (Broadcast) Schematic of the local update step to be

performed after the global synchronization step shown in Figure 3. The group

member responsible for the global communication, in this case GPU:A, sends its

network parameters to all other node-local GPUs, which replace the old param-

eters on those GPUs.

back to their original datatype. In the non-blocking case, the next forward-backward

pass is started after the parameters are sent but before they are received. Datatype

casting is not beneficial in this scenario, as it delays the start of parameter commu-

nications.

After the parameters are sent during a global synchronization, each neural net-

work conducts B forward-backward passes with local synchronization before the

group members receive the sent parameters. Hence, the updates from the global

communication step are stale upon their arrival. To compensate for this, a weighted

average of the stale global parameters and the current local parameters is calculated

as follows:

xt+S =
2Sxl

t+S−1 +
∑P

i=1 x
i
t

2S + P
(1)

where xl
t+S is the model state on GPU l, S is the number of batches after batch

t; xi
t is the model state of GPU i after batch t; and P is the number of GPUs in

the global network. The weighting of the local parameters was found experimen-

tally. A detailed explanation of Equation (1) and its validity is provided in the

supplementary material.

Training of a network with the DASO method can be divided into three phases:

1. warm-up, 2. cycling, and 3. cool-down. The warm-up and cool-down phases utilize

blocking global synchronizations, while the cycling phase uses non-blocking global

synchronizations. Given a fixed number of total epochs, the warm-up and cool-

down phases occur for a set number of epochs at the beginning and end of training,

respectively. The warm-up phase is used to quickly move away from the randomly

initialized parameters and prepare for the cycling phase. The cool-down phase is

intended to refine the network parameters at the end of training.

In the cycling phase, the number of forward-backward passes between global syn-

chronizations (B) and the number of batches to wait for global synchronization

Coquelin et al. Page 7 of 17

Batch t

Batch t + 1

Batch t + S

Global Send

Global Recv.

Local Sync.

Local Sync.

Weighted Average

Local Sync.

Local Update

Batch t + ...

Figure 5: Cycling Flow Process flow diagram of the synchronization steps dur-

ing the cycling phase where t is the batch number and S is the batches to wait

before global synchronization. The weighted average is calculated as shown in

Equation (1)

data (S) are varied. B is specified manually upon initialization. When the training

loss plateaus, B and S are reduced by a factor of two, down to a minimum of one.

When B,S = 1 and the loss has plateaued, both are reset to their initial values and

the process is repeated until the cool-down phase. The synchronization steps in the

cycling phase are schematically shown in Figure 5.

The phasic structure of DASO is intended to maintain the network accuracy as

best as possible, while reducing the training time.

3.1 Implementation

A DASO proof-of-concept is currently implemented in the Heat framework [22]

for usage with PyTorch networks. Heat is an open-source Python framework for

distributed and GPU-accelerated data analytics, which offers both low level array

computations as well as assorted higher-level machine learning algorithms. The

local networks utilize PyTorch’s DistributedDataParallel class and distributed

package [23]. The global communication network utilizes Heat’s MPI backend, which

handles the automatic communication of PyTorch tensors. The global groups are

implemented as MPI groups.

To use this implementation of DASO to train an existing PyTorch network, only

four additional functions need to be called and the data loaders need to be modified

to distribute the data between all GPUs[1]. The function calls are illustrated in

Listing 1. First, the node-local PyTorch processes are created, which will be utilized

[1]The data loaders need only know how many GPUs exist and what their global

rank, i.e. ascending integral ID, is.

Coquelin et al. Page 8 of 17

during the local synchronization step. Next, the DASO instance is created with a

PyTorch node-local optimizer (e.g. SGD) and the number of epochs for training

is specified. The DASO instance will find the aforementioned PyTorch processes

automatically.

Listing 1: Simplified training script demonstrating the usage of DASO in HeAT for

a PyTorch neural network (net) and PyTorch optimizer (optimizer).

1 import heat as ht
2 import torch
3 ...
4 # create PyTorch distributed group

5 world_size = ht.MPI_WORLD.size
6 rank = ht.MPI_WORLD.rank
7 local_rank = rank % num_local_gpus
8 torch.distributed.init_process_group(
9 backend="nccl",

10 rank=local_rank ,
11 world_size=world_size
12)
13 ...
14 # the DASO optimizer is created

15 daso_optimizer = ht.optim.DASO(
16 local_optimizer=optimizer ,
17 total_epochs=num_epochs
18)
19 ...
20 # the hierarchical network is created

21 ht_model = ht.nn.DataParallelMultiGPU(
22 net ,
23 daso_optimizer
24)

4 Experiments
All experiments were conducted on the JUWELS Booster at the Jülich Supercom-

puting Center [24]. This high-performance computing cluster has 936 GPU nodes,

each with two AMD EPYC Rome CPUs and four NVIDIA A100 GPUs, connected

via an NVIDIA Mellanox HDR InfiniBand interconnect fabric. The following soft-

ware versions were used: CUDA 11.0, ParaStationMPI 5.4.7-1-mt, Python 3.8.5,

PyTorch 1.7.1+cu110, Horovod 0.21.1, and NCCL 2.8.3-1. The JUWELS Booster

provides a CUDA-aware MPI implementation, meaning that GPUs can communi-

cate directly with other GPUs.

4.1 Parameter Study

As previously stated, stale parameters can effect both the accuracy and training time

of a network. However, the effects of stale global updates when combined with node-

local synchronous data parallel training are not known. Therefore, it is important

to determine how frequently global synchronizations must occur, and how staleness

affects both accuracy and speed. To this end, we performed a parameter study using

the ImageNet-2012 dataset [25] to train a ResNet-50 [1] neural network using either

32 or 128 GPUs with fixed numbers of batches between global synchronizations,

B, and S batches between the sending and receiving of the global parameters. B

Coquelin et al. Page 9 of 17

and S do not change for the entirety of each measurement, i.e. the training phases

described above are disabled.

ImageNet-2012 is a large dataset containing 1.2 million labeled images. We evalu-

ate classification quality using top-1 accuracy, i.e. the accuracy with which the model

predicts the image labels correctly with a single attempt. File loading from disk and

preprocessing steps utilized DALI [26]. Training hyperparameters are shown in Ta-

ble 1. They are adapted from the example script in PyTorch for training ResNet-50

on the ImageNet dataset and the work done by Goyal et al. [27].

The results of these experiments are shown in Table 2.

Table 1: Hyperparameters used to train ResNet-50 using the ImageNet-2012 dataset.

Data Loader DALI [26]

Local Optimizer SGD
Local Optimizer Parameters Momentum: 0.9 Weight Decay: 0.0001

Epochs 90

Learning Rate (LR) Decay Reduce on Stable
LR Parameters Stable Epochs Before Change: 5 Decay Factor: 0.5
LR Warmup Phase 5 epochs, see Goyal et al. [27]
Maximum LR Scaled by number of GPUs [27]

Loss Function Cross Entropy

Table 2: Parameter study results. B is the number of forward-backward passes

between global synchronizations and W is the number of batches to wait for the

global synchronization data.

32 GPUs (8 nodes) 128 GPUs (32 nodes)

B S Runtime, h Validation Top-1, % Runtime, h Validation Top-1, %

1 0 4.5606 76.7715 1.2064 76.5416
1 1 4.2545 76.0859 1.1556 74.9233

2 0 4.0365 76.8828 1.0769 76.3027
2 1 3.8943 75.8086 1.0427 74.8936
2 2 3.8919 75.9238 1.0450 75.0854

4 0 3.6984 76.4258 0.9775 74.3478
4 1 3.6560 75.8262 1.0142 73.2962
4 2 3.7191 75.5020 0.9843 71.9570
4 4 3.7064 75.7070 0.9784 73.8560

8 0 3.4922 75.2598 0.9078 69.2732
8 4 3.5259 74.6113 0.9170 65.4733
8 8 3.5770 75.2637 0.9302 69.6655

16 0 3.3235 73.1348 0.8585 58.5397
16 4 3.3417 73.1758 0.8590 56.8865
16 8 3.3934 73.2148 0.8724 54.5323
16 16 3.4828 74.2129 0.8933 62.3692

32 0 3.2224 70.7480 0.8231 43.6855
32 4 3.2302 70.2773 0.8247 44.0639
32 16 3.2969 69.5781 0.8430 41.2458
32 32 3.4083 72.5488 0.8656 50.9539

The effects of skipping global synchronizations can be seen most clearly for the

measurements when S was set to zero, in which case the optimizer does not use

stale gradients. The anti-correlation between network accuracy and B is apparent

for both node configurations, but more pronounced for the 128 GPU measurements.

As the expected accuracy of this network is around 76%, these measurements show

Coquelin et al. Page 10 of 17

that there is negligible loss of accuracy, while significantly reducing training time,

when B is less than or equal to four. Furthermore, as B increases, the time required

to train the network decreases at the cost of classification accuracy.

Stale gradients are known to negatively effect the accuracy of a network unless

they are handled specifically [10]. A partial conformation of this is shown for the

measurements when B is held constant. As expected, the accuracy begins to de-

crease as S increases. However, when B is equal to S, the accuracy improves again.

In some cases, it improves to a point of higher accuracy than reached with the S = 0

measurement. Detailed studies are required to further investigate this effect. Our

results indicate that the stale gradients may have regularizing effects.

4.2 Performance Evaluation

We evaluated DASO’s computational performance on two common examples of

data-intensive neural network challenges: 1.) image classification and 2.) semantic

segmentation. For image classification, we trained a ResNet-50 [1] on the ImageNet-

2012 [25] dataset. This can be considered a standard benchmark for machine learn-

ing, since pre-trained ResNet-50 networks are the backbone of many computer vision

pipelines [28]. For semantic segmentation, we trained a state-of-the-art hierarchical

multi-scale attention network [5] on the Cityscapes [29] dataset.

We compared DASO with Horovd and a classical näıve data parallel optimization

method. The classic method does not use compression or tensor fusion, but it does

begin the communication during the backward step and receives the data during the

forward step. To achieve better comparability, this approach was also implemented

in Heat alongside DASO. Horovod generally uses a strategy similar to the classical

approach. However, it additionally utilizes compression techniques, so-called tensor

fusions, as well as other optimizations to accelerate training (e.g. the use of threads

with MPI). Horovod is currently the most popular choice for data parallel training

of neural networks on computer clusters. We elected not to compare with PyTorch’s

distributed package as it utilizes a similar approach to Horovod, namely compression

and bucketing. The performance evaluation compares the strong scaling behavior

of all approaches with respect to training time and the task specific target metric.

The networks’ hyperparameters remain constant for all experiments. All tested

networks use a learning rate scheduler. When the training loss plateaus, i.e. the

training loss is not decreasing by more than a set percentage threshold, the scheduler

decreases the learning rate by a set factor. Settings of the scheduler, as well as for the

local optimizer settings, were set to be identical for all optimizers for each use-case.

With respect to message packaging, Horovod was configured to use floating-point 16

bit compression, DASO compresses to brain floating-point 16. As the classic method

sends each set of parameters individually, compression and decompression results

in an increase in the training time. Therefore, the classic method uses floating-

point 32 bit for communication operations. Compression to brain floating-point

16 for communication is not currently available in Horovod, but does not effect

communication bandwidth or latency. The training batch size is fixed for each GPU

in all experiments. Hence, the combined distributed batch size increases by the

number of GPUs times the local batch size.

Utilizing the results shown in section 4.1, DASO’s maximum number of batches

between global synchronizations was set to four and the number of batches between

Coquelin et al. Page 11 of 17

sending and received the global parameters was set to one for these experiments.

These values were chosen with the goal of balancing speed and accuracy as the

number of training devices was increased.

4.2.1 Image Classification – ImageNet

This experiment was conducted using the ResNet-50 architecture on the ImageNet-

2012 dataset [25]. The network training configuration is the same as those mentioned

in Section 4.1. DASO’s settings are those which have been stated in Section 3. The

network hyperparameters can be found in Table 1.

16 32 64 128 256
GPUs

10
0

10
1

T
ra
in
in
g
T
im
e
[h
]

DASO

Horovod

Classic

4 8 16 32 64
Nodes

(a) Training Time

16 32 64 128 256
GPUs

0

10

20

30

40

50

60

70

80

90

100

V
al
id
at
io
n
T
op
-1

[

76.4 76.6 76.1 75.5

71.4

76.5 76.2 76.3 76.3
74.8

76.9 77.2 76.6 76.5 76.2

DASO Horovod Classic

(b) Validation Top1

Figure 6: ImageNet ResNet-50 training times and top-1 accuracy results on the

ImageNet dataset when trained with DASO, Horovod, and the classic algorithm

for increasing node counts. Each node has four GPUs.

Training was conducted on four, eight, 16, 32, and 64 nodes, which equates to 16,

32, 64, 128, and 256 GPUs, respectively. This roughly corresponds to traditional

strong scaling experiments for parallel algorithms, where an exponential increase

in nodes should ideally result in a proportional reduction in time, given a constant

computational load. The results of the experiment are shown in Figure 6a. DASO,

Horovod, and the classic algorithm show desirable strong scaling behavior, i.e. a

factor of two in GPU number results in the training time being roughly halved.

However, the scaling of the classic method begins to worsen as the number of GPUs

increases. Due to DASO’s optimized hierarchical communication scheme and the

reduced number of synchronizations, DASO requires up to 25% less training time

than Horovod for this task.

Up to 128 GPUs, DASO and Horovod yield similar levels of accuracy, while the

classic method outperforms both, see Figure 6b. With more than 128 GPUs, DASO

and Horovod did not exceed 75% top-1 accuracy and the classic algorithm appears

to be unchanged. The drop off can be in part explained by the fact that accuracy

starts to a decrease at larger batch sizes in a traditional network, unless special

allowances are made [27]. Since we keep the portion of the distributed batch that is

processed on each individual GPU the same, larger GPU counts ultimately result

in a larger distributed batch. Hence, accuracy ultimately decreases. For DASO, the

effect is more pronounced as completing batches without a global synchronization

has a similar effect to increasing the size of the globally distributed batch. As the

Coquelin et al. Page 12 of 17

classic algorithm does not do any compression, it is reasonable to assume that the

communication of the gradients in their full precision is beneficial to the accuracy

of the network at all node counts.

4.2.2 Semantic Segmentation – Cityscapes

To further evaluate the performance of the DASO method, we conducted experi-

ments on a cutting edge network. To this end, a hierarchical multi-scale attention

network [5] was trained for semantic segmentation on the Cityscapes [29] dataset.

This dataset is a collection of images of streets in 50 cities across the world, with

5,000 finely annotated images and 20,000 coarsely annotated images. The network

has an HRNet-OCR backbone, a dedicated fully convolutional head, an attention

head, and an auxiliary semantic head [5].

The quality of semantic segmentation networks is often evaluated based on the

intersection over union (IOU) [30] score. IOU is defined as the intersection of the

correctly predicted annotations with the ground truth annotations, divided by their

union. The IOU ranges from 0.0 to 1.0, where higher values indicate more accurate

predictions.

The network hyperparameters are shown in Table 3. The number of epochs, loss

function, and optimizer settings were determined from the original source [5]. For

the DASO experiments, the synchronized batch normalization operation is con-

ducted within the node-local process group.

Table 3: Hyperparameters used to train the hierarchical multi-scale attention net-

work using the Cityscapes dataset.

Data Loader PyTorch

Local Optimizer SGD
Local Optimizer Parameters Momentum: 0.9 Weight Decay: 0.0001

Epochs 175

Learning Rate (LR) Decay Reduce on Stable
LR Parameters Stable Epochs Before Change: 5 Decay Factor: 0.75
LR Warmup Phase 5 epochs, see Goyal et al. [27]
Maximum LR 0.4

Loss Function Region Mutual Information [31]

In its original publication, the network was trained using supplementary data,

whereas the herein presented experiments are performed using only the Cityscapes

dataset. To determine a baseline accuracy, the original network was trained with

four GPUs on a single node using PyTorch’s DistributedDataParallel package.

This baseline measurement employed a polynomial decay learning rate scheduler,

PyTorch’s automatic mixed precision training and synchronized batch normaliza-

tion layers. For more detail, see [5]. The baseline IOU of the original network was

found to be 0.8258.

During the experiments, we found that for Horovod neither the automatic mixed

precision nor the synchronized batch normalization functioned as intended when

using the system scheduler software (SLURM [32]). Horovod requires usage of its

custom scheduler, horovodrun, to enable full feature functionality. However, this

software is not natively available on many computer clusters. Hence, automatic

Coquelin et al. Page 13 of 17

16 32 64 128 256
GPUs

10
0

10
1

10
2

T
ra
in
in
g
T
im
e
[h
]

DASO

Horovod

Classic*

4 8 16 32 64
Nodes

(a) Training Time As the classical net-
work hit the time limit, the values are
estimated.

16 32 64 128 256

GPUs

0.0

0.2

0.4

0.6

0.8

1.0

V
a
li
d
a
ti
o
n
IO
U

0.82 0.82
0.81

0.78

0.64
0.66

0.73

0.77 0.76

0.05

0.10
0.12 0.11 0.11 0.11

DASO Horovod Classic*

(b)Maximum IOU Classic network ac-
curacy values are the best results when
training was stopped.

Figure 7: Cityscapes Benchmarking results for the selected hierarchical split

level attention network [5] on the Cityscapes dataset with DASO, Horovod, and

the classic DPNN method for increasing node counts, each with four GPUs.

mixed precision was removed and the synchronized batch normalization layers were

replaced with standard batch normalization layers.

In the interest of limiting CO2 emissions, the wall clock time limit for each mea-

surement was set to 15 h. For DASO and Horovod, this was not a factor at any

point in these measurements. However, the classic DPNN algorithm was extremely

slow while attempting to train this model using this dataset. Therefore, the time re-

quired to train the model fully was extrapolated from the completed epochs. These

results are shown in Figure 7a. As the trainings were not able to be completed in a

reasonable time, IOUs are not reported for the classic method

Training times for various node counts are shown in Figure 7a. For up to 128

GPUs, DASO completed the training process in approximately 35% less time than

Horovod, demonstrating the advantage of our approach to fully leverage the sys-

tems communication architecture together with asynchronous parameter updates.

At higher GPU counts the time savings drop to 30%, because there are fewer batches

per epoch, and hence skipping global synchronization operations provides less ben-

efits. The classic algorithm is prohibitively slow for this experiment. It is between

five and 31 times slower than Horovod and between eight and 45 times slower than

DASO. The timing measurements of DASO and Horovod show the importance of

using optimized data parallel training methods for training large models.

Quality measurements (IOU) are shown in Figure 7b. Although there is a very

clear difference between Horovod and DASO, neither matches the accuracy of the

baseline network. This is due to the näıve learning rate scheduler used for training.

With a tuned learning rate optimizer the 16, 32, and 64 node configuration should

more accurately recreate the results of the baseline network. At 256 GPUs, training

with Horovod did not yield any meaningful results. We hypothesize that this is

caused by the lack of a functioning synchronized batch normalization operation in

combination with a very large mini-batch.

Coquelin et al. Page 14 of 17

5 Conclusion
In this work, we have introduced the distributed asynchronous and selective opti-

mization (DASO) method. DASO utilizes a hierarchical communication scheme to

fully leverage the communications infrastructure inherent to node-based computer

clusters, which often see multiple GPUs per node. By favoring node-local parame-

ter updates, DASO is able to reduce the amount of global communication required

for full data parallel network synchronization. Thereby, our approach alleviates the

bottleneck of blocking synchronization used in traditional data parallel approaches.

We show that, if independent and identically distributed (iid) batches can be rea-

sonably assumed, the global synchronization ubiquitous to the training of DPNNs is

not required after each forward-backward pass. Furthermore, stale network states

can be used in conjunction with a reduced number of global synchronizations to

accurately train classical and state-of-the-art networks.

In a parameter study, we demonstrated that the accuracy of a model depends

strongly on how frequently the global parameters are synchronized and the number

of devices used to train the network concurrently. This study also showed that

stale gradients can be used to accurately train a network. However, the combined

effects of stale gradients and selective global updates require preventative measures

to ensure robust network architectures can be properly trained on large numbers

of GPUs. Furthermore, this parameter study showed a very interesting relationship

between the stale gradients and the local synchronizations. Namely, the accuracy

steady decreased with increasing staleness until the number of batches between

global synchronizations was equal to the number of batches to wait for the data, at

which point it increased greatly. This effect should be studied in more depth, as it

may provide greater insight into how neural networks are trained.

We evaluated DASO on two common DPNN use-cases: image classification on the

ImageNet dataset with ResNet-50, and semantic segmentation on the Cityscapes

dataset with a cutting edge multi-head attention network architecture. Our exper-

iments show that DASO can reduce training time by up to 34% while maintaining

similar prediction accuracy when compared to Horovod, the current standard for

data parallel network training, and by up to 95% when compared with a classic

synchronized SGD approach.

At large node counts, DASO and Horovod both suffer a decrease in network ac-

curacy. This is a well-known problem which relates to an increase in the distributed

batch size. The effect is more pronounced with DASO due to the reduced number

of global synchronization steps. This allows for the identification of where network

modifications must be employed to handle very large node counts. We also note that

DASO and Horovod will both yield sub-optimal results on datasets for which the

iid assumption no longer holds. For those cases, however, data parallel training will

be ineffective regardless of the communications scheme. Overall, DASO achieves

close-to-optimal target metrics significantly faster than Horovod. Therefore, DASO

is optimal for rapid initial training of large networks, respectively datasets, where

the training can be further fine-tuned using more traditional methods.

We have shown that DASO improves the scalability of DPNNs and demonstrates

that using more GPUs does not have to be the only solution to speeding up training.

While these results are very promising, there remain many things to explore in

Coquelin et al. Page 15 of 17

this direction. The parameter study showed that there are many effects which can

benefit or detract from training a network at scale and that these effects need to

be understood if we are to gain further insight on how to train networks on large

numbers of devices.

DASO’s advantage lies in the fact that it is a generic, non-tailored, and easy

to implement approach that translates well to any large scale system, may it be

a cloud, a node-based computer cluster or a high-performance computing system.

DASO opens the door to redefining data parallel neural network training towards

asynchronous, multifaceted optimization approaches.

List of abbreviations

• DPNN: data parallel neural network

• DASO: distributed, asynchronous, and selective optimization

• GPU: graphics processing unit

• SGD: stochastic gradient descent

• ASGD: asynchronous stochastic gradient descent

• iid: independent and identically distributed

• MPI: message passing interface

• NCCL: NVIDIA Collective Communication Library

• Heat: Helmholtz analytics framework

• ID: identification

• JUWELS: Jülich Wizard for European Leadership Science

• AMD: Advanced Micro Devices

• CPU: central processing unit

• HDR: High dynamic range

• CUDA: Compute Unified Device Architecture

• ResNet: Residual neural network

• HRNet-OCR: High-Resolution Network-Object-Contextual Representations

• IOU: intersection over union

• HPC: high performance computing

• NN: neural network

• LR: learning rate

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

DC: Development and implementation of DASO, ran experiments, main text authorship. Assisted with

implementation of the classic DPNN method mentioned in section 4.2. Creation of figures CD: Main text authorship

and extensive editing MG: Supervision of DC, assisted in algorithm design, extensive editing FL: Primary author of

code for the classic DPNN implementation JK: Editing and considerable assistance in concept development for

DASO MS: Supervisor of FL, assisted in algorithm design AS: Supervisor and group leader of DC, assisted in

concept development and algorithmic design

Acknowledgements

This work is supported by the Helmholtz Association Initiative and Networking Fund under project number

ZT-I-0003, the Helmholtz AI platform grant and the HAICORE@KIT partition.

Funding

This work is supported by the Helmholtz Association Initiative and Networking Fund under project number

ZT-I-0003, the Helmholtz AI platform grant and the HAICORE@KIT partition.

Ethics approval and consent to participate

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the following repositories:

• ImageNet-2012: https://image-net.org/

• Cityscapes: https://www.cityscapes-dataset.com/

Consent for publication

Not applicable

Proof of Convergence

Proof The following proof of DASO’s global synchronization method is based heavily on the

convergence analysis shown by [33] and will show that the gradients determined with DASO are

bounded.

Coquelin et al. Page 16 of 17

Let X ⊂ R
n be a known set, and f : X → R a differentiable, convex, L-smooth, and unknown function.

Then, the estimator of the stochastic gradient of f(x) is a function g̃(x) for inputs x determined by the

realization of a random variable ζ, such that E[g̃(x; ζ)] = ∇f(x : ζ). In the following, ζ is omitted due

to space constraints. The stochastic gradient descent (SGD) algorithm updates a model’s state at

batch t + 1, xt+1, with the following rule xt+1 = xt − ηg̃(xt), where η is the parametric learning rate.

A commonly used variant of SGD in practice is minibatching for computational efficiency reasons. In

minibatch SGD, the true stochastic gradient is approximated by averaging across m input items xi, i.e.

G̃(xt) = 1
m

∑m
i=1 g̃(xt,i). The model state xt+1 for minibatch SGD is

xt+1 = xt − ηG̃ (xt) (2)

where G̃ (xt) is an estimator of ∇f (xt).

Let us now consider, that S subsequent update steps are performed. It is possible to write the model

state as:

xt+S = xt − η

S−1
∑

i=0

G̃ (xt+i) (3)

One of the primary assumptions in SGD is the Lipschitz-continuous objective gradients. This has the

effect that:

f (xt+1) − f (xt) ≤ −η∇f (xt)
T
E [g̃ (xt)] +

1

2
η
2
LE

[

‖g̃ (xt)‖
2
2

]

(4)

where the Lipschitz constant, L, is greater than zero. Equation (4) implies that the expected decrease

in the objective function, f(x), is bounded above by a set quantity, regardless of how the stochastic

gradients arrived at xt [33].

In DASO, the local synchronization step is bound via the same assumptions as minibatch SGD

outlined in [33], so long as the iid assumption is upheld. However, the non-standard global

synchronization step used in DASO must be shown to be bound under the same principles. DASO’s

global synchronization is:

x
DASO
t+S =

2Sxl:t+S−1 +
∑P

i=1 xi
p:t

2S + P
(5)

where the l and p subscripts represent the node-local and global model states, S is the number of local

update steps before global synchronization, and P is the number of processes.

Similar to Equation (2), this can also be represented via the locally and globally calculated gradients,

G̃l (xl:t) and G̃p (xp:t) respectively. The global synchronization function in the gradient representation

is as follows:

x
DASO
t+S = xt − α

(

2S

S−1
∑

k=0

G̃l (xl:t+k) +
P
∑

i=1

G̃p

(

x
i
p:t

)

)

(6)

where α = η/(2S + P). Using this, Equation (2), and the fact that the updates between t and S are

local synchronizations which take the form of Equation (3), we find that globally calculated gradients

are as follows.

G̃
DASO

(xt+S−1) = P

S−1
∑

β=0

G̃l (xl:t+S−β) − 2SG̃l (xl:t+S−1) −
P
∑

i=1

G̃p

(

x
i
p:t

)

(7)

As all gradient elements in Equation (7) are bound under Equation (4), G̃DASO (xt+S−1) is similarly

bounded.

Author details
1Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
2German Aerospace Center, Linder Höhe, 51147 Köln, Germany.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, ??? (2016).

doi:10.1109/CVPR.2016.90

2. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention Is All You Need. [accessed on 2021-08-06] (2017).

1706.03762. https://arxiv.org/abs/1706.03762

Coquelin et al. Page 17 of 17

3. Ben-Nun, T., Hoefler, T.: Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency

Analysis. ACM Computing Surveys (CSUR) 52(4), 1–43 (2019). doi:10.1145/3320060

4. Yamazaki, M., Kasagi, A., Tabuchi, A., Honda, T., et al.: Yet Another Accelerated SGD: ResNet-50 Training

on ImageNet in 74.7 seconds. [accessed on 2021-08-06] (2019). 1903.12650. https://arxiv.org/abs/1903.12650

5. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical Multi-Scale Attention for Semantic Segmentation. [accessed on

2021-08-06] (2020). 2005.10821. https://arxiv.org/abs/2005.10821

6. De Sa, C., Feldman, M., Ré, C., Olukotun, K.: Understanding and Optimizing Asynchronous Low-Precision

Stochastic Gradient Descent. In: Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA). ACM, ??? (2017). doi:10.1145/3079856.3080248

7. Lian, X., Zhang, W., Zhang, C., Liu, J.: Asynchronous Decentralized Parallel Stochastic Gradient Descent. In:

Proceedings of the 35th International Conference on Machine Learning (ICML), pp. 3043–3052. PMLR, ???

(2018)

8. Zhang, S., Zhang, C., You, Z., et al.: Asynchronous Stochastic Gradient Descent for DNN Training. In: 2013

IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6660–6663 (2013).

doi:10.1109/ICASSP.2013.6638950

9. Dutta, S., Wang, J., Joshi, G.: Slow and Stale Gradients Can Win the Race. [accessed on 2021-08-06] (2020).

2003.10579. https://arxiv.org/abs/2003.10579

10. Zhang, W., Gupta, S., Lian, X., Liu, J.: Staleness-aware Async-SGD for Distributed Deep Learning. [accessed

on 2021-08-06] (2016). 1511.05950. https://arxiv.org/abs/1511.05950

11. Bogoychev, N., Junczys-Dowmunt, M., Heafield, K., Aji, A.F.: Accelerating Asynchronous Stochastic Gradient

Descent for Neural Machine Translation. [accessed on 2021-08-06] (2018). 1808.08859.

https://arxiv.org/abs/1808.08859

12. Lin, T., Stich, S.U., Jaggi, M.: Don’t use large mini-batches, use local sgd. ArXiv abs/1808.07217 (2020)

13. Paszke, A., Gross, S., Massa, F., Lerer, A., et al.: PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran

Associates, Inc., ??? (2019).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

14. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org, [accessed at 2021-08-04] (2015). http://tensorflow.org/

15. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 3.1. High Performance

Computing Center Stuttgart (HLRS), ??? (2015). https://fs.hlrs.de/projects/par/mpi//mpi31/

16. Ueno, Y., Yokota, R.: Exhaustive Study of Hierarchical AllReduce Patterns for Large Messages Between GPUs.

In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp.

430–439. IEEE, ??? (2019). doi:10.1109/CCGRID.2019.00057

17. Mikami, H., Suganuma, H., U.-Chupala, P., et al.: Massively Distributed SGD: ImageNet/ResNet-50 Training

in a Flash. [accessed on 2021-08-06] (2018). 1811.05233. https://arxiv.org/abs/1811.05233

18. Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in TensorFlow. [accessed on

2021-08-06] (2018). 1802.05799. https://arxiv.org/abs/1802.05799

19. Clauset, A.: A Brief Primer on Probability Distributions. [accessed on 2021-08-06] (2011).

http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001 2011 L0.pdf

20. Li, A., Song, S.L., Chen, J., et al.: Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch

and GPUDirect. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31(1), 94–110 (2020).

doi:10.1109/tpds.2019.2928289

21. Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: Communication-Efficient SGD via Gradient

Quantization and Encoding. [accessed on 2021-08-06] (2017). 1610.02132. https://arxiv.org/abs/1610.02132

22. Götz, M., Debus, C., Coquelin, D., Krajsek, K., Comito, C., Knechtges, P., Hagemeier, B., Tarnawa, M.,

Hanselmann, S., Siggel, M., Basermann, A., Streit, A.: HeAT – a Distributed and GPU-accelerated Tensor

Framework for Data Analytics. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 276–287

(2020). doi:10.1109/BigData50022.2020.9378050

23. Li, S., Zhao, Y., Varma, R., et al.: PyTorch Distributed: Experiences on Accelerating Data Parallel Training.

[accessed on 2021-08-06] (2020). 2006.15704. https://arxiv.org/abs/2006.15704

24. Krause, D.: JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre. Journal of

Large-scale Research Facilities 5, 135 (2019). doi:10.17815/jlsrf-5-171

25. Deng, J., Dong, W., Socher, R., Li, L.-J., et al.: ImageNet: A Large-scale Hierarchical Image Database. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE, ??? (2009).

doi:10.1109/CVPR.2009.5206848

26. NVIDIA Corporation: NVIDIA Data Loading Library (DALI). [accessed on 2021-08-05] (2021).

https://developer.nvidia.com/DALI

27. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., et al.: Accurate, Large Minibatch SGD: Training ImageNet in

1 Hour. [accessed on 2021-08-06] (2018). 1706.02677. https://arxiv.org/abs/1706.02677

28. Wu, Y., Kirillov, A., Massa, F., et al.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

29. Cordts, M., Omran, M., Ramos, S., et al.: The Cityscapes Dataset for Semantic Urban Scene Understanding.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223. IEEE, ???

(2016). doi:10.1109/CVPR.2016.350

30. Rezatofighi, H., Tsoi, N., Gwak, J., et al.: Generalized Intersection over Union: A Metric and A Loss for

Bounding Box Regression. [accessed on 2021-08-06] (2019). 1902.09630. https://arxiv.org/abs/1902.09630

31. Zhao, S., Wang, Y., Yang, Z., Cai, D.: Region Mutual Information Loss for Semantic Segmentation. [accessed

on 2021-08-06] (2019). 1910.12037. http://arxiv.org/abs/1910.12037

32. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux Utility for Resource Management. In: Workshop

on Job Scheduling Strategies for Parallel Processing, pp. 44–60. Springer, ??? (2003). doi:10.1007/10968987 3

33. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization Methods for Large-Scale Machine Learning. ArXiv (2018).

[accessed on 2021-08-06]

