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Abstract This paper considers a fuzzy subspace clustering problem and pro-
poses to introduce an original sparsity-inducing regularization term. The mini-
mization of this term, which involves a ℓ0 penalty, is considered from a geometric
point of view and a novel proximal operator is derived. A subspace clustering
algorithm, Prosecco, is proposed to optimize the cost function using both
proximal and alternate gradient descent. Experiments comparing this algorithm
to the state of the art in sparse fuzzy subspace clustering show the relevance of
the proposed approach.
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1 Introduction

Clustering analysis is a data mining technique which reveals the tendencies
of a dataset by forming groups of data points that are similar to each other
and dissimilar to points from other clusters. Subspace clustering (Agrawal
et al., 1998; Parsons et al., 2004) generalizes clustering by allowing clusters
to reside in different subspaces of the original space. These subspaces are not
known beforehand: The relevant dimensions of the clusters are to be learned by
the algorithm. As for standard clustering, the resulting clusters have to exhibit a
strong internal similarity, however the latter is expressed in terms of dimensions
local to the cluster.

Points may belong to one or more clusters. For instance, text documents may
address one or more specific topics and belong to one or several corpora. This
paper adopts a soft, or fuzzy, subspace clustering framework (FSC for short; see
e.g. Deng et al., 2016), where both the memberships of points to clusters and
the weights of the dimensions are degrees in [0, 1]. Indeed, first, as different
clusters may reside in different subspaces, they may intersect and some data
points belong to several clusters, with different degrees. Second, the features
describing a subspace can be more or less relevant to a cluster, depending on
how the data points are spread in the subspace.

It is customary that many original features are fully irrelevant to describe
the clusters. Traditional FSC algorithm may identify them as inappropriate
and assign them low, but non-zero, weights, polluting the description of the
subspaces. A way to address this problem is to introduce sparsity in the solutions:
By setting their weights to 0, a sparsity-inducing FSC algorithm effectively
removes irrelevant features, identifying the data intrinsic dimensionality.

This paper proposes such a sparse weighting of the features. A new sparse FSC
algorithm named Prosecco is introduced, which produces sparse description of
the subspaces. To do so, it proposes an optimization problem involving an ℓ0
penalty regularization term (Hastie et al., 2015). Although the optimization of
such problems is computationally hard in the general case and dictates the use of
surrogates such as ℓ1 norm (Natarajan, 1995), the settings of this paper, which
combine alternate optimization and proximal splitting (Guillon et al., 2016),
allow the use of a polynomial algorithm which explores the space of potential
solutions using elementary geometric tools.
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The paper is structured as follows: Related works in subspace clustering with
sparsity constraints are presented in Section 2. The new cost function is presented
in Section 3, together with the original ℓ0 problem studied in this paper. It is
reformulated in a geometric framework, which leads to the proposition of an
algorithmic expression of the proximal operator solving this problem, along
with a theoretical proof of its correctness. The Prosecco algorithm is presented
in Section 4. Two experimental studies are then considered in Section 5 to
evaluate Prosecco and other FSC algorithms on artificial and real data.

2 Related Works

In this section, the general problem of sparse fuzzy subspace clustering is
presented. Related works are then recalled. The following notations are used:
Denoting the data matrix by - = (G8)8=1 ... = ∈ R=×3 , the subspace clustering task
consists in identifying 2 clusters represented by their centres � = (2A )A=1 ... 2 ∈
R2×3 . Through the computation of membership degrees * = (DA8) ∈ [0,1]2×=,
A = 1 ... 2 and 8 = 1 ... =, the data are fuzzily assigned to clusters. Specific to
the subspace clustering task, the weights of dimensions , = (FA ?) ∈ [0,1]2×3 ,
A = 1 ... 2 and ? = 1 ... 3 are learned independently for each cluster, and assign
the relevance of a given dimension ? for a cluster �A : The higher the weight,
the closer the points assigned to �A along this dimension.

2.1 Problem Statement

Subspace clustering (Agrawal et al., 1998) is a generalization of clustering that
forms clusters of high internal similarity, but also identifies the representation
most adapted to each of these clusters. As points assigned to different clusters
may exhibit different common features, this representation is discovered simul-
taneously with the clusters and is necessary to form them. In practice, most
subspace clustering algorithms identify subspaces by selecting the features most
relevant to describe each cluster.

These subspaces can be of various sorts. Most often, (soft) projections on axes-
parallel subspaces or linear combinations (including rotations) of the original
axes are considered (Vidal, 2011). This point of view allows to understand
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subspace clustering as a generalization of PCA which identifies several principal
components in different subgroups of the original data (Vidal, 2011).

A Fuzzy Subspace Clustering model
The fuzzy variant of Subspace Clustering has been introduced by Keller and
Klawonn (2000) (K&K for short) who refine the Fuzzy 2-Means cost function
by introducing a weighted Euclidean distance. Using hyperparameters <, E > 1
which allow to introduce and control fuzziness into the solutions, they propose
the following cost function

�K&K(�,*,,) =
2∑

A=1

=∑
8=1

D<A8

3∑
?=1

FE
A ? (G8 ? − 2A ?)2 . (1)

This cost function is an extension of the classic Fuzzy 2-Means one, the latter
corresponding to the case where all weights FA ? are equal to each other. It is
minimized under the three constraint sets by the standard method of Lagrangian
multipliers

(C1) ∀8 ∈ {1 ... =}:
2∑

A=1
DA8 = 1 , (2)

(C2) ∀A ∈ {1 ... 2}:
=∑
8=1

DA8 > 0 and (3)

(C3) ∀A ∈ {1 ... 2}:
3∑

?=1
FA ? = 1 . (4)

This leads to an algorithm which alternates between the optimization of the three
parameters and learns cluster centres �, membership degrees * and feature
weights , .

Guillon et al. (2016) modify this cost function in order to express the third
constraint as a penalty term and change the optimization scheme accordingly.
An alternate optimization algorithm combining gradient and proximal descent
is introduced. In the present paper, a similar optimization scheme is adapted to
a new cost function, with a different penalty term.
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2.2 Sparsity in Subspace Clustering

While standard FSC algorithms identify the features that are the most rele-
vant to describe a cluster, they produce dense weight vectors ,A ∈ R3 such
that ∀?, FA ? > 0 and thus do not necessarily find the dimensionality of each sub-
space: All dimensions receive non-zero weights, some of them being arbitrarily
small. Although one may, of course, apply a threshold to select significant di-
mensions, this paper focuses on approaches resulting in sparsity by-design.

To address this problem, several authors have considered sparsity-inducing
algorithms, which produce sparse description of the subspaces. Witten and
Tibshirani (2010) integrate global feature selection to the standard :-means
algorithm and add a ℓ1 constraint to the optimization problem to produce
sparse descriptions. This approach belongs to the family of LASSO-based
feature selection algorithms (Tibshirani, 1996). Although these approaches
work well in practice, they use the ℓ1-norm as a surrogate to select features.
Guillon et al. (2019) observe that the summation constraint on the vectors ,A

forbids the use of the ℓ1-norm; in the present paper, the proposed framework
is simple enough so that no surrogate is necessary. Instead, a polynomial time
stepwise feature selection is proposed, along with a proof of correctness.

Jing et al. (2007) study subspace clustering of sparse data such as text
vectors. They introduce a subspace version of the :-means cost function with
weights FA ? ∈ [0,1]. An entropic regularization term is added to the cost
function, which is responsible for introducing both sparsity and fuzziness in the
weight vectors

�EWKM(�,*,,) =
2∑

A=1

=∑
8=1

DA8

3∑
?=1

FA ? (G8 ? − 2A ?)2

+ W ·
3∑

?=1
FA ? log(FA ?) . (5)

Their intent is to control the sparsity of the data (texts and occurrence of specific,
domain-related terms) through the use of entropy. The use of the entropic
regularization term allows them to derive a simple optimization algorithm
named Entropy Weighting :-Means (EWKM for short), but complicates the
modulation of the sparsity effect in the solutions, even by tuning the value of
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regularization parameter: The computed solutions are often very sparse and
EWKM fails to identify the right dimensionality of the clusters. Moreover,
the update equations given by Jing et al. (2007) do not theoretically produce
sparse vectors. In practice, however, the computed values are too small to be
represented by floating point numbers, thus producing sparse vectors. Finally,
the hyperparameter W > 0 allows the user to balance the effects of the two terms.
In the following, a fuzzy version of EWKM is considered, where DA8 ∈ [0, 1],
in order to allow the comparison with other FSC algorithms. This amounts to
minimizing the following cost function

� ′EWKM(�,*,,) =
2∑

A=1

=∑
8=1

D2
A8

3∑
?=1

FA ? (G8 ? − 2A ?)2

+ W ·
3∑

?=1
FA ? log(FA ?). (6)

Borgelt (2008) extends the K&K cost function by modifying the fuzzifier
operating on the weights, so that sparse weight vectors are produced: Transposing
the generalized fuzzifier proposed by Klawonn and Höppner (2003) for the
membership degree, he proposes to replace the term FE

A ? in Equation (1) by

1 − V

1 + V F
2
A ? +

2V
1 + VFA ?

where V ∈ [0, 1) is a hyperparameter that allows to modulate the sparsity effect.
This parameter is interpreted as a ratio between intra-cluster variances whose
value setting appears critical yet hard. The Prosecco solution presented in this
paper separates the optimization and sparsification of the weights and presents
an algorithm based on the geometry of the unit simplex of R3 .

Finally, in a different setting, Elhamifar and Vidal (2009) introduce Sparse
Subspace Clustering (SSC), a family of algorithms which has become standard in
the computer vision community. In the simplest setting, SSC recovers subspaces
intersecting only at the origin by expressing each point as combination of
its neighbours. As this self-expressive model includes a ℓ1 sparsity-inducing
constraint, only close neighbours of each point are selected. Subspaces can then
be recovered and a standard spectral clustering algorithm is run to produce the
clusters. Several improvements over this general idea have been made, including
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the use of sparsity-inducing norms other than simple ℓ1. However, to the best of
our knowledge, this approach does not work well when clusters and subspaces
lie in the same vector subspaces or when they intersect on more than one point,
which often happens.

3 Proposed Cost Function and Optimization

This section presents the cost function we propose, from which a FSC algorithm
is derived. It features a penalty term which constrains the solution in two ways:
First by ensuring that it is valid with respect to constraint (C3), secondly by
introducing sparsity in the weighting of the dimensions.

3.1 Proposed Cost Function

The proposed cost function � is the sum of a subspace clustering model � and a
penalty term � that induces sparsity:

� (�,*,,) = � (�,*,,) + W · � (,) , (7)

with

� (�,*,,) =
2∑

A=1

=∑
8=1

D<A8

3∑
?=1

F2
A ? (G8 ? − 2A ?)2 , (8)

and

� (,) = W ·
2∑

A=1
�ℓ0 (,A ) , (9)

where �ℓ0 is defined by

�ℓ0 (,A ) =


‖,A ‖0 if

3∑
?=1

FA ? = 1

+∞ otherwise
. (10)
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The � function is the same as the cost function from Equation (1), setting E to 2
in order to ease the mathematical analysis, and the cost function is optimized
under the same constraint set (C1) and (C2). The second term, �, is the proposed
penalty term: by giving an infinite weight to vectors,A which do not sum up to 1,
it prevents the trivial minimizer, = 0 and forbids invalid solutions by enforcing
the summation constraint set (C3). Additionally, the proposed penalty makes
a difference between the valid weight vectors, expressing the desired sparsity
preference: The sparser the considered ,A , the smaller the penalty value.

While the differentiable function � can be minimized through gradient descent,
the penalty term �, that can take infinite values and is non-differentiable, cannot.
However, as � only depends on the weights of the subspaces, the optimization
can be split in two parts: The optimization regarding � and * is standard and is
briefly recalled in Section 4. Regarding , , advanced optimization techniques
such as proximal gradient descent, presented in Section 3.2, allow us to derive
an algorithm finding solutions to the proposed subspace clustering problem: By
reformulating the minimization problem into a geometric one in Section 3.3,
we propose in Section 3.4 a proximal operator for �, i.e., an algorithm which
finds sparse weight matrices , , which is then proven correct in Section 3.5.

In the following, the parameter of interest is , , and the minimization of � is
considered from the point of view of proximal operators, which allow to split
the minimization of the � and � (Guillon et al., 2016).

3.2 Chosen Optimization Framework: Proximal Splitting

Proximal gradient descent is an iterative optimization scheme enriching standard
gradient descent, which is usually employed to minimize a sum of convex
functions, some of which are non-differentiable. All definitions and results
in this section can be found e.g. in Parikh and Boyd (2013). Given � (,) =
� (,) + W · � (,), where � is differentiable, proximal gradient descent splits
the descent as such

, C+1 = proxW �

(
, C − [∇� (,)

)
, (11)

where ∇� (,) is the gradient of � seen as a function of , and proxW � is the
proximal operator of �, defined by
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proxW � (,0) = argmin
, ∈R2×3

1
2 ‖, −,

0‖ + W · � (,) . (12)

The proximal operator of � maps a given point ,0 to a point , which is the
minimum of � in a certain neighbourhood of ,0 (because of the first term),
this effect being implicitly modulated by the constant W. Based on this operator,
the proximal gradient scheme in Equation (11) splits the descent in two parts,
first looking for a minimizer of � using the gradient, then projecting the current
approximation back using the proximal operator of �.

The penalty function from Equation (10) is not convex and therefore its
proximal operator is ill-defined. However, by looking at its definition, it can
be seen that � only discriminates between valid solutions according to their
sparsity, i.e., several solutions equally sparse receive the same cost. Therefore,
� not being convex and having several minimizers for �ℓ0 and � is not a
problem. As � is separable, its proximal operator is expressed as the Cartesian
product of the ones of �ℓ0 :

proxW � (,0) = (proxW � (,0
1 ), · · · , proxW � (,0

2 )) . (13)

The penalty function �ℓ0 can be understood geometrically as projections onto
particular sets, and the corresponding proximal operator is derived as such: The
minimization problem is interpreted as a projection one. First, recall that the
characteristic function of a convex closed set � is given, as well as its proximal
operator, by the following equations

](+0) =
{

0 if+0 ∈ �
+∞ otherwise

, (14)

proxW ] (+0) = argmin
+ ∈R3

{
1
2 ‖+

0 −+ ‖2 + W · ](+)
}

(15)

= argmin
+ ∈�

{
1
2 ‖+

0 −+ ‖2
}

(16)

= c� (+0) , (17)
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that is, the Euclidean projection c� (+0) of +0 on �. The same approach can be
applied to the minimization of �ℓ0 , which is seen as a sequence of projections
on a family of sets, presented in the next section.

3.3 Projections on Simplices

The projection principle of proximal optimization can be exploited for the
proposed sparse fuzzy subspace clustering problem: The summation constraint
of the ,A components is equivalent to requiring that ,A ∈ Δ, where Δ is the
unit simplex defined as Δ =

{
+ ∈ R+3

��� ∑3
?=1+? = 1

}
. The faces of Δ are also

of interest: if B ⊂ {1 ... 3}, let ΔB denote the face of Δ with coordinates indexed
by B equal to 0, i.e., ΔB =

{
+ ∈ Δ

�� ∀? ∈ B, E? = 0
}
. The Euclidean projection

of + ∈ R3 on Δ (resp. ΔB) is written c(+) (resp. cB (+)).
In order to obtain a proximal operator for �ℓ0 , we replace ] by �ℓ0 in Equa-

tion (15), which gives a new minimization problem involving the ℓ0 norm

proxW ·�ℓ0
(+0)= argmin+ ∈Δ

{ 1
2 ‖+

0 −+ ‖2 + W · ‖+ ‖0
}

, (18)

that is, sparse solutions minimize the following cost function on Δ

2>BCW,+ 0 (+) = 1
2 ‖+

0 −+ ‖2 + W · ‖+ ‖0 , (19)

which expresses the cost of a potential solution on Δ. This proximal problem
has two particularities: It involves the ℓ0 norm and is constrained to the set Δ.
In the following section, an algorithm is proposed to solve this problem, using
successive projections onto the faces ΔB.

Given an initial vector + ∈ R3 and W, Eq. (18) amounts to finding the right
ΔB to project to. There exists no general formula for cB (+). However, under
some hypothesis, the following formula can be given:

Proposition 1 Let + ∈ R3 and B ⊂ {1 ... 3}.
If ∀? ∈ {1 ... 3}, +? ∈ [0, 1] and

∑3
?=1+? ≤ 1 then c(+) and cB (+) are given

by, ∀? ∈ {1 ... 3}
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c(+)? = E? +
1
3

(
1 −

3∑
@=1

E@

)
, (20)

cB (+)? =


0 if? ∈ B

E? + 1
3−card(B)

©«1 −
3∑

@=1
@∉B

E@

ª®®®¬ otherwise
. (21)

The formulas are adapted from (Duchi et al., 2008), according to the hypothesis.
They normalize a vector + by redistributing equally between each component,
omitting the components ? in B for the projection cB.

Moreover, these projections have the following relationship, which makes
them useful to the problem of interest in this paper:

Proposition 2 Let B1, B2 ⊂ {1 ... 3} such that B1 ⊂ B2 and + ∈ R3 , then

cB2 (cB1 (+)) = cB2 (+) . (22)

Moreover, for any + ∈ R3:

‖cB2 (+) −+ ‖2 = ‖cB2 (+) − cB1 (+)‖2 + ‖cB1 (+) −+ ‖2 . (23)

Proof (sketch). Both equalities hold by orthogonality: If B1 ⊂ B2, thenΔB2 ⊂ ΔB1

and cB1 (+) and cB2 (+) both belong to ΔB1 . The second one is an application of
the Pythagorean theorem. �

3.4 Proposed Algorithmic Proximal Operator

Equation (18) involves the minimization of an ℓ0 norm on Δ. Although such
minimization problems are NP-hard in general, the present settings allow to
exactly solve this problem in polynomial time. After introducing a geometrically-
inspired algorithm to do so, we present the Prosecco algorithm. All the fuzzy
subspace clustering algorithms presented in this paper have been implemented
in the Python programming language. The implementation can be found in the
following GitHub repository: https://github.com/aguillon/subspy.

https://github.com/aguillon/subspy
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Algorithm 1: Proximal operator for �ℓ0 .
1: procedure MinL0

(
+ 0, W

)
2: B ← ∅
3: + sol ← c (+ 0) ⊲ Best solution so far
4: + ← c (+ 0)
5: while B ≠ {1 ... 3 } do
6: ?0 ← argmin?∈{1 ... 3} {+ 0

? | ? ∉ B}
7: B ← B

⋃{?0 }
8: + ← cB (+ )
9: if 2>BCW,+ 0 (+ ) ≤ 2>BCW,+ 0 (+ sol) then

10: + sol ← +

11: end if
12: end while
13: return + sol

14: end procedure

The algorithmic definition of the proximal operator given in Equation (18) is
presented in Algorithm 1. It works as follows: Starting from +0 ∈ R3 and a
fixed W, +0 is projected to Δ. Then, by removing the smallest weights one after
another and projecting back to the corresponding ΔB, it decreases the cost of the
potential solution and finds the best estimation of the subspace. The rest of this
section provides justifications of this algorithm.

3.5 Correctness of the Proposed Algorithm

As mentioned in the previous section, for specific values for W and +0 there can
be several distinct minimizers for 2>BC. However they are all equally suited to
the needs of the present paper and thus it is sufficient that Algorithm 1 returns
one of those minimizers.

Proposition 3 guarantees the existence of a minimum of the considered 2>BC

function, Proposition 4 proves such a minimum can be obtained by iteratively
setting components to 0. They lead to Theorem 1 stating the correctness of the
proposed algorithm.
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Proposition 3 Let ( =
{
cB (+0)

�� B ⊂ {1 ... 3}} .
There exists B0 such that cB0 (+0) ∈ ( is a minimum of 2>BC, that is:

∀+ ∈ Δ, 2>BC (cB0 (+0)) ≤ 2>BC (+)

Proof. Let + ∈ Δ and B ⊂ {1 ... 3} the largest set such that + ∈ ΔB. First notice
that

2>BC (cB (+0)) = 1
2 ‖cB (+

0) −+0‖2 + W · card(B)

= 1
2 ‖cB (+

0) − c(+0)‖2 + 1
2 ‖c(+

0) −+0‖2 + W · card(B) ,

from Proposition 2, with B2 = ∅. As c(+0) is the Euclidean projection of +0

onto Δ,

2>BC (+) = 1
2 ‖+ −+

0‖2 + W · ‖+ ‖0
= 1

2 ‖+ − c(+0)‖2 + 1
2 ‖c(+

0) −+0‖2 + W · ‖+ ‖0 ,

by orthogonality. Moreover:

2>BC (+) = 1
2

(
‖+ − cB (c(+0))‖2 + ‖cB (c(+0)) − c(+0)‖

+ ‖c(+0) −+0‖
)
+ W · ‖+ ‖0 ,

again by orthogonality. As ‖cB (+0)‖0 ≤ ‖+ ‖0 and cB (c(+0)) = cB (+0),

2>BC (+) = 1
2

(
‖+ − cB (+0)‖2 + ‖cB (+0) − c(+0)‖

+ ‖c(+0) −+0‖
)
+ W · ‖+ ‖0

= 1
2 ‖+ − cB (+0)‖2 + 2>BC (cB (+0)) , (24)

therefore:
2>BC (+) ≥ 2>BC (cB (+0)) . (25)

Finally, for all + ∈ Δ, there exists B such that 2>BC (cB (+0)) ≤ 2>BC (+) and
cB (+0) ∈ (: As ( is finite, there exists a global minimizer cB0 (+0) (non-
necessarily unique). �
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As the space of solutions ( is of size 23 , this proposition implies that there
exists an algorithm to minimise the 2>BC function with computational complex-
ity O(23). Algorithm 1 sorts the values of+? for ? ∈ {1 ... 3} and progressively
removes the smallest ones to decrease the cost, giving a polynomial algorithm.
The following proposition justifies this principle:

Proposition 4 Let {+0
?1 , ... , +

0
?:
} the : smallest values of+0, B = {?1, ... , ?: },

and + ∈ ΔB such that + contains exactly : = card(B) zeros. If + ′ is such that
+ ′? = +? for all ? except for a couple (?8 , ? 9) with ?8 ∈ B, ? 9 ∉ B, then
2>BC (+) ≤ 2>BC (+ ′).

Proof. Given such +,+ ′, first notice that, as + ∈ Δ and + ′ ∈ Δ, + ′?8 = +? 9
due

to the summation constraint, +?8 = 0 = + ′? 9
by hypothesis and +0

?8
< +0

? 9
, also

by hypothesis. Then:

2>BC (+) − 2>BC (+ ′) = ∑3
?=1(+? −+0

?)2 −
∑3

?=1(+ ′? −+0
?)2

= (+? 9
−+0

? 9
)2 + (+0

?8
)2

− (+ ′?8 −+
0
?8
)2 − (+0

? 9
)2

= 2+?8 (+0
?8
−+0

? 9
) , (26)

therefore:
2>BC (+) − 2>BC (+ ′) < 0 . (27)

�

This proposition proves that the minimizer can be chosen step by step, at each
iteration. Indeed, at a given step of the algorithm, given two possible B, B′ which
differ only for two ?, ?′, the one leading to a potential minimizer is the one
corresponding to +0 smallest entry (not yet in B). As Algorithm 1 keeps the
minimum (see line 9), it is guaranteed to find the minimum:

Theorem 1 Given +0 and W, Algorithm 1 computes the solution to the mini-
malization problem defined in Equation (18).

Proof. Algorithm 1 keeps the best minimum of 2>BC at each iteration. Although
it explores the space of solutions one local choice after the other, according
to Proposition 4 these local choices are optimal, and are given by repeated
projections on faces of Δ according to Proposition 3. �



Sparsity-Inducing Fuzzy Subspace Clustering 15

4 Proposed FSC Algorithm: Prosecco

The previous section gives an algorithm to produce sparse approximations of the
weights vector ,A ∈ R3 of a given cluster �A . This procedure can be used in an
optimization scheme in order to minimize the function �. Prosecco relies on an
alternate optimization algorithm which separates the update of� and* from the
update of , , the former being derived with the method of Lagrange multipliers
(as for the standard FCM algorithm), whereas the latter is approximated through
proximal gradient descent, presented in Section 3.2 and based on the proximal
operator given by Algorithm 2 (see page 17).

From Equation (7) and constraint sets (C1) and (C2), the classic following
terms are derived for * and �

DA8 =
32
A8 · (1 − <)−1

2∑
B=1

32
B8 · (1 − <)−1

, (28)

where

32
A8

=

3∑
?=1

F2
A ? (G8 ? − 2A ?)2 , (29)

2A ?=

=∑
8=1

D<A8 · G8 ?
=∑
8=1

D<A8

. (30)

In an alternate optimization scheme, � is seen as a sole function of , . The
following proposition states that � can be optimized by gradient descent, and
that its gradient descent, given the right [, stays inside the bounds required by
the previous algorithm in Proposition 1.

Proposition 5 Given *, �, let , ∈ Δ. There exists [ > 0 such that
∀A,,A − [∇� (,A ) satisfies the condition from Proposition 1.

Proof. Given *, �, let , ∈ Δ, for any A , ,A − [∇� (,A ) must be such that
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,A − [∇� (,A ) ∈ [0, 1] ∧
3∑

?=1
FA ? ≤ 1 . (31)

The summation constraint is satisfied as , ∈ Δ. As the gradient of � is
[∇� (,)]A ? = 2

∑=
8=1 D

<
A8
FA ? (G8 ? − 2A ?)2, the condition thus reduces to the

constraint that, for all A and all ?

FA ?

(
1 − 2[

=∑
8=1

D<A8 (G8 ? − 2A ?)2
)
∈ [0, 1] . (32)

Thus the following value for [ is suitable:

[ =

(
maxA , ?

{
2

=∑
8=1

D<A8 (G8 ? − 2A ?)2
}) −1

. (33)

�

Algorithm 2: The Prosecco algorithm.
1: procedure Prosecco

(
-, 2, n , W

)
2: repeat
3: repeat
4: Update * according to Equation (28)
5: Update � according to Equation (30)
6: until 2>=E4A64=24 (�,*, n )
7: repeat
8: Compute [ according to Equation (33)
9: ,temp ←, − [∇� (, )

10: , ←MinL0 (,temp)
11: until 2>=E4A64=24 (, , n )
12: until 2>=E4A64=24 (�,*,, , n )
13: Update U and � one last time.
14: end procedure

Finally, the Prosecco algorithm is given by Algorithm 2. It alternates between
the optimization of * and � using their respective update equations, and the
optimization of , using proximal gradient descent. In addition to the data
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matrix - and the number of clusters 2, Prosecco takes two parameters: A
convergence parameter n as threshold on matrix distances between updated and
previous values and the hyperparameter W which selects the level of sparsity
of the solution. As this depends on the application as well as the data, it is
recommended to run the algorithm several times using various values for W. This
is a general weakness of such algorithms (such as EWKM and Borgelt described
in Section 2), and future research will focus on proposing an automated tuning
of this parameter.

5 Experimental Study

In order to provide an experimental validation of Prosecco, two experiments are
considered: The first one, consisting of artificial data, is described in Section 5.1.
The goal of this experiment is to assess the ability of sparsity-inducing FSC
algorithms to recover the dimensionality of hyperplanes. In Section 5.2, real
data from the Newsgroups dataset is considered (Lichman, 2013).

5.1 Dimensionality Estimation

The first experiment assesses the ability of Prosecco and other FSC algorithms
to estimate the dimensionality of simple subspaces: the considered artificial data
sets are generated as axes-parallel hyperplanes of low dimensionality following
a uniform distribution in a space of higher dimensionality R3 . More precisely, 3
being fixed, : clusters of random dimensionality 3A ∈ {1 ... 3 −4} are generated
(with =A = 600 points each) with a low variance in 3A (randomly chosen)
dimensions, and high variance in the other ones.

Prosecco is compared to the two other FSC algorithms presented in Section 2,
EWKM and Borgelt. For each experiment, the algorithms are run with the
correct number of clusters 2 and the convergence parameter n = 10−4. Besides,
Prosecco is run with W = 1, Borgelt with V = 0.1 and V = 0.3, EWKM
with W ∈ {0.5, 10, 100}. For Borgelt and EWKM, only the best result for each
experiment is kept. In theory, EWKM does not induce sparsity, for the purpose
of this experiment, the obtained weights FA ? below 10−10 are set to 0.
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The algorithms’ ability to estimate the correct dimensionality of the planes
is evaluated as follows: Given a cluster �A with known dimensionality 3A ,
the algorithms have to recover 95% of the cluster after defuzzification of the
memberships DA8, then to produce ,A such that ‖,A ‖0 = 3A . The metric used
for comparison is the ratio of correct estimations.

Borgelt EWKM Prosecco

Figure 1: Results on artificial data, plotted with mean and standard deviation. From left to right:
Algorithms Borgelt, EWKM and Prosecco. Top: 2 clusters. Bottom: 4 clusters. On the x-axis, number
of dimensions (from 10 to 28); on the y-axis, ratio of correctly identified dimensions (from 0 to 1).

The obtained results are shown in Figure 1, as the average scores and their
standard deviation over 30 executions, for parameters : ∈ {2, 4} and 3 ∈
{10 ... 28}. As shown by the first two columns, Borgelt and EWKM have trouble
identifying the correct dimensionality of the clusters: As can be seen by the
high standard deviation, they produce unstable results, which depend on their
initialization. EWKM performs significantly worse for : = 4 clusters. Prosecco
succeeds in evaluating the expected 3A everytime.
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5.2 Real Data: The Newsgroups Dataset

Another preliminary experiment on high-dimensional and sparse real data
is conducted on four classical datasets from the Newsgroups database (Jing
et al., 2007) taken from the UCI Machine Learning Repository (Lichman, 2013).
They consist of several collections of mails from various newsgroups, whose
characteristics are given in Table 1: A2 and B2 are composed of mixed
examples of two newsgroups, whereas A4 and B4 consist of examples from
four newsgroups. A2 and A4 mix examples from newsgroups whose topics
of discussion and vocabulary do not overlap. B2 and B4 are allegedly harder
datasets, as they mix examples from newsgroups for which vocabulary might
overlap. From each original newsgroup, =2 = 400 points are taken randomly for
each experiment.

Standard preprocessing techniques are required in order to apply cluster-
ing algorithms. In these experiments, they consist in standard tokenization
and stemming using the NLTK library (Bird et al., 2009). Data is then
converted to the TF-IDF representation (Salton and Buckley, 1988). The
resulting datasets typically present thousands of dimensions; for instance, �2
has 6331 dimensions.

Using the labels from the original dataset, the experiments measure the mean
and standard deviation, over 100 runs, of the accuracy of each algorithm on the
datasets. For Prosecco and EWKM, the tests are run with W varying from 10−8

to 109, and only the best mean is kept. For the Borgelt algorithm, V takes values
in {0.1, 0.2, · · · , 0.9}.

Table 1: Original newsgroups used in the four considered datasets.

A2 B2 A4 B4

alt.atheism talk.politics.mideast comp.graphics comp.graphics
comp.graphics talk.politics.misc rec.sport.baseball comp.os.ms-windows

sci.space rec.autos
talk.politics.mideast sci.electronics

The results, presented in Table 2, show that Prosecco performs better than EWKM
and Borgelt who are rather disappointing: EWKM performs significatively worse
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than Prosecco. The Borgelt algorithm produces a trivial solution on 2 = 4
datasets, where each G8 is equally assigned to each cluster.

Table 2: Mean accuracy of the Prosecco, EWKM and Borgelt algorithms on the datasets from Table 1.

A2 B2 A4 B4

Prosecco 0.910 ± 0.089 0.737 ± 0.116 0.476 ± 0.008 0.443 ± 0.029
EWKM 0.613 ± 0.061 0.583 ± 0.050 0.351 ± 0.064 0.312 ± 0.033
Borgelt 0.549 ± 0.036 0.526 ± 0.31 – ± – – ± –

During the experiments, we observed that EWKM was several times faster than
the Prosecco and Borgelt algorithms. We attribute these differences in speed
to the fact that EWKM is only based on numerical computations, implemented
using the NumPy (Walt et al., 2011) library. Borgelt and Prosecco, on the other
hand, rely on procedures which explicitely search and set to 0 the smallest values
in the arrays. These procedures are written in Python code and are thus slower.

6 Conclusion

This paper proposes an original cost function for fuzzy subspace clustering
with a regularization term promoting sparse description of the subspaces.
This regularization term features an ℓ0 penalty which is non-differentiable
and prevents the use of the usual implementation techniques. However, the
considered settings allow for an exact recovery of the dimension weights through
the use of proximal gradient descent.

A fuzzy subspace clustering algorithm based on alternate optimization and
proximal descent is proposed under the name Prosecco. It is compared to other
FSC algorithms on benchmarks of artificial and real data. The results of these
benchmarks show that Prosecco provides an efficient estimation of subspaces
dimensionality as well as a practical fuzzy clustering algorithm. Finally, proofs
of correctness of the proposed algorithm and proximal operator are given.

Future research will include the application of Prosecco to more challenging
datasets, as well as the post-processing of the results: As Prosecco and other
FSC algorithms produce sparse descriptions of the subspaces, their description
becomes clearer. The goal is then to quantify this gain and to use this advantage
to produce meaningful summaries to the user.
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Moreover, the choice of the regularization parameter W will be studied both
from a theoretical and a practical point of view. As this problem is not limited
to the Prosecco algorithm, a general study of balancing parameters for other
sparsity-inducing FSC algorithms will be conducted as well.
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