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Abstract: Zr-based oxoclusters MxOy(OR)w(OOR’)z are promising catalysts for the activation of
hydrogen peroxide. However, they need to be integrated into suitable matrices to increase their
hydrolytic stability and allow for their recovery after use. Polymeric materials can be successfully
employed for this aim, since they modify the properties of the resulting hybrid materials, in terms of
polarity and chemical affinity for the substrates, improving the catalytic activity. Herein, we report the
synthesis of different acrylic polymers based on various co-monomers (methyl methacrylate (MMA),
2,2,2-trifluoroethylmethacrylate (TFMA) and 3-methacryloxypropyltrimethoxylsilane (MAPTMS))
covalently cross-linked by a Zr4-based oxocluster, whose composition was tuned to optimise the cat-
alytic oxidation of methyl p-tolyl sulphide. To assess their properties and stability, the materials were
characterised via Fourier Transform Infrared (FT-IR) and Raman spectroscopies, Thermogravimetric
Analysis (TGA), Solid-State NMR (SS-NMR) and X-Ray Absorption Spectroscopies XAS, before and
after catalytic turnover.

Keywords: oxidation catalysis; hybrid materials; oxocluster

1. Introduction

The preparation of hybrid materials integrating catalytic units represents a promising
possibility to design heterogeneous catalysts [1]. Class II hybrid materials in particular
are made of organic and inorganic components, held together by covalent bonds [2].
Among the available inorganic nanofillers, different authors reported the use of polyhedral
oligomeric silsesquioxanes (POSS) [3,4], polyoxometalates (POM) [5–7] or oxoclusters of
early transition metals [8]. Oxoclusters, with a general formula of MyOx(OH)w(O(O)CR)z,
are a versatile class of polynuclear compounds including early transition metal ions M, such
as TiIV, ZrIV, HfIV or NbV, linked by oxygen bridges and coordinated by organic ligands
bearing bidentate, typically carboxylic, moieties [9,10]. Oxoclusters containing alkaline
earth metals (e.g., Ba, Mg) as heteroatoms were also reported [11]. When the organic
components of the hybrids are organic polymers/co-polymers, oxoclusters decorated
with polymerisable groups can act as multi-functional cross-linking agents. As a result,
several covalent bonds endow the final material with enhanced stability, preventing phase
separation and leaching [12].
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Since the oxoclusters are made of early transition metals in their highest oxidation
state, they are appealing candidates for the catalytic activation of peroxides [13,14]. As far
as Zr-based oxoclusters are concerned, we have recently evidenced the possibility to use
different molecular hybrids to oxidise organic substrates (such as sulphur compounds) in
the presence of hydrogen peroxide [15]. Once integrated into a polymethylmethacrylate
(PMMA) matrix, the oxoclusters demonstrate improved hydrolytic stability, while the
thermal stability of the polymer can also be increased [8,15]. Moreover, thanks to the
enhanced affinity of the polymeric matrix towards polar substrates, highlighted by its
swelling properties, the heterogeneous catalyst shows better catalytic performances than
the corresponding homogeneous system. However, despite such notable advancements, the
material still needs to be optimized in terms of stability and recyclability before becoming
competitive with other heterogeneous systems.

In this paper, novel Zr-oxocluster (Zr4O2(OMc)12 (OMc = methacrylate)-based poly-
mers were prepared by changing the nature of the monomers and the oxocluster/monomers
molar ratio. Fluorinated or silane-containing monomers were used to evaluate the impact
of the composition on the catalytic performance towards the oxidation of an organic sul-
phide (methyl p-tolyl sulphide) via H2O2 in an acetonitrile mixture [14], showing optimal
performances of the catalysts in terms of stability, selectivity and activity. Concerning
the reaction under investigation, the oxidation of sulphides has many applications for
the preparation of pharmaceutical derivatives and is attracting growing interest as fuel
desulphurisation strategy [16,17]. Moreover, acetonitrile is one of the polar solvents used
to extract organic sulphides and their oxidised products from a fuel [18]. FT-IR, Raman,
SS-NMR and XAS measurements were carried out on the pristine hybrids as well as on
the materials after catalysis, to investigate their stability. As demonstrated by the associ-
ated kinetic study, the new polymers display tuneable reaction selectivity. The use of the
fluorine-rich material springs in an excellent catalytic performance in terms of reaction
yield, sulfone selectivity and recyclability, thus outperforming the former MMA–oxocluster
hybrids.

2. Materials and Methods

Zirconium butoxide (Zr(OBu)4, 80% wt. in n-butanol), and methacrylic acid were em-
ployed for the synthesis of the oxocluster and were purchased from Sigma-Aldrich, while
methyl methacrylate (MMA, 99% wt.), 2,2,2-trifluoroethylmethacrylate (TFMA, 99% wt.),
3-methacryloxypropyltrimethoxysilane (MAPTMS), benzoyl peroxide (≥97% wt.) and
toluene, purchased from Sigma-Aldrich, were used for the synthesis of the hybrid materials.
The monomers were previously filtered on neutral alumina to remove the inhibitors. Hy-
drogen peroxide (35% wt. in H2O), acetonitrile (≥99.8%), methyl p-tolyl sulphide (99% wt.),
purchased from Sigma-Aldrich, were used for the oxidation reaction. Dichloromethane
(≥99.9%), undecane (≥99%), triphenylphosphine, were used as solvents, a reference com-
pound and an H2O2 quencher for the GC analysis, respectively.

2.1. Preparation of Zr4O2(OMc)12

Methacrylic acid was added to Zr(OBu)4, under argon, in a molar ratio alkoxide/meth-
acrylic acid of 1:7, according to the literature procedures [19,20] and allowed to stand
overnight. The mother liquor was decanted from crystals and then the crystals were dried
under mild vacuum for 4 h.

2.2. Preparation of Hybrid Materials

In a typical polymerisation reaction implemented by Trimmel et al. [21], a weighted
amount of oxocluster was dissolved in toluene (0.70 g of oxocluster per 4.0 g of toluene)
and the monomers were added under gentle stirring, in a molar ratio of oxocluster to the
sum of monomers of 1:50 or 1:100; the molar ratio between MMA and the co-monomer was
varied from 9:1 to 5:5; benzoyl–peroxide (2% wt. with respect to the sum of the monomers),
used as polymerisation initiator, was added when the temperature was at 85 ◦C and the
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reaction was carried out for 1 h under stirring. The obtained polymers were dried under
vacuum at 60 ◦C for at least 3 h.

2.3. FT-IR Measurements

The products were characterized by FT-IR in transmittance mode by dispersing the
sample in a KBr pellet, using a Thermo Quest Nicolet 5700 instrument from 4000 cm−1 to
400 cm−1 with 32 scans and a resolution of 4 cm−1.

2.4. Raman Measurements

Raman spectra were collected by using a Thermo DXR Raman Microscope (Depart-
ment of Chemical Science, University of Padova, Padova, Italy). A 532 nm laser was used
as excitation source, operating at 1–10 mW power with an exposure time of 5 s. The Raman
mapping were collected on a region of 150 µm × 200 µm and a power of 8 mW.

2.5. Thermogravimetric Analysis (TGA)

The TGA were collected with a TGA Q500 TA Instruments with a ramp of 10 ◦C/min
from room temperature (25 ◦C) up to 900 ◦C, under air flow.

2.6. Swelling Measurements

The swelling experiments were carried out by leaving a weighted amount of polymer
in three different solvents for 72 h; after withdrawal from the solvent, the wet specimen
was weighted again. The swelling index (Isw) was determined by the following formula:

Isw =

(
wtwet − wtdry

)
wtdry

(1)

2.7. Solid State NMR Spectroscopy

The solid state Nuclear Magnetic Resonance Spectroscopy analyses (SS-NMR) in-
volved only the 13C nucleus; the spectra were acquired with a 400 MHz NMR Varian
instrument (Department of Chemical Science, University of Padova, Padova, Italy) with
a solid MAS probe and a spinning rate of 5.5 KHz. 13C Cross Polarization spectra were
recorded with a linear shape, 2000 scans, contact time 1 ms, recycle delay 3 s, acquisition
time 0.02 s, 800 points.

2.8. XAS Measurements

The XAS measurements were performed at the B18 beamline at Diamond Light Source
(Didcot, UK). A Si (111) double crystal monochromator was used for measurements at the
Zr K-edge (17.998 keV). The second monochromator crystal was tilted for optimal harmonic
rejection. The spectra were recorded in transmission mode using ionization chambers as
detectors. Energy calibration was performed with a Zr metal foil. The solid samples were
pressed into self-supporting pellets using cellulose as a binder. Data evaluation started
with background absorption removal from the experimental absorption spectrum by using
the automated removal routine found in the Athena software [22]. The threshold energy E0
was determined as the maximum in the first derivative spectrum. To determine the smooth
part of the spectrum corrected for pre-edge absorption, a piecewise polynomial was used.
It was adjusted in such a way that the low-R components of the resulting Fourier transform
were minimal. After division of the background–subtracted spectrum by its smooth part,
the photon energy was converted to photoelectron wave numbers k. The resulting function
was weighted with k3 and Fourier transformed using a Hanning window function. Data
analysis was performed in k-space on unfiltered data, using the Artemis software 0.9.25.
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2.9. GC Analysis

The solutions were analysed by Shimadzu GC2010 instrument equipped with an
ionization flame detector and an Equity-5 (15 m × 0.1 mm) capillary column of poly(5%
diphenyl/95% dimethylsiloxane) with 0.1 µm film thickness.

Operating conditions: Tinj = 270 ◦C; Tdet = 280 ◦C; Carrier gas=He; Linear velocity =
40.0 cm/s; Tinitial = 90 ◦C for 1 min; Ramp rate = 40 ◦C/min; Tfinal = 260 ◦C for 2 min.

2.10. Catalytic Tests and Catalytic Recycles

The oxidation reactions were carried out in a closed vial at 50 ◦C by dissolving a
weighted amount of oxocluster in 1.2 mL or 2.2 mL of acetonitrile and 136 µL of methyl p-
tolyl sulphide (1 mmol), to obtain a molar percent ratio oxocluster/sulphide of 0.28–0.29%.
Then, 2 mmol of H2O2 (from a 35% wt. aqueous solution) were added to the solution under
stirring. The reactions were monitored for 4 h. 50 µL aliquots of sample were withdrawn
at fixed interval times and diluted in a 10 mM solution (1100 µL) of undecane in CH2Cl2
for GC analysis; excess triphenylphosphine, dispersed in the CH2Cl2 solution, was used to
quench the residual peroxide.

Concerning the catalytic recycles, the catalyst was recovered, washed three times with
3 mL of acetonitrile and the reaction was repeated under the same diluted conditions for
4 h.

2.11. SEM-EDX Analysis

Field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray
analysis (EDX) were run on a Zeiss SUPRA 40VP equipped with an Oxford INCA x-
sight X-ray detector. Morphological analysis was carried out by setting the acceleration
voltage at 5 kV, whereas the EDX compositional investigations were obtained by setting
the acceleration voltage at 20 kV.

3. Results and Discussion
3.1. Synthesis and Characterization of the Hybrid Materials

Monolithic polymers were prepared by using, as starting monomers, methyl methacry-
late (MMA), 3-methacryloxypropyl trimethoxysilane (MAPTMS) or 2,2,2-trifluoro ethyl-
methacrylate (TFMA) (Figure 1) [23–25].
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Figure 1. Monomers employed in the hybrid polymers synthesis: (a) methyl methacrylate (MMA);
(b) 2,2,2-trifluoroethylmethacrylate (TFMA); (c) 3-methacryloxypropyl trimethoxysilane (MAPTMS).

MAPTMS was used as an organic–inorganic monomer to evaluate the effect of ad-
ditional cross-linking via siloxane chains on polymer swelling/solubility and substrate
selectivity. TFMA was instead used to evaluate the impact of oxidatively stable C-F bonds
and of a fluorinated hydrophobic domain [26]. With the aim of monitoring the effect of
different experimental parameters on the polymers’ properties, the nature of the monomers
and their molar ratio were systematically changed (Table 1).
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Table 1. List and names of the hybrid materials based on Zr4-oxocluster, prepared with 1:50 or 1:100 oxocluster:monomers
molar ratio (benzoyl peroxide was used, in all cases, as radical initiator and the polymerisation was carried out at 85 ◦C for
1 h) and scheme of the general reaction for the synthesis of the Zr-based oxocluster.
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In particular, two oxocluster/monomers molar ratios (1:50 and 1:100) were explored to
evaluate the effect of the oxocluster concentration and of the resulting cross-linking degree,
on swelling and reactivity. On the other hand, the molar ratio of MMA to TFMA was
tuned (from 9:1 to 5:5) to optimise polymers’ performances in terms of swelling, substrate
selectivity and stability. The novel polymeric materials were compared with a previously
prepared material containing only MMA in the same molar amount [14]. In Table 1, the
experimental molar ratios used for the syntheses of the hybrids are reported in detail.

Firstly, the materials were analysed by FT-IR analysis to specifically detect the presence
of residual signals due to unreacted double bonds (Figure 2).

For a semi-quantitative evaluation of the degree of polymerisation, the intensity of the
stretching signal around 1640 cm−1, related to C=C bonds, was compared to the stretching
band around 1720 cm−1, related to C=O bonds. Indeed, the C=C/C=O intensity ratio is
lower for higher polymerisation degrees [27]. In Figure 2, Figures S1 and S2, the most
representative FTIR spectra are reported.
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Figure 2. FT-IR spectra of samples: (a) Zr4MMA/TFMA (9:1) (1:100), (b) Zr4MMA (1:100) and
(c) Zr4MAPTMS (1:100) in the region between 500 and 2500 cm−1.

In Figure S1, the peaks around 3000–2900 cm−1 of the MMA and TFMA-based samples
are due to aliphatic C-H stretching [14]. The bands at 1463 cm−1and 1426 cm−1 are related
to the bending of CH3 and the band at 1194 cm−1 corresponds to the asymmetric stretching
of C–O–C [20]. Another meaningful signal is the peak around 1283 cm−1, related to the
stretching of C-F bond, characteristic of TFMA-based copolymers [28]. The band related
to C=C double bonds belonging to the oxocluster (as well as to the monomer) is found
at 1640 cm−1. The Zr4MMA/TFMA samples show a negligible intensity of C=C signal
in every sample. The very low C=C/C=O intensity ratio demonstrates a nearly complete
radical polymerisation, even better than Zr4MMA/MMA, despite the steric hindrance
of the oxocluster. Concerning the hybrid with MAPTMS (Figure S1 and Figure 2c), it
is possible to observe a very broad band around 3460 cm−1, ascribed to the vibration
of surface bound water molecules and to the silanol groups (which also give the band
at 1640 cm−1) [29], thus highlighting a not completely condensed silica network [30,31].
The relatively weak absorption bands around 2945 cm−1 and 2840 cm−1 are attributed
to the stretching of C–H bonds in alkyl and methoxy groups, respectively. The bands
at 1717 cm−1 and 1638 cm−1 were assigned to the stretching of C=O and C=C groups,
respectively; the one related to C=C shows a higher intensity with respect to the other
polymers, revealing a less efficient radical polymerisation for this material. The broad band
centred at 1080 cm−1 and the weaker band at 780 cm−1 confirm the presence of a Si–O–Si
network, with its asymmetric and symmetric stretching, respectively [32]. Subsequently,
in order to investigate the presence of the oxocluster in the synthesised hybrids, Raman
measurements were carried out, since the stretching vibrations of Zr–O–Zr appear at low
wavenumbers (<250 cm−1) and cannot be detected using conventional FTIR [15,33,34]. In
Figure 3, the superimposition of the Raman spectra of the oxocluster and of the hybrid
materials is reported.
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The signal at 230 cm−1 is related to Zr–O–Zr bending modes [15]. It is worth noting
that this feature is very intense in the spectrum of the Zr4 oxocluster sample, but it is much
lower for the other samples, owing to the “dilution” of the oxocluster in the macromolecular
host matrix. Nevertheless, a Raman mapping (Figure S4) was collected for the hybrid
Zr4MMA (1:100) upon monitoring of the signal at 230 cm−1, showing a homogeneous
distribution of the oxocluster into the polymer. Another peak, related to Zr–O stretching
vibration, can be found at 598 cm−1; however, the latter appears overlapped by other
signals belonging to the polymers. The homogeneous morphology as well as the regular
elemental distribution of the samples were also confirmed by SEM (scanning electron
microscopy) and EDX (energy dispersive X-ray analysis) of representative samples (Figures
S9–S13). In all cases, bulky non-porous polymers, with no phase separation, were observed.

In order to determine the amount of inorganic domains in the hybrids [14] and to
assess their thermal stability as a function of cluster content and co-polymer composition,
the TGA of the most representative polymers were carried out under air (Figure S5). In
all MMA and TFMA-based hybrids, it is possible to highlight a first relevant weight loss
in the range 300–425 ◦C, which is ascribed to the degradation of the organic matrix of
the samples. A second weight loss step, visible at a temperature around 450–510 ◦C,
is related to the degradation of the organic fraction of the oxocluster. The improved
thermal stability of these hybrids can be highlighted upon comparison with the TGA of the
oxocluster-free MMA-based polymers (see Figure S5d,e), for which the main degradation
starts already at 200 ◦C. Regarding Zr4MAPTMS(1:100), its weight loss starts at 400 ◦C,
confirming its expected higher thermal stability arising from double cross-linking, while
a second decomposition step is found between 450 and 580 ◦C, where the amount of
the final residue is higher than for the other hybrids, owing to the relevant contribution
of residual SiO2 derived from MAPTMS decomposition (up to 32% wt.). Since every
oxocluster Zr4O2(OMc)12 produces 4 moles of ZrO2, relaying on its residual %wt., and
under the assumption of homogeneity of the hybrids structure, it is possible to estimate
the actual quantity of oxocluster embedded into the polymer. In Table 2, the observed
residual weights % for the most representative hybrid materials (see the corresponding
TGA in Figure S5f) are listed and compared with nominal values. The found values are in
agreement with the theoretical ones, although the MMA-based polymer seems less efficient
in terms of oxocluster incorporation.
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Table 2. Weight residues, based on the molar ratio between the oxocluster and monomers, found by
TGA of three synthesised hybrids.

Hybrid Experimental Residue
(% wt.)

Theoretical Residue
(% wt.)

Zr4MMA (1:100) 3.2 4.3

Zr4MMA/TFMA (6:4) (1:100) 8.0 7.4

Zr4MAPTMS (1:100) 38.5 a 35.3 a

a 92.4% of the nominal residue is ascribed to SiO2.

Subsequently, in order to evaluate the affinity of the hybrids towards different solvents,
swelling measurements were carried out. Swelling index can also provide a relative
estimation of the cross-linking degree of the polymeric networks [35]. Swelling is due to
two competitive phenomena: the increase of the whole solvent-solute entropy, due to the
introduction of the solvent, and a decrease of polymeric chains entropy because of isotropic
expansion [36]. In Table 3, swelling data of the hybrids materials in four different solvents,
ethyl acetate (EtOAc), acetonitrile (ACN), ethanol (EtOH) and water (H2O), characterised
by increasing polarity, are listed.

Table 3. Swelling data of the hybrids materials in four different solvents.

Samples Isw EtOAc ET(30)
= 38 [37]

Isw ACN ET(30)
= 46 [37]

Isw EtOH ET(30)
= 52 [37]

Isw H2O ET(30)
= 63 [37]

Zr4MAPTMS (1:50) soluble Soluble 40 25
Zr4MMA (1:50) 72 33 29 2

Zr4MMA/TFMA (9:1) (1:50) 120 62 29 7
Zr4MMA/TFMA (8:2) (1:50) 119 50 24 3
Zr4MMA/TFMA (7:3) (1:50) 130 54 30 4
Zr4MMA/TFMA (6:4) (1:50) 174 61 29 2
Zr4MMA/TFMA (5:5) (1:50) 140 63 22 18

Zr4MAPTMS (1:100) soluble soluble 29 21
Zr4MMA (1:100) 188 84 14 0

Zr4MMA/TFMA (9:1) (1:100) 324 116 16 0
Zr4MMA/TFMA (8:2) (1:100) 406 109 13 0
Zr4MMA/TFMA (7:3) (1:100) 250 151 85 2
Zr4MMA/TFMA (6:4) (1:100) 353 162 50 0
Zr4MMA/TFMA (5:5) (1:100) 300 102 17 7

PMMA soluble soluble 24 6
PMMA/TFMA (6:4) soluble soluble 3 1

MAPTMS soluble soluble soluble soluble

It is reported that solvent polarity parameter ET(30), based on the exceptional negative
solvatochromism of 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (denoted
as betaine 30) [37,38] is a good descriptor of non-covalent interactions with solvents.
Therefore, it is more suitable than dielectric constant or dipole moments to assess the
polarity of different solvents.

With a higher amount of the oxocluster in the hybrid (1:50 series, with MMA and
TFMA), the swelling indexes are generally lower. This can be explained by an enhanced
cross-linking, enabled by the greater amount of oxocluster in the 1:50 hybrids, leading to
stiffer structures. Accordingly, the hybrids in which the oxocluster is present in a lower
amount approximately double their swelling index. Concerning the behaviour of the
hybrids in the presence of different solvents, for MMA-based hybrid materials the data
evidenced a higher affinity for the less polar solvents and no affinity for water. The TFMA-
based hybrid materials show a further increase in the swelling index in ACN and EtOAc,
even with low amount of fluorinated monomer (9:1 or 8:2), while negligible changes are
observed for EtOH and H2O solvents. The hybrids with higher TFMA content, however,
exhibit an opposite trend. The hybrid with a 5:5 molar ratio between the two monomers, in
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particular, shows no further increase for EtOAc and ACN and a relatively higher swelling
in water. A possible explanation of such irregular trend is a partial phase separation of the
different components, when TFMA increases, leading to a different bulk behaviour. On the
contrary, MAPTMS-based materials are swollen in EtOH and H2O and are slightly soluble
in EtOAc and ACN.

With the aim of obtaining further information about the hybrids structure, especially
on the polymeric matrices, Solid State 13C Nuclear Magnetic Resonance Spectroscopy
analyses (SS-NMR) were carried out. In Figure 4, the spectra of representative samples are
reported.
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(7:3) (1:100), (c) Zr4MMA/TFMA (6:4) (1:100), (d) Zr4MMA/TFMA (5:5) (1:100), (e) Zr4MAPTMS
(1:100).

The signal at about 18 ppm is referred to the methyl groups belonging to Zr4 oxocluster
and to MMA [14,39]; the signal at 23 ppm, for the Zr4MAPTMS(1:100) hybrid, and the
peaks at 45 ppm and at 55 ppm, the latter being only present in the Zr4MMA (1:100) and
Zr4MMA/TFMA (7:3) (1:100) hybrids, are related to the main chains of the MMA-[40] and
the MAPTMS-[41] based polymers. The broad signal at 68 ppm of the Zr4MAPTMS (1:100)
hybrid is related to the methoxy carbon atoms of the silane [41]. The carbonyl group of
MMA is visible at 178 ppm [39], while the weak signals between 120 and 140 ppm are
assigned to residual unreacted olefinic carbon atoms.

3.2. Catalytic Tests

The different performances of the synthesised hybrids in the oxidation of methyl p-
tolyl sulphide to the corresponding sulfoxide and sulfone were tested at 50 ◦C in acetonitrile,
in the presence of hydrogen peroxide as oxidant, using grinded polymers. In Table 4, yield
(%), products selectivity (sulfoxide, SO vs sulphone, SO2) and initial rates (R0) are listed.
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Table 4. Catalytic performances of the hybrids under more concentrated conditions (0.66 M methyl p-tolyl sulphide, 1.37 M
H2O2 and 1.2 mL of ACN) and less concentrated conditions (0.40 M methyl p-tolyl sulphide, 0.81 M H2O2 and 2.2 mL of
ACN). Substrate: 1 mmol, oxocluster 0.28–0.29% mol, 2 mmol of H2O2 (from a 35% wt. aqueous solution); T = 50 ◦C. A
general scheme of the catalytic oxidation is reported below.
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1 1.2 Zr4 49 69 69:31 50:50 4.3 × 10−5

2 1.2 Zr4MMA (1:50) 86 95 19:81 7:93 1.1 × 10−4

3 1.2 Zr4MMA/TFMA (9:1) (1:50) 74 90 32:68 15:85 8.1 × 10−5

4 1.2 Zr4MMA/TFMA (8:2) (1:50) 88 98 19:81 3:97 9.1 × 10−5

5 1.2 Zr4MMA (1:100) 84 95 21:79 9:91 1.1 × 10−4

6 1.2 Zr4MMA/TFMA (9:1) (1:100) 93 97 11:89 5:95 1.4 × 10−4

7 1.2 Zr4MMA/TFMA (8:2) (1:100) 95 99 8:92 2:98 1.6 × 10−4

8 2.2 Zr4MMA (1:100) 84 95 21:79 9:91 1.1 × 10−4

9 2.2 Zr4MMA/TFMA (9:1) (1:100) 93 97 11:89 5:95 1.4 × 10−4

10 2.2 Zr4MMA/TFMA (8:2) (1:100) 95 99 8:92 2:98 1.6 × 10−4

11 2.2 Zr4MMA/TFMA (7:3) (1:100) 91 92 7:93 8:92 4.1 × 10−4

12 2.2 Zr4MMA/TFMA (6:4) (1:100) 97 98 1:99 1:99 4.8 × 10−4

13 2.2 Zr4MMA/TFMA (5:5) (1:100) 99 >99 1:99 0:100 5.0 × 10−4

14 2.2 Zr4MAPTMS (1:50) 39 55 96:4 87:13 2.0 × 10−4

15 2.2 Zr4MAPTMS (1:100) 57 76 85:15 47:53 2.8 × 10−4

It should be noted that, as already reported, a definite improvement in the catalytic
performances can be observed going from the homogeneous conditions (entry 1) to the
heterogeneous ones (entries 2–7), with reactions yielding higher conversion (>90%) of the
methyl p-tolyl sulphide in 4 h and higher selectivity (>85%) for the sulfone production.
Organic polymers, indeed, increase both catalytic activity and stability, owing to their
capability to absorb the substrates and to their protection against hydrolytic decomposition
of the oxocluster [15]. While MMA-based polymers with different ratio (1:50 or 1:100)
display similar activity (entries 2 and 5), and the MMA–TFMA copolymers with 1:50 ratio
are rather insensitive to the fluorine content (entries 3 and 4), a much better activity of the
fluorinated samples with higher amount of organic fraction (1:100 molar ratio, entries 6 and
7), in terms of initial rate for methyl p-tolyl sulphide conversion and sulfone productivity,
was observed. As suggested by their relatively higher swelling index, such improved
performance is likely due to an easier access of solvent and substrate to the active sites
when a lower cross-linking degree is established. The 1:100 materials were thus screened
even under more diluted conditions (with increased amount of solvent), in order to better
highlight their behaviour (entries 8–13). The activity of MAPTMS-based hybrids, acting
as homogeneous catalysts (see Table 3), was also explored in such conditions (entries 14
and 15). Table 4 evidences that the best samples are the ones with the highest content
of TFMA, in particular Zr4MMA/TFMA (6:4) (1:100) and Zr4MMA/TFMA (5:5) (1:100),
which present the best selectivity and the highest initial rate constant (entries 12 and 13).
Considering their high affinity shown for all solvents, including water, these polymers can
be suitable to promote an optimal accessibility of both substrates and hydrogen peroxide.
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Within this scenario, a beneficial role of fluorine atoms in the activation of H2O2 by a
network of hydrogen bonds can also be envisaged [26]. On the other hand, the MAPTMS-
based hybrids show a lower catalytic activity, as pointed out by a lower yield and much
lower selectivity in SO2. The partially inorganic matrix is likely responsible for a decreased
affinity for the substrate, associated with an even lower affinity for the sulfoxide, which is
indeed hardly oxidized to sulphone. As a result, a good selectivity for sulfoxide production
can be obtained after 1 h.

The catalytic performances of these materials are well described by their kinetic traces.
In Figure S6 and Figure 5, we compare the evolution of sulphur containing species obtained
for the reactions with Zr4MMA/TFMA (9:1) (1:100) and Zr4MMA/TFMA (5:5) (1:100),
the ones with the lowest and the highest content of TFMA, respectively, and between
Zr4MAPTMS (1:50) and Zr4MAPTMS (1:100), characterised by low and high content of
MAPTMS, respectively.
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Figure 5. Catalytic performances, including second order kinetic fitting, of (a) Zr4MMA/TFMA(9:1) (1:100),
(b) Zr4MMA/TFMA(5:5) (1:100), (c) Zr4MAPTMS(1:50), (d) Zr4MAPTMS(1:100). Conditions: 1 mmol sulphide, oxo-
cluster 0.28–0.29 % mol, 2 mmol of H2O2 in 2.2 mL of ACN, T = 50 ◦C.

The kinetic behaviour is, in all cases, well described by second order kinetics, with
reaction rates −d[S]/dt = k[S] and d[SO2]/dt = k2[SO], where k1 and k2 are the values
for the first and second reaction steps. In Table 5, kinetic constants and the selectivity
parameter, reported as the ratio between the kinetic constants (S = k1/k2) are reported.
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Table 5. Kinetic constants and selectivity parameters of Zr4MMA (1:100), Zr4MMA/TFMA (9:1)
(1:100), Zr4MMA/TFMA (5:5) (1:100), Zr4MAPTMS (1:50), Zr4MAPTMS (1:100), calculated under
diluted conditions.

Samples k1
(M−1s−1)

k2
(M−1s−1)

S
(k1/k2)

Zr4MMA (1:100) 0.0055 0.0099 0.6

Zr4MMA/TFMA (9:1) (1:100) 0.003 0.0051 0.6

Zr4MMA/TFMA (5:5) (1:100) 0.0045 0.0162 0.3

Zr4MAPTMS (1:50) 0.0006 0.0003 2.0

Zr4MAPTMS (1:100) 0.002 0.0015 1.3

The hybrid Zr4MMA/TFMA (5:5) (1:100) confirms its very promising catalytic activity
in terms of rate constant, selectivity and yield, showing a complete conversion of S into SO2
at 2h, with S = 0.3. This latter value is likely due to a more efficient absorption of sulfoxide,
in agreement with an increased swelling, observed for the hybrid, with polar solvents.
Regarding Zr4MAPTMS (1:50), it is worth noting that the catalytic performances are very
different from the other hybrids, with a higher selectivity for the formation of sulfoxide
(S = 2). On the other hand, with increasing MAPTMS content in the polymeric matrix,
i.e., Zr4MAPTMS (1:100), an increased yield for sulphone formation can be observed, in
agreement with the higher reactivity of the sulfoxide within the polar, less cross-linked
material. The parameter S is thus lower for the most efficient Zr4MMA/TFMA (5:5) (1:100)
and higher for Zr4MAPTMS (1:50), which represent the two catalysts of choice depending
on target oxidised product.

Finally, three catalytic recycles were carried out using the hybrid Zr4MMA/TFMA
(5:5) (1:100). As reported in Figure S8, the final conversion is constant after the three runs,
highlighting a high stability, activity and selectivity even after several catalytic cycles
(catalytic turnover number, TON > 1800).

3.3. Characterisation of Hybrid Materials after Catalytic Tests

In order to confirm the positive effects of the polymeric matrix against possible
changes in both structure and/or composition of the catalytic materials, further analyses
were carried out after catalysis. It should be underlined that degradation phenomena could
be ascribed either to the polymer matrix or to the oxocluster: (i) leaching of the oxocluster
from the polymer matrix; (ii) hydrolysis/condensation or oxidative degradation of the
oxoclusters; (iii) oxidation of the polymer matrix [18]. Whereas the first phenomenon is less
probable, being the oxocluster covalently linked to the matrix, the others have deserved a
closer insight. The studies were focused on Zr4MMA (1:100) and Zr4MMA/TFMA (5:5)
(1:100), to highlight the differences between the stability of the hybrids with and without
the fluorinated component, and Zr4MAPTMS (1:100). As a first screening, a FT-IR analysis
was carried out in order to highlight degradation effects in the polymeric matrix after use,
as reported in Figure S3. After the catalysis, the broad band at 3200 cm−1 is increased in
the Zr4MAPTMS (1:100), likely due to additional water absorption by the silica domain.
Besides that, we cannot observe any meaningful change in the polymers structure, thus
excluding extensive degradation phenomena [9]. An analogue result was obtained by
SEM and EDX analyses of Zr4MMA/TFMA (5:5) (1:100), which show the retention of
the morphology and of the elemental distribution over the material also after catalysis
(Figures S12 and S13, and Table S1).

To detail the variations in the inorganic domain after the catalytic reactions, and to
verify the structural stability of the oxocluster [42], Zr K-edge X-ray absorption spectra
(XAS) were recorded (Figure S7). The properties of these hybrid materials depend on
the intermixing, at the molecular level, of the inorganic and organic building blocks. The
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investigation of the local environment of Zr can indeed provide information on the possible
degradation processes after catalysis, as reported in Figure 6.
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The Zr K-edge spectrum of the oxocluster Zr4 shows a white line peaked at about
18,022 eV, with a less intense shoulder at 18029 eV. These features originate from the split-
ting of the final p states (s→p transition) and for octahedral centrosymmetric sites becomes
very evident. The fact that such a splitting is not so evident in pure Zr4 oxocluster indicates
that Zr atoms sit in non-centrosymmetric 7- or 8-fold coordination sites, as expected by the
oxocluster crystal structure [43]. The spectra of the as prepared hybrid materials strongly
resemble that of the reference (Figure S7), suggesting that the oxocluster does not undergo
relevant structural changes upon polymerisation with the organic polymers. Only in the
case of the Zr4MMA (1:100) sample is the width of the white line broader, a clue of an
increase in symmetry due to rearrangements around the Zr absorbers [43], while for the
diluted MAPTMS-containing sample, the white line intensity is lower. In addition, the
presence of an isosbestic point in the absorption spectra (at about 18,035 eV, see Figure S7)
proves that the observed spectral changes are only related to changes in coordination
around the absorber, and are not related to variations in zirconium content [43]. On the
other hand, the spectrum of sample Zr4MMA(1:100) does not cross the isosbestic point,
indicating a different zirconium concentration in the sample. After catalytic reaction, the
hybrids show different stabilities. Interestingly, the Zr4MMA (1:100) sample shows a spec-
trum similar to that of the free oxocluster. This might indicate that, upon polymerisation
with MMA, the oxocluster is under tension, while during catalysis its structure can be
restored, possibly due to partial loosening of the matrix.

The inorganic component of the compounds prepared with MAPTMS is modified
during catalysis.

In the sample 1:50, indeed, the shoulder at 18029 eV increases in intensity, while in the
sample 1:100 the splitting becomes clear, accompanied by a sensible decrease in the white
line intensity (Figure S7). Owing to the lower degree of polymerization and to the swelling
properties of this material, the oxocluster is likely exposed to degradation processes to
a higher extent. The fluorinated sample Zr4MMA/TFMA (5:5) (1:100) demonstrates,
instead, excellent stability, since also after catalysis the spectrum are consistent with an
integral Zr4 oxocluster structure (Figure 6a). This is also confirmed by comparison of
the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) curves
(Figure 6b). These fluorinated samples, recovered after catalysis, still present an evident
second coordination shell at about 3.53 Å, representing the Zr–Zr distance.
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The fitting of the EXAFS curves confirms well what qualitatively indicated by the
XANES region, as reported in Table 6.

Table 6. Numeric results from fitting the experimental EXAFS spectra with theoretical models.

Sample Scatterer N R (Å) σ (10−3Å) Eo (eV) R Factor

Zr4

O1 3.2 ±1.3 2.13 ±0.01 3.9 ±1.0

2.28 ± 1.00 12.2O2 4.1 ±0.4 2.27 ±0.01 4.1 ± 1.0

Zr 3.0 ±0.8 3.53 ±0.01 4.7 ± 0.5

Zr4MMA (1:100)

O1 3.7 ±1.3 2.12 ±0.02 4.9 ± 1.4

2.92 ± 1.42 23.3O2 4.1 ±1.1 2.25 ±0.02 5.1 ±1.6

Zr 1.4 ±1.0 3.47 ±0.03 14.3 ± 4.3

Zr4MMA (1:100)
after catalysis

O1 2.8 ±1.0 2.12 ±0.02 3.0 ± 0.6
3.84 ± 1.77 20.4

O2 4.1 ±1.2 2.26 ±0.02 7.0 ± 0.9

Zr4MMA/TFMA (5:5) (1:100)

O1 3.3 ±1.6 2.14 ±0.01 3.0 ± 0.6

3.45 ± 1.27 19.4O2 4.1 ±0.4 2.28 ±0.01 5.3 ± 0.5

Zr 3.0 ±0.9 3.53 ±0.01 4.7 ± 0.5

Zr4MMA/TFMA (5:5) (1:100)
after catalysis

O1 3.5 ±1.3 2.14 ±0.01 3.2 ± 1.1

3.45 ± 1.27 21.3O2 4.0 ±1.3 2.27 ±0.01 5.1 ± 2.4

Zr 2.8 ±1.4 3.53 ±0.01 7.6 ± 3.4

Zr4MAPTMS (1:50)

O1 3.5 ±1.2 2.13 ±0.01 4.7 ± 0.7

3.70 ± 0.78 9.6O2 4.1 ±1.1 2.28 ±0.03 5.3 ± 0.7

Zr 1.5 ±0.4 3.56 ±0.01 4.3 ± 1.4

Zr4MAPTMS (1:50)
after catalysis

O1 3.5 ±2.0 2.12 ±0.02 2.9 ± 0.7
2.11 ± 1.58 14.9

O2 4.1 ±0.3 2.25 ±0.02 6.8 ± 1.7

Zr4MAPTMS (1:100)

O1 1.5 ±1.2 2.13 ±0.02 2.3 ± 1.6

5.62 ± 1.13 15.7O2 4.0 ±1.3 2.27 ±0.01 6.1 ± 1.4

Zr 2.0 ±1.1 3.60 ±0.02 8.7 ± 4.1

Zr4MAPTMS (1:100)
after catalysis

O1 2.3 ±1.7 2.12 ±0.03 2.6 ± 0.9

2.33 ± 2.13 26.6O2 4.0 ±0.8 2.25 ±0.02 4.2 ± 0.8

Zr 0.3 ±1.2 3.58 ±0.02 8.7 ± 2.2

In accordance with its crystal structure, the pure Zr4 oxocluster shows a total Zr–
O coordination number of 7.3, divided into two separate oxygen shells at around 2.14
and 2.28 Å. The neighbouring Zr atoms are collected at a distance of 3.53 Å, with a
coordination number of 3. By comparison with the results of the fitting of the as-prepared
hybrid samples, it can be confirmed that the chemical environment and structure of the
inorganic building block are retained upon embedding in the organic matrix. In the case
of the sample prepared with MMA, an average higher oxygen coordination number is
determined, which is compatible with the broadening of the XANES features, while the
number of Zr neighbours decreases. Both Zr–O and Zr–Zr distances grow shorter.

On the other hand, for the catalyst Zr4MAPTMS (1:100), the oxygen coordination
number is lower than Zr4, hinting at the onset of a different degradation process. It should
be considered that this effect can also be partially explained in terms of a lower S/N ratio
for these samples. The coordination number of zirconium for the sample Zr4MMA (1:100),
after catalytic testing, falls with respect to the pure Zr4 (Zr–Zr 1.4 vs 3.0, respectively)
probably due to a degradation process highlighted from different distances Zr–O in the Zr4
oxocluster-only and Zr4MMA (1:100) hybrid. The XANES spectrum also now intersects
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the isosbestic point (Figure S7). Overall, this might indicate that the as prepared sample
contained a second Zr species that was eliminated during the catalytic process. On the
contrary, the TFMA-containing sample confirms again its excellent stability, being well
compatible with an integer Zr4 model (cfr. both Zr–O and Zr–Zr coordination numbers
and bond distances, Table 6). On the other hand, after catalysis, the degradation of the
hybrids containing the MAPTMS polymer is clear, especially for the diluted sample, since
the first shell coordination number becomes close to 6 while the Zr–Zr are lower in number
and at longer distances.

In summary, also the stability of Zr4MMA/TFMA (5:5) (1:100), confirms this sample
as the best Zr4 oxocluster-based catalyst for the oxidation of methyl p-tolyl sulphide to the
methyl p-tolyl sulphone. These achievements could be also interesting in the framework
of oxydesulfurisation processes, which enable a deep sulphur removal via the efficient
conversion of aromatic sulphides to their less soluble sulphones [14].

4. Conclusions

A set of novel polymethyl-methacrylate polymers, covalently reinforced by polymeris-
able Zr4 oxoclusters, was prepared and used for the oxidation of methyl p-tolyl sulphide
by hydrogen peroxide. By a combination of different investigation tools, based on FT-IR,
Raman measurements and 13C SS-NMR spectroscopies, it was possible to determine the
structure of the hybrids, thus revealing unreacted carbon double bonds eventually present.
The swelling measurements were useful to correlate structural properties and reactivity
of the different materials, pointing out the better outcome obtained for the MMA/TFMA-
based hybrids and for a molar ratio of (1:100) between the polymeric matrix and the
oxocluster.

Thermogravimetry highlighted an increased thermal stability for hybrid materials,
compared to the blank polymers based on MMA, MAPTMS and MMA/TFMA. The cat-
alytic efficiency of the hybrids was demonstrated in the oxidation of methyl p-tolyl sulphide
by H2O2 in a polar solvent (ACN): the heterogeneous catalysts show an enhanced activity,
in terms of reaction yield and selectivity, with respect to the soluble oxoclusters, pointing to
a major role of the polymeric matrix in establishing a suitable environment for enhancing
catalyst stability and reaction selectivity.

Therefore, it was possible to highlight the increased structural, thermal and chemical
stability of the MMA/TFMA based hybrid materials, with particular focus on Zr4MMA/
TFMA (5:5) (1:100), featuring a molar ratio oxocluster/sum of the monomers of 1:100
and a molar ratio MMA/TFMA of 5:5, which demonstrates a high activity and selectivity
for the oxidation of methyl p-tolyl sulphide to the corresponding sulfone and shows
an outstanding recyclability after catalytic turnover, as established by EXAFS–XANES
analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193268/s1, Figure S1: FT-IR spectra of the samples: (a) Zr4MMA (1:50), (b) Zr4MAPTMS
(1:50), (c) Zr4MMA/TFMA (9:1) (1:50), (d) Zr4MMA/TFMA (8:2) (1:50)., Figure S2: Full scale of
the spectra reported in Figure 2., Figure S3: FT-IR analysis of Zr4MMA (1:100), Zr4MMA/TFMA
(5:5) (1:100) and Zr4MAPTMS (1:100) before and after catalysis., Figure S4: Raman mapping of
Zr4MMA (1:100), collected in a region of 150 x 200 µm and with a power of 8 mW., Figure S5: TGA
analyses of the samples: (a) Zr4MMA (1:50), (b) Zr4MMA/TFMA (8:2) (1:50), 9c) Zr4MMA (6:4)
(1:50), (d) comparison between three polymers, Zr4MMA (1:50), Zr4MMA/TFMA (9:1) (1:50) and
Zr4MMA/TFMA (8:2) (1:50) and PMMA, (e) comparison between three blanks, PMMA, MMA/TFMA
(6:4) and MAPTMS, (f) comparison between three polymers, Zr4MMA (1:100), Zr4MMA/TFMA (6:4)
(1:100) and Zr4MAPTMS (1:100), whose calculations are reported in Table 2. The TGA were collected
with a ramp of 10 ◦C/min from room temperature (25 ◦C) up to 900 ◦C, under air flow., Figure S6:
Catalytic tests on the following hybrids: (a) Zr4MMA/TFMA (8:2) (1:100), (b) Zr4MMA/TFMA (7:3)
(1:100), (c) Zr4MMA/TFMA (6:4) (1:100). The tests were performed under diluted conditions: 0.40 M
methyl p-tolyl sulphide, 0.81 M H2O2 in 2.2 mL of ACN, Figure S7: Zr K-edge XANES spectra of
samples before (left) and after (right) catalysis. The arrows indicate the isosbestic point., Figure S8:
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Recycles tests on the best synthesised heterogeneous catalysts Zr4MMA/TFMA (5:5) (1:100): after
the first cycle a conversion of 98% can be observed and a conversion of 96% and 99% after the second
and the third catalytic recycles can be pointed out, highlighting the high stability of the samples even
after tree catalytic cycles. The tests were performed for 4 h under the same diluted conditions of 0.40
M methyl p-tolyl sulphide, 0.81 M H2O2 in 2.2 mL of ACN, by recycling the catalyst, Figure S9: SEM-
EDX measurements of Zr4MAPTMS (1:50), Figure S10: SEM-EDX measurements of Zr4MAPTMS
(1:100), Figure S11: SEM-EDX measurements of Zr4MMA/TFMA (9:1) (1:100), Figure S12: SEM-
EDX measurements of Zr4MMA/TFMA (5:5) (1:100) before the catalysis, Figure S13: SEM-EDX
measurements of Zr4MMA/TFMA (5:5) (1:100) after the catalysis, Table S1: Semi-quantitative data
from EDX measurements regarding the Zr-content in the Zr4MMA/TFMA (5:5) (1:100) before and
after the catalytic oxidation.
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