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Summary

� Community trait assembly in highly diverse tropical rainforests is still poorly understood.

Based on more than a decade of field measurements in a biodiversity hotspot of southern

Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a

widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simula-

tor, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gra-

dient.
� In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics),

each plant individual can possess different trait combinations, and the community trait com-

position emerges via ecological sorting. Further model developments include plant growth

limitation by phosphorous (P) and mycorrhizal nutrient uptake.
� The new model version reproduced the main observed community trait shift and related

vegetation processes along the elevational gradient, but only if nutrient limitations to plant

growth were activated. In turn, when traits were fixed, low productivity communities

emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deacti-

vated, reduced net primary production (NPP) by 61–72% along the gradient.
� Our results strongly suggest that the elevational temperature gradient drives community

assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics

and vegetation traits. This illustrates the importance of considering these processes to yield

realistic model predictions.

Introduction

Predicting the assembly of plant communities from the species
pool and their functional traits has been a major aim of commu-
nity ecology for decades (Keddy, 1992; Fukami et al., 2005;
Shipley et al., 2006). Plant community trait composition influ-
ences and is influenced by ecosystem processes, such as net pri-
mary production (NPP), carbon (C) storage and soil nutrient
cycling (Dı́az & Cabido, 2001; Eviner, 2004; Bardgett et al.,
2014). Plant functional traits determine the competitive perfor-
mance of species (Dı́az et al., 2016; Kunstler et al., 2016), and
functional constraints lead to trade-offs. These trade-offs are rep-
resented by relationships between traits that can be generalized
across species and plant communities (Wright et al., 2004; Dı́az
et al., 2016; Bruelheide et al., 2018). The analysis of such rela-
tionships has been boosted by an increasing aggregation of plant

trait data in large databases (Kattge et al., 2020). Furthermore,
functional composition is strongly shaped by the abiotic condi-
tions of the environment, although species composition often is
largely driven by stochastic processes or dispersal limitation
(Fukami et al., 2005; Bruelheide et al., 2018). In spite of these
advancements, community assembly in highly diverse tropical
ecosystems is still poorly understood (Paine et al., 2011).

Trait research also provides data and theoretical background
for the development of process-based dynamic vegetation models
(DVMs). These models simulate community assembly and
ecosystem functioning, such as biomass growth and carbon
cycling; however, community assembly has commonly only been
modeled at the level of broadly defined plant functional types
(PFTs, e.g. tropical broadleaved evergreen trees) with mostly
fixed average parameter values. This approach ignores the vast
diversity of plants in tropical ecosystems, which might also have
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strong functional implications (Tilman et al., 1997; Dı́az &
Cabido, 2001). Recently, different approaches have been devel-
oped to represent trait variability in global DVMs (DGVMs) or
more regional DVMs, based on plant trait trade-offs, in particu-
lar the leaf and wood economic spectra (Wright et al., 2004;
Chave et al., 2009; Baraloto et al., 2010). In these models,
woody individuals differ in their trait values, and the community
trait composition emerges via ecological sorting (Scheiter et al.,
2013; Fyllas et al., 2014; Sakschewski et al., 2015; Maréchaux &
Chave, 2017; Fauset et al., 2019; Koven et al., 2019).

Most of these models, however, do not yet include soil organic
matter dynamics and/or nutrient supply limitations to photosyn-
thesis and plant growth. These are important regulators of the
global carbon cycle (Fernández-Martı́nez et al., 2014) which have
been addressed in recent model developments but not in models
accounting for within-PFT trait variability (e.g. Wang et al.,
2007; Smith et al., 2014). Including nutrient cycling in models
has partly been motivated by the need to predict the potential
effects of CO2 fertilization more realistically (Hickler et al.,
2015; Olivares et al., 2015; Sitch et al., 2015; Fleischer et al.,
2019b). Model results so far do indeed suggest substantially
smaller CO2 fertilization effects as a result of nitrogen (N)
(Wårlind et al., 2014) and more recently phosphorus (P) limita-
tion to plant growth (Wang et al., 2010; Wieder et al., 2015;
Fleischer et al., 2019a; Thum et al., 2019). The development of
flexible C allocation schemes (i.e. root vs leaf C allocation) is also
expected to improve model predictions regarding CO2 fertiliza-
tion scenarios (Franklin et al., 2012). Therefore, combining
model representations of trait variability and nutrient dynamics is
expected to be relevant as community traits affect soil nutrients
(Zhu et al., 2016) and vice versa (Werner & Homeier, 2015). In
addition, it can also be crucial to account for the role of
mycorrhiza-mediated nutrient uptake (Kirschbaum & Paul,
2002; Orwin et al., 2011; Hodge & Storer, 2014; Hofhansl et
al., 2016; Jansa et al., 2019). Mycorrhiza-mediated nutrient
uptake has been estimated to contribute up to 80% of plant N
and P uptake (van der Heijden et al., 2008; Nagy et al., 2009).
This process is considered to be particularly important for main-
taining high N and P uptake by plants in environments where
high C : N and C : P ratios of litter limit organic matter decom-
position (Hobbie & Chapin, 1998).

The interplay between nutrient availability and plant functional
diversity is particularly evident in tropical mountain forests
(Homeier et al., 2012, 2013). In these environments, a large diver-
sity of plant species occurs along elevation and topographic gradi-
ents, where many plants are endemic to specific elevation ranges
along the gradient. Long-term scientific research in tropical moun-
tain forests indicates that, with increasing elevation, reduced tem-
perature limits plant tissue decomposition rates and thus nutrient
mineralization rates (Wilcke et al., 2008; Wolf et al., 2011; Mar-
ian et al., 2017). Reduced nutrient availability restricts the estab-
lishment of plants, with lower nutrient demands and nutrient
tissue concentrations thereby producing a strong environmental fil-
ter, which in turn exacerbates nutrient limitation as a result of low
nutrient concentrations in litter (Wilcke et al., 2011; Werner &
Homeier, 2015). However, tropical mountain forests are not only

particularly valuable because of their exceptional biodiversity –
they can also store as much, or even more, C than lowland tropical
forests due to their high soil carbon storage (Wilcke et al., 2002;
Leuschner et al., 2013; Duque et al., 2021).

While it has been suggested that nutrient limitation may play
an important role for community assembly across elevation gradi-
ents in tropical mountain forests (Andersen et al., 2012; Glass-
man et al., 2017; Xu et al., 2017), the interplay with other
factors, such as temperature effects on photosynthesis, is not
clear. Also, scaling the effect of environmental changes from the
individual to the community level remains a challenge due to the
multiple processes and related feedbacks involved, but functional
traits are thought to be crucial (Suding et al., 2008). Disentan-
gling confounding factors from in-situ experiments is challenging
and, at the very least, restricted to short time spans only. In this
regard, model-based approaches may provide valuable insights
with theoretical experiments, in spite of their inherent process
simplifications.

In this study, we used a dynamic vegetation model (the Lund-
Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to
explore how soil organic matter dynamics influence community
plant functional trait assembly along an elevational gradient on
the humid Amazon-exposed eastern slope of the eastern Andean
cordillera in southern Ecuador, located in the Tropical Andes
biodiversity hotspot. We implemented trait variability, soil P
dynamics, plant uptake and limitation (note that soil N dynam-
ics, plant uptake and limitation was already included in the
model) and mycorrhiza-mediated nutrient uptake supported by
two decades of trait measurements and ecosystem research at our
study sites. The new model version (LPJ-GUESS-NTD, where
NTD stands for nutrient-trait dynamics) was tested against field
data on community trait gradients and vegetation structure along
an elevational gradient from 1000 m to 3000 m above sea level
(asl). Our goals were three-fold. Firstly, we wanted to know how
well the LPJ-GUESS-NTD model reproduced observed patterns
of plant traits and ecosystem processes along the elevation gradi-
ent. Secondly, by switching trait variability and nutrient limita-
tion in the model on and off, we aimed to evaluate how both
processes affect community plant trait assembly, biomass and net
primary production. Thirdly, we additionally addressed the role
of mycorrhiza-mediated plant nutrient uptake in overcoming
nutrient limitation.

Materials and Methods

General model description

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-
GUESS) is a dynamic vegetation model for local to global appli-
cations (Smith et al., 2001, 2014) (http://web.nateko.lu.se/lpj-
guess/). It combines generalized ecophysiological process repre-
sentations (e.g. photosynthesis, plant and soil respiration, ecosys-
tem carbon, water and nitrogen cycling) as commonly used in
DGVMs (Sitch et al., 2003; Prentice et al., 2007), with detailed
representations of tree population dynamics (establishment,
growth and death of individual trees) and canopy gap dynamics
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adopted from forest gap models (Botkin et al., 1972; Bugmann,
2001; Shugart et al., 2018). Its modular framework has been
designed for flexible adaptation to different research questions
and study areas. The main developments of the model version for
this study, LPJ-GUESS-NTD (where NTD stands for nutrient-
trait dynamics), have been the implementation of variable traits
related to the leaf and wood economic spectrum instead of mostly
fixed traits per PFT, and improvements of the soil organic matter
and nutrient dynamics, in particular an implementation of the
phosphorus cycle and plant nutrient uptake via mycorrhizas. In
previous versions of LPJ-GUESS, trait values were fixed for given
PFTs, based on the average of field observations. In the version
here they emerge through environmental filtering and competi-
tion between woody individuals for resources (light, water and
nutrients). Selection in the models works primarily through vari-
ations in mortality, which is a function of plant growth (with
higher mortality under low growth) and wood specific gravity
(WSG). Growth in the given environment in turn is determined
by the plant traits (and competition with other individuals for
resources, see also Supporting Information Notes S1). The
resource availability may be externally driven – for example by
climate, soil type and nutrient deposition – or emerge from plant
interactions that influence light, soil water or nutrient availability.
Model parameters beyond the adaptations of the model for the
study sites are described by Wårlind et al. (2014). A detailed
description of LPJ-GUESS-NTD is given in the next sections of
the methods, and a general diagram of the model is shown in Fig.
1. Further model adaptations to the study sites are described in
the Notes S1–S3, such as a flexible leaf and fine root C allocation
scheme.

Trait variation

The trait variability module for LPJ-GUESS-NTD followed a
similar approach to the Lund-Potsdam-Jena managed land model
with flexible individual traits (LPJmL-FIT) and the adaptive
dynamic global vegetation model v.2 (aDGVM2), which do not
include nutrient cycling (Sakschewski et al., 2015; Langan et al.,
2017). These models simulate trait diversity and community trait
shifts along two general principles: the values of key traits from
plant individuals are randomized at establishment; and other
traits are derived by regression of measured trait trade-offs on
these key traits (Kattge et al., 2011; Markesteijn et al., 2011;
Bendix et al., 2021). Key traits are typically independent from
each other and can be related to the leaf economic spectrum
(Wright et al., 2004), linked, for example, to photosynthetic
capacity, and the wood economic spectrum (Chave et al., 2009),
which is related to plant mortality. Once individuals are estab-
lished, filtering occurs as mortality of less competitive individuals
(details in Notes S1). Besides their role in plant physiology, these
key traits are crucial for adaptability in changing environments
and have been widely measured in the field, both globally (Kattge
et al., 2020) and at our study site (Báez & Homeier, 2018). Large
observation trait datasets are also crucial for adequately character-
izing trait variability in the community. In the implementation
of trait variability presented here, trait combinations are

produced by drawing random specific leaf area (SLA) and WSG
trait values for each established woody individual from a uniform
distribution. The range of randomized values is defined by the
field-measured data spanning the whole elevational gradient
(1000–3000 m asl), assuming therefore that there is no dispersal
limitation for trait ranges (Table S1; Fig. 1) across the area.
Using data from our field site contrasts with the approach in
LPJmL-FIT by Sakschewski et al. (2015), who used global values
for the corresponding global PFT from the TRY database (Kattge
et al., 2020). Other parameters are then calculated using trait–
trait correlations from field measurements or data from the TRY
database, resulting in a total of six traits which are randomly
defined at plant establishment (Fig. 1) and which were previously
fixed parameters per PFT. The relationships from field measure-
ments are shown together with the same relationships calculated
from the global TRY database in Fig. S1. Details of tradeoff cal-
culations are described in Notes S2.

Soil organic matter (SOM) and nutrient dynamics

The soil organic matter (SOM) module of LPJ-GUESS is based
on the CENTURY/DAYCENT/FORCENT soil model group
(Parton et al., 1993, 2010; Kirschbaum & Paul, 2002), which
includes C, N and P cycles, and is described in detail for N in a
study by Smith et al. (2014). Recent vegetation model develop-
ments (Fisher et al., 2018; Thum et al., 2019) and empirical
studies on the P cycle, some of which were conducted in our
study area (Wullaert et al., 2010; Báez & Homeier, 2018), have
demonstrated the importance of accounting for P limitation for
plant growth. From a global perspective, this is especially the case
in the tropics, where P availability is frequently the dominant
limitation for plant growth (Chadwick et al., 1999; Townsend et
al., 2007; Dalling et al., 2016), because in aged soils, which are
common in the tropics, most of the P has been leached,
sequestered, or occluded (Walker & Syers, 1976; Lambers et al.,
2008). However, most tropical mountain forest soils are relatively
young and P-rich and therefore more likely to be N-limited, in
particular at higher elevations, while N and P co-limitation has
been observed at intermediate elevations (Unger et al., 2010;
Wullaert et al., 2010; Homeier et al., 2012; Fisher et al., 2013;
Velescu et al., 2016).

Here, P cycling was implemented in LPJ-GUESS-NTD fol-
lowing the approach of the initial CENTURY model (Parton et
al., 1993) but adopting the implementations of the Carnegie-
Ames-Stanford approach carbon-nitrogen-phosphorous (CASA-
CNP) model (Wang et al., 2007, 2010). Phosphorus data for
model input and evaluation were taken from field study results
for our study region (Table S1). Mineral weathering and precipi-
tation/dissolution of P were not considered since they occur in
the mineral part of the soil and mineral contributions to the
organic layer (where most roots are located) are minor at the
2000 and 3000 m asl elevations. At 1000 m asl, where the thin
organic layer plays a smaller role in nutrient supply, mineral
weathering is so advanced that the P release can be neglected.
However, inclusion of weathering and dissolution/precipitation
processes of P might improve future modeling efforts (Wilcke et
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al., 2019). Phosphorus is added to the SOM code structure fol-
lowing the N implementation in LPJ-GUESS, which represents
SOM in several pools differing in C : N ratios. These pools are
now also characterized by C : P ratios. In contrast to the C-N-

only model version (Smith et al., 2014), LPJ-GUESS-NTD
includes a reduction of decomposition rates through low mineral
P or low N as implemented by the CASA-CNP model, with the
actual decomposition rate being the smallest of both limiting
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factors (Wang et al., 2010). This effectively provides an imple-
mentation of N or P limitation of microbial activity (decomposi-
tion) which competes with plants for available mineral nutrients
(Zhu et al., 2016). Biological N fixation in the model is indepen-
dent of deposition, and was unchanged from the global standard
version of LPJ-GUESS, which uses a general empirical relation-
ship with annual evapotranspiration and is based on the work of
Cleveland et al. (1999). Field data show that along the eleva-
tional gradient, free living N fixation does not differ significantly
between the sites and is of the order of 1.5 kg ha−1 yr−1 N (Mat-
son et al., 2015). Symbiotic N2 fixation is not included in the
model. However, the measured abundance of the family Fabaceae
(which are potential N-fixers) is decreasing with elevation – for
the trees > 10 cm diameter at breast height (DBH) it is 6% at
1000 m, 2% at 2000 m and 0% at 3000 m asl.

In addition, two other important updates were carried out based
on the work of Kirschbaum & Paul (2002) in order to improve
SOM dynamics for forested environments. First, N and P mineral-
ization is restricted to the soil microbial SOM pool, which results
in a more realistic process representation and reduced net mineral-
ization rates in forest ecosystems. Following the approach of
Kirschbaum & Paul (2002), this was done mainly to allow a net
mineralization under the high soil C : N and C : P ratios of
forests, which otherwise would be greatly constrained. Therefore,
mineralization or immobilization of N and P were dependent only
on the stoichiometry of the microbial SOM pool. Second, we
added mycorrhiza-mediated uptake of N and P to the SOM mod-
ule. According to field data, arbuscular mycorrhizal fungi (AMF)
are dominant at the study site, and are associated with virtually all
tree species, thus providing nutrient uptake also from organic
sources otherwise unavailable to plants (Kottke et al., 2004;
Cárate-Tandalla et al., 2018). In LPJ-GUESS-NTD, the imple-
mentation of mycorrhiza-mediated N and P plant uptake was
adopted from the approach described by Kirschbaum & Paul
(2002), with plants allowed to take up a fraction of N directly
from the organic microbial pool. Since AMF are predominantly
able to take up N from microbial sources and not directly from
organic material (Jansa et al., 2019), and at the study sites the root-
ing of plants is concentrated in the organic layer (Soethe et al.,
2006), mycorrhiza-mediated plant nutrient uptake in the model
occurs from the surface microbial pool XSurfacemicrobial (Fig. 1).
Our implementation is defined as follows:

dX uptakemycorrhiza

dt
¼ c �X Surfacemicrobial �M ðT soilÞ � f Xindiv �P rootindiv

Eqn 1

where M(Tsoil) is the temperature modification scalar, as defined
by Kirschbaum & Paul (2002), fXindiv is the fraction of the plant’s
X (N or P) demand (simulated by LPJ-GUESS as a function of
growth and tissue stoichiometry) not satisfied by mineral sources,
and Prootindiv is the root projective cover (i.e. the fraction of the
simulated area covered by roots in m2 m−2 for mineral uptake of
N and P). The parameter c is the mycorrhizal root colonization
rate, a fraction of the root projective cover available for
mycorrhiza-mediated plant nutrient uptake. This

equation results in reduced mycorrhizal activity under lower soil
temperatures, and, when the plant’s demand is satisfied by min-
eral sources, no mycorrhiza-mediated plant nutrient uptake takes
place. This is based on the fact that the fungus–root symbiosis is
more active in nutrient-stressed plants, with a decoupling of the
interaction as mineral nutrient availability increases (Orwin et al.,
2011). Mycorrhiza-mediated plant nutrient uptake occurs
directly from the organic N and P pool mass, therefore increasing
C : N and C : P ratios of the surface microbial pool (Fig. 1) and
effectively reducing decomposition and mineralization rates of
SOM, as described by Kirschbaum & Paul (2002). Although root
mycorrhizal colonization rates vary widely between species and
with elevation, here we kept this value fixed at 0.39, which is the
average value per species observed along the three elevational sites
(Camenzind et al., 2016).

Study area and data for model input

In this study, we simulated a tropical forest gradient in southern
Ecuador that spans edaphic, floristic and climatic changes from
1000 to 3000 m asl.

The Reserva Biológica San Francisco (RBSF) and the adjacent
Podocarpus National Park in southern Ecuador have been host-
ing scientific projects for the last 20 yr and thus there is a rich
database of biotic, edaphic and climatological measurements
(Bendix et al., 2008; Richter et al., 2013). Field plots have been
established from 1000 to 3000 m asl elevation and provide a
thermal and precipitation gradient (Table S2).

As model input (i.e. driving data) we used climatic, plant trait,
and nutrient deposition data from three sites along the elevation
gradient: 1000 m (‘Bombuscaro’), 2000 m (‘ECSF’) and 3000
m asl (‘Cajanuma’). Climatic data for the elevation gradient was
taken from weather stations (temperature, radiation and precipi-
tation; e.g. Bendix, 2020). Trait data for the gradient concerning
possible values of SLA and WSG were defined by maxima and
minima observed along the elevation gradient and taken from
studies by Homeier & Leuschner (2021), Báez & Homeier
(2018) and Homeier (2017a,b).

Inorganic nutrient forms in the model were ammonium
(NH4

+) and nitrate (NO3
−) for inorganic N (Ni, assumed to

form the same nutrient pool) and phosphate (PO4
3−) for inor-

ganic P (Pi), and were considered as the external inputs to the soil
(deposition, same for all elevation sites). Mineral weathering for
input in the mineral Pi pool was considered to be insignificant
for plant growth at our study sites. In tropical forested environ-
ments, throughfall and stemflow are important sources of nutri-
ents. Dissolved nutrients in throughfall and stemflow originate
from plant leaching and wash-off of dry deposition to the canopy
surface. Epiphytes and bryophytes located in stems and the
canopy can retain a considerable part of the total deposited N
(Clark et al., 2005; Wullaert et al., 2010; Schwarz et al., 2011;
Wilcke et al., 2013), and can also fix N2 (Stanton et al., 2019)
providing in practical terms a ‘canopy organic matter pool’
(Vance & Nadkarni, 1990). Therefore, as external inputs of N
and P to the SOM module of LPJ-GUESS-NTD we did not con-
sider the values of dry and wet deposition but the measured
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values of throughfall and stemflow Ni and Pi going directly into
the mineral pools available for plant uptake. These were taken
from Wilcke et al. (2013, 2019), Velescu & Wilcke (2020a,b)
and Velescu et al. (2020a).

Data for model evaluation

In order to test this model, we used field data measured at the same
study sites. This validation dataset is based on measurements of
282 tree species for SLA and 347 tree species for WSG. At least
ten individual trees (DBH ≥ 10 cm) have been sampled in each
of 54 permanent old-growth forest plots (plots were 20 × 20 m in
size, were equally distributed among the three study sites and cover
the topographic gradient within each site). Trait data can be
accessed at http://vhrz669.hrz.uni-marburg.de/tmf_respect/data_
pre.do?citid=1835; detailed methods for SLA and WSG determi-
nation are as described previously by Báez & Homeier (2018).
Simulated data were compared to observations (SLA, WSG, C : N
and C : P) using pairwise Wilcoxon tests. Forest structure proper-
ties such as biomass and NPP (from data measured at the same 54
plots for individuals > 5 cm DBH), as well as organic matter
stocks and litterfall were compared to the averages and confidence
intervals (CI) measured in the field (Wilcke et al., 2002; Wolf et
al., 2011; Leuschner et al., 2013; Velescu & Wilcke, 2017a,b;
Velescu et al., 2020b; Homeier & Leuschner, 2021). Additionally,
we collected soil samples and determined the 1 M KCl-extractable
mineral N concentrations of ammonium (NH4–N) and nitrate
(NO3–N) for three soil profiles in Oi, Oe and Oa horizons on
each of the permanent 1 ha old-growth forest plots, which we used
for model evaluation of plant-available soil N stocks (Table S2).
The data are available from the FOR2730 data warehouse (Velescu
et al., 2020a,b,c), and details of the sampling and chemical analysis
are included in Notes S3.

Modeling protocol

Except for the climatic driving variables, LPJ-GUESS-NTD was
applied with the same parameters for all three elevations (Table
S1), meaning differences in emerging ecosystem properties in the
model results were exclusively attributable to the climatic gradi-
ent. The full range of observed SLA and WSG values (SLA =
15.5–273.5 cm2 g−1; WSG = 0.158–1.02 g cm−3, Table S1)
were also the same for all elevations, as we assume that dispersal
limitation or differential recruitment are not relevant here, and
the elevational gradient in community traits should emerge in the
model via competition between plant individuals for resources.
Thus, in our model mortality is the main selection mechanism
for community assembly. The mean soil texture is predominantly
a silty loam across the study area and is therefore fixed across all
elevations, having sand and clay fraction contributions of 28%
and 12% respectively (Wolf et al., 2011).

The Lund-Potsdam-Jena General Ecosystem Simulator was
simulated for 700 yr, with the first 500 yr as spinup from bare
ground and the last 200 yr being used for the analysis of results.

The trait-based approach reduces the need for a detailed local
calibration since many parameter values which were previously

fixed and could be candidates for calibration are now varying and
defined by ecological filtering (through competition for
resources). We chose not to carry out additional local calibration
of the remaining fixed parameters for multiple reasons: we want
to keep the model as broadly applicable as possible so that in
future it can be applied on a larger spatial scale; we wanted to test
the validity of this potential future application by observing how
well the generalized parameters fare at the local scale; and our
focus here is not on achieving the best fit but rather on evaluating
the effect of nutrient limitation on community assembly within a
general and robust modeling framework.

The model was set up in three different configurations in order
to test the effect of trait diversity and nutrient limitation on com-
munity trait assembly: NTD, nutrient limitations on and trait
variation on (with different traits for each woody individual; see
‘Trait variation’ in Material and Methods section); Nlim-OFF,
N and P limitations off but with trait variability on; and
TraitVar-OFF, trait variability deactivated but with nutrient lim-
itations on. In this last scenario, SLA and WSG were fixed to the
average values observed in the field (SLA = 82.5 cm2 g−1,
WSG = 0.56 g cm−3). Nutrient limitations were de-activated by
using photosynthesis equations in the model which did not
depend on leaf N or P concentrations. For the NTD and the
Nlim-OFF scenario, 30 replicate runs were executed, changing
the sequence of randomly drawn values of SLA and WSG. In
order to test the model’s power to filter and predict SLA and
WSG distributions, we also conducted an additional simulation
set in which SLA and WSG min–max ranges were expanded to
SLA = 5.0–350 cm2 g−1; WSG = 0.1–1.6 g cm−3. To test the
role of mycorrhiza-mediated plant nutrient uptake in model per-
formance, we compared NTD model runs with deactivated
mycorrhiza-mediated plant nutrient uptake (AMF-OFF). Finally,
to evaluate the impact of individual climatic drivers in driving
trait shifts, we ran a climatic sensitivity analysis on the three ele-
vation sites with the whole gradient of average temperature, pre-
cipitation and radiation values, and then compared this average
simulation to additional runs in which only one of each driver
was allowed to vary (single run per site and driving factor).

Results

Model predictions along the elevational gradient

Although all three simulated sites were initialized with the same
range of SLA and WSG values, the simulated trait frequency dis-
tributions with nutrient limitation diverged across the elevation
gradient after 700 simulated years and averages corresponded
well to the observed SLA and WSG community trait values (Fig.
2a,b). Means of SLA only differed between the NTD simulations
and observations for the 3000 m asl site, and not for the others
(1000 m asl: Wilcoxon test, W = 83 867 874, P-value = 0.07;
2000 m asl: W = 213 175 160, P-value = 0.11). Simulated
WSG differed for all observations except the 1000 m asl site
(W = 143 291 518, P-value = 0.076), but like the field data
increased with elevation. The shape of the distributions for SLA
and WSG were similar to – but for most elevation ranges, wider
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than – those of the field data, as inferred from the inter-quartile
range values (Table S3). Accordingly, leaf C : N and C : P
ratios, which were related to SLA based on field observations, also
exhibited good agreement to field data (Fig. 2c,d). The C : N
ratios in leaves at 1000 m asl did not differ significantly between
the NTD scenario and field data (W =123 792 496, P-
value = 0.705). Increasing the range of randomized SLA and
WSG values did not produce different results, with the exception
of the WSG values for the 3000 m asl site, which filtered towards
even higher values (Fig. S2). The increased range also did not
affect biomass or productivity (Fig. S3). The results from the cli-
matic sensitivity simulations show clearly that the runs with vary-
ing temperature have by far the greatest effect on shifting SLA
and other traits from the average. Precipitation simulations have
little or no effect on traits or productivity, and radiation has an
effect on productivity, but not on traits (Fig. S4).

Model results with nutrient limitation fit in the observed con-
fidence interval for vegetation C mass at 1000 m asl, though the
model overestimated the vegetation C stock at 2000 m asl and
underestimated it at 3000 m asl (Fig. 3a). Net primary produc-
tion fitted best for the 2000 and 3000 m asl sites (Fig. 3b). In
particular, the new implementation of the leaf/fine root alloca-
tion improved the fit to field measurements of leaf/fine root ratios
(Fig. S5). The average number of simulated individuals with
DBH > 5 cm ranged from 544 (� 23 SD) per hectare at the
lowest 1000 m asl site to 1121 (� 33 SD) per hectare at the
highest 3000 m asl site.

Simulated soil inorganic N stocks fell within the observed con-
fidence intervals for the 1000 m asl and 2000 m asl sites, decreas-
ing with elevation and indicating that the soil organic matter

dynamics simulated correctly the nutrient limited environment
(Fig. S6a). This is also confirmed by the results on nutrient
return to the soil through litter fall, for which N and P fell within
the confidence intervals for all sites (Fig. S6b,c). Modeled
nutrient-use efficiency increased with elevation, which is consis-
tent with observations, but declined with elevation when trait
variability was deactivated in the TraitVar-OFF scenario (Fig. 4).
This suggests, unsurprisingly, that fixing the traits results in com-
munities less adapted to the nutrient-limited environments.
Nitrogen fixation was higher than the observations, at c.
6 kg ha−1 yr−1 N. However, using prescribed field measured
N2-fixation values for the simulations had no significant impact
on the results (Fig. S7).

Role of nutrient limitation, trait diversity and mycorrhizas
for model results

The model only reproduced the elevational gradient of trait dis-
tributions well when nutrient limitations were switched on (Fig.
2). The deactivation of nutrient limitation in the Nlim-OFF
scenario had a strong effect on SLA and WSG distributions
along the elevation gradient, eliminating the distinction between
the communities among the three elevations and resulting in
SLA and WSG values generally indicative of high productivity
(high SLA and low WSG) and high mortality (low WSG). A
similar pattern was observed for leaf stoichiometry (C : N and
C : P ratios), driven by the tradeoffs with SLA in the model
(Fig. 2c,d).

As expected, NPP was consistently higher in the Nlim-OFF
scenario compared to the simulations with nutrient limitation
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Fig. 2 Simulated and observed community trait frequencies for (a) specific leaf area (SLA), (b) wood specific gravity (WSG), (c) mass-based carbon to
nitrogen concentration ratio (C : N) and (d) carbon to phosphorus (C : P) concentration ratio in leaves along the elevational gradient (1000, 2000 and
3000 m asl). Scenarios refer to the Nutrient-Trait-Dynamics mode (NTD); nutrient limitation off, trait variation on (Nlim-OFF) and field observations.

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Research 7



(Fig. 3b). By contrast, biomass for the Nlim-OFF scenario
showed for most sites much lower values than the NTD (Fig.
3a). The low diversity scenario (TraitVar-OFF) on the other
hand showed higher values of biomass and NPP than the NTD

scenario at 1000 m asl, but lower values of biomass and NPP at
2000 m asl and particularly 3000 m asl. At 3000 m asl, fixing
the traits to mean values drove the community to biomass values
close to zero (0.035 Mg ha−1 C, Fig. 3a). When considering the
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Fig. 3 Processes related to the carbon (C) cycle along the elevational gradient, (a) Above- and below-ground stocks and (b) net primary production (NPP).
Grey lines indicate means and confidence intervals (n = 18 for each site) from field data (Leuschner et al., 2013). Scenarios refer to the Nutrient-Trait-
Dynamics mode (NTD), nutrient limitation off, trait variation on (Nlim-OFF) and nutrient limitation on, trait variation off (TraitVar-OFF).
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Fig. 4 Simulated (a) nitrogen (N) and (b) phosphorus (P) use efficiency (i.e. the ratio of leaf to litter nutrient concentration per total dry mass) along the
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given in Supporting Information Table S2.
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whole gradient range (1000–3000 m asl), we observed that aver-
age biomass in the NTD scenario was significantly higher than in
the low diversity scenario (NTD: 108 Mg ha−1 C, TraitVar-
OFF: 88 Mg ha−1 C, W = 30 333, P-value = 0.02938). Net
primary production on the other hand showed no significant dif-
ferences between NTD and TraitVar-OFF averages for the whole
range.

Arbuscular mycorrhiza fungi (AMF)-mediated plant nutrient
uptake had a substantial impact on biomass and NPP. Deactiva-
tion of AMF uptake resulted in a reduction in average biomass of
68% (1000 m asl), 98% (2000 m asl) and 95% (3000 m asl)
(Fig. 5a). Likewise, NPP was also reduced on average by 61%
(1000 m asl), 72% (2000 m asl) and 55% (3000 m asl), as seen
in Fig. 5(b). This makes sense since simulated total mycorrhiza-
mediated plant uptake of nutrients (Fig. S8) accounted for up to
45% of the total N uptake and 57% of the total P uptake of
plants.

Discussion

Importance of model implementations for the
representation of plant traits and ecosystem processes

Plant trait diversity and nutrient limitation to growth are impor-
tant drivers of ecosystem functioning and our implementation of
these processes in new modules, which also considered the role of
mycorrhizas for plant nutrition represents an important advance
in our understanding of plant community assembly and in the
development of DVMs. The scenario with trait variability and N
and P cycling and limitations to plant growth (NTD) broadly

reproduced the elevational gradient in plant community traits
and ecosystem processes, such as NPP.

The good agreement with observations for the simulated SLA
trait distribution (Fig. 2a), suggests that both habitat filtering (shift
of the curve mean) and trait divergence due to competition (curve
width) were realistically captured by the model. The increased
curve width of the simulations may be caused by the large trait
space from which the individuals are being recruited. More impor-
tantly, the reduction of variance with elevation in the nutrient-
limited simulations is a sign of trait filtering, which is also observed
in the field data, but was found not to be so relevant in the Nlim-
OFF scenario (Table S3). Specific leaf area and traits related to it
(Fig. 1) influence competition in particular for light and nutrients
in the model. This result is consistent with an analysis of tree
species’ functional traits and co-occurrence in an Amazon forest.
The results of this study suggested that SLA values and leaf N con-
centrations of co-occurring tree species differ more than expected
without competition, exhibiting coexistence patterns observed in
the field (Kraft et al., 2008). For WSG, however, only the simu-
lated trait means matched the observed shift across the elevational
gradient, since the modeled spread was much wider than in the
field data (Fig. 2b). This suggests that competition processes
related to WSG and tree mortality are not yet adequately captured
by LPJ-GUESS-NTD. This result is not surprising as WSG is
strongly related to tree mortality in the model (as detailed in Notes
S2), using an empirical relationship from two rainforest sites in
Malaysia (King et al., 2006), which might not apply to our study
sites. Furthermore, WSG also often correlates with hydraulic traits
(Poorter et al., 2010; Langan et al., 2017), which have not been
accounted for in the present study.
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The scenario without trait variability (TraitVar-OFF) was not
able to reproduce field data as well as the high diversity version,
since a single trait combination will invariably be more successful
in a particular environment but become inefficient in others.
According to the model, trait variation is particularly important
for biomass and NPP at higher elevations (2000 and 3000 m asl).
Substantial biomass at the 3000 m asl site was only simulated
with trait variation (Fig. 3a). The nutrient uptake demand of
individuals in the TraitVar-OFF scenario was simply too high at
the 3000 m asl site, causing severe limitations to photosynthesis.
This was not the case for the lowermost site (1000 m asl); con-
versely, however, the choice of more conservative fixed traits (i.e.
lower SLA and higher WSG) would not be as productive as more
acquisitive trait combinations in this less nutrient-limited envi-
ronment. In any case, it is clear that an increase in nutrient use
efficiency is a key factor behind improved vegetation productivity
along the elevational gradient, a pattern which is observable in
the field and in the NTD scenario. This pattern was not pro-
duced by the TraitVar-OFF setup which in fact showed a
decrease in N use efficiency (Fig. 4).

It might seem counter-intuitive that the nutrient limited NTD
scenario gave higher biomass values than the unlimited Nlim-
OFF (Fig. 3a). However, this makes sense for multiple reasons:
first, trees have higher WSG in the NTD scenario (Fig. 2) and
trees with higher wood density will have more biomass than trees
of the same size but with lower WSG (aboveground allometry
relationships in the model are not affected by WSG); second, the
higher WSG reduces growth-efficiency-related mortality and so
allows trees to survive better under suboptimal conditions, reduc-
ing biomass turnover. A general feature of DVMs appears to be a
simulated linear relationship between NPP and biomass, a feature
at odds with globally derived empirical analyses which predict
nonlinear relationships between the two (Keeling & Phillips,
2007). Potential explanations for this nonlinear relationship
commonly involve the increasing dominance of light-
demanding, fast-growing species (low wood density) as produc-
tivity increases (Baker et al., 2004; Keeling & Phillips, 2007;
Quesada et al., 2012), whereby lower community-level wood
density limits potential biomass storage (Keeling & Phillips,
2007). In a basin-wide study of Amazonian forest structure, Que-
sada et al. (2012) highlighted the role that nutrient availability
may play in mediating growth rates and altering the balance of
dominance between fast growing, low wood density species, and
slow growing, high wood density species. Here the authors
showed that as nutrient availability increased, so too did wood
production and that, coincident with these increases, there were
decreases in wood density, increases in tree turnover rates, and
reductions in forest biomass. Indeed, field data from our study
site also agrees with this pattern: a 7-yr fertilization experiment at
the 2000 m asl elevation site showed no increase in tree above-
ground biomass, because nutrient addition was more beneficial
for low WSG species than for the high WSG species (Báez &
Homeier, 2018). Our simulation results are in general agreement
with the proposed mechanisms leading to the decoupling of NPP
and biomass storage as well as with the empirical evidence pre-
sented by Quesada et al. (2012). In our simulated forest

communities we show that the removal of nutrient limitation
generally results in higher NPP, lower average wood densities,
and higher mortality rates via the trade-off between wood density
and growth mortality. These effects would not emerge without
trait dynamics, and neatly illustrate that including trait diversity
and filtering allows models to capture important but nonobvious
controls of crucial properties such as the mechanisms leading to
the decoupling of NPP and C in ways which fixed-trait models
simply cannot (Sakschewski et al., 2016).

Investigating the factors influencing community assembly
and ecosystem processes

Including nutrient limitation in our simulations drove the filtered
traits towards more conservative strategies with lower SLA and
higher WSG at higher elevational sites. Lower SLA reduces leaf
turnover and allows the plants to retain their limiting nutrients
for longer, and higher WSG values decrease the mortality risk.
This is consistent with the principles underpinning the leaf eco-
nomic spectrum and wood economic spectrum (Wright et al.,
2004; Chave et al., 2009). The activation of nutrient limitation
to growth resulted in a change of the distribution of assembled
plant community trait values (Fig. 2), confirming from a
dynamic modelling perspective that such limitations play a cru-
cial, and often overlooked, role in shaping highly diverse tropical
mountain ecosystems (Kottke et al., 2004; Homeier et al., 2012;
Werner & Homeier, 2015). This is in agreement with evidence
from field research (Homeier et al., 2012; Werner & Homeier,
2015), but the finding that the role of nutrient dynamics in the
model is so strong was unexpected.

The much better model fit of the nutrient limitation ON sce-
nario (NTD) suggests that community assembly is driven in our
study area through nutrient cycling and soil processes and not
vegetation processes. This has important implications for both
future modeling and empirical studies, as the soil microbiome
may be even more important for biodiversity and the carbon
cycle than previously thought (van der Heijden et al., 2008).
Other trait-based modeling studies include SLA and WSG linked
via trade-offs with other traits, but not detailed nutrient dynam-
ics. Drivers such as precipitation, CO2, soil depth and fire have
been shown to affect community assembly (Scheiter et al., 2013;
Langan et al., 2017). Trait data alone offer few clues as to what
selection mechanisms affect community assembly and ecosystem
properties. Here we have found that nutrient dynamics is the
most important driving factor that has not been considered in
similar trait-based DVM studies.

The changes in community trait distribution, especially for
SLA, were ultimately driven by abiotic changes across the gradi-
ent, in particular temperature, as can be observed in the results
from the climatic sensitivity (Fig. S4). Besides temperature,
WSG was affected by radiation – this is not surprising since radi-
ation has a strong effect on NPP, which in turn has an impact on
growth efficiency mortality and the correlated WSG values. The
lack of precipitation effects on community assembly is sensible
since rainfall is not strongly growth-limiting at our study sites, as
suggested by field measurements (Strobl et al., 2017).
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Waterlogging, however, which is known to restrict nutrient avail-
ability in tropical montane forests (Schuur & Matson, 2001;
Roman et al., 2011), may play an increasing role in nutrient
dynamics with increasing elevation, due to reduced temperature
and evapotranspiration.

Conversely, trait variation may also affect the environmental
conditions which drive it. The implementation of trait diversity
drives changes in litterfall stoichiometry (higher leaf C : N and C
: P ratios, Fig. 3d,e), which otherwise would be fixed or highly
invariant. The increased C and lower nutrient concentration of
litterfall in turn reduces modeled decomposition further if immo-
bilization of nutrients becomes larger than available Ni or Pi.
This implies that our model may reproduce the positive feed-
backs known to promote the spatial heterogeneity (i.e. increasing
soil organic matter stocks with elevation) of tropical montane
forests and, thereby, biodiversity (Werner & Homeier, 2015).

Role of mycorrhiza-mediated plant nutrient uptake

The importance of plant nutrient uptake via mycorrhizas in sim-
ulations is consistent with field observations for our study site in
which fungal inoculation increased biomass of tree seedlings and
reduced mortality rates even when compared to mineral fertiliza-
tion (Urgiles et al., 2009, 2014). Our implementation of
mycorrhiza-mediated plant nutrient uptake is relatively simple
compared to the multitude of associated processes occurring in
the field, and compared to other modeling approaches (Orwin et
al., 2011; Allen et al., 2020) which include the costs of root C
exchange with the fungal symbionts and soil biota represented at
the population level. However, our approach provides a simple
mechanism for the coupling/uncoupling of roots and fungi since
nutrient uptake by roots from mycorrhizas is increased when
mineral sources are not sufficient (van der Heijden et al., 2008).

Differences in AMF colonization rates might also be an impor-
tant variation across the elevational gradient. In our simulations,
the colonization rate was fixed at 39%. Local measurements indi-
cate that average AMF colonization rates range from 22% at
1000 m asl to 49% at 3000 m asl (Camenzind, 2012), with even
higher interspecific variability. This suggests that we underesti-
mated the colonization rates for the highest site, which might
explain why the model underestimated biomass stocks there due
to excessive nutrient limitation. Future model developments in
plant nutrient–trait dynamics should therefore account for root
traits (e.g. specific root length and diameter) and a variable col-
laboration gradient with mycorrhizas (Bergmann et al., 2020),
which depending on environmental conditions may or not offer
competitive advantages.

Therefore, our results highlight the important role that the col-
laboration of plants with microbes and fungi plays in tropical
vegetation dynamics and the community assembly of highly
diverse tropical mountain forests (Camenzind & Rillig, 2013;
Camenzind et al., 2018; Bergmann et al., 2020). Accounting for
these ‘hidden’ below-ground processes and interactions could
greatly improve our understanding and predictions of current
and future vegetation states.

Conclusions

Individually, both trait variation (Sakschewski et al., 2016) and
nutrient limitation (Wang et al., 2010; Thum et al., 2019) were
already known to influence ecosystem processes, in particular
biomass stocks and NPP. In this study however, the best simula-
tion agreements with field data occurred when the implementa-
tions of both ecosystem properties were active, showing that the
interaction between diversity and nutrient limitation is important
for both the improved simulation of community trait composi-
tions and ecosystem energy flows.

Elevation is generally thought to be the most important pre-
dictor of trait community assembly in mountain areas, in par-
ticular through the associated changes in temperature
(Andersen et al., 2012; Xu et al., 2017). Our simulation results
suggest that, at least in the tropical mountains of southern
Ecuador, the main temperature effects occur through impacts
on soil nutrient dynamics, since when plants are no longer lim-
ited by nutrient availability (Nlim-OFF scenario), trait filtering
does not occur. This implies that increasing temperatures due
to climate change have great potential to affect biodiversity and
carbon storage (both in soil and vegetation) along the elevation
gradient.

We have shown that the implementation of plant nutrient
uptake via AMF crucially mediates simulated patterns of vegeta-
tion structure and trait distributions and improves agreement
with observations. Removal of AMF uptake in the model
resulted in a significant suppression of productivity in relation
to field observations (Fig. 5). In agreement with empirical
observations (Hodge & Storer, 2014), the plants satisfied a large
part of their nutrient demand via mycorrhiza-mediated uptake,
in particular of P (Fig. S8). Our representation of nutrient sup-
ply via mineralization of SOM and release from the microbial
pool might be further improved by taking into account the
diverse elements of the soil microbiome. A useful template for
incorporating these elements into vegetation models is the
MYSCAN model by Orwin et al. (2011), which is also based on
the CENTURY model but distinguishes between bacteria,
fungi, mycorrhizal fungi, grazer and predator microbial pools.
Decomposition rates of SOM may be strongly altered due to
shifts in microbial community structure (McGuire & Treseder,
2010).

The results also have important implications for the develop-
ment of dynamic vegetation models. While it is widely acknowl-
edged that the representation of trait variability is crucial to
addressing the role of biodiversity for ecosystem functioning in
such models (Scheiter et al., 2013; Fyllas et al., 2017), realistic
predictions might only be possible if interactions with nutrient
dynamics are also accounted for (Hofhansl et al., 2016; Zhu et
al., 2016; Camenzind et al., 2018; Fleischer et al., 2019a). Such
developments become feasible as plant trait databases (Kattge et
al., 2020) increasingly include information on traits that are
strongly linked with SOM dynamics, such as data on global pat-
terns of leaf N and P concentrations (Walker et al., 2014), half-
saturation constants for nutrient uptake (Mulder & Hendriks,
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2014), root related processes (Bergmann et al., 2020; Guerrero-
Ramı́rez et al., 2020) and trait data (Pierick et al., 2021).

A fourth axis of plant trait variation, which was not included
here, is related to reproduction. This axis represents varying traits
related to seed dispersal, establishment and mortality, such as
diaspore size and number, light for germination and maximum
attainable height (Dı́az et al., 2016). Including this axis could
have important implications for our results, since changes in seed
size distributions can, for example, have large impacts on forest
biomass (Bello et al., 2015; Donoso et al., 2017). Representing
all four axes (leaf, root, wood and reproductive economic spec-
trum) will be an important step towards finally achieving a better
representation of functional biodiversity in DVMs.
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Báez S, Homeier J. 2018. Functional traits determine tree growth and ecosystem

productivity of a tropical montane forest: Insights from a long-term nutrient

manipulation experiment. Global Change Biology 24: 399–409.
Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T,

Killeen TJ, Laurance SG, Laurance WF et al. 2004. Variation in wood density

determines spatial patterns in Amazonian forest biomass. Global Change Biology
10: 545–562.

Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach AM,
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Fig. S1 Trait–trait relationships used in the Lund-Potsdam-Jena
General Ecosystem Simulator with nutrient-trait dynamics (LPJ-
GUESS-NTD) trait variability module, fitted using power laws.

Fig. S2 Expanded trait range simulated and observed community
trait frequencies.

Fig. S3 Expanded trait range results for processes related to car-
bon (C).
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