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Abstract: In this work, a small-strain phase-field model is presented, which is able to predict crack
propagation in systems with anisotropic brittle and ductile constituents. To model the anisotropic
brittle crack propagation, an anisotropic critical energy release rate is used. The brittle constituents
behave linear-elastically in a transversely isotropic manner. Ductile crack growth is realised by a
special crack degradation function, depending on the accumulated plastic strain, which is calculated
by following the J2-plasticity theory. The mechanical jump conditions are applied in solid-solid phase
transition regions. The influence of the relevant model parameters on a crack propagating through
a planar brittle-ductile interface, and furthermore a crack developing in a domain with a single
anisotropic brittle ellipsoid, embedded in a ductile matrix, is investigated. We demonstrate that
important properties concerning the mechanical behaviour of grey cast iron, such as the favoured
growth of cracks along the graphite lamellae and the tension–compression load asymmetry of the
stress–strain response, are covered by the model. The behaviour is analysed on the basis of a
simulation domain consisting of three differently oriented elliptical inclusions, embedded in a ductile
matrix, which is subjected to tensile and compressive load. The material parameters used correspond
to graphite lamellae and pearlite.

Keywords: phase-field; multiphase-field; grey cast iron; brittle fracture; ductile fracture;
anisotropic fracture

1. Introduction

For the numerical prediction or analysis of fractures and the associated failure of
components, the investigation of the formation and propagation of cracks is necessary.
In the study of crack development, some physical models and numerical methods have
gained acceptance over time. Important approaches of the “old guard”, for example, are
discrete formulations, with cohesion zone models [1] as the most prominent representative,
and continuum damage models [2,3]. With these approaches, it is, however, difficult to
capture phenomena such as crack branching and merging as well as crack nucleation
processes in arbitrarily complex systems. These phenomena can be intrinsically captured
when using a phase-field approach to crack modelling, which is why such methods are
enjoying growing popularity [4–6]. The evolution of cracks is described within the phase-
field framework by a regularised representation of the Griffith criterion [7], where the
degree of damage is given by a scalar continuous phase field. Subsequently, a phase-field
model is then presented that allows the simulation of crack development processes in
composite materials, consisting of brittle-anisotropic and ductile components. This is done
by analogy with lamellar graphite cast iron, in which the matrix of the cast iron behaves
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in a ductile manner and the inclusions in a brittle-anisotropic manner. Subsequently,
the constituents of cast iron with lamellar graphite, the pearlitic matrix, and the graphite
particles are represented in an idealised form. The ductile phase is considered to be purely
pearlitic and is modelled as a homogeneous ductile isotropic phase, according to the J2-
plasticity theory with linear hardening. The effects of the microscopic structure of pearlite,
consisting of ferrite and cementite, are only considered in a homogenised manner. Brittle
phases are related to lamellar graphite. As inclusions, they are similar to graphite lamellae
in terms of shape and mechanical properties. However, they are larger. On the atomistic
level, lamellar graphite is made up of interconnected graphene layers. Within the graphene
layers, covalent bonds exist between the carbon atoms. The different graphene layers are
connected by weak van der Waals forces [8–10]. Due to its atomistic structure, lamellar
graphite possesses a transverse isotropy, with regard to its elastic stiffness and critical
energy release rate, and so do the anisotropic brittle phases. For multiphase materials,
the proposed model is the first phase-field crack model we are aware of, which combines
brittle-anisotropic and ductile crack propagation. For this purpose, two existing phase-field
models for crack development are combined and introduced into the multiphase context:
one for brittle-anisotropic crack development and one for ductile crack development.

The formulation of the previous publication by Prajapati et al. [11] serves as a model
for the description of brittle-anisotropic crack development. Here, the critical energy release
rate is directionally dependent. Alternative approaches for anisotropic crack growth are
based on multiplying the divergence term of the evolution equation of the crack phase
field with an anisotropy tensor, resulting in a directional dependency (see, e.g., [12–14]). In
the context of gradient energy, however, the physical representation of such an anisotropy
tensor is still unclear [14].

When choosing a possible ductile crack model, various approaches are available,
which are briefly summarised below. The model of Duda et al. [15] was one of the first mod-
els to integrate plasticity into a phase-field crack model, so as to simulate brittle fractures
in plastic materials. Some important phenomenological characteristics of ductile fracture,
reported in experimental literature, could be reproduced in Ambati et al. [16] by coupling
the degradation function with the plastic strain state. In Ambati et al. [17], the model was
extended to finite strains. In the context of thermoplasticity, a thermodynamically consis-
tent phase-field crack model for brittle to ductile fractures is introduced in Miehe et al. [18]
at large deformations. As an extension to this, they also worked on porous-isotropic plas-
ticity in Miehe et al. [19]. In Kuhn et al. [20], an elastoplastic phase-field fracture model,
where a monolithic solution is possible, is proposed. In Miehe et al. [21], gradient plasticity
is used at finite strains in order to model ductile fracture in a variational-based phase-field
framework. In a recently published book article Alessi et al. [6], prominent phase-field
models for ductile crack growth are compared, and a study of their predictive capabilities
is conducted.

Based on the investigations of the anisotropic brittle crack model of our previously
published work, Prajapati et al. [11], the focus and novelty of this work is on coupling
the anisotropic brittle crack model with the ductile crack model of Ambati et al. [16]. As
modifications of Prajapati et al. [11], plastic deformations are additionally considered and
the degradation function of Ambati et al. [16] is introduced to map ductile fracture charac-
teristics. The calculation of the elastic and plastic fields is based on Herrmann et al. [22],
and thus the mechanical jump conditions are applied to obtain locally homogenised stresses
and plastic strains.

In Section 2, the model extension of the work presented by Prajapati et al. [11] is
introduced in order to allow the propagation of cracks in anisotropic brittle and ductile
materials. Section 3 discusses all relevant numerical aspects, while Section 4 includes
numerical studies and applications. In Section 4.1, a detailed investigation of a crack
is given, which passes a planar diffuse interface between an anisotropic brittle and a
ductile phase. In Section 4.2, crack nucleation and propagation in a domain with a single
anisotropic ellipsoid, embedded in a ductile matrix, is analysed. To show that important
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properties concerning the mechanical behaviour of grey cast iron can be predicted by
the model, a simulation area, consisting of three elliptical, anisotropic inclusions, which
are oriented differently in a ductile matrix, is subjected to tensile and compressive load
in Section 4.3. Finally, Section 5 summarises the presented results and gives an outlook on
upcoming applications.

2. Model Formulation

The model presented in Prajapati et al. [11] provides the basis for the present work. In
order to allow simulations of crack nucleation and propagation in materials with anisotropic
brittle and ductile constituents, the model is extended by an additional degradation func-
tion, which is sensitive to the accumulated plastic strain, as proposed by Ambati et al.
[16]. The reasons for choosing this model from the numerous published ductile crack
models are the following: In Ambati et al. [16], it is shown that important characteristics
concerning ductile crack nucleation and propagation can be mapped by the model. This
is made possible by a modified degradation function, which includes the accumulated
plastic strain. The modification leads to crack initiation processes, which are consistent
with experimental observations, despite the assumption of small deformations. Most of
the features under consideration, e.g., the strain localisation in the middle of an I-shaped
specimen, under tensile load, cannot be mapped by the majority of the other published
ductile phase-field crack models. Compared to brittle phase-field crack models, the main
difference in most other models that account for plastic deformations is that a plastic energy
contribution, due to hardening, is introduced in the free energy functional, and that the
stress calculation takes the plastic strains into account by splitting the total strain into an
elastic and a plastic part [6]. These changes lead to stress–strain curves corresponding to a
ductile material, but the plastic contribution in the energy functional, especially in the case
of small deformations, is substantially smaller than the elastic strain energy and thus has
only little influence on the crack nucleation and propagation. In Ambati et al. [16], the for-
mulation of the ductile degradation function furthermore ensures that the experimentally
determined yield points are represented accurately. If interested in alternative approaches
of modelling ductile crack propagation using the phase-field method, the reader is re-
ferred to Alessi et al. [6]. In this work, popular phase-field models of fracture coupled
with plasticity are compared by means of the resulting predictive capabilities for several
well-defined problems.

In the classical understanding, phase-field models in which more than two phase
fields can coexist are called multiphase-field models, which usually implies that each
phase field possesses its own evolution equation. The existence of several evolution
equations, however, only applies to the present model to a limited extent, since no solid-
solid phase transformation is integrated. For this reason, the present model is not a
full “multiphase model” but nevertheless builds on a multiphase-field representation of
physically distinguishable regions and their interfaces. However, since a solid-solid phase
evolution is to be integrated in further work and can be implemented straightforwardly,
starting from the present model formulation, by applying a staggered scheme for the crack
phase field and the solid-solid evolution, the solid-solid phase transitions were nevertheless
discretised diffusely.

Within phase-field models, the transition between physically distinguishable solid
phases is regularised, in order to allow an easy tracking of grain boundaries and to enable
phase transformation processes. For this purpose, solid phase fields, φα(x, t), α = 1 . . . N,
are introduced, with N as the number of solid phases. Within phase transition regions,
the phase fields change continuously in the range of 0 < φα < 1, while in material
points, where only one phase α exists, φα = 1 applies. To simplify the mathematical
representation in the following, all solid phase fields are collected in the N-tuple φ̂(x, t),
and their gradients are joined in∇φ̂(x, t).

Within phase-field crack models in a domain Ω ⊂ Rd, d ∈ {1, 2, 3}, the critical energy
release rate is modelled in a regularised manner by a diffuse transition between solid
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phases and cracks, whereby on top of the phase fields, representing the solid phases,
an additional crack phase field, φc(x, t) : Ω× R≥0 → [0, 1], is introduced in the spatial
point x, at the time t. The crack phase field possesses a continuous transition between
intact, φc = 0, and fractured, φc = 1, material points.

Each phase field represents the corresponding volume fraction of the phase, so that
the constraint

φc +
N

∑
α=1

φα = 1 (1)

has to be fulfilled, which applies to the solid phase fields as well as the crack phase field.
The understanding that each phase field reflects the volume fraction of a particular phase
in a material point leads to the fact that during the growth of the crack phase field, i.e., the
increase of the volume fraction of the crack phase, the corresponding volume fraction of
the solid phases dissipates, which is comparable to continuum damage models. In terms
of mass conservation, this is only acceptable as long as a negligible amount of the total
mass of a system dissipates. If solid phases are converted into the crack phase, the relative
composition of the solid phases is maintained with respect to the absolute volume fraction
of the solid phases. Therefore, the transformation of the solid phase fields is given by

φ̇α(x, t) = −hα
s φ̇c. (2)

Thus, it is sufficient to only solve the phase-field equation of the crack phase explicitly,
into which the mechanical forces of a multiphase field problem are incorporated. To identify
the relative volume fraction of a solid phase in relation to the absolute fraction of solid
phases, it is required to formulate an interpolation function for solid phases:

hα
s (φ̂) =

φα

N
∑

β=1
φβ

, (3)

which satisfies the condition
N
∑

α=1
hα

s = 1.

According to Griffith [7], in the case of linear fracture mechanics, crack growth occurs
when the energy release rate of a material point, which corresponds to the elastic strain
energy, exceeds the necessary free energy of an emerging free surface, given by a critical
energy release rate Gc(x, t). For the body Ω, this energetic view is captured in the phase-
field context in a regularised way by using a free energy functional of the form

F (φ̂, φc,∇φc, ε̂e, εacc) =
∫
Ω

3
8

Ḡc

(
φc

l̄
+ l̄|∇φc|2

)
+ fe + fp︸ ︷︷ ︸

= f (φ̂,φc,∇φc,ε̂e,εacc)

dV, (4)

which is comparable with [6,23], for example. The free energy functional includes the
interpolated critical energy release rate, Ḡc, the effective elastic strain energy,

fe(ε̂e, εacc, φ̂) =
N

∑
α=1

hα
s f α

e (ε
α
e , εα

acc, φc), (5)

and the effective plastic energy contribution, due to hardening,

fp(εacc, φ̂) =
N

∑
α=1

hα
s f α

p (ε
α
acc), (6)
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by applying the so-called AT-1 representation, according to [24], with regard to the geomet-
rical shape of the diffuse transition between the solid phases and the crack. As a typing
aid, all phase-inherent elastic tensors, εα

e , are collected in ε̂e, and the phase-inherent accu-
mulated plastic strains, εα

acc, are contained in εacc. Phase-inherent quantities are quantities
associated with each solid phase, i.e., each solid phase has its own mechanical fields. The
width of the regularised transition between damaged and undamaged material points is
determined by the interpolated regularisation parameter:

l̄(l̂, φ̂) =
N

∑
α=1

hα
s lα. (7)

The regularisation parameter is considered as a material property and is chosen as
proposed by Tanné et al. [25]. According to Tanné et al., the choice of the regularisation pa-
rameter guarantees that crack nucleation only takes place when the stresses in an isotropic
brittle material reach the tensile strength. The calculation procedure for the determination
of the regularisation parameter, shown in Tanné et al., is not readily applicable to the model
used in this paper, which has an anisotropic and ductile material behaviour. Nevertheless,
the correlations from Tanné et al. are used to calculate the regularisation parameters of
each phase, lα, which are collected in l̂, in order to use the best possible trade-off available.
It is particularly important to mention that the regularisation parameters of transversely
isotropic phases are related to the critical energy release rate and Young’s modulus of the
weakest mechanical material direction.

It is known that the tension–compression asymmetry [26] of cast iron with lamellar
graphite is controlled by the graphite lamellae [9,27]. While under tensile load, the graphite
lamellae have a negligible loading capacity and act as microcracks. They tend to close
under compressive forces and transmit the applied load [9,28]. To map this property,
an unphysical crack propagation under compressive load must be avoided. Therefore, only
the positive part of the phase-inherent elastic strain energy should lead to nucleation and
growth of the crack phase. The elastic strain energy is decomposed into its positive and
negative energy part:

f α
e (ε

α
e , εα

acc, φc) = hα
c [ f α

e ]
+ + [ f α

e ]
−, (8)

using the spectral decomposition for isotropic phases, as proposed by Miehe et al. [4],
and following Teichtmeister et al. [12], so as to allow a decomposition of transversely
isotropic materials. Here, the crack degradation function hα

c reflects the dissipation of the
solid phases on the energetic level, caused by crack growth, and is applied exclusively
to the positive energy contribution. To allow the transition of cracks between brittle and
ductile phases, two different crack degradation functions are used:

hα
c (ε

α
acc, φc) =

(1− φc)2 , brittle

(1− φc)
2 εα

acc
εα
acc,crit , ductile.

(9)

The brittle degradation function is very common for brittle phase-field crack models.
The ductile degradation function was introduced by Ambati et al. [16]. By incorporating
the accumulated plastic strain into the ductile crack degradation function, the prediction
of crack nucleation is possible, despite the small-strain formulation, which is in line with
experimental findings [16]. Furthermore, it guarantees that the phase-inherent stresses of a
ductile phase are not degraded, as long as no plastic deformation has occurred in a material
point, even though the crack phase does exist. This ensures that plastic deformations only
arise when the phase-inherent stress fulfils the yield condition. To control the ductile crack
propagation, the threshold value εacc,crit ∈ R≥0 [16] is applied.

The local homogenisation approach of Herrmann et al. [22] is used as an elastoplas-
tic multiphase-field model. Thus, the mechanical jump conditions of solid-solid phase
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transition regions are applied, which makes an interpolation of mechanical material pa-
rameters obsolete, apart from the critical energy release rate. The clean separation between
elastoplastic and purely elastic phases is only possible without any difficulties, when this
homogenisation approach is used. The homogenisation approach enables the calculation of
phase-inherent stresses, σα, and plastic strains, εα

p, and therefore avoids the occurrence of
plastic strains within brittle phases. Another advantage of the elastoplastic homogenisation
approach is that an anisotropic elastic behaviour can be realised in one phase, even though
an isotropic nonlinear constitutive model is applied in another phase. This holds especially
in multiphase regions, which, in contrast, is not possible with models using interpolated
material parameters. In multiphase regions, this is particularly required for the considered
composite material, as the volumetrically interpolated stiffnesses of the isotropic pearlite
and the transversely isotropic ellipsoids would not allow the J2-plasticity model to be used
in combination with a return mapping algorithm.

The following considerations are limited to small deformations; the total strain is
expressed as ε(H) = 1

2 (H + HT), using the displacement gradient H = ∇u(x, t); and an
additive decomposition of the strains ε = εe + εp is valid. The total, elastic, and plastic
strains are identified as ε(x, t), εe(x, t), and εp(x, t). Within the simulations, sharp crack
tips, caused by the brittle ellipsoids, act as stress concentrators. Thus, the local strains
of >2% even occur when the macroscopic strain is small. Under compressive load, grey
cast iron specimens fail at a macroscopic strain of >8%. Under the assumption of small
deformations, the geometrical nonlinearities, which actually occur under the described
states, are neglected for the sake of simplicity.

In material points with multiple solid phases, the mechanical jump conditions, given
by the sharp interface theory of bounded solid-solid transitions [29], are used. On the one
hand, this is the static balance of the linear momentum on a singular surface:

(σα − σβ) · nαβ = 0, (10)

stating that the jump of the stresses of two phases α and β vanishes in the normal direction
of a singular surface between the solid phases, nαβ(∇φ̂). On the other hand, the Hadamard
jump condition

(Hα − Hβ) = aαβ ⊗ nαβ (11)

represents a no-slip condition in the tangential directions of singular surfaces. The rank-1
tensor aαβ defines the amplitude of the jump of the displacement gradient in the direction
of the surface normal vector, as prescribed by the Hadamard lemma. In regions where only
two phases coexist, the unit normal vectors between the two phases can be written as nαβ =
∇φα/|∇φα| = −∇φβ/|∇φβ|, according to [30]. In multiphase regions, the normal vector
between two solid phases reads as nαβ = (∇φα −∇φβ)/|∇φα −∇φβ|, as described
in [31]. Applying the jump conditions with respect to the phase with the largest volume
fraction, e.g., phase 1, in regions with N coexisting solid phases, N − 1 unknown rank-1
tensors, a12, a13, . . . , a1N , have to be determined to describe the jumps of the phase-inherent
displacement gradients at the α–β transition in the nαβ-direction. For the sake of simplicity,
all rank-1 tensors are collected in the tuple

â =
(

a12, a13, . . . , a1N
)T

. (12)

The effective displacement gradient of multiphase material points, Heff, is defined by
all phase-inherent displacement gradients, collected in Ĥ, by means of a
volumetric decomposition:

Heff(Ĥ, φ̂) =
N

∑
α=1

hα
s Hα, (13)
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where Hα are the phase-dependent displacement gradients. By rearranging the effective
displacement gradient in combination with Equation (11), the displacement gradient of
phase 1 can be written as

H1 = Heff +
N

∑
α=2

hα
s a1α ⊗ n1α. (14)

For the remaining deformation gradients, this results in

Hα = H1 − a1α ⊗ n1α. (15)

All unknown rank-1 tensors, a1α, are calculated by solving the equation system

ĝ(â) =



(
σ1 − σ2) · n12(
σ1 − σ3) · n13

...(
σ1 − σÑ

)
· n1Ñ


=



(
h1

cC1[ε1
e(â)

]
− h2

cC2[ε2
e(â)

])
· n12(

h1
cC1[ε1

e(â)
]
− h3

cC3[ε3
e(â)

])
· n13

...(
h1

cC1[ε1
e(â)

]
− hÑ

c CÑ
[
εÑ

e (â)
])
· n1Ñ


= 0, (16)

composed of the pairwise static momentum balances on singular interfaces, Equation (10).
The phase-inherent elastic strains are given by εα

e = εα − εα
p, with εα = 1

2

(
Hα + (Hα)T

)
taking Equations (14) and (15) into account. For the phase-inherent stresses, this results in

σα = hα
cCα[εα

e ], (17)

where in the elastic stiffness tensor of phase α is denoted by Cα. It can be observed that
these stresses cannot be derived from the elastic strain energy, Equation (8), in the sense of
a hyperelastic material model, since, unlike the elastic strain energy, the entire stress tensor
is degraded, and not only its positive part. A similar approach to formulate a phase-field
crack model was introduced in Ambati et al. [5], where this is referred to as a hybrid model.

A J2-plasticity model [32] with linear isotropic hardening, resulting in the yield function

f α
y (s

α, εα
acc) =

√
3
2
|sα| − (σα

y,0 + Hαεα
acc) ≤ 0, (18)

is applied to compute the phase-inherent plastic strains εα
p. Here, sα = σα − 1/3 tr (σα)I

represents the deviatoric stress tensor, and |sα| =
√

sα
ijs

α
ij its Frobenius norm, where

the Einstein summation convention is valid. The first term of the yield function is the
equivalent von Mises stress, which is compared with the yield stress, expressed by the yield
strength σα

y,0 and the strain hardening Hαεα
acc, which includes the phase-inherent linear

hardening parameter Hα. If the yield function is violated, plastic yielding occurs. Using
the associative flow rule

ε̇α
p = γ̇α

∂ f α
y (sα, εα

acc)

∂sα
, (19)

the evolution of the plastic strain is described. The phase-inherent accumulated plastic
strain εα

acc =
∫

t

√
2/3|ε̇α

p|dt serves as an internal variable. As a result, the internal plastic
energy contribution of phase α [32] reads as

f α
p (ε

α
acc) =

1
2

Hαεα
acc

2. (20)
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To establish the consistency condition f α
y

!
= 0 in the case of plastic yielding, a two-step

return mapping algorithm is employed. Applying a volumetric interpolation, the effective
accumulated plastic strain

εeff
acc(εacc, φ̂) =

N

∑
α=1

hα
s εα

acc (21)

is introduced.
To solve the static balance of linear momentum,

divσeff = 0, (22)

for the displacement field u(x, t), the degraded volume-averaged effective stresses

σeff(σ̂, φ̂) =
N

∑
α=1

hα
s σα (23)

are used, which result from all phase-inherent stresses, collected in σ̂.
An important part of a phase-field crack model with diffusely overlapping transition

regions of solid phases is the volumetrically interpolated critical energy release rate

Ḡc(φ̂,∇φc) =
N

∑
α=1

hα
s Gα

c , (24)

allowing the transition between phases with different crack characteristics and anisotropy
orientations. A transverse anisotropy resulting for, e.g., lamellar graphite from its atomistic
structure, as indicated in the introduction, can be modelled for phase α, with an anisotropic
critical energy release rate, such as

Gα
c (∇φc) = Gα

c,0

(
(ñα

x)
2 + Fα

aniso

(
(ñα

y)
2 + (ñα

z )
2
))

. (25)

Through the phase-inherent anisotropy factor Fα
aniso ∈ R>=1, the referential critical

energy release rate Gα
c,0 is deformed into an ellipsoid. If Fα

aniso = 1 is chosen, the critical
energy release rate is isotropic, which is the case for ductile phases. The orientations of the
phase-dependent anisotropies are described by the phase-inherent Euler angles and are
taken into account by the transformation matrices Qα

aniso(ϕα
aniso, θα

aniso, ψα
aniso), which are

applied to transform the outward-pointing normal vector of the crack phase field from the
reference x, y, z-coordinate system into the hexagonal lattice x̃, ỹ, z̃-coordinate systems of
graphite lamellae:

ñα(∇φc) =

ñα
x(∇φc)

ñα
y(∇φc)

ñα
z (∇φc)

 = −Qα
anisonc = −Qα

aniso
∇φc

|∇φc|
. (26)

Graphite lamellae show a preferred growth direction along their graphene planes (a-
direction of their hexagonal crystal system) [33]. Therefore, their spatial expansion within
the basal planes is much larger than orthogonal to it [34]. Based on this fact, the orientation
of the longitudinal axis of a graphite lamella can be used to define its transformation
matrices Qα

aniso. From the formulation of Equation (25), it can be concluded that the
crystalline a-direction of the hexagonal crystal system of a graphite lamella points in the
same direction as the x̃-axis.
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Following Allen-Cahn [35], the temporal and spatial evolution of the crack phase field
is given as

φ̇c(x, t) = −M
δF (φ̂, φc,∇φc, ε̂e, εacc)

δφc
, (27)

including the variational derivative of the total free energy of the system, with respect
to the crack phase field and the kinetic coefficient M. To correctly predict the kinetics
of crack propagation, the kinetic coefficient has to be chosen according to experimental
findings. In this work, the explicit Euler scheme is applied to calculate the time derivatives
in order to determine an equilibrium state of the crack phase field for each mechanical load
increment, φ̇c ≈ 0. Thus, there is only a fictive time dependence, and the kinetic coefficient
can be chosen in such a way that the simulations are numerically stable. The performed
variational derivation of Equation (4) results in

φ̇c =−M
(

∂ f
∂φc
−∇ · ∂ f

∂∇φc

)

=−M

3
8

(
Ḡc

(
1
l̄
− 2l̄∇ ·∇φc

)
−∇ · ∂Ḡc

∂∇φc

(
φc

l̄
+ l̄|∇φc|2

))
+

∂ fe

∂φc︸ ︷︷ ︸
gc(φ̂,φc,∇φc,ε̂e,εacc)≤0

, (28)

where by

∂nc(∇φc)

∂∇φc
=

I − nc ⊗ nc

|∇φc|
(29)

applies for the derivation of the normal vector of the crack phase field [36], which is
necessary for the calculation of ∂Ḡc/∂∇φc. It should be considered that all vanishing terms
of the variational derivative are already excluded in the equation above. To prevent crack
healing, φ̇c ≥ 0 is enforced. Therefore, the presented model is classified as a damage model,
as the evolution of the crack phase field is irreversible.

All governing equations of the crack model are summarised in Table 2. The meaning
of the symbols is summarized in Table 2.

Model Restrictions

The starting point of developing this model was to study the evolution of cracks in
cast iron with lamellar graphite. However, this is only possible to a limited extent, as the
new model cannot be applied to the actual length scale, the micrometer range, necessary to
resolve the microstructure of cast iron with lamellar graphite. However, with the presented
model, the step towards a model that is applicable on the microscopic length scale is
no longer far off. As an adjustment, only one extension is necessary, so that the model
formulation is independent of the choice of the parameter to define the width of the diffuse
transition between the solid phases and the cracks. This could be done in a similar way as
the procedure published by Wu and Nguyen [37], but with the additional difficulty that
instead of a brittle-isotropic model formulation, a brittle-anisotropic model formulation,
combined with a ductile formulation, would have to be considered.
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Table 1. Governing equations of the phase-field crack model.

Mechanical equilibrium

Static balance of momentum divσ = 0
Static balance of momentum, at a singular surface (σα − σβ)nαβ = 0
Hadamard jump condition (Hα − Hβ) = aαβ ⊗ nαβ

Plasticity

Karush–Kuhn–Tucker system


f α
y ≤ 0

γ̇α ≥ 0
f α
y γ̇α = 0

Flow rule ε̇α
p = γ̇α ∂ f α

y
∂sα

Yield function f α
y =

√
3
2 |sα| − (σα

y,0 + Hαεα
acc)

Crack phase field evolution

Karush–Kuhn–Tucker system


gc ≥ 0
φ̇c ≥ 0
gcφ̇c = 0

Flow rule φ̇c = −Mgc

Yield function gc =
3
8

(
Ḡc

(
1
l̄ − 2l̄∇ ·∇φc

)
−∇ · ∂Ḡc

∂∇φc

(
φc

l̄ + l̄|∇φc|2
))

+
∂ fe
∂φc

Solid phase evolution

Flow rule φ̇α = −hα
s φ̇c

Volume fraction conditions of multiphase field approach

Sum condition of multiphase-field model hα
s =

φα

N
∑

β=1
φβ

Sum condition of solid phases
N
∑

α=1
hα

s = 1

Table 2. Summary of the most important symbols, categorically grouped.

Symbol Meaning

φα Solid phase fields
φ̂ Phase field-N-tuple
hα

s Interpolation function for solid phases

F Free energy functional
M Mobility kinetic coefficient

φc Crack phase field
hα

c Crack degradation function
lα Phase-inherent regularisation parameter
l̄ Interpolated regularisation parameter
l̂ Collection of phase-inherent regularisation parameters

Gα
c Phase-inherent critical energy release rate

Ḡc Interpolated critical energy release rate
Gα

c,0 Phase-inherent referential critical energy release rate
Fα

aniso Phase-inherent anisotropy factor
εacc,crit Plastic threshold value
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Table 2. Cont.

Symbol Meaning

Hα Phase-inherent displacement gradients
Ĥ Collection of phase-inherent displacement gradients
Heff Effective displacement gradient
ε Total strain tensor
εe Elastic strain tensor
εα

e Phase-inherent elastic strain tensor
ε̂e Collection of phase-inherent elastic strains tensors
fe Effective elastic strain energy

σ Stress tensor
σα Phase-inherent stress tensor
σ̂ Collection of phase-inherent stress tensors
σeff Effective stress tensor
sα Phase-inherent deviatoric stress tensor

εp Plastic strain tensor
εα

p Phase-inherent plastic strain tensors
εα

acc Phase-inherent accumulated plastic strain
εeff

acc Effective accumulated plastic strain
f α
y Phase-inherent yield function

σα
y,0 Phase-inherent yield strength

Hα Phase-inherent linear hardening parameter
f α
p Phase-inherent plastic energy

fp Effective plastic energy

nαβ Unit normal vectors between the two phases
a Rank-1 tensor
Qα

aniso Transformation matrices

3. Numerical Aspects

In this section, a brief overview of the numerical treatment is provided, which is
applied in this publication.

All simulations were executed with the in-house software package PACE3D [38] (Paral-
lel Algorithms for Crystal Evolution in 3D). The equations are implemented for general 3D
problems, although simulations in quasi-2D domains, with one cell in z-direction of space,
were performed exclusively, due to computational efforts. An equidistant orthogonal grid
is used, since curvatures can be well approximated, using a diffuse transition between
different phases. For the mapping of curvatures, a more complex discretisation grid is not
necessary. Initially, a diffuse interface is established between all occurring solid phases.
The calculation of the phase fields and the mechanical fields is processed in a staggered
manner, which means that no monolithic solution is used, where the fields serve as an
input to each other and are interpolated into the required positions of the discrete cells.

The phase-field Equation (27) is solved at central positions of the numerical cells
by applying the explicit Euler scheme for the time derivative and the finite-difference
method (FDM), using second-order accurate central differences for the spacial derivatives.
If, due to the explicit Euler scheme, values of the crack phase field occur that are greater
than one, all solid phase fields are set to zero, and φc = 1 holds. In points where the
gradient of the crack phase field is very smaller, isotropic material behaviour of the critical
energy release rate, Faniso = 1, is assumed. This is done to avoid numerical inaccuracies in
the calculation of normal vectors.

On the discretisation grid, the positions of the stresses and strains correspond to an
FE mesh with linear elements and a full integration. Using a predictor-corrector two-step
return mapping scheme, the displacement fields are calculated locally with respect to the
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mechanical jump conditions (see Section 2). The global adjustment of the displacement
fields is done by a Newton–Raphson algorithm. First, initial predictor displacement
fields are determined iteratively, fulfilling the mechanical equilibrium condition, given by
Equation (22), including the plastic strains of the previous time step/initial values. After
the calculation of the unknown plastic strains and the accumulated plastic strains, based
on the elastic prediction, the mechanical equilibrium condition might be violated. From
the violated mechanical equilibrium condition, a correction of the displacement fields is
calculated and applied to the current displacement fields. This procedure describes one
iteration step of the global Newton scheme and is repeated until the mechanical equilibrium
condition holds for the new plastic strains.

For each load increment of the mechanical boundary conditions, the phase fields are
brought into a steady state. Using fixed mechanical boundary conditions and constant
mechanical fields, the phase-field evolution Equation (27) is solved explicitly for constant
normal vectors of the crack phase field, until the criterion φ̇c ≈ 0 is fulfilled. After
fulfilling the equilibrium condition, updated normal vectors of the crack phase field are
calculated. As soon as the steady state of the phase fields holds for the updated normal
vectors, the mechanical load is increased. Through the described procedure, the time
increment ∆t and the kinetic coefficient M of the phase-field evolution Equation (27) have
only a negligible influence on the simulation results and are chosen in such a way that no
numerical instabilities occur. Since the simulation results are time-independent, it is only
possible to make conclusions about possible crack paths, but not about the kinetics of the
crack growth.

4. Numerical Examples

In this section, the developed model is validated and verified. As the anisotropic brittle
crack model has already been validated in our previous publication Prajapati et al. [11],
and the ductile crack model for single solid phases in Ambati et al. [16], the focus of
the following examinations is on the crack nucleation and propagation in domains with
brittle, transversely isotropic and ductile solid phases. Section 4.1 discusses an initial crack,
passing the planar diffuse interface of a brittle, transversely isotropic and ductile solid
phase. In Section 4.2, the crack nucleation and propagation of a domain with a single
brittle, transversely isotropic ellipsoid, which imitates a graphite lamella, embedded in
a pearlitic matrix is analysed. Finally, crack nucleation and growth are simulated in a
simulation area consisting of three differently oriented elliptical inclusions, embedded in a
ductile matrix, which is subjected to tensile and compressive load. The simulation areas
are assumed to have a physical size of 80 mm× 80 mm in order to ensure the correct use of
the regularisation parameter between the solid phases and crack, where ∆x = ∆y = ∆z =
0.265 mm is chosen as grid spacing.

The model allows the simulation of combined anisotropic and ductile properties of a
single phase, which, however, is not necessary for the fictive materials under consideration,
since the imitated graphite lamellae are anisotropic and brittle, while the pearlitic matrix
is isotropic and ductile. In the present study, a combination of anisotropic and ductile
properties is not considered.

Table 3 summarises the applied material parameters for the performed simulations.
Young’s modulus and the fracture toughness of the graphite lamellae are taken from
Pickup et al. [39], while the Poisson’s ratio is given by Fishlock et al. [40]. The pearlitic
material parameters are standard values for steel. Through the introduced material pa-
rameters, the critical energy release rate Gc is given as Gc = K2

Ic(1− ν2)/E, according to
a plane strain state. For the calculation of the phase-dependent regularisation parame-
ters lα, according to Tanné et al. [25], tensile strengths from Zhang et al. [41] and Boyer [42]
are used.
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Table 3. Mechanical parameters for pearlite and graphite, used in the simulations.

Properties Pearlite Graphite

Young’s modulus E 210.0 GPa 12.40 GPa
Poisson’s ratio ν 0.3 0.1
Yield stress σy,0 230.0 MPa
Hardening modulus H 2.1 GPa
Fracture toughness KIc 50.0 MPa

√
mm 1.34 MPa

√
mm

Tensile strength σm 738.0 MPa 27.6 MPa

Transversely isotropic material stiffnesses are obtained with the help of Young’s mod-
ulus, Poisson’s ratio, and the anisotropy factor of Equation (25). Considering the atomic
structure of graphite, made from many layered basal planes, a transversally isotropic stiff-
ness tensor of the following form is obtained within the hexagonal lattice x̃, ỹ, z̃-coordinate
systems of graphite lamellae:

Ctran. =



C22(1 + Faniso) λ C12(1 + Faniso) 0 0 0
λ + 2µ C12 0 0 0

C22(1 + Faniso) 0 0 0
sym. C22−C12

2 0 0
C11−C13

2 0
C44


x̃,ỹ,z̃

. (30)

Herein, the Lamé constants are given by

λ =
νE

(1− 2ν)(1 + ν)
; µ =

E
2(1 + ν)

. (31)

Again, it is assumed that the basal planes, pointing in the a-direction of the hexagonal
crystal system, are parallel to the x̃, z̃-plane, as in the case of the anisotropic critical energy
release rate (25). The procedure used here achieves a correlation between the anisotropy
strength of the critical energy release rate and the material stiffness.

Each simulation was carried out with the same mechanical boundary conditions,
which are shown in the following Section 4.1. The boundaries in x-direction are defined
as stress-free. On the lower and upper boundaries of the domain, an orthogonal displace-
ment u is applied in an incremental manner. The orthogonal displacement boundary
condition allows a free contraction in directions tangential to normal vectors of free sur-
faces. To create a condition of the quasi-2D domain corresponding to a plane strain state,
the orthogonal displacement boundary condition is also applied in the z-direction, where
the orthogonal displacements are equal to zero. After the condition φ̇c < 10−4 holds for
the updated normal vectors of the crack phase field, the mechanical load is increased.

The visualisation of the crack phase field φc is done by overlaying the solid phases
and a continuous transition from opaque (black), φc = 1, to transparent, φc = 0.

4.1. Planar Interface between Brittle-Anisotropic and Ductile Solid Phase

The investigated problem consists of the transition of an anisotropic brittle phase
into a ductile phase, by means of a planar interface, whereby the left half of the domain
corresponds to the anisotropic brittle phase and the right half to the ductile phase. On
the left side of the simulation domain, a pre-existing 20 mm long initial crack is located.
In Figure 1, the simulation setup and the mechanical boundary conditions are depicted.
Only uniaxial tensile tests were carried out, whose mechanical boundary conditions are
specified at the beginning of this Section 4.
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u

80mm
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0
m
m

20mm

x
y

z

Figure 1. Simulation domain for a crack passing a vertical planar diffuse interface, accompanied by
the mechanical boundary conditions. The dotted lines indicate the diffuse transition between the two
solid phases.

In this example, both phases use the material properties of pearlite (Table 3) to ensure
transcrystalline crack growth. However, the brittle phase still makes use of the transversely
isotropic stiffness tensor (Equation (30)) with no plastic deformations occurring.

In the following studies, only the influence of a single parameter is examined at
once. Therefore, the following set of standard model parameters is defined, which is kept
constant, while one parameter is varied:

ε = 3∆x; εd
acc,crit = 0.08; Fb

aniso = 2; ψb
aniso = 30°. (32)

The influences of the following parameters on the crack propagation and the ho-
mogenised macroscopic stress–strain response are investigated: the parameter ε, which
defines the width of the diffuse transition between the solid phases; the rotation angle ψb

aniso;
and the anisotropy factor Fb

aniso of the transverse isotropy around the z-axis of the reference
x, y, z-coordinate system, as well as the threshold value εd

acc,crit of the ductile phase.
First of all, the influence of the length parameter for the definition of the width of

the diffuse solid-solid phase transitions is investigated for the values ε = {3, 5, 7}∆x,
in terms of the homogenised macroscopic stress–strain response and the crack morphology
at fracture (see Figure 2a). The corresponding contour plots of the equivalent von Mises
stresses of Equation (23), σeff

v.M., and the effective accumulated plastic strain, εeff
acc, for the

highlighted states in Figure 2a, as well as the set of standard parameters, Equation (32),
are shown in Figure 3. It can be observed that a linear elastic range is present in the
macroscopic stress–strain diagrams (t0 – t2) before the stress value drops abruptly after its
peak (t2), in the same manner as brittle materials, without showing a macroscopic plastic
deformation. The steep descent (t2–t3) is caused by an unstable crack growth within the
brittle anisotropic phase. As can be seen in the polar plots, overlaying the final crack paths
in Figure 2a, the angle between the crack in the anisotropic phase and the x-axis of the
reference coordinate system is ψ = 19.2°. The discrepancy between the inclination of the
crack and the orientation of the anisotropy occurs because the elastic strain energy tends to
target a perfectly horizontal crack (ψ = 0°) when exposed to a load of Mode-I, whereas the
formulation of the critical energy release rate forces a slope, corresponding to ψb

aniso. These
two counterparts cause an actual inclination of the crack between ψ = 0° and ψb

aniso [11]. As
soon as the crack reaches the diffuse interface between the solid phases, the characteristics
of the macroscopic stress–strain plots and the crack morphology change. The further course
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of the macroscopic stress–strain response is strongly nonlinear (t4) and is associated with
plastic deformations. The crack path loses its inclination and spreads horizontally in a pure
Mode-I manner. After the sample is broken (t5), the macroscopic stress drops to zero, while
on the level of the contour plots, residual stresses remain locally, caused by the plastic
deformations. In Figure 2a, it can be seen that the width of the diffuse transition between
the solid phases has almost no influence on the macroscopic stress–strain curve and the
final crack morphology in the considered range for ε.

Next, the anisotropy orientation for the values ψb
aniso = {0, 15, 30, 45,−30}° is varied.

The corresponding stress–strain curves and the final crack paths are depicted in Figure 2b.
Due to the anisotropic stiffness tensor of the brittle phase, the peak stress value of the
diagram increases with an increasing anisotropy angle ψb

aniso. In analogy to graphite, only
the van der Waals forces are stressed at a rotation angle of ψb

aniso = 0°, whereas only the
covalent bonds are stressed at ψb

aniso = 90°, resulting in higher macroscopic stress values.
As the rotation angle of the anisotropy increases, the deflection of the resulting crack also
increases as expected, whereby it should again be noted that the anisotropic formulation
and the strain energy act as opponents. When comparing ψb

aniso = 30° and ψb
aniso = −30°

in Figure 2b, it can be observed that the resulting stress–strain diagrams for a change of
sign of the rotation angle are almost equivalent. The small differences that occur are due
to numerical inaccuracies that arise because the mechanical load is only applied at the
upper edge of the simulation area. For varying orientations of anisotropy, the ductile
part of the stress–strain curves does not differ significantly; all curves are nearly identical,
except for ψb

aniso = 45°. Due to geometric reasons, the cracks become wider with increas-
ing deflection within the brittle phase, as they pass through the solid phase transition
region. This phenomenon has an effect on the stress–strain curve of the simulation with an
anisotropy orientation of ψb

aniso = 45°.
In Figure 4a, the influence of the anisotropy factor on the mechanical behaviour is

discussed for the values Fb
aniso = {1, 1.5, 2, 2.5, 3}. The stress–strain curve shows higher

stress peaks as the anisotropy factor increases and thus also the effective stiffness of the
simulation domain. The reason for this is that the anisotropy factor increases the stiffness
of the brittle phase. In analogy to lamellar graphite, the increase in the elastic modulus
occurs within the basal planes along the a-direction of the hexagonal crystal system. If the
anisotropy factor is chosen as Fb

aniso = 1, the brittle phase behaves isotropically, and the
crack profile has no slope, ψ = 0°. The deflection of the crack increases with increasing
anisotropy factor, due to the anisotropic critical energy release rate.

Finally, the influence of the threshold value εd
acc,crit of the ductile phase is investigated

for the values εd
acc,crit = {0.8, 0.6, 0.4, 0.2}. The corresponding results are given in Figure 4b.

As long as the crack propagates within the brittle phase, a change of the threshold value has
no influence on the material behaviour, neither with regard to the stress–strain behaviour
nor with regard to the crack morphology. In the ductile phase, the crack morphology
is also not significantly altered by the threshold value. However, as expected, there is a
strong influence on the course of the stress–strain diagram. As the threshold increases,
the elongation until complete failure rises, because the ductile degradation function de-
pends on εd

acc,crit, which means that higher plastic deformations are required to cause crack
propagation in the ductile phase as εd

acc,crit increases.
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Figure 2. (a) Homogenised macroscopic stress–strain responses in the case of uniaxial tension for
different values of ε = {3, 5, 7}∆x, for the simulation setup with a planar diffuse interface between
two solid phases. The dots in the stress–strain diagram correspond to the strain states of the contour
plots of Figure 3. Below the diagram, contour plots of the crack phase φc at fracture are given,
overlaying the solid phases for the various values of ε. (b) Homogenised macroscopic stress–strain
responses in the case of uniaxial tension for different values of ψb

aniso = {0, 15, 30, 45,−30}°, for the
simulation setup with a planar diffuse interface between two solid phases. The contour plots of the
crack phase φc at fracture, overlaying the solid phases, for the different values of ψb

aniso are given
below and beneath the stress–strain diagram.
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brittle ductile

φc
0 1

σeff
v.M.

0 533MPa εeff
acc0 0.0821

t1

t3
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Figure 3. Contour plots of the evolution of the crack phase field φc (first column) and the resulting
von Mises stresses σeff

v.M. (second column), together with the effective accumulated plastic strain εeff
acc

(third column) for the simulation setup with a planar diffuse interface between two solid phases
for the set of standard parameters, Equation (32). The corresponding macroscopic uniaxial strain
states are given in Figure 2a.
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Figure 4. (a) Homogenised macroscopic stress–strain responses in the case of uniaxial tension for
different values of Fb

aniso = {1, 1.5, 2, 2.5, 3}, for the simulation setup with a planar diffuse interface
between two solid phases. The contour plots of the crack phase φc at fracture, overlaying the solid
phases, for the different values of Fb

aniso are given below and beneath the stress–strain diagram.
(b) Homogenised macroscopic stress–strain responses in the case of uniaxial tension for different
values of εd

acc,crit = {0.08, 0.06, 0.04, 0.02}, for the simulation setup with a planar diffuse interface
between two solid phases. The contour plots of the crack phase φc at fracture, overlaying the solid
phases, for the different values of εd

acc,crit are given below and beneath the stress–strain diagram.

4.2. Single Elliptic, Transversely Isotropic Brittle Inclusion in Ductile Matrix

In this section, a single elliptic, transversely isotropic brittle inclusion, embedded in a
ductile matrix, is used as a simulation setup. The longitudinal axis of the ellipsoid, which
is equivalent to the x̃-direction of the anisotropic critical energy release rate, is rotated
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with respect to the z-axis of the reference coordinate system. Its length is 64 mm and its
width 4 mm. In Figure 5, the simulation setup and the mechanical boundary conditions are
depicted. For the uniaxial tensile tests, the mechanical boundary conditions, introduced at
the beginning of this Section 4, are applied.

x̃

ỹ

z̃

30◦

u

80mm

80
m
m

x
y

z

Figure 5. Setup of the crack development investigation in a domain consisting of an elliptic, trans-
versely isotropic brittle inclusion, embedded in a ductile matrix, accompanied by the mechanical
boundary conditions. The ductile matrix is represented in blue, while the brittle inclusion phase is
represented in orange.

As material parameters for the anisotropic brittle phase, the values of graphite given in
Table 3 are used and applied to Equation (30). The ductile matrix possesses the mechanical
properties of pearlite as given in Table 3. In the following investigations, only the influence
of one parameter is examined at a time, as was done previously. Therefore, the set of
standard model parameters, Equation (32), is used, which is kept constant in case another
parameter is varied.

First of all, the length parameter to define the width of the diffuse transitions between
solid phases is varied for the values ε = {3, 5, 7}∆x. The influence of the length parameter
is investigated in terms of the stress–strain behaviour and the crack morphology (see
Figure 6a). In Figure 7, the corresponding contour plots of the equivalent von Mises
stress of Equation (23), σeff

v.M., and the effective accumulated plastic strain, εeff
acc, for the

highlighted states in Figure 6a, as well as the set of standard parameters, are shown. A
linear elastic region is present in the stress–strain diagrams, up to a strain of ε ≈ 0.075 %
(t0–t1), before crack nucleation takes place. Based on the evolution of the crack phase,
as well as on the stress–strain plots, it can be observed that there are three stages of crack
growth. First, a crack spreads within the brittle phase. This crack growth is accompanied
by a drop of the stress–strain plot (t1–t2), which proceeds in a brittle manner. After the
stress reaches a critical value (t3), the crack tips start to propagate through the diffuse
interface. During this stage, the stress–strain plot has an almost constant stress value (t3–t4).
Afterwards, the crack propagates from the upper and lower ends of the ellipsoid and
grows horizontally until a complete failure occurs, where the stress–strain plots drop to
zero (t4–t6). After the rupture, residual stresses exist, due to the presence of plastic strains.
During crack propagation in the ductile phase, a pronounced nonlinear behaviour can
be observed.

The name grey cast iron originates from the fractured surfaces of broken grey cast
iron components, which usually have a grey shimmer. Such greyish fracture surfaces are
the result of a preferred crack growth along graphite lamellae, due to the significantly
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lower critical energy release rate of graphite lamellae, compared to the metallic matrix [26].
Under tensile load, graphite lamellae have a negligible loading capacity and therefore act as
microcracks even at very small strains [9,28]. The edges of the ruptured graphite lamellae
act as stress raisers, which induce local plastic zones [9]. Only when the graphite lamellae
have lost their load-bearing capacity does the ductile matrix begin to break. The simulation
results show that this behaviour can be mapped by the introduced model. Crack nucleation
exclusively takes place within the brittle phase, associated with graphite lamellae, whereby
the direction of the crack growth along the brittle phase is favoured by the anisotropic
formulation of the critical energy release rate, before the crack propagation takes place
within the ductile matrix. The crack propagation within the ductile phase is accompanied
by local plastic strains occurring in front of the crack tips (see Figure 7) (t3). Within the
matrix, a Mode-I-type crack growth predominantly occurs in the horizontal direction.

When defining the diffuse width of the solid phase transitions, a slight dependence
of the stress–strain curves on the length parameter can be seen, whereby a convergence
of the material behaviour can be guessed, when the length parameter increases. The
crack morphology at fracture is independent of the chosen solid-solid phase transition
width, as can be seen by the final crack paths in Figure 6a—bottom. In areas where the
simulation domain has multiple coexisting phases, the calculation of the mechanical fields
is significantly more expensive, compared to areas with only one phase. Since the length
parameter has no strong influence on the simulation results, it is sufficient to choose a
length parameter value that is as small as possible but still represents a good compromise
between accuracy and calculation time.

Subsequently, the orientation of the brittle ellipsoid is varied. The rotation of the
longitudinal axis of the ellipsoid around the z-axis of the reference coordinate system for
the values ψb

aniso = {0, 15, 30, 45,−30}° is correlated to the rotation of the x̃, ỹ, z̃-coordinate
system of the anisotropy formulation. In Figure 6b, the corresponding stress–strain curves
and crack paths at the fracture are shown. As one can see, the stress–strain curves are
heavily dependent on the orientation of the inclusion. The simulation with a rotation angle
of ψb

aniso = 0° shows the smallest maximum stress value. In analogy to lamellar graphite,
the loading takes place exactly orthogonally to the basal planes, so that the highest value
of the elastic strain energy coincides with the direction of the lowest crack resistance. The
gap between the maximum elastic strain energy and the minimum crack resistance grows
as the rotation angle increases, which results in the fact that greater stresses are required to
cause cracking. For this reason, the simulation with a rotation angle of ψb

aniso = 45° has
the highest maximum stress. Regardless of the rotation angle, the crack always develops
along the longitudinal axes of the brittle particles. When comparing ψb

aniso = 30° and
ψb

aniso = −30° in Figure 6b, it can be observed that the resulting stress–strain diagrams for
a change of sign of the rotation angle are matching.

The influence of the anisotropy factor on the mechanical behaviour is shown in
Figure 8a. The results correspond to the values Fb

aniso = {1, 1.5, 2, 2.5, 3}. The stress–strain
curves are almost identical. As in the previous example, the increase in the stiffness
components of the brittle phase, which is due to the anisotropy factor, only has a small
influence on the macroscopic material behaviour, as a microcrack already develops inside
the ellipsoid at very small strains. The only difference is observed between the maximum
values of the stresses. In the nonlinear area of the diagram, which is characterised by plastic
deformations, the graphs are identical. On the scale of the crack phase field, it is noticeable
that the crack becomes thinner as the anisotropy factor increases, since the strength of the
directional dependence increases.
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ỹ

z̃

30°

x̃

ỹ
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Figure 6. (a) Homogenised macroscopic stress–strain responses in the case of uniaxial tension
for different values of ε = {3, 5, 7}∆x, for the simulation setup with a single elliptic, transversely
isotropic, brittle inclusion in a ductile matrix. The dots in the stress–strain diagram correspond to the
strain states of the contour plots of Figure 7. Below the diagram, contour plots of the crack phase
φc at fracture are given, overlaying the solid phases for the various values of ε. (b) Homogenised
macroscopic stress–strain responses in the case of uniaxial tension for different values of ψb

aniso =

{0, 15, 30, 45,−30}°, for the simulation setup with a single elliptic, transversely isotropic, brittle
inclusion in a ductile matrix. The contour plots of the crack phase φc at fracture, overlaying the solid
phases, for the different values of ψb

aniso are given below and beneath the stress–strain diagram.
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Figure 7. Contour plots of the evolution of the crack phase field φc (first column) and the resulting
von Mises stresses σeff

v.M. (second column), together with the effective accumulated plastic strain εeff
acc

(third column) for the simulation setup with a single elliptic, transversely isotropic, brittle inclusion,
embedded in a ductile matrix, for the set of standard parameters, Equation (32). The corresponding
macroscopic uniaxial strain states are given in Figure 6a.

Finally, the influence of the threshold value εd
acc,crit of the ductile phase is investigated

for the values εd
acc,crit = {0.8, 0.6, 0.4, 0.2}. The corresponding results are given in Figure 8b.

Again, a change of the threshold value has no influence on the material behaviour, as long
as the crack propagates within the brittle phase, neither with regard to the stress–strain
behaviour nor with regard to the crack morphology. In the ductile phase, the crack
morphology is also not changed significantly by the threshold value. With an increasing
plastic threshold, the elongation at the break rises, as the ductile degradation function
depends on εd

acc,crit, which means that higher plastic deformations are required to cause
crack propagation in the ductile phase when εd

acc,crit does increase.
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Figure 8. (a) Homogenised macroscopic stress–strain responses in the case of uniaxial tension for
different values of Fb

aniso = {1, 1.5, 2, 2.5, 3}, for the simulation setup with a single elliptic, transversely
isotropic, brittle inclusion in a ductile matrix. The contour plots of the crack phase φc at fracture,
overlaying the solid phases, for the different values of Fb

aniso are given below and beneath the stress–
strain diagram. (b) Homogenised macroscopic stress–strain responses in the case of uniaxial tension
for different values of εd

acc,crit = {0.08, 0.06, 0.04, 0.02}, for the simulation setup with a single elliptic,
transversely isotropic, brittle inclusion in a ductile matrix. The contour plots of the crack phase φc at
fracture, overlaying the solid phases, for the different values of εd

acc,crit are given below and beneath
the stress–strain diagram.

4.3. Multiphase Simulations in an Idealised Grey Cast Iron Microstructure

As a more realistic application example, the developed model is applied to an ide-
alised grey cast iron microstructure. As simplified representations of graphite lamellae,
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the simulation domain contains three differently oriented elliptic, transversely isotropic,
brittle inclusions in a ductile matrix. The length of 26.67 mm and the width of 3.33 mm are
the same for all inclusions. Figure 9 shows the simulation setup and the applied mechanical
boundary conditions (see Section 4), which have already been applied in the previous
validation cases. Between the solid phases, a diffuse interface, corresponding to a width
of ε = 3∆x, is generated, while no solid-solid phase transformation takes place during the
simulations. Since the simulation domain is not a representative volume element in terms
of a realistic cast iron with the lamellar graphite microstructure, the brittle particles extend
almost through the entire domain.

x̃

ỹ

z̃
−45°

(1/2L, 5/6L)

(1/5L, 2/5L)

(3/5L, 2/5L)

u

L = 80mm

80
m
m

x
y

z

Figure 9. Simulation domain with three differently oriented elliptic, transversely isotropic, brittle
inclusions in a ductile matrix, accompanied by the applied mechanical boundary conditions. The
anisotropic brittle phases are represented in orange, while the ductile matrix is represented in blue.

The material parameters for the ductile matrix and the brittle inclusions are given in
Table 3. The anisotropy factor Fb

aniso = 1.5 and the plastic threshold value εd
acc,crit = 0.08

were selected as model parameters. With the anisotropy factor, the unrotated transversal
isotropic stiffness tensor of the anisotropic ellipsoids is obtained according to Equation (30).

Figures 10 and 11 show the evolution of the crack phase field under uniaxial ten-
sile and compressive load. In addition, contour plots of the von Mises stresses σeff

v.M.
and the effective accumulated plastic strain, εeff

acc, are given. All corresponding states of
Figures 10 and 11 are highlighted in the stress–strain plot in Figure 12. In both loading
cases, the crack nucleation takes place in the ellipsoid, whose longitudinal axis is oriented
orthogonally to the loading direction. The weakest critical energy release rate lies exactly
along that longitudinal axis. In analogy to physical reality, in this case, the weak van der
Waals bonds of this graphite lamella are mainly stressed, which results in the observed
growth behaviour. The crack growth within the horizontal ellipsoid is followed by local
stress peaks at the ellipsoid’s edges and associated with plastic deformations of the pearlitic
matrix. The described behaviour is consistent with experimental observations [9] and has
already been observed in Section 4.2. After the first ellipsoid is fractured, the ellipsoid
which shows a rotation of the longitudinal axis by ψ = −45° with respect to the reference
coordinate system starts to break. Under compressive load, a crack also develops within
the vertical ellipsoid. When pressure is applied, significantly higher plastic deformations
occur, as expected. After the specimens are broken, the zones under plastic strain induce
a complex distribution of residual stresses, which is typical for grey cast iron [9]. Under
tensile load, the crack morphology within the ductile matrix is narrower than under com-
pressive load. Overall, the behaviour observed in the simulations—that microcracks first
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form within the graphite particles and that these microcracks subsequently coalesce into
macrocracks—is consistent with experimental results (see, e.g., [43–45]).

brittle ductile

φc
0 1

σeff
v.M.

0 247MPa εeff
acc0 0.0816

t0

t1

t2

t3

Figure 10. Evolution of the crack phase field φc (first column) and the resulting von Mises
stresses σeff

v.M. (second column), together with the effective accumulated plastic strain εeff
acc (third

column) of an idealised grey cast iron microstructure. Uniaxial tensile load was applied. The
corresponding macroscopic uniaxial strain states are given in Figure 12.
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Figure 11. Evolution of the crack phase field φc (first column) and the resulting von Mises
stresses σeff

v.M. (second column), together with the effective accumulated plastic strain εeff
acc (third

column) of an idealised grey cast iron microstructure. Uniaxial compressive load was applied. The
corresponding macroscopic uniaxial strain states are given in Figure 12.

With regard to the type of load, important characteristics of the complicated constitu-
tive behaviour of grey cast iron can be found in the simulation results. This includes the
nonexistence of a linear elastic regime under tensile load and the tension–compression–
stress asymmetry [46]. Figure 12 clearly depicts the asymmetric behaviour under tensile
and compressive load, which is typical for cast iron with lamellar graphite on the macro-
scopic scale [47,48]. Under tensile load, the tested material possesses a brittle behaviour: at
an elongation of ε ≈ 0.2 % and a stress peak of σ ≈ 95 MPa, crack nucleation takes place.
Crack growth occurs without the occurrence of large macroscopic plastic deformations
and leads to a fracture at an elongation of ε ≈ 1.63%. Keeping the size of the simulation
area in mind, these results are in relatively good agreement with the experimental findings
documented in the literature. According to Noguchi and Shimizu [49], grey cast iron
does not show a pronounced yield strength under tensile load and breaks at a strain be-
tween ε = 0.5–1.0%, without visible necking. In grey cast irons, tensile fracture stresses are
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in the range of σ = 100–500 MPa [50]. Under compressive load, a drop in the stress–strain
diagram occurs after a strain of ε ≈ 0.2 % and a stress peak of σ ≈ 134.5 MPa. Before this
point, the course of the curve is linear. Afterwards, a large segment occurs, which shows
nonlinear material behaviour, caused by the plastic deformation of the ductile matrix. The
elongation at fracture under compressive load is ε > 5 % and can therefore no longer be
properly represented when small deformations are assumed. This different behaviour
under tensile and compressive load is mainly driven by the tension–compression split of
the elastic strain energy. Under compressive load, the elastic strain energy is considerably
smaller compared to the tensile example; therefore, failure of the ductile matrix occurs at
significantly higher strains.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−140

−100

−60

−20

20

60

100

t0

t1

t2

t3

c0
c1

c2

Strain in %

S
tr
es
s
in

M
P
a

Tension

Compression

Figure 12. Homogenised macroscopic stress–strain response of a simulation domain, inspired by an
idealised cast iron microstructure with lamellar graphite. The diagrams show the stress and strain in
the case of uniaxial tension and compression. The dots in the stress–strain diagram correspond to the
strain states of the contour plots of Figures 10 and 11. Even though the simulation domain is not a
representative volume element, a clear tension–compression dependency of the stress–strain plot can
be observed when looking at the peak stresses and the elongations at failure.

5. Summary and Outlook

In this work, a small-strain phase-field model capable of predicting crack propagation
in systems with anisotropic brittle and ductile constituents was presented. To distinguish
between the brittle and ductile crack characteristics, two different formulations of the
degradation function are used. As an extension to our previous model formulation [11],
the ductile degradation function by Ambati et al. [16] was also introduced. To simulate
nonlinear mechanical behaviour, a model, based on the J2-plasticity theory is applied,
which fulfils the mechanical jump conditions for the phase with the largest volume fraction.
Idealised simulation setups were used to investigate the influences of the relevant model
parameters on cracks passing through a planar interface between a brittle and a ductile
solid phase and for crack development in a domain of a single brittle ellipsoid, embedded
in a ductile matrix. Afterwards, uniaxial tension and compression tests were performed
in a domain, inspired by a grey cast iron microstructure. It was shown that important
mechanical grey cast iron properties can be mapped by the model, which makes it suitable
for the simulation of that material group. The model captures the initiation of microcracks
within graphite lamellae and the subsequent coalescence of these microcracks by crack
growth processes within the ductile matrix to form a fracture. On the macroscopic length
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scale, the tension–compression load asymmetry of the uniaxial stress–strain response
is mapped.

An important and necessary improvement of the model is to make it independent of
the regularisation parameter, which defines the width of the diffuse transition between the
solid phases and the crack. With such a modification of the model, the crack development
in cast iron microstructures could be simulated on its true physical length scale in the
millimetre range. This could be done in a similar way as published by Wu and Nguyen [37]
but with the additional difficulty that a brittle-anisotropic model formulation, combined
with a ductile model formulation, would have to be considered, instead of a brittle-isotropic
model formulation.

In future work, we intend to investigate cracking processes in grey cast iron materials
under realistic thermomechanical load, following braking operations of truck brake discs.
Furthermore, we want to investigate the crack formation in grey cast iron that has under-
gone the martensitic transformation process. In addition, the use of a finite deformation
model would be of interest. Furthermore, the model can be applied or extended to other
types of material composites, composed of multiple phases with different mechanical
properties such as fibre-reinforced polymer structures, fuel cells, or battery materials.
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