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Kurzfassung

Sheet Molding Compounds (SMC) sind diskontinuierlich faserverstärkte Ver-
bundwerkstoffe, die aufgrund ihrer Fähigkeit, Verbundbauteile mit langen
Fasern zu geringen Kosten zu realisieren, weit verbreitet sind. Sie ermöglichen
Funktionsintegration, wie etwa den Einsatz von Rippen oder metallischen
Einsätzen, und können mit kontinuierlichen Kohlenstofffasern gemeinsam
verarbeitet werden, um die Formbarkeit von SMC mit den überlegenen
mechanischen Eigenschaften von kontinuierlichen Fasern zu kombinieren.
Das Streben nach hochintegrierten und komplexeren SMC-Bauteilen er-
fordert jedoch ein tiefes Verständnis der Verarbeitungsmechanismen und
deren Einfluss auf die Leistungsfähigkeit eines Bauteils. Prozesssimulationen
adressieren diesen Punkt, indem sie mögliche Fertigungsfehler und Prozess-
parameter vorhersagen. Diese Ergebnisse können nicht nur zur Prozessausle-
gung und zur Reduzierung von Trial-and-Error-Phasen genutzt werden, son-
dern auch für die anschließende Struktursimulation durch eine virtuelle
Prozesskette.

In dieser Arbeit wird die Prozesssimulation von SMC zunächst mit einem
makroskopischen Referenzmodell auf Basis von Faserorientierungstensoren
adressiert. Dies entspricht dem Stand der Forschung, aber die zugrun-
deliegenden Annahmen von geraden Fasern, die viel kürzer als jedes ge-
ometrische Merkmal sind, werden in anspruchsvollen SMC-Anwendungen
oft verletzt. Dies führt zu der Hypothese, dass eine direkte Simulation einzel-
ner Faserbündel erforderlich ist, um den SMC-Formfüllprozess komplexer
Geometrien genau zu beschreiben. Basierend auf dieser Hypothese wird
eine neuartige direkte Bündelsimulationsmethode (DBS) vorgeschlagen, die
eine direkte Simulation auf Komponentenebene ermöglicht und dabei die
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Kurzfassung

Beobachtung nutzt, dass Faserbündel während des SMC Fließpressens oft
in einer gebündelten Konfiguration verbleiben. Das entwickelte DBS Mod-
ell kann mit Patches kombiniert werden, um den Co-Molding-Prozess von
SMC mit kontinuierlichen Faserverstärkungen zu simulieren. Daher wird
ein Modell zur Beschreibung des Materialverhaltens von unidirektionalen
Kohlenstofffaser-Patches einschließlich eines einfachen Schädigungsmodells
zur Vorhersage von Defekten entwickelt.

Die Parameter des makroskopischen Referenzmodells, des DBS-Modells und
des Patch-Modells werden experimentell bestimmt. Dazu gehören die ther-
mischen Eigenschaften des SMCs, die temperaturabhängige und ratenab-
hängige Viskosität der SMC-Paste, die Reibung an der Werkzeugwand sowie
die Kompressibilität des SMCs. Ebenso werden die temperaturabhängigen
und ratenabhängigen mechanischen Eigenschaften der Patches bestimmt,
die jedoch große Streuungen zwischen den Proben und Chargen aufweisen.

Schließlich werden die Modelle auf mehrere Validierungsfälle angewandt,
um die Anwendbarkeit auf Komponentenebene zu bewerten. Die Beispiele
zeigen eine gegenüber dem makroskopische Referenzmodell verbesserte
Vorhersage der Faserarchitektur, insbesondere der Faserorientierung in der
Nähe von Werkzeugwänden sowie der Vorhersage von Bindenähten und
Fließmarken. Zusätzlich bietet das DBS Modell die Option, Krümmungen der
Bündel vorherzusagen und den Faservolumenanteil zu berechnen, welche
durch Mikro-Computertomographie, thermisch gravimetrische Analysen
und Durchleuchtungsbilder validiert werden.
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Abstract

Sheet Molding Compounds (SMC) are discontinuous fiber reinforced compos-
ites that are widely applied due to their ability to realize composite parts with
long fibers at low cost. They enable function integration, e.g. ribs or metallic
inserts and can be co-molded with continuous carbon fibers to combine the
formability of SMC with the superior mechanical properties of continuous
fibers. However, the pursuit for highly integrated and more complex SMC
components requires a profound understanding of the processing mech-
anisms and their influence on the performance of a component. Process
simulations address this point by predicting possible manufacturing defects
and process parameters. These results can not only be used to configure the
process and reduce trial and error phases, but also for subsequent structural
simulation by virtue of a virtual process chain.

In this work, the process simulation of SMC is addressed initially with a
macroscopic reference model based on fiber orientation tensors. This is in
line with the state of research, but the underlying assumptions of straight
fibers that are much shorter than any geometric feature are often violated
in advanced SMC applications. This leads to the hypothesis that a direct
simulation of individual fiber bundles is required to accurately describe the
SMC mold filling process of complex geometries. Based on this hypothesis, a
novel Direct Bundle Simulation (DBS) method is proposed to enable a direct
simulation at component scale utilizing the observation that fiber bundles
often remain in a bundled configuration during SMC compression molding.
The developed DBS model can be combined with patches to simulate the
co-molding process of SMC with continuous fiber reinforcements. Hence,
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Abstract

a model is developed to describe the material behavior of unidirectional
carbon fiber patches including a damage model to predict defects.

The parameters of the macroscopic reference model, DBS model and patch
model are determined experimentally. This includes thermal properties of
the SMC, temperature dependent and rate dependent viscosity of the paste,
friction at the mold surface as well as the compressibility of the SMC. Likewise,
the temperature dependent and rate dependent mechanical properties of the
patches are determined, but they show large scatter between samples and
batches.

Finally, the models are applied to several validation cases for evaluating the
applicability at component scale. The examples show improved prediction of
fiber architecture compared to the macroscopic reference model, especially
the fiber orientation near mold walls and the prediction of knit lines or flow
marks. In addition, the DBS model provides the option to predict bundle
curvatures and calculate fiber volume fractions, which are validated by micro-
computed tomography, thermal gravimetric analysis and fluoroscopy.
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EF/ĚF (Un-)damaged tensile stiffness of patch (parallel)
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1 Introduction and motivation

Lightweight design is a holistic development approach, which ideally triggers
a positive self-reinforcing effect: If mass is saved, inertial loads on a structure
and loads from powering a machine are reduced. This scales down require-
ments on support structures, which then can be designed lighter themselves
to reduce mass even further. Ultimately, this reduction in mass reduces
primary energy consumption for all mass related loads in a machine and
decreases impact energy in a catastrophic failure.

One option to reduce mass is the application of composite materials. Such
materials combine properties of multiple materials to obtain a tailored prop-
erty profile suited to the specific application. Fiber reinforced plastics (FRP)
are an important group of composites comprising strong load-carrying fibers
(typically made from glass or carbon) and a matrix material (thermoset or
thermoplastic polymer), that bonds fibers together, transfers loads to fibers
and protects fibers from environmental influences [1]. If such reinforcement
fibers span the entire length of a part, the reinforcement type is classified
as continuous FRP (CoFRP). Continuous fiber reinforcements offer high po-
tential for mechanical performance, especially regarding strength, due to
large fiber volume contents and high alignment of fibers. Consequently, they
are a popular choice in the aerospace industry, performance cars and sports
products requiring high stiffness. However, the necessary raw materials of
CoFRPs are rather expensive, the degree of process automation is limited,
and careful consideration is needed to make economically viable material
choices [2]. Additionally, the geometric shapes are restricted by the underly-
ing architecture of fabrics - sometimes it is simply not possible to place fibers
such that they span an entire part. Chopped fibers, on the other hand, offer
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1 Introduction and motivation

much more design freedom as they can be molded together with the matrix
material in a flow process such as injection molding or compression molding.
Such a material is classified as discontinuous FRP (DiCoFRP). DiCoFRPs can
be molded to complex geometries at high rates and thus are very cost efficient.
However, their mechanical properties are inferior to CoFRPs. Discontinuous
fiber reinforced plastics with local continuous fiber reinforcements (CoDi-
CoFRP) are a new class of composites aiming to combine the merits of both
constituents [3]. They use continuous high performance fibers in critical
loading areas and a discontinuous compound to realize function integration
with ribs, beads or other complex geometric features.

The mechanical properties of FRPs depend significantly on the manufactur-
ing process, which affects key properties such as fiber orientation and fiber
volume fraction. Prediction of these properties by numerical simulations
can help to account for these effects in an early product development phase
and to save expensive trial and error studies. Process simulations aim to
predict manufacturing defects and material properties after processing an
FRP. Ideally, these results are fed to subsequent structural simulations in the
framework of a continuous CAE chain for more accurate results of structural
simulations [4–6].

Therefore, this work addresses the simulation of a Sheet Molding Compound
(SMC) CoDiCoFRP manufacturing process. Most current models for SMC
compression molding simulations assume a macroscopic behavior without
accounting for the underlying fiber bundle architecture of SMC at mesoscale,
which can lead to inaccurate predictions of fiber orientations after processing
in complex geometries. The objective of this work is an accurate prediction of
the manufactured fiber bundle architecture and the possibility to incorporate
local unidirectional reinforcement patches in the simulation. The developed
methods should result in a better understanding of defects during the early
design phase of SMC components and thus pave the way to more structural
applications of CoDiCoFRP. These applications have the potential to reduce
primary energy consumption in a cost-effective manner.
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2 Fundamentals and state of
research

2.1 Modeling scales

Fiber reinforced composites can be analyzed and modeled at different scales
ranging from the molecular scale at which chemical processes occur (curing,
fiber sizing) up to the component scale at which a part is loaded. This work
terms the smallest scale microscale, which refers to the scale of individual
fiber filaments with a diameter of approximately 15µm. The term mesoscale
refers to fiber bundles or fiber tows that consist of hundreds of individual
fiber filaments. The dimensions of fiber bundles cross sections are in the
order of 0.1 mm, while the length is 25 mm to 50 mm. Modeling approaches
at mesoscale treat the entire bundle as a single instance with no resolution
of the underlying micro-structure. The macroscale refers to a homogeneous
macroscopic scale, at which the micro- and meso-structure of the composite
is completely blurred and described by effective macroscopic properties. The
scales in this work are summarized in Figure 2.1.

Micro Meso Macro

Figure 2.1: Schematic illustration of the modeling scales in fiber reinforced composites. Fibers
are at the micro scale, bundles at the mesoscale and the homogeneous material with blurred
micro- and meso-structure is a representation at the macroscale.
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2 Fundamentals and state of research

2.2 Fiber suspensions

This section starts with an introduction to general properties of fiber suspen-
sions and subsequently states deformation measures and balance equations.
After introducing stochastic descriptions of the fiber orientation state at
macroscale, the section summarizes approaches to model rheology of fiber
suspensions at macroscale. Finally, direct numerical models are reviewed
and classified.

2.2.1 General properties and classification

A fiber suspension is a material consisting of elongated particles suspended
in a viscous matrix material. Such particles are characterized by their aspect
ratio

rp = L
d

(2.1)

with the (equivalent) diameter d and length L. The aspect ratio describes the
dimensionless slenderness of a particle. Another dimensionless shape factor
is defined as

ª=
r 2

p °1

r 2
p +1

(2.2)

and simplifies the notation of fiber orientation evolution equations later in
this section.

A suspension of reference volume Vr that contains Np particles can be de-
scribed either by the number density

np =
Np

Vr
(2.3)

or the fiber volume fraction

f =Vpnp = ºd 2L
4

np, (2.4)
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2.2 Fiber suspensions

where Vp described the volume occupied by one cylindrical fiber.

Fiber suspensions are commonly divided in different concentration regimes
[7] and different theories apply in each of these regimes:

Dilute regime Particles are spaced at a large distance compared to their
dimensions. Thus, the particles can be treated individually, regardless
of the existence of other particles. The effect on the surrounding fluid
flow is typically neglected. The dilute concentration regime is formally
bound by

np ø 1
L3 . (2.5)

Semi-dilute regime Particles interact with each other through flow field
perturbations. They can be distributed isotropic and are well below the
nematic transition [7]. The semi-dilute regime is formally bound by

1
L3 ø np ø 1

dL2 . (2.6)

Concentrated regime The average distance between particles is of the or-
der of their diameter. They interact via hydrodynamic effects and
contacts [8]. The concentrated regime is formally bound by

1
dL2 ø np. (2.7)

Typical industrial composites belong to the concentrated regime, as
illustrated in Figure 2.2.

Nematic regime (liquid crystal) Particles are suspended freely but re-
main in a constrained alignment, as this is the only possibility to
achieve a corresponding high fiber volume fraction.
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Figure 2.2: Concentration regimes: The black lines separate the dilute regime (white) from the
semi-dilute regime (light gray) and the concentrated regime (gray).

The bending stiffness of a flexible cylindrical fiber in a suspension may be
described by the dimensionless ratio

S§ = Eº

4¥∞̇r 4
p

(2.8)

with the Young’s modulus of a fiber E , scalar shear rate ∞̇ and matrix shear
viscosity ¥ [9]. Fibers bend with an increased aspect ratio, higher shear rates
and reduced bending stiffness [10], which is summarized by a small value of
S§.

2.2.2 Rate of deformation measures

The motion of a fiber suspension is characterized by its differentiable velocity
field v : D ! R3 on a domain D Ω R3. The position within that domain is
denoted by x 2D and differential operators work with respect to x, if not

6



2.2 Fiber suspensions

mentioned otherwise. Relevant objective measures for the deformation are
the symmetric strain rate tensor

D = 1
2

≥
gradv+gradv>

¥
(2.9)

and the vorticity tensor

W = 1
2

≥
gradv°gradv>

¥
, (2.10)

where grad denotes the gradient operator. The spherical part of the strain
rate tensor

D± = 1
3

tr
°
D

¢
I =P1 :D (2.11)

describes the volumetric rate of change and vanishes in case of incompress-
ible fluids. The tensor P1 = 1

3I ≠I denotes the spherical projection tensor of
fourth order. The deviatoric part of the strain rate tensor is denoted as

D0 =D°D± =P2 :D (2.12)

and describes the rate at which the fluids shape changes. The tensor P2 =
IS °P1 denotes the deviatoric projection tensor of fourth order and IS is the
symmetric part of the fourth order identity tensor. A scalar measure for this
deformation rate is the shear rate ∞̇=

p
2D0 :D0.

2.2.3 Balance equations

The solution fields of the deformation of fiber suspensions are described by
several balance equations. These balance equations describe conservation
properties observed in nature, e.g. conservation of mass, momentum and en-
ergy. A general form of such a balance equation for an arbitrary differentiable
scalar field (•) :D!R in an Eulerian frame is

@(•)
@t

+div((•)v) = s (2.13)

7



2 Fundamentals and state of research

with the spatial time derivative @(•)
@t at a fixed point in space, the divergence

operator div(•) and source term s. The source term s summarizes the pro-
duction of the property, non-convective flux of the property and externally
applied sources. The spatial time derivative is related to the material deriva-
tive via

˙(•) = @(•)
@t

+v ·grad(•) (2.14)

and describes the change of a property at a deformed material point.

The first important field of interest is the mass density Ω :D!R. As mass can
be neither produced (at least not in Newtonian mechanics) nor transported
in other ways than by convection, the source term vanishes and leads to

@Ω

@t
+div(Ωv) = 0 (2.15)

for the balance of mass in an Eulerian frame. Application of Equation (2.14)
gives the Lagrangian form

Ω̇+Ωdiv(v) = 0 (2.16)

with the material derivative of the mass density field Ω̇.

Another balanced property is the momentum density field Ωv and using the
tensor form of (2.13) results in the balance equation for momentum

@(Ωv)
@t

+div
°
(Ωv)≠v

¢
= div(�)+Ωb (2.17)

with the non-convective momentum flux density � also known as Cauchy
stress tensor and a body force density field Ωb. Using the mass balance (2.15)
and (2.14), this equation may be recast to the Lagrangian form

Ωv̇ = div(�)+Ωb. (2.18)
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2.2 Fiber suspensions

Finally, the temperature field T :D!R is of interest and described by the bal-
ance of internal energy ΩcpT , where cp is the specific heat capacity. Without
heat sources, this is

@(ΩcpT )

@t
+div

≥
(ΩcpT ) ·v

¥
=°grad(d)+� :D (2.19)

with the non-convective heat flux d, and the dissipated strain energy � :D.
For a constant specific heat capacity, the Lagrangian form of Equation (2.19)
is

ΩcpṪ =°div(d)+� :D. (2.20)

2.2.4 Stochastic description of fiber orientation states

The orientation of a single straight fiber, fiber segment or bundle segment
is denoted as a unit vector p 2 S , where S = {p 2R3 | 1 =

∞∞p
∞∞}. The change

of fiber orientation with time ṗ is of upmost interest for process simulations
of fiber suspensions. The first model to describe the orientation evolution
of a single rigid spheroid suspended in an infinitely sized Newtonian fluid
domain without buoyancy and inertia was described by Jeffery in 1922 as

ṗJ =W ·p+ª
≥
D ·p°

°
D :p≠p

¢
·p

¥
(2.21)

with the symmetric strain rate tensor D and the skew-symmetric vorticity
tensor W of the suspending fluid [11]. For pure shear in a 2D domain, this
equation reduces to a scalar evolution equation for the fiber orientation angle
µ

µ̇ = ∞̇

2

°
1+ªcos2µ

¢
. (2.22)

Strictly speaking, Jeffery’s model is only valid for a single ellipsoid in an
infinite domain. However, it can be shown, that the equation is also valid for
cylindrical fibers, if an equivalent aspect ratio re is used [12]. Cox [13] derived
such an equivalent aspect ratio based on slender-body theory. Zhang et al.
[14] utilized Finite Element Analysis to propose a fitted cubic relation between

9



2 Fundamentals and state of research

re and rp, which is more accurate for small aspect ratios. Jeffery’s model yields
reasonable results in the dilute regime, where fibers are dispersed so sparsely
that they do not affect each others motion.

Modeling the orientation evolution in semi-dilute fiber suspensions requires
a formal treatment of an orientation state consisting of several fiber directions.
This can be achieved either by a stochastic description, as described in the
following, or modeling of individual fiber instances, as described in the later
Section 2.2.6.

The fiber orientation density distribution function™ :S !P gives the proba-
bility to find a fiber in direction p with P = {™ 2R | 0 ∑™∑ 1}. It fulfills the
normalization condition Z

S
™(p)dp = 1 (2.23)

and the continuity condition

™̇=°gradS (™(p)ṗ). (2.24)

Here, dp is the surface element on the unit sphere S that ensures an invariant
integration and gradS is a gradient on the unit sphere S . Further,™(p) is a
symmetric function, i.e. ™(p) =™(°p), as the end point of a fiber cannot be
distinguished from its starting point.

Folgar and Tucker modified Equation (2.21) to

™̇=°gradS
°
™(p)ṗJ

¢
+Ci∞̇grad2

S (™(p)) (2.25)

by employing the fiber orientation density distribution function and adding
a term Ci∞̇ for diffusion [15, 16]. The parameter Ci is termed the interaction
coefficient and for Ci = 0, Equation (2.25) is identical to Equation (2.21). The
diffusion term is inspired by Brownian particle motion and models the ten-
dency of fibers to distribute to an isotropic state due to interactions between
individual fibers. The empirical parameter Ci describes the rate at which
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2.2 Fiber suspensions

fibers move towards a more isotropic state and depends on fiber aspect ratio,
fiber volume fraction and other properties of the fiber suspension. [15].

The fiber orientation density distribution function™(p) may have arbitrary
complexity. Thus, it is inconvenient to store in numerical simulations and
Advani and Tucker [17] suggested to store moments instead. These moments
are called fiber orientation tensors and commonly used moments are the
second order fiber orientation tensor

A=
Z

S
™(p)p≠pdp (2.26)

and fourth order fiber orientation tensor

A=
Z

S
™(p)p≠p≠p≠pdp. (2.27)

Fiber orientation tensors are fully symmetric and the contractions

A ·I = 1 A : I =A (2.28)

apply. The set of second order orientation tensors fulfilling such properties is
termed A. Exemplary fiber orientation states, corresponding second order
fiber orientation tensors and plots of the fiber orientation density distribution
function are given in Figure 2.3.

Jeffery’s model (2.21) and the Folgar-Tucker model (2.25) can be expressed in
terms of fiber orientation tensors as

Ȧ=W ·A°A ·W +ª
°
D ·A+A ·D°2A :D

¢
(2.29)

and

Ȧ=W ·A°A ·W +ª
°
D ·A+A ·D°2A :D

¢
+2Ci∞̇

°
I °3A

¢
, (2.30)

respectively. However, the fourth order tensor A is required to solve these
equations. One could obtain it from analogous equations for Ȧ, but that
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(a) Unidirectional fibers (b) Planar fibers (c) Isotropic fibers

A=

2
664

1 0 0

0 0 0

0 0 0

3
775

(d) Unidirectional tensor

A=

2
664

1
2 0 0

0 1
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0 0 0

3
775

(e) Planar tensor

A=

2
664

1
3 0 0

0 1
3 0

0 0 1
3

3
775

(f ) Isotropic tensor

Figure 2.3: Orientation examples. The distributions (a),(b) and (c) are generated by the procedure
described in Section 5.1.2.

would require a sixth order tensor and so forth. Hence, A is typically obtained
from a closure approximation. The simplest analytical closure is a quadratic
closure

AQ =A≠A, (2.31)

which is correct only for unidirectional fiber orientation. The linear closure

AL = 1
7

≥
A≠I +I ≠A+A⇤I +I⇤A+ (A⇤I)>R + (I⇤A)>R

¥

° 1
35

≥
I ≠I +I⇤I + (I⇤I)>R

¥ (2.32)

is exact for a random isotropic fiber orientation state. Hybrid closures try to
interpolate these states [17, 18]. More advanced closures approximate the
fourth order tensor by fitting eigenvalues such as orthotropic fitted closures
[19, 20] and the invariant-based optimal fitting closure (IBOF) [21]. This work
proceeds to use the IBOF closure in macroscopic reference solutions, as it is
a good compromise between accuracy and computational cost.

The Folgar-Tucker model was extended by several authors and a list (non-
comprehensive) is given in Table 2.1. In non-dilute suspensions, Equations
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2.2 Fiber suspensions

(2.29) and (2.30) overestimate the reorientation rate of fibers in comparison to
experimental evidence. Thus, variants with reduced strain rate (RSC) or a re-
tarded principal rate (RPR) have been developed and add up to two additional
parameters. Additionally, the isotropic diffusion term has been replaced by
an anisotropic term [22], which introduced four additional parameters. A
Maier-Saupe potential was suggested to counteract the diffusive process
considering nematic conditions in suspensions with high fiber volume frac-
tions [23]. There are also some suggestions to account for confinement of
fibers in regions, where the distance between mold walls is smaller than the
length of suspended fibers [24, 25]. Recent developments tend to reduce the
number of parameters for easier parameter identification [26, 27].

Most of these models are developed primarily for injection molding simu-
lations with a three-dimensional short fiber architecture in mind and the
results can be tuned by the choice of parameters. To obtain an unbiased ref-
erence solution, the macroscopic models later in this work use Jeffery’s basic
equation without retarded principal rates and without diffusion parameters.

Table 2.1: Overview on stochastic macroscopic fiber orientation models and number of required
parameters for the diffusion model and the strain rate reduction. Implementations and examples
may be found at https://github.com/nilsmeyerkit/fiberoripy

Model Year Diffusion Strain rate Reference

Jeffery 1922 0 0 [11]

Folgar-Tucker 1984 1 0 [15]

RSC 2008 1 1 [28]

ARD-RSC 2009 5 1 [22]

FTMS 2010 2 0 [23]

iARD-RPR 2016 2 2 [29]

pARD-RPR 2017 2 1 [26]

MRD 2018 3 0 [27]

Stochastic fiber orientation descriptions are valid for fibers that are much
shorter than any dimension of the flow domain, as they do not account for

13

https://github.com/nilsmeyerkit/fiberoripy
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confinement by mold walls and other non-local effects. A sufficiently high
number of fibers is needed at each point, at which an evolution equation
is evaluated, to represent a proper sample of the fiber orientation density
distribution function. Additionally, these models typically assume a constant
fiber volume fraction and constant fiber aspect ratio.

2.2.5 Rheology of fiber suspensions

The total macroscopic stress in an incompressible fiber suspension may be
decomposed into

� =°pI +�0
M +�0

FM +�0
FF, (2.33)

with a contribution from the volumetric pressure p, from the neat matrix
fluid �0

M, a deviatoric extra stress due to fiber-matrix interactions �0
FM (long-

range interactions) and a deviatoric extra stress due to fiber-fiber interactions
�0

FF (short-range interactions, such as mechanical contacts and lubrication)
[30, 31]. The illustration in Figure 2.4 visualizes the sources of long-range
hydrodynamic interactions due to disturbances of the flow field and short-
range interactions at contact points of fiber bundles.

Contact, friction, lubrication
(short-range or fiber-fiber)

Two-way coupled
hydrodynamic interaction
(long-range or fiber-matrix)

Figure 2.4: Illustration of long-range hydrodynamic interactions of bundles with the matrix
velocity field and short-range fiber-fiber interactions at contact points between bundles. The
hydrodynamic interaction is two-way coupled, i.e. the motion of a bundle depends on the
fluid velocity in its environment and the fluid velocity is affected by bundle motion. Adopted
from [32].
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2.2 Fiber suspensions

2.2.5.1 Matrix contribution

The constitutive equation for the neat matrix fluid

�M = ≥tr(D)I +2¥D0 =
°
3≥P1 +2¥P2

¢
| {z }

Viso

:D (2.34)

computes �M from a scalar shear viscosity ¥ and a scalar bulk viscosity ≥,
which may be combined to a fourth order isotropic viscosity tensor Viso. The
term tr(D)I =P1D vanishes in incompressible fluids and most compressible
engineering cases assume ≥= 0, as ≥ is only relevant if the reciprocal of the
bulk strain rate was at the order of magnitude of molecular movement [33].
Therefore, Equation (2.34) is reduced to

�0
M = 2¥D0 (2.35)

for the following sections. Subjecting the isotropic matrix to uniaxial, incom-
pressible elongation (D 0

y y = D 0
zz = °D 0

xx /2) results in the first and second
normal stress differences

NM,1 =æ0
M,xx °æ

0
M,yy = 3¥D 0

xx (2.36)

NM,2 =æ0
M,xx °æ

0
M,zz = 3¥D 0

xx (2.37)

of the matrix. The factor 3¥ may be termed elongational viscosity of the
isotropic matrix ¥M ,xx and the ratio between this elongational viscosity and
the shear viscosity ¥M ,xx /¥ is known as Trouton ratio, which is equal to 3 for
isotropic incompressible Newtonian media [33, 34].

2.2.5.2 Long-range contribution due to hydrodynamic interaction
of fibers with the matrix

Typical fibers in composite applications have a high Young’s modulus and
thus are considered inextensible compared to the suspending matrix material.
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Hence, fibers represent a constraint on the fluid field, disturbing the velocity
field at fiber scale and leading to additional shear deformation compared
to the macroscopically applied deformation rate. This extra shearing of the
viscous matrix translates to extra stress at macroscale that depends on the
fiber volume fraction, fiber aspect ratio and fiber orientation. This extra stress
results purely from the long-range velocity disturbance even in absence of
any mechanical contact of fibers.

The general objective form of anisotropic stress in an incompressible fluid
derived by Ericksen [35] and can be expressed as

�FM =°P0I +2¥0D+¥1A+¥2A :D+2¥3
°
A ·D+D ·A

¢
(2.38)

using orientation tensors [36]. The first two parameters P0 and ¥0 describe
the isotropic extra stress by fibers. The three parameters ¥1,¥2,¥3 are the
internal fiber stress, elongational extra viscosity in fiber direction and dif-
ference between shear viscosity along fibers and transverse to the fibers,
respectively [37]. The term ¥1 is typically neglected under the assumption
that there is no internal strain-rate-independent fiber stress at scales, where
Brownian motion is insignificant.

The extra stress from fiber-matrix interactions should not depend on the
trace of D and should be trace-free itself, such that the term p describes the
complete hydrostatic pressure [38]. Thus, Equation (2.38) is reformulated to
the deviatoric stress

�0
FM =

"
2¥0P2 +¥2

µ
A° 1

3
I ≠A

∂
+2¥3

µ
A⇤I +I⇤A° 2

3
I ≠A

∂#
:D0.

(2.39)
This equation is obtained by replacing D with the deviatoric strain rate D0,
multiplying Equation (2.38) withP2 from the left and using the identity I :A=
A. For ¥0 = 0 and ¥3 = 0, i.e. slender fibers with negligible thickness in a dilute
suspension, Equation (2.39) becomes equivalent to the equation derived by
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Batchelor [39]. For dilute suspended elongated spheroids, Batchelor obtained
the expression

¥2, Ba =
2 f r 2

p

3
h

ln(2rp)°1.5
i¥ (2.40)

using slender body theory [40–42]. Dinh and Amstrong suggest the variant

¥2, DA =
2 f r 2

p

3ln(
p
º/ f )

¥ (2.41)

for semi-dilute suspensions assuming aligned fibers [42, 43]. Shaqfeh and
Fredrickson [44] rigorously derived the expression

¥2, SF =
4 f r 2

p

3
£
ln(1/ f )+ lnln(1/ f )+C

§¥ (2.42)

for slender fibers using multiple scattering, accounting for velocity distur-
bances at multiple length scales. The factor C ranges from 0.1585 for aligned
fibers to -0.6634 for isotropic fiber orientation [30, 44]. These authors also
imply ¥0 = 0, since this contribution is small compared to ¥2.

Tucker [41] recasts Equation (2.38) together with the isotropic matrix compo-
nent to

�M +�FM = 2¥̄
h
D+NpA :D+Ns

°
A⇤D+D⇤A

¢i
(2.43)

with ¥̄ containing the entire isotropic contribution from the matrix and sus-
pended particles. The dimensionless particle number Np describes the im-
portance of extra stress due to particle stretching and is usually dominant
over the shear number Ns, which describes increased shear resistance due to
the thickness of fibers [41]. Strictly enforcing deviatoric stresses and strain
rate tensors leads to

�0
M +�0

FM =Va :D0 (2.44)
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with the fourth order anisotropic viscosity tensor

Va = 2¥̄

"
P2 +Np

µ
A° 1

3
I ≠A

∂
+Ns

µ
A⇤I +I⇤A° 2

3
I ≠A

∂#
(2.45)

following Bertóti [38]. This version is equivalent to a combination of Equa-
tions (2.39) and (2.35) for a proper choice of the parameters, but has a dif-
ferent interpretation. Such parameters can be obtained e.g. from fitting
micro-mechanical results [38,45] or by expressing them in terms of Equations
(2.40) to (2.42). Equation (2.43) is also commonly used directly to model
anisotropic viscosity with Ns = 0 for slender fibers [23, 46].

Other authors do not start from the general form given in Equation (2.38), but
with the transversely isotropic case of an unidirectional fiber reinforcement
in analogy to linear elasticity [47, 48]. For an incompressible material, this is

2
6666666666666664

D 0
xx

D 0
yy

D 0
zz

D 0
yz

D 0
zx

D 0
xy

3
7777777777777775

=

2
6666666666666664

1
¥xx

° 1
2¥xx

° 1
2¥xx

0 0 0µ
1

4¥xx
+ 1

4¥yz

∂ µ
1

4¥xx
° 1

4¥yz

∂
0 0 0

µ
1

4¥xx
+ 1

4¥yz

∂
0 0 0

1
¥yz

0 0
1
¥xy

0

symm. 1
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3
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2
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3
7777777777777775

(2.46)

in Voigt notation and for fiber alignment in x-direction. Pipes et al. [48, 49]
determined the corresponding parameters from micro-mechanical analysis
to

¥xx = ¥ f
2

√
a
p

f

1°a
p

f

!
r 2

p (2.47)

for the elongational viscosity in fiber direction,

¥x y =
¥

2

√
2°a

p
f

1°a
p

f

!
(2.48)
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for the axial shear viscosity and

¥y z = ¥
≥
1°a2 f

¥°2
(2.49)

for the transverse shear viscosity. A geometrical factor a describes the ideal-
ized arrangement of fibers (a2 =

p
12/º for hexagonal packing and a2 = 4/º

for square packing). Similar to the volume averaging suggested by Advani and
Tucker [17] for elastic stiffness, the result is then used in a volume-averaged
equation that depends on fiber orientation tensors [50].

A summary of the parameterizations for anisotropic viscosity is given in Table
2.2. It is noteworthy that all variants rely on three parameters compared to
the five parameters of transversely isotropic materials in elasticity due to
the assumption of incompressibility. In principal, these formulations are
equivalent to each other. The general form with ¥,¥2,¥3 is the preferred
parameterization in subsequent chapters, because it is based directly on the
matrix viscosity, which can be measured in a simple rheometer.

Table 2.2: Parameters for macroscopic viscosity including matrix and long-range contributions.

Parameterization Equations Parameters References

General form (2.35) and (2.39) ¥, ¥2, ¥3 [35, 39, 42, 44]

Recasted general form (2.43) ¥̄, Np, Ns [23, 41, 45, 46]

UD + volume averaging (2.46) ¥xx , ¥y z , ¥x y [47, 48, 50, 51]

Figure 2.5 compares predicted first normal stress differences for a suspension
of aligned fibers. Batchelor’s model and the Dinh-Amstrong model, which are
designed for dilute and semi-dilute suspensions, underestimate the increase
of elongational viscosity for higher volume fractions. Pipes’ model predicts a
singularity as soon as the fiber volume fraction approaches the packing limit
(square packing is assumed here). The Shaqfeh-Fredrickson model resembles
the properties of Batchelor’s model for small volume fractions and those of
Pipes’ model for larger volume fractions, including a singularity at the packing
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Figure 2.5: Comparison of the first normal stress difference for a suspension of unidirectional
aligned, square packed fibers with aspect ratio rp = 25.

limit. It seems applicable to a relatively large range of fiber volume fractions
and is therefore used in the reference model in this work. All models scale
with r 2

p, which results in a significant increase of the elongational viscosity
for high aspect ratios of the fibers.

2.2.5.3 Short-range contribution due to fiber-fiber interactions

Fibers in concentrated suspensions have multiple contact points at which
fibers interact through mechanical friction or lubricated contact with a small
matrix layer undergoing high shear. Such direct contacts between individual
fibers are summarized as short-range interactions or fiber-fiber interactions.
The macroscopic stress contribution can be formally expressed as

�FF =° 1
Vr

NcX

(Æ,Ø)
hÆØ≠fÆØ (2.50)

with a gap vector hÆØ and an interaction force fÆØ for all Nc interaction pairs
(Æ,Ø) of a reference volume Vr [31, 52]. The gap vector hÆØ describes the
shortest path between two straight fiber segment surfaces and is directed
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from partner Æ to partner Ø. The scalar distance between two surfaces is de-
noted g and may become negative, if fibers overlap. The interaction force fÆØ
comprises an elastic contact force in normal direction fn,e

ÆØ
and a tangential

friction force f t,e
ÆØ

as well as lubrication forces in normal direction fn,l
ÆØ

and

tangential direction f t,l
ÆØ

. The focus of this section is the effect of averaged
short-range interactions at a macroscopic scale.

The average number of contact points per fiber is given as

nc = 4 f
µ

2
º

rp©1 +©2 +1
∂

(2.51)

with orientation functions

©1 =
Z

S

Z

S

ØØØØsin
≥
\

°
p,p0¢¥

ØØØØ™(p)™(p 0)dp 0dp (2.52)

©2 =
Z

S

Z

S

ØØØØcos
≥
\

°
p,p0¢¥

ØØØØ™(p)™(p 0)dp 0dp (2.53)

as defined by Toll and Månson [53–55]. Exemplary values of the orientation
functions are given in Table 2.3. For a planar network of slender elastic fibers
(rp ¿ 1), the number of contact points per unit volume is consequently

Nc

Vr
º 16
º2

f 2

d 3©1. (2.54)

The average normal force at contact points is then given as

∞∞∞fn,e
ÆØ

∞∞∞= 32
5º2 E d 2©3

1 f 3, (2.55)

where E is the Young’s modulus of fibers and the averaging is indicated by a
bar [53, 54].

Servais et al. [56, 57] build on these results for their investigation of short-
range fiber-fiber interactions for dispersed fibers and bundled configurations.
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Table 2.3: Exemplary values of the orientation functions [53].

©1 ©2

Unidirectional 0 1

Planar isotropic 2/º 2/º

Isotropic º/4 1/2

They propose a power-law relation for the tangential hydrodynamic lubrica-
tion

f t,l
ÆØ

= kS

∞∞∞¢vÆØ
∞∞∞

n°1
¢vÆØ (2.56)

with power-law exponent n, hydrodynamic friction coefficient kS and the
relative tangential sliding velocity ¢vÆØ. For the tangential friction, they
suggest a Coulomb friction model

f t,e
ÆØ

=°µ
∞∞∞fn,e

ÆØ

∞∞∞
á
¢vÆØ

à
(2.57)

with a Coulomb friction coefficient µ. The friction acts opposed to the di-
rection of the sliding velocity and the operator Ç•É = (•)/k•k is used as a
convenient notation to compute the normal direction.

Servais et al. [56] showed that Coulombic friction results in a yield stress
of the macroscopic suspension with dispersed fibers and thus the result
renders a Herschel-Bulkley fluid. For fiber bundles, they proposed a similar
model using a Carreau relationship for the shear rate dependency. However,
hydrodynamic lubrication dominates in case of fiber bundles, as the sheared
surface area is large compared to the effects of the friction at the contact
point [57].

A more general formulation of the short range stress contribution was ob-
tained by Djalili-Moghaddam and Toll [30] for linear Newtonian lubrication
forces

f t,l
ÆØ

= kD
4h3

D

d 2 ¥¢vÆØ (2.58)

22



2.2 Fiber suspensions

with a constant interaction range 2hD, in which short-range interactions
occur, and a parameter kD that accounts for all geometric details of the
lubrication flow. Their final result

�FF = 4kD

3º2 r 2
p¥ f 2B :D (2.59)

is independent of the interaction range [30]. The key term is the fourth order
interaction tensor

B=
Z

S

Z

S

∞∞∞p£p0
∞∞∞™(p)™(p0)p≠p≠p≠pdpdp 0 (2.60)

that evaluates the interaction between fibers and vanishes for perfectly
aligned fibers. Djalili-Moghaddam and Toll [30] compute the interaction
tensor from discrete fiber directions (compare Section 2.2.6), but Férec et
al. [58] suggest to approximately relate the interaction tensor to the known
fiber orientation tensors. They denote the second order interaction tensor as

B =
Z

S

Z

S

∞∞∞p£p0
∞∞∞™(p)™(p0)p≠pdpdp 0 (2.61)

and obtain the result
B º 3º

2

°
A°A :A

¢
. (2.62)

by replacing the Onsager potential
∞∞p£p0∞∞ with the Maier-Saupe potential∞∞p£p0∞∞2 and an appropriate prefactor [58]. They initially propose a quadratic

closure
BQ = 1

©1
B≠B (2.63)

and a linear closure [58]. The closures were later improved [59], but the effect
of short-range interactions has been investigated in more detail with direct
numerical models, as precise knowledge of the fiber architecture is necessary
to properly account for this effect.
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This work will use equations (2.59), (2.62) and (2.63) later in Chapter 4 for
the macroscopic reference model. This set of equations has just a single ad-
justable parameter kD and provides a closed formulation of the macroscopic
stress contribution from fiber-fiber lubrication, which is rarely addressed in
literature.

2.2.6 Direct numerical models

Direct numerical models solve the motion of individual fibers or representa-
tive sets of fibers in a suspension instead of a stochastic moment. An equation
of motion is solved for fiber segments, bead chains or other discretization
forms of a fiber instead of an evolution equation for a fiber orientation tensor.

2.2.6.1 Kinematic models

The first class of direct simulation models transports fiber nodes according to
the bulk velocity of the suspension. These models do not include the momen-
tum balance or any forces and are therefore termed kinematic models here.
One such model is commercialized as 3D TIMON Direct Fiber Simulation
(DFS) feature by Toray Engineering Co., Ltd., Japan. A fiber is represented by
a chain of rods connected with nodes as shown in Figure 2.6. These nodes
are transported with a pre-computed velocity field v1(x, t ) of a macroscopic
mold filling simulation in a forward Euler scheme as

x̂n+1
k =xn

k +v1
≥
xn

k , t n
¥
¢t , (2.64)

where k 2N denotes a node index and n 2N denotes a time step index [60]. A
regularization is necessary to constrain fiber elongation and is achieved with
a correction scheme (x̂n+1

k !xn+1
k ) based purely on the geometric configu-

ration of the fiber [60]. This kinematic model has been used to analyze fiber
bending in Long Fiber Thermoplastic (LFT) compression molding [61] and
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shows good agreement of fiber orientation in compression molding of carbon
prepreg platelets compared to Micro Computer Tomography (µCT) [62].

xn
k

x̂n+1
k

xn+1
k

Integration Regularization

Figure 2.6: The kinematic direct fiber simulation model computes a new temporary node posi-
tion x̂n+1

k from a prescribed velocity field and the current node position xn
k by forward Euler

integration. Afterwards, a regularization is applied to ensure constant fiber length.

This model does not account for short-range interactions between fibers
nor for long-range interactions by disturbance of the velocity field. This
makes the model very efficient, but has the disadvantage that multiple fibers
can occupy the same space and therefore leads to unrealistic fiber volume
fractions. The effect of fibers on the macroscopic viscosity has to be factored
into the macroscopic process simulation, as fibers are advected based on this
pre-computed velocity field. Further, the regularization can lead to ’stuck’
fibers in regions with high shear rates [63].

2.2.6.2 Stokesian dynamics

Most direct simulation approaches compute the motion of suspended parti-
cles at low Reynolds numbers (Re ø 1, Stokes flow) using an equation of the
type

M v̇p = fH +f I +fB (2.65)
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with particle mass M , particle velocity vp, hydrodynamic interaction force
fH, non-hydrodynamic interaction forces f I and stochastic forces causing
Brownian motion fB [64]. The Brownian motion is neglected for fiber sus-
pensions under investigation here and the hydrodynamic interaction is given
as

fH =°Rv

≥
vp °v1

¥
+RsD

0 (2.66)

with resistance tensors Rv, Rs and the surrounding fluid velocity v1 [64].
Equivalent equations apply for the evolution of the rotational velocity of a sus-
pended particle. In case of a suspended sphere with radius R, the resistance
tensors take the form

Rv = 6º¥RI , Rs =0. (2.67)

Stokesian dynamics models do not account for two separate phases with an
interface, but use the resistance tensors to capture all effects at a length scale
smaller than the suspended particle. In most cases, the motion of fibers is
driven by discrete evaluation of a given flow field v1, which is undisturbed
by the presence of fibers (i.e. no long-range interactions).

Yamamoto and Matsuoka [65] developed a beadchain model, in which a flexi-
ble fiber is made up of several connected spheres (see Figure 2.7a). The fiber
can bend, stretch and twist through linear elastic forces between spheres.
Each sphere experiences a hydrodynamic drag according to Equations (2.66)
and (2.67) as well as an equivalent torsion moment from a given fluid field [65].
They could demonstrate agreement of rigid fiber motion with Jeffery’s Equa-
tion (2.21) and correct deformation of flexible fibers compared to Forgacs
and Mason’s results [10].

The step from single fibers to fiber suspensions requires a model for short-
range fiber-fiber interactions. A lubrication model for the normal direction
between two rigid rods (see Figure 2.7b) was introduced by Yamane et al. [66]

26



2.2 Fiber suspensions

in their simulation of a semi-dilute rigid rod suspension. They proposed the
analytical solution based on a lubrication approximation

fn,l
ÆØ

=°12º¥
d 2

∞∞∞pÆ£pØ
∞∞∞

| {z }
contact area

∞∞∞ḣÆØ

∞∞∞
∞∞∞hÆØ

∞∞∞

á
hÆØ

à

| {z }
normal

(2.68)

where
∞∞∞ḣÆØ

∞∞∞ describes the rate at which the cylinders approach each other
at the contact area. They report a rather weak effect on fiber orientation
(small Ci) and viscosity in the semi-dilute regime. Similarly, Yamamoto and
Matsuoka extended their beadchain model to account for multiple fibers
in a periodic cell with lubrication forces [67]. Lubrication forces only do
not prevent fibers from penetrating each other at high aspect ratios. There-
fore, mechanical contact forces have been added by Sundararajakumar and
Koch [68]. The interaction of rigid rods and boundaries was investigated by
Thomasset et al. [69].

For flexible fibers, the bead chain model was improved with the use of
spheres [70,71] (see Figure 2.7e), spheroids [72] (see Figure 2.7d), rods [73,74]
2.7f) or combined beads [75, 76] (see Figure 2.7c) connected by sockets and
joints to reduce the computational effort for fibers of long aspect ratios. Such
models were applied to model flocculation [77], to obtain effective suspen-
sion properties [78–80], analyze the effect of elastic fiber bending on the
suspension elasticity [81], to model fiber jamming [82], to investigate fiber
fracture [75] and fiber buckling [83].

Lindström and Uesaka [85] compute the velocity field on a grid instead of
using a prescribed velocity field. The velocity field is solved including a body
force field that opposes the hydrodynamic interaction forces (momentum
conservation) and therefore includes long-range hydrodynamic interaction.
They applied their two-way coupled approach to determine effective prop-
erties of semi-dilute fiber suspensions [86, 87]. However, they utilize the
drag of prolate spheroids, which leads to a total drag force on a fiber that
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(a) Beadchain [65, 67, 84] (b) Rigid rods [66, 68, 69] and
prolate spheroid [78, 81]

(c) Combined beads [75, 76]

(d) Socket and joint
(spheroids) [72]

(e) Socket and joint (spheres)
[70, 77]

(f ) Rod chain [73, 74]

Figure 2.7: Schematic overview on different approximations of fibers for Stokesian dynamics.

depends on discretization [88]. These are the only models in this section, that
compute a disturbance of the fluid field and therefore account for long-range
interactions.

More recent developments are targeting applications beyond representative
volume elements further towards the component scale. For example, Kuhn et
al. [89, 90] investigated rib filling during LFT compression molding. Hayashi
et al. [91] suggested the use of constrained beams at this scale. Sasayama et
al. [92] simplified the original beadchain model by dropping all rotational
motion components and apply the model on the injection molding process
of a center-gated disk with 20 wt% glass fibers [93].

2.2.6.3 Slender body theory

Models using slender body theory are closely related to Stokesian dynamics.
In this classification, such models solve an integral boundary equation for
fibers without physical thickness and thus without a moment induced by
the fluid flow. Further, slender body theory enables the computation of the
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disturbance of the fluid flow by Green’s functions of the Stokes equation
called Stokeslets.

For small Reynolds numbers Re ø 1, an incompressible Newtonian fluid,
vanishing velocity at infinite distance and a singular body force field, Equation
(2.17) becomes

0=°grad(p)+¥div(D)+±(x°x0)f0, (2.69)

with a singular force f0 in position x0 and the Dirac distribution ±(x°x0).
The fundamental solution to this equation is given as

°(x°x0) = 1
8º¥

0
@ I∞∞x°x0

∞∞ + (x°x0)≠ (x°x0)
∞∞x°x0

∞∞3

1
A (2.70)

and called the Oseen tensor. It is used to compute the Stokeslet

v = f0°(x°x0) (2.71)

as a solution for velocity field [94,95]. An extension of this method for singular
forces is obtained by distributing several Stokeslets along a line x0(s) with arc
length coordinate s. The solution is then given by the integral

v =
ZL

0
f̂0(s)°(x°x0(s))ds (2.72)

with a force per unit length f̂0(s) and is called the single-layer formulation for
Stokes flow [40,95]. The linear superposition of this formulation is commonly
used to represent slender, one-dimensional bodies suspended in a highly
viscous flow.

Hinch developed an early model for the motion of a single perfectly flexi-
ble, but inextensible thread utilizing slender-body theory [96]. His model
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provided early insight in fiber dynamics, but was not able to meet the ex-
perimental results by Forgacs and Mason [10] due to neglected width of the
thread by slender-body theory.

The effect of hydrodynamic long-range interactions between rigid rods on the
fiber orientation evolution was studied by Rahnama et al. [97] and showed
good agreement with the results by Stover et al. [98]. Slender body theory
faithfully computes the effective velocity increase up to a certain limit of
fiber volume fraction, where it underestimates the effect [42] - likely due
to neglected short-range lubrication interaction. Fan et al. [99] combined
the slender body framework by Rahnama et al. for long-range interactions
with the model for short-range lubrication by Yamane et al. They were able
to determine effective rheological properties and Folgar-Tucker interaction
parameters on periodic domains with rigid suspended fibers. The same
method was applied to obtain an empirical fit for the Folgar-Tucker parameter
depending on aspect ratio and fiber volume fraction [100]. A recent review
on more advanced modeling of flexible fibers suspensions with a focus on
slender-body theory is given by du Roure et al. [101].

2.2.6.4 Micro-macro approaches for highly concentrated
suspensions

This class of models is applied for the homogenization of highly concentrated
fiber suspensions, in which long-rang interactions and viscous matrix stress
may be negligible compared to short-range interactions [8, 102]. Le Corre
et al. solve the momentum balance in a complex rigid fiber bundle network
with viscous tangential lubrication forces and lubrication moments. The
lubrication forces are formulated as

f t,l
ÆØ

= ¥
d 2

a∞∞∞pÆ£pØ
∞∞∞

0
B@

∞∞∞¢vÆØ
∞∞∞

G∞̇0

1
CA

n°1

¢vÆØ
G

, (2.73)
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where the parameter G is interpreted as effective sheared gap and da is the
major diameter of the elliptical bundle cross section [8]. The effective sheared
gap G is different to the physical gap g in direction hÆØ, since it describes a
thickness that is equivalent to the complex shear zone between bundles and
does not describe the physical distance between the bundle surfaces. The
authors employ an up-scaling scheme to compute the macroscopic prop-
erties of the suspension from the mesoscale model [8, 103]. Their analysis
also showed that the lubrication moment is of minor importance for most
cases and confirmed the observation by Servais et al. [57] that friction is of
minor importance in bundle suspensions. Latter was also verified experimen-
tally [104].

2.2.6.5 Resolved methods

Resolved methods are direct numerical simulations that explicitly resolve
the particle-fluid interface and solve the equations of motion for these two
separate phases. These methods may be further subdivided in immersed
boundary methods and particle methods.

Immersed boundary methods use an Eulerian background mesh and a La-
grangian body, enabling the method to properly capture the two-way interac-
tion between those two phases. Such methods have been applied in the field
of bio-mechanics to model the whirling motion of flangella to study bacterial
locomotion [105], to investigate the flow around phytoplankton employing
local mesh refinements [106] and multiple wood pulp fibers [107]. However,
immersed boundary methods do not scale very well considering the number
of fibers and the requirement of a volume discretization that must be smaller
than the fiber diameter [101].

Particle methods are mesh-less Lagrangian methods to solve partial differen-
tial equations and are interesting for direct simulations of fiber suspensions,
because the phases can be naturally modeled by different types of particles.
Kromkamp et al. [108] investigated the dissipation of suspended cylinders
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with the Lattice Boltzmann (LB) method. The LB method was also applied to
single flexible fibers and good agreement was achieved for bending modes
and orientation orbits of stiff fibers [109]. Duong et al. applied dissipative
particle dynamics (DPD) to Boger fluids, but several parameters have to be
calibrated for correct hydrodynamic forces on fibers [110]. A moving particle
semi-implicit method was applied by Yashiro et al. [111, 112] to simulate the
injection molding process of dilute short-fiber-reinforced composites with
connected particles. They can qualitatively reproduce molding effects, but do
not verify the method and show only results with small fiber volume fractions.
Smoothed particle hydrodynamics (SPH) was used by Yang et al. to model
the motion of a single flapping fiber [113]. They represent the fiber by so-
called element bending groups, which ensure an elastic connection between
individual SPH particles. SPH was also used to model injection molding with
multiple fibers [114, 115], but like Yashiro et al., the reported fiber number
density of this work was unrealistically small. A more detailed analysis of SPH
for fiber suspensions showed that it can be used to determine Folgar-Tucker
constants on periodic domains, if a novel correction term for fiber thickness
is added [116].

2.2.7 Concluding remarks on suspension models

Macroscopic models utilizing fiber orientation tensors are numerically effi-
cient models to describe dilute and semi-dilute suspensions with a fine distri-
bution of short fibers. Such a suspension is macroscopically anisotropic due
to long-range fiber-matrix interactions and short-range fiber-fiber interac-
tions such as lubrication and contacts. There are different parameterizations
for this anisotropic material response and several models are proposed to de-
scribe anisotropy based on effective material properties as well as the second
and fourth order fiber orientation tensor. However, the application of macro-
scopic models is more suitable for injection molding process simulations, in
which fibers are short in comparison to any geometrical feature.
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Direct simulation models renounce the use of fiber orientation tensors and
model individual fiber instances instead. The simplest approach within this
class of models are kinematic models, where fibers are advected directly with
a prescribed fluid velocity in combination with a regularization scheme to
maintain a constant fiber length. These models are computationally fast, but
do not affect the fluid flow and do not account for interactions between fibers.
Resolved computational models with fully modeled individual matrix phase
and fiber phase offer the potential to completely describe a suspension by
immersed boundary methods or particle methods. However, these models
are computationally expensive and limited to small representative volume
elements. Slender body theory offers a computationally efficient approach
to solve fluid flow and fiber motion simultaneously and is commonly used
in the bio-mechanical community. While the method is very suitable for
representative volumes with prescribed far-field boundary conditions, it can
not be applied easily to component scale compression molding simulations
with a deforming cavity and contacts at the mold surface. Similarly, the pre-
sented micro-macro up-scaling approaches are restricted to representative
volume elements. The most common approach for fiber suspension mod-
eling is Stokesian dynamics which solves the force balance for interlinked
suspended bodies due to hydrodynamic forces and non-hydrodynamic in-
teraction forces. Within this class of models, the work by Lindström and
Uesaka [85–87] is particularly noteworthy, as it affects the fluid flow to be
anisotropic through two-way coupling.

2.3 Sheet Molding Compounds

Sheet Molding Compound (SMC) is a discontinuous fiber reinforced polymer
made from uncured thermoset sheets and can be molded to parts under
pressure and temperature by compression molding technology. Parts from
this material offer a superior strength to density ratio (compared to polymers
without reinforcement) at low cost. Furthermore, corrosion resistance and
high achievable surface quality make it attractive for outer vehicle parts, such
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as truck body panels, automotive hoods and trunks. While continuously
reinforced polymers have limited forming capabilities due to the inextensi-
bility of fibers in the fabric, SMCs can flow in complex geometries during
compression molding. The incorporation of complex geometrical features,
carbon fibers, metallic inserts and continuous fiber patches enables the appli-
cation in structural applications such as subfloor structures in the automotive
industry.

2.3.1 Production

The production of SMC parts is subdivided in two major steps: the production
of SMC sheets from raw materials and the subsequent compression molding
of sheets to a part. The sheet production (see Figure 2.8a )starts with mixing
of all ingredients (thermoset resin, filler, thickener, additives, catalyst, mold
release agent, inhibitor) except for fibers to prepare the paste that later forms
the matrix material of the composite. The paste is then filled to doctor boxes
of an SMC sheet production line, which apply the paste on two different
plastic foils that run continuously through the machine. The boxes have
adjustable plates to ensure a specific paste film thickness on the foil.

At the same time, multi-end fiber rovings are pulled from several bobbins
to a cutting unit that continuously cuts the strands in 25 mm or 50 mm long
pieces. These bundles fall down on the paste layer of one of the plastic foils
in a randomly in-plane orientated manner. The second resin-coated foil is
placed on top of the first foil to enclose the resin and fiber bundles between
both foils. The compound is then pulled through several (heated) calendering
rolls to impregnate the fiber bundles with the thermoset paste and compact
the compound.

Finally, the sheet is rolled to a take-up coil and stored for several days and
the resin starts a maturing process. During this maturing phase, the viscosity
increases several orders of magnitude (compare Figure 2.8b).
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(a) Schematic SMC sheet production line.
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(b) Exemplary shear viscosity [117].

Figure 2.8: SMC sheet production and maturing phase. The viscosity plot is recorded at a shear
rate ∞̇= 1.0s°1 [117].

The sheets are cut, stacked and placed into a hot mold for compression
molding. The stack typically covers a fraction of 25% to 100% of the mold and
the remaining cavity is filled by flow of SMC, as the press closes the upper
mold stamp in the corresponding lower mold half. The compression follows a
defined closing velocity profile until the compression force hits a threshold at
which the press controller switches to force control. This compression force
level is held for a few minutes until the resin is sufficiently cured. Finally, the
press opens the mold and the cured part is released.

Possible defects according to Mallick [118] are summarized in Figure 2.9. If
air is introduced in the paste during mixing or compounding and cannot
be removed by compression between calendering rolls or if air is entrapped
between sheets during stacking, pores and pinholes at the surface may form.
Entrapped air or gaseous products of the curing reaction, which are closed
during the compression may also form blisters that pop up as soon as the
mold is opened. Sink marks may occur in resin rich areas due to shrinkage of
the resin during curing. Typically, SMC is highly filled with chalk to prevent
such surface defects.

Fiber bundles reorient during the mold filling process and this may lead to
unwanted fiber miss-orientation. For example, fibers close to mold edges
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Pores and surface pinholes

Blisters

Sink marks

Knit lines and fiber miss-orientation

Fiber-matrix separation

Figure 2.9: Possible defects in parts molded from SMC according to Mallick [118].

have a tendency to be oriented parallel to the edge. Additionally, knit lines
may form where SMC has to travel around a feature. The line at which two
flow fronts of SMC meet is typically weak, as only a limited amount of fibers
crosses this knit line. If the paste travels faster than the fiber bundle network
during molding, fiber-matrix separation (FMS) occurs. This phenomenon
happens often in small ribs, at the flow front and other small features, where
fiber bundles may get stuck. Fiber-matrix separation results in a certain area
of a part consisting of matrix material only, which has significantly worse
properties compared to the composite.

2.3.2 Deformation mechanisms

The micro-structure of SMC sheets implies certain restrictions on the de-
formation kinematics, which are significantly different to the deformation
of an isotropic fluid or solid. The initial stack is characterized by a random
in-plane fiber orientation and the thickness is typically small compared to the
lateral dimensions of the stack and the fiber length. Marker and Ford [119]
present one of the earliest investigations on the deformation mechanisms
and heating of SMC sheets. They investigate large stacks of ten sheets thick-
ness in which the interlocking behavior of individual sheets resists transverse
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shear deformation and outer sheets close to the mold wall experience larger
deformation. Barone and Caulk [120] use this observation to simplify the
kinematics of thin stacks (one or two sheets) by proposing that no shear
velocity gradient exists along the thickness direction of the stack. This as-
sumption was declared unrealistic by Tucker and Folgar [121], who suggested
that a no-slip condition at the surface must apply. Subsequently, Barone
and Caulk [122] found experimental evidence for their proposed stack de-
formation mechanism using a disk shaped initial stack with black and white
sheets of SMC. They performed compression experiments at two mold closing
speeds (1.75 mm s−1 and 10.0 mm s−1) with multiple stack sizes. Exemplary
results for a 5-layer stack are shown in Figure 2.10a and 2.10b. Barone and
Caulk concluded that the deformation mechanism is primarily a uniform
extension that can be accompanied by slip between layers and mold walls for
large stacks and slow deformation speeds. Contrary to the fountain-flow ob-
served in thermoplastic compression molding [123], this deformation mode
is termed plug-flow. Later, Barone and Caulk modeled the slip at the mold
surface with a constant friction, Coulomb friction and hydrodynamic friction
and concluded that the hydrodynamic friction yields most realistic results for
the SMC, they investigated [124].

Later investigations of the stack deformation differentiate a squish, flow and
boiling phase during molding [125]. The squish phase refers to the initial
complex flow front deformation due to thermal influences and release of
air entrapped in the stack. Exemplary flow front shapes are illustrated in
Figure 2.10c for 10 mm s−1 and in Figure 2.10d for 2 mm s−1 mold closing
speed. Especially in the case of faster compression, it becomes apparent that
the bottom layer exhibits larger deformation upon start of the compression,
as it is hotter due to a longer contact with the mold surface. The subsequent
flow phase is characterized by a stable plug-flow and the final boiling phase
refers to gas release after complete closing of the mold. A minimization of the
squish phase yields to a more homogeneous flow and reduced the volume
fraction of pores in the SMC part [126]. Fiber bundles in the SMC core stay
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(a) Fast deformation of 5-layer SMC [122] (b) Slow deformation of 5-layer SMC [122]

(c) Fast squish deformation [125] (d) Slow squish deformation [125]

Figure 2.10: Deformation mechanisms of SMC reported in literature.

typically intact during molding and only fiber bundles in the lubrication layer
near the mold surface disentangle during the flow [117, 127–129].

2.3.3 One-phase modeling approaches

2.3.3.1 Generalized Hele-Shaw models

Hele-Shaw models simplify the incompressible Stokes flow between two
plates to a two-dimensional problem, if the lateral dimensions are large
compared to the gap between theses plates. They can be applied to model
the compression molding process between two flat plates with gap h, that
close with velocity ḣ. The pressure field in such a 2D-domain is given by

div
°
S grad(p)

¢
= ḣ (2.74)
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where the divergence and gradient operators refer to the 2D-domain and

S =
Zh/2

°h/2

(z ° z0)2

¥
dz (2.75)

is a measure of mobility [130]. Here, the position z0 refers to the position of
the flow, where dvx /dz = dvy /dz = 0. The corresponding 2D-velocity field is
obtained as

v =° S
h

grad(p). (2.76)

For the special case of isotropic Newtonian material behavior and no-slip
conditions at the mold walls, S = h3/12¥ applies and z0 = 0, as depicted in
Figure 2.11a. These assumptions were used in the earliest models of SMC
compression molding [131]. However, the thermally induced viscosity change
may lead to failure of the parallel squeezing assumption and more complex
velocity profiles develop, as the viscosity near the mold surfaces decreases
with increasing temperature, as shown in Figure 2.11b [132]. A dimensionless
criterion to determine whether a parallel squeezing assumption is valid was
developed by Lee et al. [133].

x

z

(a) Hele-Shaw flow

x

z

(b) Thermal effect in SMC

x

z

(c) Plug-flow assumption

Figure 2.11: Velocity distributions through thickness for different mold boundary conditions
and thermal conditions.

The Hele-Shaw model for compression molding was solved for arbitrary
domains beyond simple analytical cases using the finite element method
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[121]. The authors indicated the incorporation of the energy balance and
Non-Newtonian viscosity in their simulation framework.

Generalized Hele-Shaw models utilize the simplification for the flow between
arbitrary curvilinear surfaces with a thin gap between them. They are not
restricted to flat plates and the application to compression molding was
shown by Lee et al. [130]. The proposed model included heat transfer and
isotropic Non-Newtonian viscosity and was solved using finite elements.
The comparison to experimental results showed a good agreement for thin
charges, but differences for thick charges due to a neglection of extensional
stresses. The model was later combined with tensorial orientation models to
predict the orientation after compression molding [134]. For a Newtonian
material with constant part thickness, the Generalized Hele-Shaw flow may
be solved using the boundary element method, which is very efficient and
does not require a complicated meshing procedure [135].

2.3.3.2 Plug-flow models

The Generalized Hele-Shaw models employ a no-slip boundary condition
at mold walls, which does not comply with the observed SMC deformation
behavior of Barone and Caulk [122]. Thus, the boundary element methods
were extended to account for the modified flow behavior depicted in Figure
2.11c with slip and hydrodynamic friction at the walls that maintains a veloc-
ity profile without bulk shear deformation [136, 137]. Later, non-isothermal
modeling (similar to the illustration in Figure 2.11b) confirmed the validity of
a flat velocity profile with a thin hot lubrication layer close to the walls [138].
This settled the dispute between Lee and Tucker (advocates of the no-slip
model) and Barone and Caulk (advocates of the plug-flow model) in favor of
the plug-flow assumption.

As the simplest approach, the hydrodynamic friction can be described by
a hydrodynamic friction coefficient ∏, i.e. the proportionality constant be-
tween relative velocity and friction force. For sufficiently thin parts, that is
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h¥/(B 2∏) ø 1, friction dominates the momentum equation. In this case, the
mobility term in Equation (2.74) can be replaced with

S = h2

2∏
(2.77)

to use an equivalent form of the generalized Hele-Shaw model with a more
accurate description of the flow kinematics [139–141]. Such a model was
successfully applied to the simulation of complex automotive structures as
early as 1990 using finite elements [142]. The boundary element formula-
tion requires too many simplifications for the application to such complex
problems. This approach was extended for non-isothermal conditions later
on [143]. Kotsikos et al. [144] employed a variational approach to allow shear
and extensional deformation components and compared the results to exper-
imental data from squeeze flow compression tests. They confirmed that SMC
flow is predominantly of an extensional nature.

After the establishment of basic models for the compression molding sim-
ulation, the research focus switched to characterization of the material pa-
rameters in order to predict molding forces correctly. Rheometry of SMC is
difficult as the material has to be considered inhomogeneous at the scale of
typical rheometers (such as plate-plate rheometers). Hence, custom press
rheometers were developed to compress a sufficiently large sample and iden-
tify rheological parameters with underlying modeling assumptions. Le Corre
et al. performed lubricated (i.e. a lubrication film was applied to the mold
surface to eliminate friction between SMC and the molds) disk compres-
sion experiments and shear experiments with temperatures, deformation
rates and fiber volume fractions similar to industrial applications [145]. They
showed that the SMC behaves as power-law fluid, if the underlying paste is a
power-law fluid and that the material is highly anisotropic. They identify the
need to model SMC as a transversely isotropic material. These results were
corroborated by plane strain tests to measure the transverse force and a set
of constitutive equations was suggested to describe non-linear anisotropic
SMC viscosity [146]. First parameters for non-lubricated flow, especially the
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hydrodynamic friction parameter, were obtained by a comparison of the com-
pression force between different initial positions of the stack in rectilinear
compression [147]. The hydrodynamic friction can also be characterized
more accurately by employing pressure sensors along the flow path and it
was shown that both, friction and bulk rheology, are relevant to model correct
compression forces [148]. Spiral rheometers with pressure sensors along the
flow path were suggested as compact alternative to rectilinear press rheome-
ters [149]. However, they may be considered as a rather qualitative method to
compare SMC processing capabilities than as an exact tool for characterizing
friction parameters.

Several authors argue that the SMC mold filling process can be considered
isothermal except for the heating of the small lubrication layer at mold sur-
faces [148, 150]. Shokrieh et al. [151, 152] disagree with this assumption and
suggest a time dependent thickness of the lubrication layer that is controlled
by the development of the temperature in the stack and requires no additional
experimental parameters.

An additional characterization technique is tensile testing. It enables the
characterization of damage and breakage in cases where sheets of SMC are
drawn to deep cavities instead of being driven by a squeezing motion between
mold surfaces [153].

While most previous models assume SMC to be incompressible, 3D in-situ
computer tomography showed that the closing of pores that originate from
sheet manufacturing cause a macroscopic compressible behavior [154]. This
effect is especially true for structural SMCs and Dumont’s equations [146,148]
have been modified to account for this compressibility [150, 155].

2.3.3.3 3D Models

Most early simulation approaches simplify the SMC mold filling as a 2D pro-
cess. This is appropriate for large shell-like structures, but has limitations,
when it comes to ribs or other complex 3D features in SMC parts, which are
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increasingly important for structural SMC applications. An initial attempt to
model SMC mold filling with a 3D CFD model was done by Vahlund [156],
even though the method was applied to a shell-like part. Kluge et al. [157] uti-
lized a 3D simulation to accompany their rheological experiments and gain
deeper understanding of the material response for different viscosity models.
Motaghi et al. [129] used the commercial process simulation software Au-
todesk Moldflow, and employed an RSC model for fiber orientation. However,
they used an isotropic viscosity model and did not compare corresponding
compression forces. Hohberg et al. [158] pointed out that boundary condi-
tions used in Autodesk Moldflow at that time do not respect the plug-flow
assumption and suggested an elongational viscosity model with appropriate
boundary conditions in Simulia Abaqus/Explicit. The model showed poten-
tial, but suffered from numerical instabilities. As of 2021, the latest version
of Autodesk Moldflow allows the application of wall slip models at all mold
surfaces1, which makes Autodesk Moldflow a viable software to predict SMC
compression molding at macroscopic scale. The ability to account for wall
slip is also available in CoreTech System Moldex3D and has been investigated
for thermoset injection molding [159].

2.3.3.4 Thermoviscoplastic models

Initial models for the SMC response during disk compression also suggested
the use of a visco-elasto-plastic model [160] instead of the predominantly
purely viscous models suggested above. However, this initial work did not
account for the plug-flow kinematics described later by Barone and Caulk
[122]. Kim et al. [161] suggested a modeling approach similar to that of
sheet metal forming describing the SMC as solid anisotropic material with
Hill’s yield criterion. They characterized parameters from lubricated disk
compression tests and validated their model by comparing a finite element

1 The required improvement was specified by Sven Revfi and Nils Meyer. Sven Revfi suggested
the improvement to Autodesk and the issue was resolved in the new release.
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simulation with experimental data of filling a T-shaped rib. In contrast to 2D
shell simulations, this approach modeled a 2D cross section of the rib and
was able to predict the filling behavior. Later, the authors enhanced their
model by incorporating heat transfer, a curing model and a simple approach
to predict the resulting fiber volume fraction [162] and extended the model
to 3D finite elements [163]. The numerical results showed good agreement to
molding trials of T-shaped parts, that were molded with multiple colored SMC
layers. The characterization of the parameters for the anisotropic flow rules
is described by Lin et al. [164, 165]. In most SMC applications however, the
elastic component is rather small and the plastic deformation has little effect
on the material response. Therefore, the majority of SMC models assumes
fluid-like behavior, as described in the previous sections.

2.3.4 Two-phase models

Most SMC models consider the material as a one-phase continuum, as de-
scribed in the previous Section 2.3.3. However, segregation of fibers and
matrix is a relevant phenomenon in SMC compression molding, particularly
in advanced applications with ribs, knit line formation and long flow paths. It
motivates the development of models that can account for different velocities
of fibers and matrix material. Besides the direct numerical models described
in Section 2.2.6, this has been addressed by macroscopic SMC models which
are shortly described in this section.

Dumont et al. suggested a superposition of two immiscible phases (fiber and
matrix) occupying the same volume at isothermal and incompressible con-
ditions [166]. They obtain two momentum balance equations from mixture
theory with a viscous momentum exchange term and solve the equations
on a shell finite element mesh. The momentum exchange term is chosen
such that it reduces to the equations of flow through porous media, if fibers
are held in place rigidly. A similar approach was developed by Perez et al.
resulting in a general 3D Brinkmann model [167]. However, the weighting
factor between the two extrema (flow through porous media and suspension
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flow with equal velocities between fiber and fluid) had to be prescribed and
a lubrication approximation (compare Figure 2.11a) was used. Later, they
related the weighting factor to the fiber-fiber contact density to compute the
fiber volume fraction evolution [168].

2.4 Unidirectional patch reinforcements for
co-molding

Unidirectional fiber reinforced composites offer superior weight specific
mechanical performance in fiber direction compared to discontinuous FRPs
and most metals. They are either manufactured by thermoplastic tape laying
combined with thermoforming, by consolidation of non crimp fabrics that
are pre-impregnated with a thermoset matrix (prepregs) or by infiltration of
dry fabrics (RTM, WCM, VARI).

However, these materials are rather expensive and the ability to form complex
shapes is limited by the inextensibility of fibers. The combination of discon-
tinuous SMC with local unidirectional reinforced patches in a co-molding pro-
cess offers potential to benefit from advantages of each constituent [3]. Thus,
this section focuses on unidirectional pre-impregnated thermoset patches
that can be co-molded with SMC, as developed by David Bücheler in the GRK
2078 [169, 170].

2.4.1 Production

The production of UD-patches for co-molding with SMC is similar to the
production of SMC sheets and can be performed on the same production
line (see Figure 2.12a). Instead of a cutting unit, the fabric is placed in front of
the compounding zone and is impregnated with the matrix material between
top and bottom foils. For the application in co-molding, the material is
exposed to a special heat treatment after the impregnation to rapidly develop
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a highly viscous resin B-stage state in the material. The B-staged material
has experienced polymer chain growth, but no cross linking of the thermoset.
This treatment allows direct cutting and forming after the impregnation
process and ensures enough stability of patches during molding [170].

Calendering

Paste
application

Paste
application

UD
Fabric

Tempering

(a) Schematic patch production line

Preforming
Co-molding

SMC stack

(b) Schematic co-molding process

Figure 2.12: Patch production and co-molding process.

Patches are stacked while still being tacky directly after impregnation. Sub-
sequently, they are cut, preformed and heated. After 60 min at 80 °C, the
patches are in a stable shape close to its final geometry in the co-molded part
and are released from the preforming mold. The UD-patches are molded
together with SMC made from the same matrix resin in a regular compression
molding mold (see Figure 2.12b). During compression molding, patches may
be subjected to the defects illustrated in Figure 2.13. Displacement occurs
if the SMC excites a net force on the patch that is larger than the friction
between patch and mold. The SMC acts upon the patch with normal forces
and a sticky tangential friction. Local deformation is caused by a combination
of insufficient friction to hold the patch in place and a distributed load by
the SMC causing permanent deformation of the patch. If this deformation
exceeds the strength of the patch in a particular direction, fracture may occur.
This occurs typically perpendicular to the fiber direction by matrix tension or
shear, as fibers have a high tensile strength.
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Displacement Deformation Fracture

Figure 2.13: Possible defects in unidirectional patches during co-molding (top view).

2.4.2 Deformation mechanisms

The quasi-inextensibility of fibers and comparably low shear stiffness implies
kinematic constraints on the deformation mechanisms of continuous fiber
reinforced fabrics. These deformation mechanisms are usually classified
as intra-ply mechanisms happening in a single patch layer and inter-ply
mechanisms occurring between individual layers of patches. The intra-ply
mechanisms can be further categorized in bending behavior, membrane
behavior and in-plane shear behavior [171]. Unlike homogeneous isotropic
materials, bending stiffness and membrane stiffness of engineering textiles
may require a decoupled modeling approach, if the polymer matrix stiffness
is extremely small and allows slip between individual fibers during bending
load [171]. Inter-ply mechanisms describe slip between plies, slip between
mold and plies as well as delamination. The friction between mold and patch
has been previously investigated by Bücheler [169] for the material modeled
in this work.

The predominant deformation mode of biaxial fabrics is called pure shear or
Trellis shear that is motivated by inextensible fibers in two transverse direc-
tions with contacts acting as pivot points. In contrast, UD fabrics naturally
deform under so-called simple shear assuming inextensibility in fiber di-
rection and incompressibility. The simple shear deformation is depicted in
Figure 2.14.

The deformation gradient F maps the initial configuration to the current
configuration, as indicated in Figure 2.14 by black coordinate systems with
and without superscript ’0’, respectively. The coordinate system, which is
transformed by F is called the covariant reference system. However, the
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Figure 2.14: Simple shear in a unidirectional patch. The covariant coordinate system is depicted
in black (ex,ey) and the co-rotational system in green (êx, êy).

deformation gradient includes a rigid body rotation and is therefore not
objective. A polar decomposition

F =RU =V R (2.78)

in a pure rotation R and a right stretch tensor U or left stretch tensor V
provides a separation in rigid body rotation and an objective strain mea-
sure. However, the by R rotated co-rotational frame is typically not suited to
describe the deformation of anisotropic composites, because the principal
material orientations become non-orthogonal during shearing, as shown
with the black coordinate system in Figure 2.14 in comparison to the orthog-
onal frame depicted as green coordinate system. A possible solution to cope
with this is the introduction of additional transformations in a hypoelastic
constitutive model (see Section 2.4.3.1) or the formulation of a hyperelastic
constitutive model (see Section 2.4.3.2) in the initial configuration. In any
way, the constitutive model needs a deformation measure that does not de-
pend on rigid body motion and rigid body rotation (objective strain measure).
The definition of the right Cauchy-Green tensor

C =F> ·F =U 2 (2.79)
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allows the definition of the Green-Lagrange strain

E = 1
2

(C°I), (2.80)

which is a suitable objective deformation measure for modeling the patches.

2.4.3 Modeling approaches

The simplest approach to model patch deformation are kinematic models
that assume incompressibility and inextensibility of fibers [172]. In biaxial
fabrics the contacts between weft and warp fibers act as pivot points with-
out slippage and in unidirectional reinforcements ideal simple shear with
constant fiber spacing is assumed. The forming result is purely controlled
by geometrical considerations and without solving a momentum-balance
(similar to the kinematic fiber models presented in Section 2.2.6.1). The
benefit of such models is the fast computation time, which can be lever-
aged in optimizations [173], but the prediction capability of defects is very
limited [174].

A more rigorous approach is the constitutive modeling of fabric deforma-
tion that accounts for material behavior. Such models are developed for the
microscale to analyze slippage of fibers and resulting yarn cross sections
during weaving [175]. Detailed mesoscale models [176, 177] and discrete
models build from 1D or 2D elements representing constituents of the com-
posite [178–180] are used to determine effective properties based on the
underlying yarn structure or directly model deformation at component scale.
Most commonly, forming behavior of engineering textiles is described by
homogeneous macroscale models. This is often done either by formulations
that relate the rate of the Cauchy stress to the strain rate (hypoelastic) or by
formulating the material behavior with respect to the initial configuration
(hyperelastic) [181, 182].
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2.4.3.1 Hypoelastic models in co-rotational frame

Hypoelastic models follow the general form

�r =C :D (2.81)

with a tangent stiffness tensor C and an objective stress derivative �r, such
as the Jaumann rate or Green-Naghdi rate [183]. The constitutive equations
are formulated in terms of the current Cauchy stress, which is integrated in
time by an appropriate numerical scheme [184]. In general, fiber reinforce-
ment fabrics are described in a non-orthogonal frame and a transformation
between the orthogonal objective Cauchy rate (see êx , êy in Figure 2.14 for
Green-Naghdi frame) and the non-orthogonal fiber frame (seeex ,ey in Figure
2.14) has to be applied [185–187].

2.4.3.2 Hyperelastic models in initial frame

Hyperelastic models allow for a formulation of constitutive material models
with respect to the initial configuration and thus omit the need for difficult
coordinate transformations. Such models propose the existence of a strain
energy potential W and compute the second Piola-Kirchhoff stress as

S = 2
@W (C)
@C

, (2.82)

where C is the right Cauchy-Green tensor [183]. The strain energy potential is
typically formulated in terms of invariants of the right Cauchy-Green tensor
and includes energy stored by tension and shear [188,189] as well as coupling
terms [190, 191].

The Cauchy stress can be computed by a push forward transformation with
the deformation gradient as

� = 1
J
F ·S ·F>, (2.83)
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where the Jacobian determinant J = det(F ) denotes the volume change [183].

Given the non-orthogonal deformation behavior illustrated in Figure 2.14, a
hyperelastic formulation w.r.t the initial configuration seems most appropri-
ate to model the deformation of unidirectional patches during co-molding.
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3.1 Research hypothesis

Fibers in SMC are typically 25 mm to 50 mm long and are required to fill
geometric features of similar dimensions in advanced (semi-)structural appli-
cations. This violates several conditions for the application of tensor based
fiber orientation descriptors, e.g. fibers are not straight, fibers are not much
shorter than geometric features and the effects are not local, because the
motion of one fiber end affects the other end up to 50 mm away. The question
is in which scenarios these violations may still lead to reasonable results and
which alternative model could be used to alleviate these issues while still
being applicable at component scale with reasonable computational times.

The main hypothesis is that a mesoscale process model that accounts for
the motion of individual fiber bundles improves the prediction quality of
fiber architecture in SMC compression molding simulations at component
scale. The improved prediction of the architecture can be qualitatively and
quantitatively validated by comparison to µCT scans.

3.2 Objective

The objective of this work is the development of a 3D numerical simulation
method for the compression molding process of SMC in regions, where fiber
orientation tensors may not be suitable descriptors of the fiber orientation
state. These regions are geometrical features such as narrow ribs and beads
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which are common in advanced structural SMC applications as well as the
area near mold walls. The goal is the prediction of structural defects during
SMC compression molding, such as knit line formation, fiber-matrix separa-
tion and fiber misalignment. Additionally, accurate predictions of necessary
compression forces and fiber orientation states are desired. Further, the sim-
ulation method should be able to incorporate a model for continuous fiber
patches to predict processing effects in parts made from CoDiCoFRP.

The process step under consideration is the mold filling process starting from
positioning of the initial SMC stack and patches until complete fill of the
mold. Preforming of the material placed in the mold is not considered, nor is
subsequent curing, cooling and warpage of the part.

The detailed sub-objectives are summarized as follows:

• Development of a macroscopic SMC reference model utilizing a tensor
based description of fiber orientation states to be able to compare
mesoscale simulations to corresponding homogeneous macro models.

• Development of a mesoscale SMC model based on direct numerical
simulation of the bundle suspension. The model should account for
two-way bundle-matrix interaction, bundle-bundle interaction and
confinement by molds.

• Development of a suitable mechanical model for unidirectional rein-
forcement patches.

• Experimental characterization of required parameters for the devel-
oped models.

• Validation of models by comparison to experimental process data and
CT analysis of the resulting parts.

• Integration of the models in a CAE chain workflow to be able to transfer
results from the process simulations to subsequent warpage or struc-
tural simulations.
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3.3 Outline

The work is laid out as follows: The next Chapter 4 formulates a 3D macro-
scopic reference model for SMC employing fiber orientation tensors and
anisotropic viscosity. It is solved using the Coupled Eulerian Lagrangian
framework in Simulia Abaqus/Explicit and a custom VUMAT subroutine. The
equations are reduced to the 1D case in a press rheometer to investigate
principal effects of individual parameters and provide a tool for rapid compu-
tation of reference results.

Chapter 5 includes the main contribution of this work, which is the develop-
ment of a mesoscale model that is capable of running at component scale to
provide more detailed prediction of defects and features during compression
molding. The chapter is subdivided in the derivation of long-range bundle-
matrix interactions and short-range bundle-bundle interactions. Sub-models
are used in each case to derive phenomenological expressions for relevant
terms at mesoscale, such as the drag coefficients of bundles and the effective
sheared gap between bundles. Finally, a verification ensures that the model
is able to reproduce analytical reference solutions.

A model for unidirectional reinforcement patches is described in Chapter 6.
The model describes each patch ply with two shell layers with shared nodes.
One layer represents the unidirectional bundles and the matrix, the other
layer models the unidirectional stitching yarn. Both layers are hyperviscoelas-
tic and a Hashin damage criterion is employed to describe failure of patches
during molding.

Chapter 7 describes the characterization of necessary parameters for the
SMC model and the patch model in the uncured state. This includes the
transverse heat conductivity of SMC sheets and patch plies as well as the heat
conductance from a steel mold to the SMC stack and patch. Further, the rate
dependent and temperature dependent viscosity of the SMC paste and the
compressibility of a uncured stack of SMC are determined. For patches, the
relevant anisotropic visco-elastic properties are determined.
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In Chapter 8, several experimental results and corresponding simulation
results are compared to analyze the merits of direct mesoscale simulations
and macroscale models. The first case investigates the general ability of the
DBS to predict fiber architectures under quasi-incompressible isothermal
Newtonian conditions in a double curved dome. The resulting fiber orienta-
tion, curvature and knit line formation agree well with computer tomography
scans of experimental specimens. The second case investigates fiber-matrix
separation at ribs with quasi-incompressible isothermal Newtonian model-
ing conditions and compares the results to pyrolysis results of specimens.
The full non-isothermal non-Newtonian compressible model is applied to a
press rheometer simulation in the next example. The resulting compression
force and pressure at sensor positions is compared to experimental data to
evaluate the model’s capability to not only predict fiber architectures, but
also to predict realistic compression forces. The full model is also applied to
a more complex small demonstrator part featuring ribs, beads and unidirec-
tional reinforcement patches to show the ability to integrate the patch model
with DBS. The final validation example is a large part to demonstrate that the
suggested approach can be applied at the scale of larger SMC components.

The modeling domains and investigated features are visually summarized in
Figure 3.1.
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Mold: R3D3/R3D4

Paste: EC3D8RT

Patches: S3RT/S4RT

Bundles: T3D2

Chapter 6 Chapter 4

Chapter 5Chapter 4/5

- Drag from paste motion

- Interaction between bundles

- Non-Newtonian

- Non-isothermal

- Body force field from bundles

- Compressible

- Hyperviscoelastic model

- Non-isothermal

- Simple damage model

- Hydrodynamic friction to SMC paste

- Rigid and isothermal

- Virtual press controller

- Realistic volume fraction

- Flexible/thread-like

Figure 3.1: Graphical overview of the modeling domains and corresponding simulation fea-
tures. The molds are represented by rigid shells (R3D3/R3D4) at a homogeneous isothermal
temperature. The motion is controlled by a virtual press controller that mimics the controller
of the physical press with a switch from displacement control to force control. A key feature is
the explicit model of fiber bundles by flexible thread-like truss elements (T3D2) at component
scale and with realistic fiber volume fractions. The fiber motion is governed by drag forces from
the fluid phase and fiber bundles interact with each other as well as with the mold surfaces.
The fluid phase is modeled in an Eulerian frame (EC3D8RT) and is generally non-Newtonian,
non-isothermal and compressible. The drag of fiber bundles is subjecting the fluid phase to a
body force field that causes anisotropic flow behavior. The simulation framework may incor-
porate continuously reinforced patches modeled as shells (S3RT/S4RT), which are modeled as
hyperviscoelastic material with a Hashin criterion for damage initialization.
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4.1 General three-dimensional model

Typically, SMC process simulation is conducted at a macroscopic continuum
scale, which efficiently describes the flow of the SMC fiber suspension as
a homogeneous material with effective material properties. To verify the
mesoscale model developed subsequently in Chapter 5, such a macroscopic
model is formulated here. It is implemented in the commercial finite element
software Simulia Abaqus/Explicit and provides a reference solution to discuss
differences in the modeling scales.

4.1.1 Assumptions and scope

The homogeneous description of SMC implies some assumptions, which are
introduced to simplify the chemo-thermo-elasto-visco-plastic behavior of
SMC:

• Scale separation applies and the fiber architecture is sufficiently de-
scribed by the second order fiber orientation tensor

• SMC is a homogeneous one-phase material with effective properties

• Curing does not affect the flow process

• The deviatoric mechanical response of the effective material is purely
viscous
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The first two assumptions are reasonable for simple plate-like structures
with in-plane dimensions that are much larger than fiber length. However,
these assumptions are highly questionable in confined regions, knit lines
and any feature at fiber length scale. The third assumption is founded in the
hypothesis that flow occurs on a time scale much faster than curing (100 s vs.
102 s). Thus, curing is neglected to reduce the number of parameters in the
model and characterization efforts. However, even a small onset of curing
might affect the viscosity significantly and thus introduce errors in the simula-
tion results. The fourth assumption reduces the thermo-elasto-visco-plastic
material behavior to a thermo-viscous behavior. There is certainly some
elasticity in the composite (fibers are elastic and the polymer matrix induces
entropy-elasticity as well as some early degree of cross-linking). Even so, the
elastically stored energy in the SMC is assumed to be small compared to the
dissipated viscous energy during the molding process. Not all dissipated
energy is necessarily rate dependent. Internal friction, such as between fibers,
causes some degree of plastic behavior. Contrary to fiber suspensions with
dispersed bundles, which show a Herschel-Bulkley behavior with yield stress,
fiber bundle suspensions are dominated by viscous fiber interactions [56, 57].
Hence, plasticity is neglected here for simplicity.

4.1.2 Governing equations

The initial boundary value problem is formulated on a domain x 2D ΩR3.
The solution fields are the velocity v : D ! R3, the mass density Ω : D !
R, the temperature T : D !R and the inner variables describing the fiber
orientation state A :D!A. Considering symmetries, this leads to a total of
eleven independent variables

©
v1, v2, v3,Ω,T, A11, A22, A33, A12, A23, A13

™
.

The solution is obtained from the macroscopic mass balance

@Ω

@t
+div(Ωv) = 0, (4.1)
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4.1 General three-dimensional model

the macroscopic momentum balance

@(Ωv)
@t

+div
°
(Ωv)≠v

¢
= div(�), (4.2)

the macroscopic balance of inner energy

@(ΩcpT )

@t
+div

≥
(ΩcpT ) ·v

¥
=°div(d)+� :D, (4.3)

and an evolution equation for the second order fiber orientation tensor

@A
@t

+div(A≠v) =W ·A°A ·W +∏
°
D ·A+A ·D°2A :D

¢
. (4.4)

The employed orientation model is the simplest possible version (see Section
2.2.4) without diffusive interaction parameters. This could be easily replaced
by a more complex orientation model, if the required additional parameters
are available. However, it is shown later in this work that the simple base
model shows remarkable agreement with the detailed mesoscale model for
planar SMC compression molding.

The governing equations result in a total number of eleven equations for the
unknowns. The heat flux d and momentum flux � are related to the solution
variables via the constitutive equations outlined in the next section to close
the problem.

4.1.3 Constitutive equations

The Cauchy stress is computed according to Equation (2.33) from several
individual contributions as

� =°p(¢")I +�0
M +�0

FM +�0
FF, (4.5)
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4 Macroscopic reference model

where the pressure p is no individual solution variable, but modeled with
an equation of state that depends on the current mass density through the
Hencky strain

¢"= log
µ

V
V0

∂
= log

√
Ω0

Ω

!
. (4.6)

A relation between mass density and pressure is determined in Chapter 7.
Alternatively, a sufficiently large bulk modulus may be employed to model
quasi-incompressible SMC. The isotropic deviatoric matrix stress

�0
M = 2¥(T, ∞̇) :D0 (4.7)

uses a matrix viscosity that generally depends on shear rate ∞̇ and temperature
T . The extra stress from long-range fiber-matrix interactions is

�0
FM =

4 f r 2
p¥(T, ∞̇)

3
£
ln(1/ f )+ lnln(1/ f )+C

§
µ
A° 1

3
I ≠A

∂
:D0

+2ns¥(T, ∞̇)
µ
A⇤I +I⇤A° 2

3
I ≠A

∂
:D0,

(4.8)

as given in Equation (2.39) in combination with the parameter ¥2, SF from
Equation (2.42). Strictly speaking, the resulting Equation (4.8) is only valid
for Newtonian fluids with constant viscosity due to the assumptions made
in the underlying derivations. It may be applicable, if the non-linearity in-
troduced by ¥(T, ∞̇) is not too severe (approximately constant local viscosity
at the length scale of fibers), but results have to be reviewed critically when
using Non-Newtonian viscosity. The shear factor ns is included to improve
numerical stability in 3D models and might be considered a numerical pa-
rameter that is sufficiently small to not affect the result but large enough to
suppress spurious shear. The last term in Equation (4.5) was obtained by pro-
jecting Equation (2.59) with the deviatoric projector P2 to ensure that it does
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4.1 General three-dimensional model

not generate volumetric stresses. Hence, this extra stress from short-range
fiber-fiber interactions is formulated as

�0
FF = 4kD

3º2 r 2
p¥(T, ∞̇) f 2

µ
B° 1

3
I ≠B

∂
:D0. (4.9)

The thermal flux for the energy balance in Equation (4.3) is modeled accord-
ing to Fourier’s law

d=°grad(T ) (4.10)

where  represents the heat conductivity tensor. The conductivity is reduced
to a scalar value = ∑I here, to reduce the number of parameters to be char-
acterized. This scalar model is a simplification, as in-plane heat conductivity
is different to the transversal conductivity. However, the conduction process
in SMC is controlled by the heating between hot molds transverse to the
sheets, while the majority of in-plane heat transport is of convective nature
due to the material flow.

Finally, the fourth order orientation tensor A is computed from the IBOF
closure [21] and the fourth order interaction tensor B is computed from the
quadratic closure provided in Equation (2.63). A summary of the parameters
for the macroscopic model is given in Table 4.1.

Table 4.1: Parameters for the macroscopic SMC model. Additional parameters are needed to
describe the relations for ¥(T, ∞̇) and p(Ω).

Description Symbol

Fiber volume fraction f

Fiber aspect ratio rp

Shear viscosity of the matrix ¥(T, ∞̇)

SMC compressibility relation p(¢")

Short-range interaction parameter kD

Shear factor ns

Transverse heat conductivity ∑
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4 Macroscopic reference model

4.1.4 Friction model at mold surface

As mentioned in Section 2.3.3, Barone and Caulk investigated Coulomb fric-
tion, constant friction and hydrodynamic friction as candidates for the thin
lubrication layer between SMC core and the mold surface [124]. Hydrody-
namic friction became the most common model and is generally described
by

⌧M =°∏
√∞∞vs

∞∞
v0

!m°1

vs, (4.11)

where ⌧M is the stress at the mold surface, ∏ is a hydrodynamic friction
coefficient, m is a power-law coefficient, v0 is an arbitrary reference velocity
for non-dimensionalization of the power-law term and vs is the slip velocity
at the mold surface [148, 150]. The determination of friction parameters in
literature focused mostly on a flow phase, where a stable plug-flow has formed
and the initial squish flow has not be investigated in the same depth. During
the squish phase, hydrodynamic friction models have the disadvantage to
prescribe no friction stress at zero velocity. However, the initial contact may
be rather described by a sticking behavior in some SMCs, which would favor a
model with constant friction stress ø0. Such a model restricts the slip velocity
to vs =0 for wall shear stresses smaller than ø0.

In this work, a transition function ° is suggested to smoothly transition be-
tween a constant value ø0, which is applicable in absence of relative motion
and a hydrodynamic friction model for relative motion. The transition func-
tion is defined as

°= e
°

µ
kvsk

vt

∂2

(4.12)

with a parameter vt that describes the transition velocity between sticking
and slipping states. The maximum shear stress at the mold surface is then
formulated as

⌧M =°°ø0
Ö
vs

Ü
° (1°°)∏

√∞∞vs
∞∞

v0

!m°1

vs. (4.13)
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Figure 4.1: Comparison of friction models depending on relative velocity. While hydrodynamic
models are widely used in literature [124,148,150], the initial squish phase may require a sticking
constant friction at low slip velocities. Therefore, a transition model for sticking SMC is proposed
in this work.

A graphic summary of constant friction (vt !1), linear hydrodynamic fric-
tion (m = 1, vt ! 0), power-law hydrodynamic friction (m 6= 1, vt ! 0) and a
transition model is presented in Figure 4.1.

4.1.5 Virtual press controller

The physical press follows a press profile given as M pairs of mold gap and
corresponding closing velocity, as shown in Figure 4.2. Eventually the press
controller switches to force-control in order to limit stresses on mold and
press. A virtual press-controller is used to mimic this behavior as boundary
condition during the compression molding simulation.

As long as the compression force is below the force at switch-over Fmax, the
profile is linearly interpolated to obtain the current press velocity. Regions
outside the prescribed profile are linearly extrapolated. The linear interpo-
lation/extrapolation w.r.t the gap leads to a non-linear velocity profile w.r.t
compression time.

65



4 Macroscopic reference model
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ḣ0

ḣ1
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Figure 4.2: The press profile is given as M pairs of mold gap and press speed and is linearly
interpolated w.r.t the gap.

After the switch-over at time increment ns , a simple discrete PI-controller is
employed to determine the current press speed

ḣn+1 = ḣn +Ppen +Pi

nX
q=ns

¢Eq

2
¢t (4.14)

from the normalized errors

¢Eq =
Fmax °Fq

Fmax
ḣM , (4.15)

where ḣM describes the final compression speed of the press. The normal-
ization ensures reliable force-control through a wide range of simulation
parameters with constant control parameters Pp = Pi = 0.5.

4.1.6 Solution procedure

The Coupled-Eulerian-Lagrangian framework of the commercial Finite Ele-
ment solver Simulia Abaqus/Explicit is employed to solve the equations, as
the deformations during compression molding are too large to be described
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4.1 General three-dimensional model

in a Lagrangian frame. This operator splitting method divides the equations
in a Lagrangian part and an Eulerian part [192, 193]. The Lagrangian part

@Ω

@t

ØØØØ
L
= 0 (4.16)

@(Ωv)
@t

ØØØØ
L
= div(�) (4.17)

@(ΩcpT )

@t

ØØØØ
L
=°div(d)+� :D (4.18)

@A
@t

ØØØØ
L
=W ·A°A ·W +∏

°
D ·A+A ·D°2A :D

¢
(4.19)

contains only the source terms and neglects the convective terms. These
equations are solved in a traditional Lagrangian frame by explicit time inte-
gration and enable to account for contact with other Lagrangian bodies. A
subsequent step is used to solve the convection problem

@Ω

@t

ØØØØ
E
+div(Ωv) = 0 (4.20)

@(Ωv)
@t

ØØØØ
E
+div

°
(Ωv)≠v

¢
=0 (4.21)

@(ΩcpT )

@t

ØØØØ
E
+div

≥
(ΩcpT ) ·v

¥
= 0 (4.22)

@A
@t

ØØØØ
E
+div(A≠v) =0. (4.23)

This step effectively moves back nodes to remain an Eulerian frame and
computes the flux through element boundaries by a second order advection
scheme [192, 193]. An illustration of the process is given in Figure 4.3, where
a circular shape is stretched horizontally. The initial shape is represented by
a volume fraction of SMC e 2

©
R | 0 < e < 1

™
in each element and properties

of partially filled elements are volume averaged.

The contact between Lagrangian bodies and the Eulerian material surface uti-
lizes a material reconstruction algorithm [194]. The surface is approximated
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Langragian step Eulerian step

Figure 4.3: Illustration of the CEL steps. The first step is equivalent to a conventional Lagrangian
step, if the spatial time derivative would be replaced by a material time derivative. The second
step moves the mesh back to its original configuration, computes the flux of material through
element faces and adjusts the Lagrangian variables [193].

by a set of planes for each element that does not necessarily form a continu-
ous surface. The reconstruction allows a definition of contact overclosures
for a set of seed points on the contacting surfaces and thus allows to compute
contact forces from a penalty approach. The resulting local contact force
is then distributed on the elements nodes with their corresponding shape
functions [193].

The constitutive model is implemented in a VUMAT subroutine, the virtual
press controller is implemented as VUAMP subroutine and the friction is
modeled with a pre-computed look-up-table depending on the absolute
value of slip

∞∞vs
∞∞.

4.2 Reduction to one-dimensional plug-flow
in a press rheometer

In some cases, such as the elongational plug-flow in a one-dimensional press
rheometer, the previously described equations may be further simplified to a
one-dimensional set of equations. It is desirable to be able to compute fast
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4.2 Reduction to one-dimensional plug-flow in a press rheometer

solutions to such a problem to verify more complicated three-dimensional
implementations and to identify parameters with a press rheometer. There-
fore, this section states a set of one-dimensional PDEs to approximate the
compressible, non-Newtonian plug-flow in a press rheometer. Subsequently,
an analytical solution for the further simplified incompressible Newtonian
case is derived.

X0

Xmax

h0

Fc

Bex

ey

ez

Figure 4.4: Dimensions of a press rheometer for one-dimensional elongational flow in the initial
configuration (t = 0).

The dimensions of a generic press-rheometer are sketched in Figure 4.4. The
solution domain is then described by a non-dimensional scalar position x§ =
x/X , where the position x is normalized with the flow front position X and
x§ 2

©
R | 0 < x§ < 1

™
. The fiber orientation is assumed to be planar, such that

only the Axx, Axy, Ayx and Ayy components of A remain. Further, all entries
of A except for Axxxx, Ayyxx, Axyxx and corresponding symmetries vanish. The
vertical strain rate is prescribed by the deformation speed Dzz = ḣ/h in terms
of the mold gap h.

Isothermal bulk flow is a common assumption in literature (see Section 2.3).
However, even small changes in temperature can have significant effect on
the matrix viscosity. Hence, an analytical solution is employed to compute an
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4 Macroscopic reference model

approximate average mold temperature during compression. The tempera-
ture between two closing plates with constant closing speeds and ideal heat
transfer at the mold surfaces (Dirichlet boundaries) can be expressed as

T (t , z) = TT+(TT°T0)

2
4 2
º

1X

q=1

cos(qº°1)
q

sin(qºz)
h

exp

√
°q2º2∑t
h0hΩcp

!3
5 (4.24)

with a constant mold surface temperature TT, initial homogeneous stack
temperature T0 and q 2N [132, 140]. Averaging the temperature distribution
over the thickness

T̄ (t ) = 1
h

Zh

0
T (t , z)dz (4.25)

yields

T̄ (t ) = TT + (TT °T0)

2
4 4
º2

1X

q=1

cos(qº°1)
q2 exp

√
°q2º2∑t
h0hΩcp

!3
5 (4.26)

as an approximation of the average temperature in the SMC stack.

4.2.1 Scalar set of PDEs

For a model without short-range interactions, the constitutive relation may
be formulated as

� =°p(Ω)I +V :D0 (4.27)

with an anisotropic viscosity tensor

V= 2¥(T̄ , ∞̇)P2 +¥2, SF(T̄ , ∞̇)
µ
A° 1

3
I ≠A

∂
(4.28)

from equations (2.35), (2.39) and (2.42). With the assumptions stated above,
this reduces to

Vxxxx =+4
3
¥(T̄ , ∞̇)+¥2, SF(T̄ , ∞̇)

µ
Axxxx °

1
3

Axx

∂
(4.29)
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Vxxzz =°2
3
¥(T̄ , ∞̇)+¥2, SF(T̄ , ∞̇)

µ
⇠⇠⇠Axxzz °

1
3�

�Azz

∂
(4.30)

Vzzxx =°2
3
¥(T̄ , ∞̇)+¥2, SF(T̄ , ∞̇)

µ
⇠⇠⇠Azzxx °

1
3

Axx

∂
(4.31)

Vzzzz =+4
3
¥(T̄ , ∞̇)+¥2, SF(T̄ , ∞̇)

µ
⇠⇠⇠Azzzz °

1
3�

�Azz

∂
(4.32)

for the relevant terms. The crossed out components vanish due to the as-
sumption that all fibers are in the x y-plane.

Mass balance, momentum balance and the orientation equations are then
formulated on the normalized domain as

Ω̇ =°ΩDxx °ΩDzz (4.33)

Ωv̇ = @

@x§
°
°p(Ω)+VxxxxDxx +VxxzzDzz

¢
°2

ø

h
(4.34)

Ȧxx = 2(Axx ° Axxxx)Dxx (4.35)

Ȧyy =°2AyyxxDxx (4.36)

Ȧxy = (Axy °2Axyxx)Dxx, (4.37)

where domain remains undeformed and progression of the flow front is
account for by @(•)

@x§ = 1
X
@(•)
@x , e.g. Dxx = @v

@x§ . The additional source term in
the momentum equation describes a friction stress ø that acts on both mold
surfaces (hence the factor 2) against the flow direction. The unknown fields
are the mass density Ω, velocity v and the orientation components Axx, Axy

and Ayy.

4.2.2 Initial conditions

The stack is considered to be initially at rest and at rest density Ω0

v
ØØ

t=0 = 0, Ω
ØØ

t=0 = Ω0, (4.38)
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because it lays unconstrained on the lower mold half. The orientation is
considered planar isotropic

Axx
ØØ

t=0 = 0.5, Ayy
ØØ

t=0 = 0.5, Ayx
ØØ

t=0 = 0.0, (4.39)

if the SMC sheet production process (see Section 2.3) does not induce any
preferential fiber orientation.

4.2.3 Boundary conditions

The Dirichlet boundary condition at x§ = 0 is

v
ØØ

x§=0 = 0 (4.40)

at all times. The boundary condition at the flow front x§ = 1 is given by the
flux boundary

°p(Ω)+VxxxxDxx +VxxzzDzz
ØØ

x§=1 = 0 (4.41)

during flow and by the Dirichlet boundary

v
ØØ

x§=1 = 0 (4.42)

as soon as the mold is completely filled. All other boundaries are zero-flux
boundaries.

4.2.4 Solution procedure

The set of coupled PDEs, initial conditions and boundary conditions is com-
pleted with algebraic expressions for utility variables. The first expression is
the evolution of the flow front position

Ẋ = v |x§=1 (4.43)
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for X < Xmax. The second expression is the compression force

Fc = B
Z1

0
°p(Ω)+VzzxxDxx +VzzzzDzzdx§, (4.44)

which is integrated from the normal stress at the mold surface.

The set of coupled PDEs is solved using two pdepe solvers in MathWorks
Matlab. The first solver integrates the equations until the mold is completely
filled and a second solver restarts at that point with modified boundary
conditions at x§ = 1. The algebraic expression for the flow front is solved
simultaneously with a forward Euler time discretization and the compression
force is evaluated using trapezoidal integration. The computation of the
compression force is needed at run time, as it is used by a virtual press
controller to switch from displacement control to force control, as soon as
the maximum compression force is reached.

4.2.5 Analytical solution

Further simplification of the one-dimensional flow allows to derive a simple
analytical solution. Assuming incompressibility (Dzz =°Dxx = D) leads to a
direct solution for the flow front position

X = h0

h
X0 (4.45)

and the velocity field
v =°Dx. (4.46)

If the fiber orientation state is approximately constant, i.e. Axxxx = 0.375 and
Axx = Ayy = 0.5, the set of equations simplifies to just the momentum balance

@p
@x

=°2ΩD2x +2
ø

h
. (4.47)
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Integrating this equation once for Newtonian viscosity and a constant friction
ø0 yields the pressure field

p =°ΩD2(x2 °X 2)+2
ø0

h
(x °X )°2¥D °¥2, SF(Axxxx °

1
3

Axx)D
| {z }

from boundary condition

, (4.48)

where the last term originates from the boundary condition (4.41). Finally,
the compression force can be computed from Equation (4.44) as

Fc = B

0
BBB@

2
3
ΩD2X 3

| {z }
inertia

° ø0

h
X 2

| {z }
friction

°4¥D X
| {z }
matrix

°¥2, SFD X Axxxx
| {z }

fiber-matrix

1
CCCA (4.49)

with a contribution from inertia, friction, matrix viscosity and extra viscos-
ity due to fiber-matrix long-range interactions. The deformation rate D is
typically negative (compression) and thus each component adds a positive
contribution to the overall compression force.

In case of a linear hydrodynamic friction ø=∏v , the solution is

Fc = B

√
2
3
ΩD2X 3 ° ∏

3h
D X 3 °4¥D X °¥2, SFD X Axxxx

!
, (4.50)

which reduces to the result obtained by Castro [139, 140], if the inertial term
and the fiber-matrix term are dropped.

4.3 Verification of one-dimensional plug-flow

An exemplary solution of the 1D PDE model is given in Figure 4.5. In this
generic example, the mold is closed at a rate of 1 mm s−1 from an initial gap of
9 mm to a final gap of 2 mm. Due to compressibility of the material, the flow
front advances in a non-linear fashion until the mold is completely filled after
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8.5 s. The compression force reaches its maximum force at 6.1 s and the mold-
profile switches to force control. The solution to the fields Ω, Axx, Ayy, Axy is
plotted as mean values over the mold length. Additionally, the pressure at
several positions along the flow path is computed in a post-processing step to
enable comparison with sensors in a press rheometry experiment. The exact
sensor positions depend on the employed tool and are given for example in
Section 7.1.4, where the one-dimensional model is used to determine friction
parameters.

A simple example without a switch-over to force control is used to illustrate
the general effect of friction, viscosity and compressibility. The resulting pres-
sures are plotted in Figure 4.6 and parameters for the frictionless base model
example are given in Table A.1. For these parameters, the pressure sensors are
triggered one after another and jump to identical stress levels until the mold
is filled after triggering the last sensor. The introduction of hydrodynamic fric-
tion (∏=50 N s m−3) leads to a pressure difference between sensors, as friction
introduces a pressure gradient that increases the pressure level from the flow
front towards the inward direction. An increase of the viscosity (¥=2000 Pa s)
simply shifts the general pressure levels up. The times, at which sensors
are triggered, remains unchanged in these three configurations, as the bulk
modulus is chosen high enough to represent quasi-incompressible behavior.
Lowering the bulk modulus (K0=1900 Pa) results in a compression of the stack
and thus a delayed flow front advancement, which can be observed by the
delayed time at which sensors are triggered.

Thus, the pressure sensors in the press rheometer deliver an unambiguous
understanding of the SMC flow. The simple 1D model allows for a quick
computation of the underlying effects and can be used to fit parameters to
experimentally recorded results from the press rheometer.
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Figure 4.5: Exemplary solution of the one-dimensional compressible flow in a press rheometer.
The maximum compression force is reached after 6.1 s in this example before the filling com-
pletes at 8.5 s. The different colors in the pressure plot represent the pressures at eleven different
sensor positions along the flow path.
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Figure 4.6: Parameter variation in press rheometer model.
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5.1 Method development

The fundamental idea of the proposed Direct Bundle Simulation (DBS) ap-
proach utilizes the observation that fiber bundles often remain in their bun-
dled configuration during SMC compression molding. Hence, fiber bundles
can be represented as individual instances in a direct Stokesian dynamics
simulation with a reasonable number of fiber bundle instances. The num-
ber of bundles is roughly two or three orders of magnitude smaller than the
number of fibers and thus computationally accessible.

5.1.1 Assumptions and scope

Fiber bundles in SMC can be considered very flexible with a dimensionless
bending stiffness S§ ø 1 due to the high aspect ratio and high viscosity of the
suspending matrix (compare Equation (2.8)). The assembled structure of a
bundle decreases its bending stiffness even further compared to a homoge-
neous bundle with the same cross section, because individual fibers may slip
relative to each other during bending. Therefore, fiber bundles are modeled
with truss elements, which are one-dimensional elements that only have a
stretch and compression elasticity, but offer no resistance to bending load.
Upon bending, individual truss elements remain straight and curvature is
approximated by angles at the connecting nodes. As discussed previously in
Chapter 4, the matrix is considered purely viscous and curing is neglected
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during the flow process. The assumptions for the DBS model are summarized
as

• Fiber bundles remain in a bundled configuration during the molding
process

• Fiber bundles have negligible bending stiffness

• The matrix material is homogeneous and purely viscous

• Curing does not affect the flow process

5.1.2 Generation of an initial bundle configuration

First of all, the DBS requires an initial bundle configuration that resembles
the configuration in the SMC sheets at the beginning of the compression
molding process. The physical distribution results from bundles falling down
on the lower foil in a random process (see Section 2.3), thus generating a
random transversely isotropic in-plane orientation.

µ̂

¡̂ ex

ez

ey

ex

ez

ey

p̂0
j

p0
j

Draw Project Place ex

ey

Figure 5.1: In a first step, a bundle direction p̂0
j is drawn from a uniform isotropic distribution.

It is then projected with a second order fiber orientation tensor and normalized to p0
j . Finally,

the bundle is translated randomly within the initial stack and protruding bundle elements are
removed.
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For the simulation, such a distribution is generated by first drawing random
directions

p̂0
j = sin(µ̂)cos(¡̂)ex + sin(µ̂)sin(¡̂)ey +cos(µ̂)ez, (5.1)

where ¡̂ 2U (0,2º) and µ̂ 2U (°1,1) with U (a,b) being a uniform probability
distribution between a and b. This direction is then mapped to a prescribed
initial fiber orientation state A0, which is often a planar isotropic state in
SMC, by

p0
j =

á
A0p̂0

j

à
. (5.2)

A fiber bundle comprised of several 1D-elements is generated with this di-
rection and randomly translated within the rectangular domain of the initial
stack by a shift vector

¢x̂=¢x̂ex +¢ŷey +¢ẑez, (5.3)

where¢x̂ 2U (¢xmin,¢xmax),¢ŷ 2U (¢ymin,¢ymax) and¢ẑ 2U (¢zmin,¢zmax).
The variables ¢xmin and ¢xmax are the minimum and maximum allowed
shifts such that at least one node of the bundle resides within the initial stack
domain. All elements outside the initial stack are deleted. This procedure is
illustrated in Figure 5.1 and is repeated until the total fiber volume fraction
equals the prescribed SMC fiber volume fraction.

The placement does not consider contacts between bundles. These initial
contacts are resolved during an initial analysis step in the solver Simulia
Abaqus/Explicit. Overclosures that cannot be resolved are stored as offsets
and these offsets are resolved during the simulation.
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5.1.3 Matrix model

The matrix is described by similar equations as the macroscopic model

@Ω

@t
+div(Ωv) = 0 (5.4)

@(Ωv)
@t

+div
°
(Ωv)≠v

¢
= div(�)+ f̂H (5.5)

@(ΩcpT )

@t
+div

≥
(ΩcpT ) ·v

¥
=°div(d)+� :D. (5.6)

However, the stress tensor is

� =°p(Ω)I +2¥(T, ∞̇)D0 (5.7)

with an equation of state for the entire composite material and the matrix
shear viscosity ¥(T, ∞̇). The volumetric stress describes the entire SMC com-
pression behavior including fiber bundles and voids, the deviatoric part
describes only the matrix response without fiber bundles. A hydrodynamic
body force field f̂H has been added to model the influence of fibers on the
matrix motion and is described in the subsequent section. The body force
field on the matrix is denoted with a hat symbol (•̂) to distinguish it from
the hydrodynamic force on bundles fH. The evolution equation for the fiber
orientation state is dropped, because orientation tensors can be computed
in post-processing from the simulated fiber bundle architecture.

5.1.4 Bundle-Matrix interaction1

Bundles are represented as a chain of one-dimensional truss elements (=bun-
dle segments) that do no transfer bending loads and the stiffness in elonga-
tional direction is determined by the fiber material. These truss elements do
not share an interface with the Eulerian domain of the matrix, but float in the

1 Parts of this section are based on [195].
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same domain. The fiber-matrix interaction follows the concept of Stokesian
dynamics (see Section 2.2.6.2) and computes the hydrodynamic force on each
bundle segment from its velocity relative to the Eulerian environment. The
resulting hydrodynamic force of each bundle segment fH is then distributed
similarly to the approach by Lindström and Uesaka [85] as body force field
f̂H on the bulk matrix.

5.1.4.1 Parameterization of hydrodynamic resistance from micro
model

The hydrodynamic resistance of idealized cylindrical bundle segments is
computed from a numerical study of micro-simulations. The fluid flow in
a cube is simulated, while a cylinder is placed in its center. The fluid is
subjected to a unidirectional flow with inlet boundary condition v1 normal
to the inlet face and a zero-pressure outlet condition, as shown in Figure 5.2.
All other walls of the cube are allowed to slip, but the normal velocities are
constrained to zero. A no-slip condition is applied at the cylinder surface.

The cylinder aspect ratio rp is varied in the range {1,2,3,5,8,13,25} and its
orientation angle relative to the unidirectional flow ¡ is varied in the range
{0,15°,30°,45°,60°,75°,90°}. The incompressible steady Stokes flow problem

0= div
°
°pI +¥D0¢ (5.8)

0 = div(v). (5.9)

is solved for each configuration utilizing the commercial FEM solver Comsol
Multiphysics.

To evaluate the resulting forces on the cylinder segment, its surface is param-
eterized as r = rrer + rtet + rpp, where {er,et,p} describes the local cylinder
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v1 p0

¡

ex

ey

Figure 5.2: Two-dimensional section through the cube, in which a Stokes flow is solved to
compute the drag force on bundle segments. A constant velocity is prescribed at the inlet and a
zero-pressure condition at the outlet. Other walls of the cube slip, while the cylinder interface is
subjected to a no-slip condition. The cylinder is parameterized by its orientation angle ¡ and
aspect ratio rp.

coordinate system. With this parameterization, the lateral cylinder surface is
defined as

C :=
n

(rr,rt,rp) 2R3 | rr = R,0 < rt < 2º,0 < rp < l
o

, (5.10)

where R is the cylinder radius and l is the length of a bundle segment. The
surfaces at the cylinder ends are excluded, as these are typically connected
to the next segment of the bundle and thus do not contribute to the overall
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resistance. The total hydrodynamic force exerted on the cylinder can be
determined using an integral over the lateral surface C as

fH =
Z

C
� ·n dA (5.11)

with surface normal n.

A dimensionless measure for the hydrodynamic force in flow direction and
the transverse direction is obtained with the non-dimensional forms

kd = 1
6º¥Rv1

Z

C
æææx ·n dA and kl =

1
6º¥Rv1

Z

C
æææy ·n dA (5.12)

from the vertical and horizontal surface stress components �x and �y. The
non-dimensionalization is such that the drag factor kd becomes one for a
suspended sphere and the lift factor kl becomes zero for a suspended sphere.
Hence, the factors describe the resulting hydrodynamic force components in
flow direction and perpendicular to the flow direction relative to a suspended
sphere.
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Figure 5.3: Dimensionless drag coefficient kd and lift coefficient kl from computation (dots) and
fit according to Equation (5.13) and Equation (5.14) [195].
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The resulting factors from the computation are plotted in Figure 5.3 as dots.
For small aspect ratios, the factors approach those for a sphere independent
of the orientation. The drag kd increases with larger aspect ratios and with an
orientation closer to 90° due to an increased cross section normal to the flow
direction. The lift component kd peaks at ¡ = 45° and vanishes for a fiber
aligned with the flow¡= 0° or perpendicular to it with¡= 90°. As for the drag,
the severity of the peak increases with the aspect ratio. The computational
results are approximated by a fit for the drag factor

kd(rp,¡) = 1°Æ(rp °1)cos(2¡)+Ø(rp °1) (5.13)

and the lift factor
kl(rp,¡) =Æ(rp °1)sin(2¡) (5.14)

with Æ = 0.09 and Ø = 0.3125. These fits allow efficient evaluation of the
factors for a given orientation and aspect ratio. They are plotted as solid lines
in Figure 5.3.

5.1.4.2 Computation of the relative velocity

The application of a Stokesian hydrodynamic force requires knowledge of the
relative velocity between bundle segments and their environment. Figure
5.4 illustrates how a fiber segment of length l with index j 2B at position x j

and orientation p j floats through the Eulerian domain. The neighborhood of
such a segment is defined as

N j := {i 2 E | 0 <
∞∞∞¢xi j

∞∞∞< l }, (5.15)

where E describes the set of all indices of Eulerian elements that have an
element volume fraction e > 0.5. The condition describes a sphere with a
radius equal to the segment length around the segment center. The neigh-
borhood relation is dynamic, as fiber bundles move independently from the
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Eulerian mesh. It has to be updated every time step and the performance of
the neighborhood search is critical to the overall performance of the DBS.

p j

x j

N j

l

A
xi

vi
¢x

i j

Figure 5.4: A fiber bundle with index j and orientation p j is positioned at x j . The neighborhood
is called N j and one exemplary neighborhood element with index i is highlighted at position
xi . The velocity at this element is vi and its relative position to the bundle segment is termed
¢xi j . [195]

A naive neighborhood search would include a check of condition (5.15) for
each bundle and for each Eulerian element. This simple approach is dis-
played in Algorithm 1 and the time complexity of single run is O(NBNE )
with the number of bundle segments NB and the number of filled Eulerian
elements NE .
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Algorithm 1 Pseudo code for naive neighborhood search

1: for j 2B do
2: for i 2 E do
3: Compute ¢xi j

4: if
∞∞∞¢xi j

∞∞∞< l then
5: Compute relative velocity vi °v j for Equation (5.16).
6: end if
7: end for
8: end for

For the number of elements in consideration here, this algorithm is too slow
and some additional time to build more sophisticated data structures is neg-
ligible compared to potential gains during search. Such a more efficient data
structure is a kd-tree, which is a space-partitioning binary search tree. For a
1d-tree, i.e. a tree that structures one-dimensional data, the data structure is
built by sorting the data and taking the median as a node with a left and right
node containing data that is arranged in the same way. A recursive binary
bisection allows to find data points very effectively, as each choice for a next
node rules out approximately half of the nodes at that stage [196]. A kd-tree
is a generalization, in which a k-dimensional tree is build and searched, as
indicated in Algorithm 2. The function search is evaluated recursively start-
ing from a root node and decides which of its two child nodes is closer to
the target position. If the node farther away is still within potential prox-
imity of the target value, it is searched, too. Since the function search has
O(log NE ) complexity due to the effective data structure, the overall perfor-
mance is O(NB log(NE )), which is a massive improvement over the naive
search method.

The tree is then used to determineN j for each segment during a time step and
compute the relative velocity. The relative velocity for each bundle segment
is determined as

¢v j =
X

i2N j

wi j

Wj

≥
vi °v j

¥
(5.16)
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Algorithm 2 Pseudo code for kd-tree search

1: Build tree with nodes of E
2: for j 2B do
3: N j = SEARCH(root, x j )
4: for i 2N j do
5: Compute relative velocity vi °v j for Equation (5.16).
6: end for
7: end for
8:
9: function SEARCH(node, x)

10: if node has no children then
11: Process terminal node
12: return results
13: else
14: Determine closer node and farther node
15: SEARCH(closer node, x)
16: if farther node is closer than l then
17: SEARCH(farther node, x)
18: end if
19: end if
20: end function

with

wi j = e°
9
2

∞∞∞¢xi j

∞∞∞
2

l2 and Wj =
X

i2N j

wi j . (5.17)

The weighting factors wi j and normalization with Wj represent a Gaussian
weighting, where the variance is chosen to be l/3, such that the sum of
weights outside N j represents less than 1%. The Gaussian weighting is a
more accurate scheme than simply taking the nearest Eulerian element for
the relative velocity and ensures that ¢v j = v j °v

ØØ
x j

for l ! 0.
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5.1.4.3 Body force field evaluation

The computed factors kd(rp,¡), kl(rp,¡) and the relative velocity¢v j are used
to compute the force on each bundle segment fH and the corresponding
body force field f̂H. The hydrodynamic force on each element is

fH
j = 6ºR¥(T, ∞̇)

∑
kd(rp,¡ j )¢v j +kl(rp,¡ j )

∞∞∞¢v j

∞∞∞q j

∏
(5.18)

with the angle between the relative velocity and the fiber orientation

¡ j = arccos

0
B@
¢v j ·p j∞∞∞¢v j

∞∞∞

1
CA (5.19)

and with the direction perpendicular to v j computed by

q j =°sgn(p j ·¢v j )

ã
p j °

µ
p j ·

á
¢v j

à∂á
¢v j

àå
(5.20)

in the plane that is formed by the two unit vectors p j and
á
¢v j

à
(details may

be found in Appendix A.1).

Finally, the same Gaussian weights from the determination of the relative
velocity are used to distribute the body force contribution of each bundle.
Hence, the contribution of bundle j to the body force field in Eulerian element
i is

f̂H
i j =° 1

Vi

wi j

Wj
fH

j (5.21)

with the volume of the Eulerian element Vi . These contributions are summed
up for each Eulerian element.
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5.1.4.4 Implementation

The model is implemented with a combination of several subroutines in the
commercial FEM program Simulia Abaqus/Explicit.

A VEXTERNALDB subroutine is utilized to control the entire analysis workflow.
The subroutine parses the input deck before the start of the analysis to extract
parameters such as index ranges of bundle elements and Eulerian elements.
During the analysis it builds kd-trees at each time increment for all elements
that have material volume fraction e > 0.5. The implementation for building
and searching the kd-trees itself is taken from Kennel [196], who built one of
the most efficient kd-trees in Fortran. A tree is build at the beginning of each
time step using new memory such that the previous tree is still in memory
for delayed parallel threads working on this tree. The memory is freed such
that always two alternating trees, an old one and a new one, exist at all times
(see Figure 5.5). Additionally, the VEXTERNALDB subroutine computes an
approximate stable time increment for the bundles

¢tB = 0.25

s
R

2amax
(5.22)

based on the idea that a bundle should travel no more than a fraction of a
bundle radius during a step with the maximum acceleration of all bundles
amax.

A VUFIELD subroutine is used to extract positions and velocities at nodes
at each time step. The values are saved to field variables to make them
accessible to a VUSDFLD subroutine, which interpolates position and velocity
at integration points of Eulerian elements as well as truss elements. Each
Eulerian element (EC3D8R or EC3D8RT) and each truss element (T3D2) has
only one unique integration point. The variables e,T,V ,¥,x,v,fH/f̂H at the
integration points are saved to global arrays with a length equal to the sum
of truss and Eulerian elements for further processing in other subroutines.
The global arrays are accessed with the index of elements and due to the
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Tree 1

Tree 2

. . .

. . .

Time

Memory

Memory

Build first tree Build second tree

First tree remains in memory Overwrite with third tree

Second tree remains in memory

Figure 5.5: The first tree is built using allocated memory for the maximum tree size at the
beginning of the first time increment. This tree should not be overwritten at the beginning of the
next time step, as some threads may still operate on this data structure. Hence, the second tree is
built in different pre-allocated memory. Then, the third tree overwrites the memory of the first
tree to save time on allocation/deallocation and the second tree remains in the second allocated
memory space. This procedure with alternating trees omits any waiting for threads, which is
potentially disastrous for threaded parallel performance.

parallel domain decomposition, the access happens in parallel while still
being thread safe.

Finally, a VDLOAD subroutine evaluates equations (5.16), (5.18) and (5.21). It
performs parallel tree searches in the current kd-tree, which do not alter the
tree, but only obtain the neighborhood relation.

5.1.5 Bundle-Bundle interaction2

The objective of this section is a model for short-range interaction of bundle-
bundle contact points. The model needs to determine the mechanical contact
in normal direction and tangential friction as well as lubrication in normal
an tangential direction.

A simple mechanical contact can be modeled quite easily as repulsive force

fn,e
ÆØ

=

8
<
:

0 g > 0

KchÆØ g ∑ 0
(5.23)

2 Parts of this section are based on [32].
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with a contact stiffness Kc and the gap between bundle surfaces g . The force
is absent, if fibers are separated by a gap, and penalizes overclosure linearly.
The corresponding tangential friction force is

f t,e
ÆØ

=

8
><
>:

0 g > 0

°µ
∞∞∞fn,e

ÆØ

∞∞∞
á
¢vÆØ

à
g ∑ 0

(5.24)

with a Coulomb friction coefficient µ. The friction acts opposed to the direc-
tion of the relative tangential velocity ¢vÆØ.

The Newtonian form of the tangential lubrication given in (2.73) is

f t,l
ÆØ

=

8
>>>>>><
>>>>>>:

¥
d 2

a∞∞∞pÆ£pØ
∞∞∞

| {z }
contact area

¢vÆØ
G

| {z }
effective shear rate

g > 0

0 g ∑ 0

(5.25)

and other models [30, 56, 57] may be expressed with it using a proper choice
of the effective sheared gap G . This work uses the effective sheared gap as a
single adjustable parameter, because it can be interpreted as the mapping
from a physical distance between bundles g to an equivalent sheared effective
gap G accounting for all geometrical details of the contact area. This relation
is obtained in the following two sections using analytical considerations and
a parametric simulation study.

5.1.5.1 Analytical considerations for the effective sheared gap

The effective sheared gap G is equal to the separation distance g in case of
two flat fiber bundles with parallel faces. In this case, the interaction force
becomes infinite, if the separation distance between two such bundles ap-
proaches zero. This section aims at finding an expression of G for bundles
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with elliptical cross sections and investigates the behavior when the separa-
tion distance becomes close to zero.

ex

√

da/sin(√)

d a ey
ez

Bundle Ø

Bundle Æ

Figure 5.6: Schematic illustration of the contact area between two fiber bundles. The first bundle
Æ is aligned with the x-direction and forms the angle√ between this bundle and a second bundle
Ø. [32].

Two identical fiber bundles with constant elliptical cross sections are consid-
ered. The bundle cross section is described by a minor axis diameter db and
a major axis diameter da. Both bundles are positioned with their minor axes
aligned in z-direction, as depicted in Figure 5.6. Bundle Æ is aligned with the
x-direction and a second bundle Ø crosses it such that an angle √ is formed
between them in the x y-plane. Bundle Ø is placed such that a separation
distance g remains at the closest contact point between both bundles. The
coordinates (x, y , z), the separation distance g and the effective sheared gap
G are non-dimensionalized with the bundle dimensions as

x§ =
x
ØØsin√

ØØ
da

, y§ = y
da

, z§ = z
db

, g§ = g
db

, G§ = G
db

(5.26)

94



5.1 Method development

to obtain generalized results. The dimensionless z§-component of bundle
surface Æ may be expressed as

z§
Æ =°1

2
+

p
y§(1° y§) (5.27)

with y§ 2 [0,1]. The dimensionless z§-component of bundle surface Ø is
consequently

z§
Ø = 1

2
°

r
1
4
°

°
x§ ° y§ cos√

¢2 + g§ (5.28)

with x§ 2
h
° 1

2 + y§ cos(√), 1
2 + y§ cos(√)

i
. The upper and lower bound de-

pend on the y-position as this bundle is placed with an angle √ relative to
bundle Æ. The separation distance is added to the parameterization of this
bundle surface to place the point closest to the surface of bundleÆ at distance
g relative to bundle Æ.

A strong simplification is introduced by assuming that the velocity profile
between both surfaces is approximately linear. Hence, the velocity gradient
at each infinitesimal surface element of the interaction zone is given as ∞̇=
¢vÆØ
zØ°zÆ

with the velocity difference of the bundles ¢vÆØ. Assuming Newtonian
viscosity ¥, an integration over the sheared domain yields

f l,t
ÆØ

= ¥¢vÆØ
dbd 2

aØØsin(√)
ØØ

Z1

0

Z 1
2 +y§ cos(√)

° 1
2 +y§ cos(√)

1
z§
Ø
° z§

Æ
dx§dy§

| {z }
1/G§

. (5.29)

Inserting equations (5.27) and (5.28) and using the substitution s§ = x§ °
y§ cos√+ 1

2 , this can be simplified to

1
G§ =

Z1

0

Z1

0

1

1°
p

s§(1° s§)°
p

y§(1° y§)+ g§ ds§dy§, (5.30)

where it becomes apparent that the result is independent of √.
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Solving the inner integral leads to

1
G§ =

Z1

0
°º+ 4k1(g§, y§)

q
4k1(g§, y§)2 °1

µ
º

2
+arccot

q
4k1(g§, y§)2 °1

∂
dy§ (5.31)

with k1 = 1+g§°
p

y§(1° y§). After a change of integration variables, with an-

other substitution k2 =
q

4g§2 °8g§u§+4u§2 +8g§ °8u§+3 and the first-
order approximation arctan x º º

4 x for small values of g§, this is further
simplified to

1
G§ =°4

Z 1
2

0

u
£
(2+ g§ °u§)ºk2(g§,u§)° (4g§ °4u§+4)º

§

k2(g§,u§)
p
°4u§2 +1

du§. (5.32)

Unfortunately, the result of this integration can only be expressed in terms
of incomplete elliptic integrals. However, a series expansion leads to an
analytical expression that is exact if g§ approaches zero. Employing only the
first series term, the effective sheared gap for two bundles can be expressed
as

G§ = 8

º(°16arctanh
p

3
3 +16

p
3°48+24ln2°8ln g§+º)

+O(g§). (5.33)

The dimensionless effective sheared gap depends only on the dimensionless
separation distance g§ and is independent of the contact angle √ and the
elliptical cross section. The effective sheared gap approaches zero, if the sep-
aration distance approaches zero. This means that interaction forces would
become infinite for infinitesimal close contact, just as in the case of flat bun-
dles. However, the assumption of linear velocity profiles is strong and should
be compared to full solutions of Stokes’ equations on the sheared domain.
Therefore, the next section presents a parametric study of the sheared gap
that solves the creeping flow between two bundles numerically.
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5.1.5.2 Parametric study of the effective sheared gap with a micro
model

The sheared fluid between two fiber bundles is simulated to determine the
effective sheared gap t between bundles. A parametric model of the sheared
domain is built using the following parameters for a parametric sweep:

Aspect ratio of the cross section The aspect ratio of the cross section is
defined as rc = da/db. The minimum value in this application is one,
which corresponds to a circular cross section. The maximum value
investigated here is rc = 8.

Contact angle The contact angle between two bundles is described by √.
This value ranges from 15° to 90° in 15° steps, where 90° corresponds
to perpendicular bundle orientations. The angle 0° would lead to a
singularity and is excluded.

Separation distance The separation distance g describes the distance be-
tween the surfaces of both bundle geometries at the closest point. The
gap cannot be reduced to zero, because this would form a singularity
due to the infinite shear rate at the contact point and would result in
poor element quality in the sheared domain.

Load angle The direction of relative bundle motion between bundles is
denoted as load direction ±. Due to symmetry, ± is varied between −90°
and 90° in 15° steps.

A small buffer zone around the domain is added to the sheared domain to
prevent poor element quality at the sharp boundaries. An illustration of the
parametric model for one exemplary configuration is given in Figure 5.7.

Stoke’s equations for creeping flow are solved on the domain highlighted
green in Figure 5.7. The momentum balance is

0= div
µ
°pI +¥

≥
grad(v)+grad(v)>

¥∂
(5.34)
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da

db

√

g

±
m

Figure 5.7: Two fiber bundles with a sheared domain (green) between them. The elliptical cross
section is characterized by minor and major diameter db and da, respectively. The separation
distance between bundles is denoted as g and the upper bundle is placed with an angle √
towards the lower bundle. The load direction m (=direction of relative motion) is characterized
by an angle ± ranging from −90° to 90° due to symmetry. [32]

with pressure p, Newtonian viscosity ¥ and velocity v. The fluid is assumed
incompressible, hence the mass balance gives

div(v) = 0. (5.35)

The boundary conditions are illustrated in Figure 5.8. The wall in contact
with bundle Æ is fixed with zero velocity. The wall in contact with bundle
Ø is subjected to a tangential velocity with magnitude v0 and direction ±

within the shear plane. The remaining walls are subjected to a zero-pressure
boundary condition and the inflow or outflow of fluid is limited to a direction
m that corresponds to the load direction.

Figure 5.9 visualizes some computed effective sheared gaps G§ for different
aspect ratios of the cross section in each sub-figure. Each set of lines indicated
by the same plot style is composed from simulation results for contact angles
√ 2 [15°,30°,45°,60°,75°,90°]. Conversely to the analytical solution, these
results vary with load direction and small peaks occur if the load direction
matches the orientation angle.
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Figure 5.8: Boundary conditions for a sheared volume with rc = 2 and ¡=45°. The blue areas
indicate the surfaces at which boundary conditions are applied. The vectors v denote the velocity
boundary condition at the corresponding surfaces. The vector m denotes the constrained
direction of velocity at the Neumann boundaries and depends on the load angle ±. [32]

Figure 5.10 shows the mean value of the dimensionless effective sheared gap
G§ plotted against the dimensionless contact gap g§ for all contact angles
and load directions. The colored lines represent the simulation results for
different aspect ratios of the cross section, which correspond to the colors in
Figure 5.9. The error bars indicate the standard deviation within each set due
to varied contact angles and load angles. The analytical result of Equation
(5.33) is plotted as a solid black line.

The mean values of the simulation results fall on one curve in Figure 5.10
regardless of the cross section aspect ratio rc, even though the models vary
significantly in size and shape. The simplified analytical solution seems to
overestimate the effective sheared gap. This may be attributed to the pressure
distribution and resulting non-linear velocity profiles across the gap, while
the velocity profile is assumed linear in the analytical solution.

Literature values for the effective gap G§ are given for example by Le Corre et
al. [8] and Guiraud et al. [104]. Le Corre et al. estimate a value G =2.0£10−3 mm
from compression experiments for bundles with minor diameter db = 0.06 mm,
which is equivalent to G§ = 0.033. Guiraud et al. report G =1.5£10−2 mm
from pull-out experiments and db = 0.2 mm, which is equivalent to G§ =
0.075. Both literature results are added to Figure 5.10 at g§ = 0 for reference.
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Figure 5.9: Dependence of G§ on load angle for exemplary simulation results with varying
contact angles √ (line style) and varying aspect ratios (color) at different separation distances g§.
Not all simulations are included to enhance visibility. Mean values of all load angles and contact
angles are used to generate the diagram in Figure 5.10. [32]

The magnitude of these reported values is in agreement with the results of
the analytical considerations and parametric study presented here.

The analytical considerations showed that the interaction force between two
elliptical bundles becomes infinite for infinitesimal small separation distance.
However, this singularity cannot be introduced to numerical simulations.
Therefore, an offset for the effective sheared gap G§

0 º 0.04 is proposed and
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Figure 5.10: Comparison of several approaches to determine the dimensionless effective sheared
gap G§ as a function of the dimensionless separation distance g§. [32]

used in a simple fit of the results shown in Figure 5.10. One possible fit for
the simulation results is given as

G§ = 0.027arctan(65.5g§)+ g§+G§
0 . (5.36)

This approach fulfills the condition

G§|g§!0 =G§
0 (5.37)

to achieve a finite separation for bundle contact and the condition

G§|g§!1 = g§ (5.38)

for large separations where the surface curvature becomes irrelevant com-
pared to the separation.
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db
2

db
2

g °ĝ

Figure 5.11: The variables passed into the subroutine (here ĝ ) assume a cylindrical shape (dashed
lines), which overlap in this case. However, bundles of thickness db may not overlap and a gap
remains.

5.1.5.3 Implementation

Bundle-bundle interactions are implemented with a VUINTERACTION sub-
routine in Simulia Abaqus/Explicit. By default, the contact variables of any
truss or beam contact imply a cylindrical shape, but one may modify these
parameters in the subroutine to account for a different shape. In this case,
the gap is defined as

g = d + ĝ °db (5.39)

where d =
p

dadb is the equivalent cylinder diameter, ĝ is the gap between
cylinders as provided by Simulia Abaqus/Explicit’ contact solver and db is
the bundle thickness. This definition is a simple approximation to correct
the contact thickness from a cylindrical surface to an elliptical shape, as
illustrated in Figure 5.11. Strictly, this correction applies only for bundles that
are perfectly aligned with their minor axis and neglects contact of bundle
edges along the major axis. However, a contact of bundle edges is rare in SMC
compared to the contact of the relatively flat bundle surfaces. Further, the
rheology is likely dominated by the large sheared zones between bundles,
which share a contact area in the plane of their major diameters.
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In this implementation, the normal contact stress is defined as

sn =

8
><
>:
°Kcg +Kd¢vn g ∑ 0

¥
d 2

a
|sin√|

¢vn
G Ac

g > 0,
(5.40)

where Kc is the contact stiffness (typically Young’s modulus), Kd is a contact
damping parameter (typically ¥), Ac is the contact area and ¢vn is the rela-
tive velocity of the contact partners in the normal direction. The tangential
contact stresses are defined as

st =

8
><
>:
°µ

∞∞∞fn,e
ÆØ

∞∞∞
Ö
¢vt

Ü
g ∑ 0

°¥ d 2
a

|sin√|
¢vt
G Ac

g > 0
, (5.41)

where ¢vt is the relative velocity of the contact partners in tangential direc-
tion. The dependence of G on the contact gap g is modeled with Equation
(5.36).

5.1.6 Post-processing of bundles

The DBS results in a bundle configuration represented by a set of nodes and
line elements for each simulation time step. Post-processing is required to
derive macroscopic properties of the result and compare it to macroscopic
models and experimental results.

5.1.6.1 Bundle curvature

The bundle curvature is a measure for buckling of fiber bundles and is typ-
ically high in areas that experience compression during the process. The
curvature is approximated as

ck = 2
l

tan
µ

1
2

arccos
≥
p j ·p j 0

¥∂
(5.42)
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at each node k connecting two neighboring bundle segments of length l
with unit directions p j and p j 0 . This evaluation assigns each nodal position
an approximate curvature value, which can than be compared to curvature
results from computer tomography.

5.1.6.2 Contact number

To compute the total number of contacts between bundles, a distance map
between bundle element centers is computed. This distance map describes
for each bundle element center the distance to each other bundle element
center. Potential contacts occur, where the distance between two centers j
and j 0 is smaller than the segment length l . For these possible contact points,
the normal to both directions is

n=
á
p j £p j 0

à
(5.43)

and the relative position can be determined by solving the linear system of
equations

x j °x j 0 =

2
6664

p j ,x nx °p j 0,x

p j ,y ny °p j 0,y

p j ,z nz °p j 0,z

3
7775

2
6664

u1

u2

u3

3
7775 (5.44)

for u1 to u3. A contact occurs, if
ØØu1

ØØ< l /2 and
ØØu3

ØØ< l /2 (that is, the intersec-
tion is within the range of both bundle lengths) as well as

ØØu2
ØØ< d (that is, the

intersection is close enough to be considered a contact of overlapping cylin-
ders). The evaluation of contacts during the simulation allows to estimate the
influence of bundle-bundle interactions on the resulting compression force.
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5.1.6.3 Mapping of discrete orientation tensors and fiber volume
fraction

If the fiber architecture has to be compared to a macroscopic model or if the
results of the process simulation are required as input for further structural
simulation, a mapping of line elements to an arbitrary mesh is necessary.
Hence, for each cell i , the length of each potential bundle segment j in this
cell ¢li j is computed. If bundles cut a face of the cell, the length within the
cell up to the intersection point is computed, as indicated in Figure 5.12.

¢li j = l

(a) Both nodes within cell

¢li j = 0

(b) Both nodes outside cell

¢li j

(c) Partial intersection

Figure 5.12: Case distinction for computation of the length ¢li j in a cell.

The local fiber volume fraction is then approximated as

fi =º
d 2

e

4

X

j2Bi

¢li j

Vi
, (5.45)

which assumes that the remaining cell volume is filled completely by the
composite. The local discrete second order fiber orientation tensor is

Ai =
1P

j2Bi ¢li j

X

j2Bi

¢li jp j ≠p j , (5.46)
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where Bi ΩB is the set of bundles with a length ¢li j > 0 in cell i . The proce-
dure is implemented as a ParaView filter and allows generic mapping between
CAE files in the VTK file format. 3

5.2 Verification

5.2.1 Orientation evolution of a single bundle4

The motion of a single bundle in shear flow must be faithfully reproduced to
qualify the method for computation of fiber reorientation. Therefore, a fiber
bundle with a length of 25 mm and an aspect ratio of rp = 25 is subjected to
a shear rate ∞̇ = 10s°1 in this verification. The domain for this simulation
is illustrated in Figure 5.13. The bundle is placed at the center, discretized
with ten segments and positioned vertically, such that the initial orientation
is µ = 0.
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m

m

µ
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Figure 5.13: The contour plot shows a fiber bundle discretized with ten segments in a shear flow.
The color codes indicate the velocity in x-direction. The fluctuations at both fiber bundle ends
show how the two-way coupling influences the macroscopic velocity field [195].

3 The filter is available at https://github.com/nilsmeyerkit/paraview_map_lines
4 Parts of this section are based on [195].
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5.2 Verification

Figure 5.13 shows bundle position and velocity in x-direction shortly after
starting the simulation. The contour plot of the horizontal velocity compo-
nent depicted in Figure 5.13 indicates the two-way coupled nature of the
presented approach, particularly visible at the two ends of the fiber bundle.
Although the bundle is flexible, it behaves like a rigid body until alignment
with the flow due to the positive normal stress in the direction of the bundle
axis.

Figure 5.14 compares the orientation evolution of the DBS with ten truss
elements and two truss elements to the solution of Equation (2.22) with
aspect ratio an equivalent aspect ratio computed from the formula by Cox [13].
The simulation is in good agreement with the reference solution for both
discretizations.
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Figure 5.14: Comparison of bundle orientation angle computed from DBS and Jeffery’s Equation
with an bundle aspect ratio rp = 25 [195].

There is a small difference between simulation and analytical solution at
the almost horizontal state in Figure 5.14. At this point, torque induced by
friction at the lateral surface dominates bundle motion. In SMC, bundles
are heavily confined by other bundles and the mold. It is assumed that the
torque that spins a free bundle in a dilute situation is small compared to the
confinement effects and therefore is neglected here.
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Additionally, a bundle with a bundle aspect ratio rp = 25 is placed 90° to the
flow under the same conditions as in the parameter identification (see Figure
5.2 in Section 5.1.4.1) and meshed with one and ten segments. The resulting
drag force normalized with 6º¥Rv1 is 9.31 and 9.55, respectively. This is
close to each other, but slightly smaller than the drag coefficient shown in
Figure 5.3, because the averaged velocity around the bundle is smaller than
the nominal velocity far away. Nevertheless, the orientation result and the
total drag indicate that bundle motion is generally only slightly affected by
discretization. The choice of bundle discretization may be considered the
choice of which length scale of velocity disturbance is computed by the
Eulerian mesh and which length scale is included in the drag coefficients.

5.2.2 Anisotropic flow front progression

The presence of fiber bundles leads to anisotropic flow and the extreme
case of unidirectional orientation is considered in this verification. There-
fore, an initial rectangular stack of the dimensions 25mm£25mm£15mm
and fiber bundle length 10mm is compressed with 1mms°1 between two
plates and simulation results of the macroscopic reference model, the DBS
and an isotropic macroscopic model are qualitatively compared. Additional
simulation parameters can be found in Table A.2.

Tables 5.1 and 5.2 show the flow front progression of the suspension for
0.25% fiber volume fraction and 2.5% fiber volume fraction, respectively.
The left columns show isotropic results, where the stack is evenly stretched
in horizontal and vertical directions. There is a slight tendency towards a
more circular shape, as the edges of the initial stack are rounded during
compression.

The anisotropic models consider unidirectional horizontal fiber bundle align-
ment. For 0.25% fiber volume fraction, there is a slight preference for flow
perpendicular to fiber bundles, as the elongation in fiber bundle direction
is prohibited by quasi-inextensible fiber bundles. The DBS shows rounder
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Table 5.1: Semi-dilute anisotropic flow with unidirectional fiber orientation and 0.25% fiber
volume fraction.

Time Macro Isotropic Macro Anisotropic DBS

0.0 s ey

ex

2.5 s

5.0 s

corners than the mascroscopic model, which is probably due to the inhomo-
geneous dispersion of bundles in the domain (there are just 125 bundles in
the model) and specifically due to the absence of long bundles in the cor-
ners, as they are cut outside the stack. In contrast, the macroscopic model
assumes equal fiber aspect ratios at every material point without considering
the stacks boundaries. The flow front shape is similar for both models and
the anisotropy is described qualitatively correct. For a higher fiber volume
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Table 5.2: Semi-dilute anisotropic flow with unidirectional fiber orientation and 2.5% fiber
volume fraction.

Time Macro Isotropic Macro Anisotropic DBS

0.0 s ey

ex

2.5 s

5.0 s

fraction of 2.5% the anisotropy becomes more severe and there is much more
elongation perpendicular to fiber bundles than in fiber bundle direction. The
round corners of the DBS model likely arise from a lack of long fibers in the
corners. The overall comparison shows that DBS can describe the anisotropic
motion of the fluid qualitatively correct.
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5.2.3 Frictionless linear compression

To verify quantitatively correct compression forces due to anisotropic viscos-
ity, a quasi-incompressible press rheometer configuration (see Figure 4.4)
without friction is considered in this section. Therefore, an initial rectangular
stack of the dimensions X0 = 50mm,B = 50mm,h0 = 5mm is compressed
with a constant compression speed ḣ0 = 1.66mms°1 between two rigid plates.
The mold length is Xmax = 75mm, which results in an initial mold coverage
of 66% and a volumetric fill time of 1 s. Snapshots of the mold filling process
of such a configuration with 25% fiber volume fraction using DBS are shown
in Figure 5.15.

t=0 s

t=0.4 s

t=0.8 s

Figure 5.15: Snapshots of the compression molding process with 25% fiber bundles. The top
mold is not displayed for visualization purposes.

111



5 Direct Bundle Simulation

First, the resulting compression force of the pure matrix without any fibers is
computed by the analytical Equation (4.49), the 1D PDE model given in Sec-
tion 4.2, the 3D VUMAT model 4.1 and a DBS without any bundles. The results
are depicted in green colors in Figure 5.16 and show congruent compression
forces. The compression force increases non-linearly, as the magnitude of the
compression strain rate D = ḣ0/h increases non-linearly, since h is reduced
with a constant rate. The results at the very beginning are left out of this
visualization for all numerical models, because the material is initially at rest
and has to accelerate after establishing a contact with the mold.

To verify the viscosity increase due to added bundles, 300 bundles with a nom-
inal length of L = 25mm are added employing the procedure described in
Section 5.1.2. After the removal of protruding bundle elements, this equates
to approximately 1% fiber volume fraction in the stack. The DBS model
is then solved with disabled bundle-bundle interactions and with enabled
bundle-bundle interactions assuming a bundle width db = 0.5mm. As indi-
cated by orange bullets in Figure 5.16, the introduction of 1% fiber bundles
approximately triples the reaction force compared to pure matrix. The in-
corporation of short-range bundle-bundle interactions hardly changes the
result, as interaction between bundles is relatively rare. On average, the 1610
bundle segments experience 131 contact pairs resulting in only 0.16 contacts
per bundle segment, or in other words, every sixth fiber bundle is in potential
contact with another bundle at all.

For reference, the analytical solution, 1D model and 3D VUMAT model are
solved for 1% fiber volume fraction as well. These models require an estima-
tion of a fiber aspect ratio that is comparable to the generated architecture
with a length distribution due to the cutting process. The average fiber bundle
length is computed as

L̄ = 1
X0B0

ZB0

0

ZX0

0
L(x, y)dxdy (5.47)
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Figure 5.16: Comparison of analytical, 1D macro, 3D macro and DBS models to verify the
implementations and models. The abbreviation M, BM, BB stand for a matrix component, two-
way-coupled bundle-matrix interaction and bundle-bundle interactions, respectively.

and results to L̄ = 7/12L in this case, because the initial stack is small in
comparison to the bundle length. The aspect ratio definition is not unam-
biguous for fiber bundles and candidates are the ratio between some average
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fiber length and fiber diameter, equivalent bundle diameter, major bundle
diameter. For simplicity, the aspect ratio between average fiber length and
equivalent bundle diameter is chosen here, which is rp = 72.9. The analytical
solution depicted as solid orange line in Figure 5.16 uses the constant values
Axx = 0.5, Axxxx = 0.375 for the fiber orientation state, which represents an
ideal planar isotropic distribution. The solution of the 1D model is depicted
as dotted orange line and includes the computation of fiber orientation evo-
lution. It starts at the same compression force level as the analytical equation,
but the force increase exceeds it, as fibers align with the flow. The 3D VU-
MAT solution (orange dashed) matches the 1D solution precisely for disabled
short-range bundle-bundle interactions. With bundle-bundle interactions
(kD = 5, solid light orange line), the compression force is increased by a rather
small amount, which is in line with the expected behavior at this low fiber vol-
ume fraction and with the increase introduced by bundle-bundle interactions
in DBS.

At 25% fiber volume fraction, the compression force level of DBS without
bundle-bundle interactions is significantly increased compared to the previ-
ous results due to the increased in-plane elongational viscosity. Again, the 1D
solution starts at the same compression force level as the analytical solution,
but deviates with increasing time due to fiber alignment (violet solid line and
dotted line). The 3D VUMAT solution shows a slightly higher compression
force response, as this simulation requires usage of a shear number Ns = 10
to stabilize the numerical solution procedure. Very high ratios of elonga-
tional viscosity to shear viscosity tend to cause transverse shear bands that
destabilize the solution process.

In the DBS model with 25% fiber volume fraction, 87120 contacts pairs form
between the 37577 involved bundle segments on average, which means that
each segment is in contact with 4.63 other bundles. Therefore, a signifi-
cant contribution of short-range bundle-bundle interactions is expected.
Hence, bundle-bundle interactions are introduced with 0.25 mm, 0.5 mm
and 1.5 mm bundle width in the DBS model and indicated with light violet
stars, squares and triangles in Figure 5.16, respectively. The cross section area
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of bundles is not modified, such that wider bundles are proportionally flatter.
It becomes apparent, that at such a high fiber volume fraction, short-range
hydrodynamic bundle-bundle interactions indeed lead to a significant in-
crease of the compression force. The compression force increases with flatter
and wider bundles. For a width of 0.5 mm, the hydrodynamic interaction
factor kD = 5 yields similar results to the DBS.
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Figure 5.17: Evolution of discrete orientation tensor components during the linear compression
example. The abbreviations BM and BB stand for bundle-matrix interaction and bundle-bundle
interaction, respectively.

While the compression force can be altered significantly by the presence
of bundle-bundle interactions, the orientation evolution experiences only
little change. This is demonstrated in Figure 5.17 for the DBS with 25% fiber
volume fraction, where one-way coupling refers to an application of Equation
(5.18), but not Equation (5.21), which results in the same compression force as
the pure matrix behavior. The globally evaluated discrete second order fiber
orientation tensor components are hardly influenced by two-way coupling
and bundle-bundle interactions.

This section verified, that the two-way coupled bundle-matrix interaction
increases the compression force significantly. Without bundle interactions,
the analytical solution, 1D model, 3D VUMAT model and DBS predict similar
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orders of compression force magnitudes. The effect of bundle-bundle inter-
action further increases the compression force. Bundle-bundle interaction
introduces locally large interaction forces between bundles, which affect the
time step of the explicit DBS negatively. While bundle-bundle interactions
have a large effect on compression force, they have a weak effect on fiber
re-orientation, as many bundle-bundle interactions likely cancel each other
w.r.t the overall motion of a bundle. If the fiber architecture is of primary
interest in a simulation, bundle-bundle interactions could be omitted for the
benefit of better computational times.

However, the choice of rp and kD is ambiguous. The choice of rp = 72.9 is
reasonable, but it cannot be considered the definitive result, because the ref-
erence model assumes rods with constant length, while it is applied here for
bundles with a length distribution. Additionally, the application of Shaqfeh
and Fredrickson’s model at 25% is certainly beyond the semi-concentrated
regime and the aspect ratio is not uniform for all fiber bundles. A validation
with experimental results of a press rheometer is necessary to validate the
results and evaluate the importance of contributions from two-way bundle-
matrix interaction, bundle-bundle interaction and friction at the mold sur-
face. This will be addressed in Section 7.1.4 and Section 8.3.
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6 Patch model

6.1 Method development

The patches are local continuous carbon fiber reinforcements that are pre-
formed to a desired shape and subsequently co-molded with SMC. They can
be placed in critical areas of a part to provide a tailored improvement of
mechanical performance while keeping the amount of costly unidirectional
carbon fibers at a minimum. This chapter addresses the formulation of a
hyperviscoelastic model including a simple damage model.

6.1.1 Assumptions and scope

Typical shell formulations of UD fabric forming assume decoupled mem-
brane and bending behavior of the fabric, to account for the relative slip
between fibers during bending [171]. However, the investigated material is
much stiffer than fabrics in wet compression molding or thermoforming at
process conditions and does not show a clear separation between membrane
and bending properties. This assumption is verified in the characterization
experiments in Chapter 7. Given the high stiffness and the initial temperature
of the material in the process, the preform’s ability to deform further during
the molding process is limited. Patches rather disintegrate upon large defor-
mations instead of being draped into a complex shape during co-molding.
Consequently, the main objective of the co-molding simulation in this context
is a prediction of the damage initialization in patches under certain process
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conditions. Hence, a simple Hashin criterion is implemented to describe
patch damage by matrix tension during co-molding.

The patch material considered here is made from a stitch-bonded unidirec-
tional carbon fiber fabric. It is stitched with glass fiber yarn as sketched in
Figure 6.1. As a simplification of the stitching pattern, it is assumed that the
stitching can be represented by a single direction that is initially transverse to
the carbon fiber.

ª 5 mm
CF tow GF stitching

(a) Front (b) Back
Figure 6.1: Sketch of the stitching pattern of the fabric used for fabrication of the unidirectional
reinforcement patches (ZOLTEK PX35 UD300).

Considering the observed material behavior, the assumptions are summa-
rized as follows:

• Membrane and bending do not require a decoupled model

• The material can be considered hyperviscoelastic

• A Hashin damage model is sufficient to describe the observed damage

• The patches are thin and can be modeled with shell elements

• The stitching direction is initially perpendicular to the carbon fiber
direction
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6.1.2 Hyperviscoelastic model

The material response (membrane, bending, shear) is modeled based on an
Ideal Fiber Reinforced Material (IFRM). The IFRM model assumes inextensi-
ble fibers and incompressibility, which form a reaction term. The stress can
be expressed as

� =°pI +SF
°
pF ≠pF

¢
| {z }

reaction term

+⌧ (6.1)

with the hydrostatic pressure p, a fiber stress SF in fiber direction pF and an
extra-stress ⌧ , which is modeled via a constitutive equation [197, 198].

Following Dörr [199], a hyperviscoelastic model based on the IFRM is formu-
lated in the initial configuration as

S =Se +Sv +Sr (6.2)

with S denoting the second Piola-Kirchoff stress tensor. It comprises an
elastic (e), viscous (v) and reaction (r) part. The isotropic elastic part is a
hyperelastic St. Venant-Kirchoff material with

Se =
√

ĚMǦM

3ǦM ° ĚM
P1 +2ǦMP2

!
:E, (6.3)

where ĚM and ǦM are the isotropic matrix Young’s modulus and shear modu-
lus, respectively. The notation •̌ denotes that these properties depend on the
matrix damage variable. The viscous part is

Sv =F °1 ·

0
B@2¥̌M F °> · Ė ·F °1

| {z }
current configuration

1
CA ·F °>

| {z }
initial configuration

, (6.4)
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where the rate of deformation Ė is transformed to the current frame, then
multiplied by twice the patch viscosity ¥̌M and then transformed back to the
initial configuration. The reaction term is expressed as the regularization

Sr = ĚF"F
°
pF ≠pF

¢
with "F =E :

°
pF ≠pF

¢
(6.5)

representing the extension in fiber direction. Finally, the second Piola-
Kirchoff stress is transformed to the current configuration by Equation (2.83).

6.1.3 A simple damage model

Large deformations of the unidirectional patches are often accompanied by
damage in this application. Therefore, the prediction of damage initialization
during the molding process is critical to ensure that patches are designed
such that they stay intact.

Hashin developed a model specifically for unidirectional fiber reinforced
composites and distinguished the four failure modes matrix tension, matrix
compression, fiber tension and fiber compression [200, 201]. Previous obser-
vations of UD patches in co-molding show that matrix tension and tension
of stitching yarn are the dominating failure mechanisms. Tension failure of
the UD carbon fibers is hardly observed under processing conditions and
compression results more likely in instabilities than actual failure. Hence, this
section only considers damage initialization and progression under tension
loading. Patches are considered shell-like structures, allowing to apply plane
stress criteria.
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6.1.3.1 Damage initialization

Hashin suggests a smooth piece-wise failure criterion for unidirectional com-
posites [200, 201]. The initialization of matrix damage in plane stress is

µ
æ22

Y22

∂2

+
µ
æ12

Y12

∂2

= 1 , æ22 > 0 (6.6)

where æ22 denotes the elastic in-plane transverse Cauchy normal stress and
æ12 denotes the elastic in-plane Cauchy shear stress. The tensile strength
and shear strength of the matrix are given by Y22 and Y12, respectively. Fiber
tension damage is initialized at

µ
æ11

Y11

∂2

= 1 , æ11 > 0, (6.7)

where Y11 is the tension strength of the fiber and æ11 is the tensile elastic
Cauchy stress in fiber direction. Carbon fiber damage is neglected due to
their superior strength. However, the stitching yarn represents also a layer of
unidirectional fiber reinforcement and its failure is relevant to the character-
istic failure for UD patches during co-molding.

6.1.3.2 Damage progression

Strain-softening damage behavior can lead to mesh-dependent energy re-
lease in Finite Elements. To alleviate this drawback, the following damage
progression is formulated in terms of displacement instead of strain utilizing
the characteristic length lc of an element [202]. The equivalent displacement
and the initial equivalent stress at onset of matrix tension damage are

±M0 = lc

q
hE22i2 +2E 2

12 and æM0 =
lc

±M0

°
hE22ihæ22i+2E12æ12

¢
, (6.8)

respectively. Here, lc denotes a characteristic element length and h•i= 1/2(•+
|•|) is the Macaulay bracket, which is used to consider tension stress only.
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6 Patch model

The initial equivalent displacement and the corresponding initial equivalent
elastic stress at onset of fiber damage are

±F0 = lc

q
hE11i2 and æF0 =

lc

±F0

°
E11æ11

¢
, (6.9)

respectively. After damage initialization, the current matrix damage variable
DM is defined as

DM = ±Mf(±Mt °±M0)
±Mt(±Mf °±M0)

(6.10)

with
±Mt = lc

q
hE22i2 +2E 2

12 and ±Mf = 2
WM

æM0
(6.11)

representing the current equivalent displacement±Mt and the final equivalent
displacement ±Mf at which the material is completely damaged. The final
equivalent displacement is computed from the tensile fracture energy of the
matrix WM (per area due to the displacement formulation) that is dissipated
during the fracture. The matrix Young’s modulus EM, shear modulus GM and
viscosity ¥M are degraded by

ĚM = (1°DM)EM , ǦM = (1°DM)GM and ¥̌M = (1°DM)¥M. (6.12)

Analogously, the evolution of fiber tension damage is described by

DF = ±Ff(±Mt °±F0)
±Mt(±Ff °±F0)

(6.13)

with
±Ft = lc

q
hE22i2 and ±Ff = 2

WF

æF0
. (6.14)

The fiber stiffness EF is degraded by

ĚF = (1°DF)EF. (6.15)

This results in the behavior illustrated in Figure 6.2. The equivalent stress
increases linearly until it reaches æ•0, where • is either F for fiber or M for
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6.1 Method development

matrix. Further loading results in damage and linear softening, where the
final point ±•f is defined by the total fracture energy, i.e. the total area under
the solid curve. Unloading at partial damage results in the dashed line, where
the stress reduces with a flatter slope. The damage variable can never be
reduced, such that a subsequent loading would result in the identical slope.

æ•0

±•0 ±•f

Figure 6.2: Relation between equivalent stress and equivalent displacement with linear softening.

6.1.4 Implementation

The model described above is implemented in a Simulia Abaqus/Explicit
subroutine VUMAT. A single ply of patch is represented by two element layers,
one representing unidirectional carbon fibers and the matrix, and a second
one representing the stitching yarn in transverse direction. This model allows
for damage in the matrix due to shear, while the transverse stitching yarn
remains intact and can be damaged separately due to transverse tension.
Both layers share all their nodes, as illustrated in Figure 6.3.

If the damage variable approaches 1, elements may experience significant
deformation due to the stiffness degradation. Hence, elements are deleted, if
DM = 1 or DF = 1.
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6 Patch model

pF

pF

Stitching layer

UD layer
Matrix

Carbon fiber

No matrix

Stitching yarn

Figure 6.3: A single ply of patch is represented by two layers of elements. The fiber orientation
pF of the UD layer is initially perpendicular to the orientation of stitching yarn.

6.2 Verification

The implementation of the patch model is verified for a single element with
generic parameters to ensure that the model behaves as expected. A single
layer with a single element 1 mm x 1 mm x 0.1 mm is loaded transverse to
fiber direction with different fracture energies. The element is loaded beyond
its strength and then unloaded back to its initial configuration.

For a transverse stiffness EM = 10GPa and tensile matrix strength Y22 =
500MPa, results are shown in Figure 6.4. The matrix fracture energy WM =
25mJmm°2 is twice the nominal elastic energy stored after reaching Y22.
Therefore the slope after damage initiation should be identical apart from the
sign. If the fracture energy is reduced to half its value, the damage should oc-
cur instantaneous after reaching the strength. Increasing the fracture energy
should result in a flatter slope after reaching the strength limit. The depicted
behavior in Figure 6.4 agrees with these expectations. Equivalently, correct
behavior of tension in fiber direction and shear is verified.
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Figure 6.4: Single element verification of damage implementation for different matrix fracture
energies. In all cases, the stress increases with the slope prescribed by the Young’s modulus
up to the prescribed tensile matrix stress. For WM = 12.5mJmm°2, the energy (area under the
curve) is just equivalent to the fracture energy at this point and the fracture occurs suddenly. For
WM = 25mJmm°2, further displacement reduces the force with the same slope, as it previously
increased. For WM = 50mJmm°2, the corresponding slope is flatter, since the energy dissipation
until complete failure is larger. Unloading results in the expected reduced stiffness for all cases.
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7 Characterization

7.1 SMC

The primary material under investigation is a glass fiber reinforced SMC
based on an unsaturated polyester-polyurethane hybrid resin (UPPH) with
25 mm long glass fibers. The material was developed to improve co-molding
with unidirectional carbon fiber patches [170]. The employed glass fiber
multi-end roving has a total Tex of 4800 and consists of 80 strands. Hence,
cutting one multi-end roving once yields 80 fiber bundles with 200 fibers
with 14µm diameter each, that fall on the SMC carrier foil. The complete
composition of the material is given in Table 7.1. The material is produced at
Fraunhofer ICT, Pfinztal, Germany.

Table 7.1: Composition of UPPH glass fiber Sheet Molding Compound

Component Trade name Supplier Quantity

UPPH resin Daron ZW 14141 Aliancys 100.00 parts

Isocyanate Lupranat M20R BASF 19.50 parts

Release agent BYK 9085 BYK 2.00 parts

Peroxide Trignox 117 Akzonobel 1.00 part

Deaeration aid BYK A-530 BYK 0.50 parts

Inhibitor pBQ Fraunhofer ICT 0.30 parts

Glass fiber Multistar 272 Johns Manville 23 vol% (41 wt%)

It has to be noted that the material under investigation is not subject to a
rigorous quality control. Hence, the local composition and thickness varies
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7 Characterization

within a single SMC bobbin and especially between different batches. Addi-
tionally, the properties depend on manufacturing conditions, storage time,
storage conditions etc. Therefore, the goal of this characterization is to find
a reasonable approximate description of the material behavior, but not the
definitive parameterization of the material.

7.1.1 Thermal properties

The balance equations for the inner energy of the macroscopic model (4.3)
and the DBS model (5.6) are closed with the transverse heat conductivity ∑
and specific heat capacity cp of SMC. Additionally, the solution requires a
thermal gap conductance kT to model the heat flow at the contact between
SMC and mold surfaces. These parameters are identified in this section for
uncured UPPH-GF SMC material.

Method. The thermal properties are determined from temperature mea-
surements in a stack of SMC sheets and were conducted at Fraunhofer ICT,
Pfinztal, Germany. Ten sheets of 50 mm x 50 mm x 1.1 mm are stacked and
thermocouples are placed centrally between each layer. The first sensor T1 is
placed on the surface of the stack, such that it is positioned between mold
and stack as soon as the stack comes in contact with the mold. The stack is
then surrounded with glass wool insulation and placed on a mold surface
heated to 145 °C. A small weight on top of this configuration ensures proper
contact. The described setup is illustrated in Figure 7.1.

Results. The measured temperatures T of three samples are shown in Figure
7.2 as light colored lines for sensors T1 to T8 for the first 60 s after contact
initialization. The transient heat transfer is approximated as a 1D process
according to

Ωcp
@T
@t

= ∑
@2T
@z2 (7.1)
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50 mm

Mold heated to 145 °C

Insulation T1T10

z

(a) Sketch of the setup (b) Photo of the prepared stack
Figure 7.1: Setup for the evaluation of the transverse heat conductivity. Ten sheets of SMC are
stacked with temperature sensors between each layer and placed on a heated plate, while being
insulated on all other boundaries.

with z 2 [0,Ds] and the stack height Ds = 11mm. The specific heat capacity
cp is approximately 1530 J kg−1 K−1, which is estimated from data of the resin
system [203] and glass by a rule of mixture. The boundary conditions are

∑
@T
@z

ØØØØØ
t ,z=0

=°kT(TM °T ) and ∑
@T
@z

ØØØØØ
t ,z=Ds

= 0 (7.2)

with a constant mold temperature TM =145 °C. Initially, the temperature is
homogeneous at T |t=0,z = 24°C.

An optimal fit to the measured data is obtained by solving the initial value
problem for an initial guess of ∑ and kT, computing a scalar squared error and
minimizing the error iteratively. The solution of Equation (7.1) with optimal
parameters (summarized in Table 7.2) is plotted at the sensor positions in
Figure 7.2.

Discussion. The results for senors T9 and T10 are not considered, as they
do not show any relevant change during the time frame investigated here.
The experimental data deviates from the numerical solution of (7.1) due to
manufacturing related inhomogenities and uneven sheet thickness. The
fitted parameters are considered an averaged idealization of the heat transfer
process. The specific heat capacity just affects the heat flux into the SMC, but
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Figure 7.2: Measured temperatures (light colored lines) and best fit based on one-dimensional
heat transfer equation (dark colored lines) for sensors T1 to T8

Table 7.2: Thermal properties of UPPH-GF SMC in B-staged state.

Property Symbol Value

Thermal conductivity ∑ 0.163 W m−1 K−1

Gap conductance kT 403 W m−2 K−1

Specific heat capacity cp 1530 J kg−1 K−1

not the resulting temperature. Hence, an error in the approximation from the
rule of mixture does not affect the resulting temperature profiles in this fit
or the non-isothermal simulations presented later, if the same specific heat
capacity is used in both cases. The heat flux might be computed inaccurately,
if the specific heat capacity is inaccurate, but this is of no interest in this work.

7.1.2 Paste viscosity

The viscosity of the pure paste ¥(T, ∞̇) with additives, but without fibers, is
of major interest to this work. It is used in the macroscopic reference model
from Chapter 4 (see Table 4.1) and it is needed in the DBS from Chapter 5.
For example, the DBS requires the paste viscosity for the matrix contribution
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7.1 SMC

in Equation (5.7), to compute drag forces in Equation (5.18) and to compute
lubrication forces between bundles in Equation (5.25).

Method. Specimens for viscosity measurement of the SMC paste are prepared
by filling the paste in a mold instead of processing it on the SMC line after
mixing. The mold is filled up to approximately 1 mm thickness and sealed
with a styrene tight foil. The paste is matured for two weeks at room tempera-
ture similar to the SMC for molding. Round coupons of 25 mm diameter are
cut from the cured paste and placed in a Anton Paar MCR 501 rheometer at
Fraunhofer ICT, Pfinztal, Germany in plate-plate configuration. The viscosity
is measured in oscillatory mode at 20 °C, 40 °C and 80 °C for three specimens
each.

Results. The measured viscosity shows typical power-law behavior, as de-
picted in Figure 7.3. The displayed viscosity refers to the norm of the mea-
sured complex viscosity.

10°1 100 101 102
10°1

100

101

102

Shear rate ∞̇ in s−1

V
is

co
si

ty
¥

in
kP

a
s

20°C
40°C
80°C

Figure 7.3: Measured viscosity (points) and best fit.
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As the power-law behavior has a singularity at zero shear rate, a Cross-WLF-
like model

¥(T, ∞̇) = ¥0(T )

1+
≥
∞̇
∞̇0

¥1°n with ¥0(T ) = D1e
°Æ1(T°T§)
Æ2+(T°T§) (7.3)

is used to model the paste viscosity. A fixed transition shear rate ∞̇0 = 0.1 is
employed to limit the viscosity at small shear rates. The power-law coefficient
n, transition shear rate ∞0 and parameters T §, D1, Æ1, Æ2 are fitted to the
experimental results. The fit is obtained by minimizing the squared sum
of the normalized least-squares error at each measured temperature for all
specimens. The results of the best fit are illustrated in Figure 7.3 and the
optimal parameters are summarized in Table 7.3.

Table 7.3: Viscous properties of UPPH paste in B-staged state.

Property Symbol Value

Reference viscosity D1 72 kPa s

Transition shear rate ∞̇0 0.1 s−1

Power-law coefficient n 0.385

Temperature parameter T§ 40.73 °C

Fitting parameter Æ1 7.94

Fitting parameter Æ2 105.96 °C

Discussion. All computed values of the fit displayed in Figure 7.3 are within
the measured data range, except for low shear rates at 80 °C. The parameters
should not be considered strictly Cross-WLF parameters, as the experimental
data in Figure 7.3 shows no plateau. The model is mainly chosen to smoothly
transition to a finite viscosity as the shear rate approaches zero.
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7.1 SMC

7.1.3 Compaction

In both models, the macroscopic reference model from Chapter 4 and the DBS
from Chapter 5, pressure is related to the volumetric strain via an equation
of state p(¢"). This relation is obtained in this section as tabulated data for
subsequent simulations.

Method. SMC stacks of 800 mm x 450 mm size, which represents 100% mold
coverage, are consolidated in a Dieffenbacher DYL630/500 hydraulic press
with parallelism control at Fraunhofer ICT, Pfinztal, Germany. The mold
temperature is 145 °C and the mold closes with a constant speed of 1 mm s−1.
Automated cutting of SMC sheets ensures an accurate initial mold coverage
and compression data (force, mold displacements) is recorded during the
trials. The expected relation between volumetric strain and pressure is illus-
trated in the schematic in Figure 7.4: Upon first contact, the bulk material
offers small resistance to compression, as trapped air is compressed and
released. The resistance increases, as an increasing amount of pores is closed
and air escapes until the maximum compression force is reached. At this
constant compression force, the material first expands due to heating and
consequently shrinks due to cross linking of the thermoset. Finally, the cured
part expands elastically as the compression force is relaxed and the mold
opens. The final recorded gap is the part thickness.

Results. The measurement in Figure 7.5 shows the behavior sketched in
Figure 7.4 for three samples molded with the identical configuration of three
SMC sheets each and is plotted with light colors. The thickness of the de-
molded part is indicated by dots and is in agreement with the measured
displacement at release. However, the entire mold and press are elastic and
an empty stroke is used to subtract the pressure-dependent mold displace-
ment. The so corrected measurements are plotted in dark colors in Figure 7.5.
Only the region of the rising flank is of interest for the compression molding
simulation here. Therefore, these points are extracted and plotted over the
Hencky strain ¢" = log(h/h0) in Figure 7.5. An averaged relation between
strain and pressure is obtained by averaging the strains at various pressure
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Figure 7.4: Schematic relation between pressure and mold gap for compression. 1) First contact
between mold and SMC stack. 2) The maximum compression force is reached. 3) The maximum
thermal extension is reached. 4) The part is fully cured. 5) The part is demolded.

levels. This tabulated data (see Table 7.4) is then used to interpolate the
equation of state p(¢") in subsequent simulations. In rare cases, where the
tabulated data range is exceeded, the data is extrapolated linearly.

Table 7.4: Relation between Hencky strain and pressure for UPPH-GF SMC in B-staged state.

Hencky strain¢" Pressure p in MPa

-0.0000 0.0

-0.0770 6.3

-0.1098 12.6

-0.1325 18.9

-0.1496 25.3

-0.1638 31.6

-0.1749 37.9

-0.1840 44.2

-0.1923 50.5

-0.1982 56.8

Hencky strain¢" Pressure p in MPa

-0.2029 63.2

-0.2073 69.5

-0.2116 75.8

-0.2167 82.1

-0.2219 88.4

-0.2270 94.7

-0.2317 101.1

-0.2349 107.4

-0.2378 113.7

-0.2407 120.0
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Figure 7.5: Compressive behavior of the SMC. (a) The recorded data (light color) is corrected with
the stiffness of the mold and press, which is determined from an empty stroke. The corrected
data is shown in dark colors and the final part thickness agrees with the recorded mold gap
measurements. (b) The rising flank is extracted and an interpolation is used as tabulated data to
describe the relation between Hencky strain and pressure.

Discussion. The resin system under investigation shows compressible be-
havior, as previously reported in [155]. The measurement agrees with the
proposed mechanisms, although the dependence on these specific mech-
anisms is not explicitly proven. The result may be negatively affected by
spillage through the mold gap, but the amount of material lost by spillage is
typically rather small compared to the bulk material. Only the rising flank
is considered relevant for compression molding simulations, because the
loading in this application is monotonic. However, the overall behavior is
irreversible, as seen in Figure 7.5a. Finally, the temperature dependence
and rate dependence of the paste viscosity may introduce an error to this
quasi-static analysis, if the ability to close pores is affected by resin flow.
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7.1.4 Friction at mold surface

The friction between mold and SMC is an important factor in any SMC com-
pression molding model and is introduced in Section 4.1.4. It can be deter-
mined experimentally from pressure differences in a press rheometer, which
has been introduced in Section 4.2 and Figure 4.4. This section reports pres-
sure results from molding trials with a press rheometer and discusses several
friction models in a parametric study with the one-dimensional model from
Section 4.2.

Method. The press rheometer is equipped with up to 13 Kistler 6167ASP1.6
pressure sensors, which can measure pressures up to 200 bar at mold temper-
atures up to 200 °C. The placement of these sensors in the mold is illustrated
in Figure 7.6 and the outer dimensions of the mold are 800 mm x 450 mm.
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Figure 7.6: The pressure sensors P1 to P10 are placed along the center line at 32 mm, 146 mm,
248 mm, 350 mm, 450 mm, 552 mm, 604 mm, 654 mm, 709 mm and 764 mm. The sensors P11 to
P13 are positioned in a perpendicular line at 500 mm.

Trials are performed in collaboration with Sergej Ilinzeer at Fraunhofer ICT,
Pfinztal, Germany with stack dimensions 600 mm x 450 mm (3 layers, 75%
mold coverage) and 400 mm x 450 mm (4 layers, 50% mold coverage) on a
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7.1 SMC

Dieffenbacher COMPRESS PLUS DCP-G 3600/3200 AS hydraulic press with
parallel cylinder control. The mold is heated to 145 °C for all trials and is
closed with a constant speed ḣ = °1mms°1 until the compression force
reaches 4400 kN. After reaching the maximum compression force, the mold is
kept closed for 120 s to cure the resin and plates are subsequently demolded.
The pressures of sensors, displacement of hydraulic cylinders and compres-
sion force are recorded during the trials. The recorded data of five specimens
in each configuration is aligned at the switch-over point to force control. This
point is t = 0 in the evaluation, hence t < 0 means that the press operates in
displacement control and t > 0 means that the press tries to keep the force to
a constant value of 4.4 MN.

The press rheometer is modeled by the one-dimensional model developed in
Chapter 4, which describes the SMC as an anisotropic, compressible, non-
Newtonian, non-isothermal material with the parameters determined in the
previous sections. All parameters of the numerical model except for the fric-
tion model are determined independently from the press rheometer. Hence,
the one-dimensional model is used to efficiently vary frictional parameters to
find a qualitatively and quantitatively fitting model. The objective is to find
a single parameterization that can describe the effects observed in the 50%
coverage and 75% coverage trials.

Results. First, the friction coefficient of a hydrodynamic power-law friction
model is varied in the range 1.0 MN s m−3 to 4.0 MN s m−3 with a constant
power-law coefficient m = 0.6 and reference velocity v0 = 1mms°1. These
are typical values reported for SMC in literature measured after the squish
phase for stable plug-flows [3, 147, 148, 150].

The simulated press data and experimental press data of the 75% mold cover-
age configuration are shown in Figure 7.7. Regardless of friction parameters,
the computed final gap is larger than the experimentally observed thickness.
The initial compression force is similar for all tested friction coefficients, but
the final time at which the virtual press controller switches to force control is
earlier for higher hydrodynamic friction coefficients. In the force controlled
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Figure 7.7: Press data and pressures at 75% mold coverage for different hydrodynamic friction
coefficients ∏ - experiment (light colors) and 1D model (dark colors).

phase, the numerical compression force oscillates. The numerical compres-
sion forces for higher friction are closer to the experimental force and the
earlier switching point leads to a reduced slope of the gap, which resembles
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the experiments well, except for the different final thickness. However, com-
pression force and mold displacement alone do not allow for an unambiguous
calibration of the friction parameters. The compression force is a holistic
measure that does not distinguish the contributions from friction and the
behavior of the SMC itself. Therefore, the pressures at the sensor positions of
the model are compared to the measured pressures, too. At ∏= 1.0MNsm°3,
the spread between the highest pressure and lowest pressure is much smaller
than in the experiments and the last sensor is triggered too early. An increase
to ∏ = 2.0MNsm°3 increases the spread, but still does not result in a suffi-
ciently large initial slope of the leftmost sensors. For ∏ = 3.0MNsm°3 and
∏= 4.0MNsm°3, the computed pressures agree well with the experiments in
terms of spread, slope, absolute pressure level and compression time.

The results for 50% mold coverage are depicted in Figure 7.8. The resulting
gap and part thickness agree and larger friction coefficients result in a dis-
placement profile closer to the experiment. The compression force increases
with a similar slope for all tested friction parameters during the initial squish
phase. Beyond that, the compression force is closer to the experimental
value for larger values of ∏, but does not describe the initial hump in the
force profile. The compression time from first contact to the switch over
point and complete fill agrees well with the experiment for ∏= 3.0MNsm°3

and ∏ = 4.0MNsm°3. The pressure plots corroborate the observations of
press data. The hydrodynamic friction model is not able to predict the initial
pressure peak of the experiment with 50% initial mold coverage. However,
the solution with ∏= 3.0MNsm°3 predicts the slopes correctly in the force
controlled phase (t > 0). The time at which each pressure sensor is triggered
agrees with experiments as well, which indicates a correct compressibility
model.

The hydrodynamic friction model does not apply any resistance to a stack
motion relative to the molds at absent relative velocity. The initial hump in
the experimental data might be caused by such a sticking behavior, though.
Therefore, also constant friction is implemented in the one-dimensional
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Figure 7.8: Press data and pressures at 50% mold coverage for different hydrodynamic friction
coefficients ∏ (ø0 = 0Pa) - experiment (light colors) and 1D model (dark colors).

model from Section 4.2 (see also Equation (4.49) for the corresponding ana-
lytical solution) and varied between 30 kPa and 200 kPa. A constant friction
value of 30 kPa has been previously employed successfully to describe the
friction of the considered SMC material [6]. The resulting simulated press
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Figure 7.9: Press data and pressures at 50% mold coverage for different constant friction stresses
ø0 (∏= 0Nsm°3) - experiment (light colors) and 1D model (dark colors).

data is compared in Figure 7.9. The compression force increases rapidly until
the capability of the sticking friction is exceeded and then increases slower
with an increase of friction caused only by the increased contact area between
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SMC and molds. The experimental kink in the compression force curve is
between the simulated compression forces with 100 kPa and 200 kPa.

Discussion. At 75% initial mold coverage, the computed final gap is larger
than experimentally observed gap. As the initial thickness is a fixed value
and the compressibility is known from Section 7.1.3, this indicates a loss of
material through the mold gap in the experiment, while the simulated mass
remains constant throughout the process. The numerical compression force
oscillates in the force controlled phase, as the solver uses large time steps
in this phase, which makes it more difficult for the controller to maintain a
constant force.

The simulation model with 50% initial mold coverage predicts a monotone
increase of pressure from the flow front to the other end of the mold due to
its plug-flow assumption. This is in disagreement with the experiment, where
the inner layers get squeezed out of the stack and hence lower pressures are
observed at the first sensor position (green curve) compared to the second
sensor (orange curve). This will be discussed in more detail in Section 8.3.

The constant friction allows to modify the compression force at which the
flow starts, but at high constant friction values, the mold would need much
more time to fill than experimentally observed. This can be seen by a flat
displacement slope in the force controlled phase. The pressure sensor results
show how a constant friction is able to describe the initial pressure level. How-
ever, without reduction of this value after the initiation of flow, the pressure
spread is vastly overestimated.

This parameter study leads to the conclusion that both, an initial sticking
behavior with ø0 = 100 kPa to 200 kPa as well as a hydrodynamic friction,
are required to model the full SMC compression molding process including
squish flow and a stable plug flow. Hence, the friction model from Equation
(4.13) is parameterized according to Table 7.5.
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7.2 Patches

Table 7.5: Mold friction parameters

Property Symbol Value

Stick friction stress ø0 150 kPa

Transition velocity vt 10 mm s−1

Reference velocity v0 1 mm s−1

Power-law coefficient m 0.6

Hydrodynamic friction coefficient ∏ 3.0 MN s m−3

7.2 Patches

The unidirectional carbon fiber reinforced patches are produced from ZOLTEK
UD300 stitch bonded non-crimp fabric UD300 with 50K PX35 rovings at
Fraunhofer ICT, Pfinztal, Germany [170]. Compared to the SMC formulation,
the composition (see Table 7.6) is designed such that the B-stage is reached
faster. This enables direct cutting after production of the semi-finished
patches without a long maturing phase. Like the SMC production, the manu-
facturing process of semi-finished patch material is not subjected to quality
control. Local dry spots due to insufficient impregnation, wet spots due to
insufficient mixing of the components and uneven patch thickness distribu-
tion occur frequently in the semi-finished material. This is accompanied by
a dependence on individual batch production conditions and the storage
time until processing or testing. These conditions lead to large scatter of the
semi-finished patches. Nonetheless, an attempt is made to approximately
determine the properties of this material.

7.2.1 Thermal properties

Similar to the SMC, transverse heat conductivity ∑, specific heat capacity
cp and thermal gap conductance kT are required to solve the balance of
inner energy in patches. The parameters are determined analogously to the
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Table 7.6: Composition of UPPH patches

Component Trade name Supplier Quantity

UPPH resin Daron 41 Aliancys 100.00 parts

Isocyanate Lupranat M20R BASF 25.00 parts

Impregnation aid BYK 9076 BYK 3.00 parts

Styrene Mono styrene BASF 2.90 parts

Release agent BYK 9085 BYK 2.00 parts

Peroxide Trignox 117 Akzonobel 1.00 part

Inhibitor pBQ Fraunhofer ICT 0.30 parts

Accelerator BorchiKat 0248 Borchers 0.17 parts

Carbon fiber PX35 UD300 ZOLTEK 50 vol% (62 wt%)

procedure described in the previous Section 7.1 at Fraunhofer ICT, Pfinztal,
Germany.

Method. Six patches of 50 mm x 50 mm x 0.45 mm are stacked and thermo-
couples are placed centrally between each layer. The first sensor T1 is placed
on the surface of the stack, such that it is positioned between mold and stack
as soon as the stack comes in contact with the mold. The stack is then sur-
rounded with glass wool insulation and placed on a mold surface heated to
145 °C. A small weight on top of this configuration is used to lightly press the
stack against the mold surface.

Results. The measured temperature profiles are shown in Figure 7.10 with
light colored lines. The resulting properties of the best fit and the specific
heat capacity from rule of mixtures are listed in Table 7.7. The solution of the
one-dimensional heat transfer Equation (7.1) with these optimal parameters
is plotted in dark colors in Figure 7.10.

Discussion. The heat transfer from mold to the stack is faster than in SMC,
but the transverse conduction within the stack is similar to the SMC. A pos-
sible source of error is the adhesion quality of the patches, which is not as
good as the adhesion between SMC sheets. Therefore, the transverse heat
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Figure 7.10: Measured temperatures (light colored lines) and best fit based on one-dimensional
heat transfer equation (dark colored lines) for sensors T1 to T6.

Table 7.7: Thermal properties of UPPH-CF UD patches in B-staged state.

Property Symbol Value

Thermal conductivity ∑ 0.128 W m−1 K−1

Gap conductance kT 670 W m−2 K−1

Specific heat capacity cp 1195 J kg−1 K−1

conductivity could be underestimated due to imperfect interface bonding
between patch plies.

7.2.2 Tensile stiffness and strength

The patch model in Chapter 6 requires the Young’s modulus in carbon fiber di-
rection E 0

F and in stitching yarn direction EF as well as the matrix Young’s mod-
ulus EM. Further, the corresponding strengths Y 0

11, Y11 and Y22 are needed to
parameterize the model. Hence, these values are approximated via tensile
tests at different temperatures in this section.

Method. Pre-impregnated stitched specimens with dimensions 20 mm x
160 mm x 0.45 mm are tested under tensile loading with a clamping length of
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80 mm at KIT IAM-WK, Karlsruhe, Germany. At room temperature, specimens
are tested on a ZwickRoell Z2.5 universal testing machine with 3 mm min−1

and 300 mm min−1 deformation velocities. For specimens with fiber orien-
tation in loading direction, testing is started after applying a tension load of
100 N and the stiffness is evaluated at 0.3% strain. For specimens with fiber
orientation perpendicular to the loading direction, testing is started after ap-
plying a tension load of 2.5 N and the stiffness is evaluated at 0.3% strain. Five
specimens were tested in each configuration, but only four experiments can
be considered valid for transverse testing, as other specimens experienced
damage within the clamping area (see Figure 7.11).

Figure 7.11: Tensile test with fibers oriented perpendicular to the loading direction are con-
sidered valid if failure occurs outside the clamped region. If progressive damage occurs in the
clamped region, the test is considered invalid.

Figure 7.10 shows that the top part of the patch closest to the mold surface
(orange sensor) reaches a temperature of 70 °C to 90 °C after 10 s. Only the
sensor in direct contact to the mold exceeds this temperature. As co-molding
processes are typically shorter than 10 s, a temperature of 80 °C is considered
as the upper limit for a homogeneously heated patch for characterization. At
this temperature, specimens are tested on an INSTRON ElektroPuls E3000
universal testing machine equipped with a temperature chamber. The same
deformation rates and initial forces as for room temperature are applied.
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7.2 Patches

Results. The results of five specimens per rate tested at room temperature
and in fiber direction are shown in Figure 7.12a. The strength in fiber direc-
tion exceeds the capabilities of this machine. The resulting stiffness with
perpendicular fiber orientations at room temperature is shown in Figure
7.12b and the strength is shown in Figure 7.12c.

0 5 10 15 20 25
3 mm min−1

300 mm min−1

(a) Tensile stiffness in fiber direction in GPa

0 0.5 1 1.5 2 2.5
3 mm min−1

300 mm min−1

(b) Tensile stiffness perpendicular to fiber direction in GPa

0 5 10 15 20 25
3 mm min−1

300 mm min−1

(c) Tensile strength perpendicular to fiber direction in MPa

Figure 7.12: Tensile stiffness and strength at 20 °C.

The resulting tensile stiffness in fiber direction at 80 °C is shown in Figure
7.13a. Tensile stiffness and strength at 80 °C for fibers oriented perpendicular
to the load direction are shown in Figure 7.13b and 7.13c, respectively.

Discussion. The tensile stiffness in fiber direction does not depend on defor-
mation rate and temperature. It is considered a constant value of E 0

F = 14GPa
subsequently. The tensile strength in fiber direction is high enough to con-
sider fracture in the direction of carbon fibers negligible. The tensile stiffness
perpendicular to fibers shows no statistically significant dependence on the
deformation rate, but it is temperature dependent. The summed stiffness
in perpendicular direction is approximately EF +EM = 1.3GPa at 20 °C and
0.4 GPa at 80 °C. To parameterize the model and separate the yarn stiffness
from the matrix stiffness, some rough approximations are made: It is as-
sumed that the transverse stiffness at higher temperatures is dominated by
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Figure 7.13: Tensile stiffness and strength at 80 °C.

the stitching yarn and hence the stitching yarn stiffness is approximated by
EF = 0.3GPa. Similar to the carbon fibers, this fiber stiffness and strength is
assumed to be independent of temperature, and the strength is conserva-
tively estimated as 3 MPa. The matrix is assigned a tensile stiffness of 1.0 GPa
and strength of 16 MPa at 20 °C, which are linearly discounted by a factor of
1/10 for an increase to 80 °C. This is certainly just a very rough estimation of
the tensile properties, but large scatter has been observed between individual
batches of the patch material depending on the impregnation quality and
storage conditions. A robust quality control in the production process is
necessary to determine exact properties. Nonetheless, the obtained values
give a reasonable estimation to demonstrate the co-molding model. The set
of parameters in Table 7.8 is applied in later computer simulations for the
tensile parameterization of the patches.

7.2.3 Bending stiffness

Bending in a rheometer enables access to the bending properties, if bend-
ing stiffness and membrane stiffness are decoupled, as observed in many
prepregs [199, 204]. This section investigates whether such a decoupling has
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7.2 Patches

Table 7.8: Tensile properties used for simulation of carbon fiber UD patch in B-stage

Property Symbol 20 °C 80 °C

Young’s modulus in carbon fiber direction E 0
F 14 GPa 14 GPa

Tensile strength in carbon fiber direction Y 0
11 "1" "1"

Young’s modulus in stitching yarn direction EF 0.3 GPa 0.3 GPa

Tensile strength in stitching yarn direction Y11 3 MPa 3 MPa

Young’s modulus of matrix EM 1.0 GPa 0.1 GPa

Tensile strength of matrix Y22 16 GPa 1.6 GPa

to be considered for the deformation in the SMC co-molding process, where
relatively stiff patches are placed initially at room temperature into the mold.

Method. A photo of the bending apparatus in an Anton Paar MCR 501 rheome-
ter, which is applied for this investigation at Fraunhofer ICT, Pfinztal, Ger-
many, is shown in Figure 7.14a. The specimen dimensions are 25 mm x
50 mm x 0.45 mm. They are subjected to nominal rotation rates of 0.1 min−1,
1 min−1 and 10 min−1 at 25 °C as well as 0.1 min−1 and 10 min−1 at 80 °C. The
prescribed deflection angle Æb ranges from 0° to 60°. The kinematics of the
apparatus lead to a nominal curvature of the specimen

∑b = r0 cosÆb + r0(1+cosÆb)cotÆb (7.4)

with the distance from clamps to the pivot point r0 = 9.5mm (details may
be found in Appendix A.1). The Young’s modulus for bending may then be
approximated by beam theory

EF,b =° Mb

Ib∑b
(7.5)

with the bending moment Mb and the moment of area Ib for deflection angles
Æb 6= 0.

Results. The results are shown in Figure 7.14b. The initial large values are
caused by the singularity in Equation (7.5). The subsequent increase of values
is the build up of tension closing the clearance between the apparatus and
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specimen, which was larger during the trials at 80 °C. The maximum and
minimum Young’s modulus determined from tensile testing are added as gray
dashed lines for reference.

(a) Photo of the bending setup
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(b) Results of the bending tests

Figure 7.14: Rheometer bending test of the patch material. The solid lines in (b) indicate results
at 25 °C, the dashed lines indicate results at 80 °C.

Discussion. The approximated stiffness at 25 °C is even larger than during
the tensile tests. This can be attributed to either friction in the apparatus,
or the fact that these specimens come from a different batch. The stiffness
at 80 °C is about 5 MPa, which is rather an underestimation due to the play
in the apparatus during these tests, which leads to an overestimation of the
curvature ∑b in Equation (7.5). In any way, the bending stiffness is in the
same order of magnitude as the tensile stiffness. The conclusion is that the
behavior of these patches seems not decoupled and can be described by
conventional shell elements.
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7.2.4 Shear stiffness and strength

In addition to the tensile properties, the shear stiffness GM, shear strength
Y12, shear viscosity ¥M and fracture energy WM are required to complete the
patch model from Chapter 6. These parameters are obtained in this section
from bias extension tests.

Method. The shear stiffness and strength are obtained from bias extension
tests at KIT IAM-WK, Karlsruhe, Germany with a setup similar to that used by
Schirmaier [205]. Specimens with dimensions 160 mm x 80 mm x 0.45 mm
and with 45° fiber orientation are prepared on an automated cutting table
by Zünd Systemtechnik AG, Altstätten, Switzerland. They are subjected to
5 mm min−1, 50 mm min−1 and 500 mm min−1 deformation rates on a Zwick-
Roell Z2.5 universal testing machine at room temperature (see Figure 7.15).
Additional tests are performed at 80 °C on a ZwickRoell Zmart.Pro universal
testing machine equipped with a temperature chamber at 5 mm min−1 and
400 mm min−1 deformation rates. The free length is 135 mm and adhesive
tape is employed to improve the fixation in the clamped region.

The deformation is measured via Digital Image Correlation (DIC) with an
unstructured pattern of white marker points. The marker points are painted
on the rovings of the patches to enable an evaluation of the deformation
between individual rovings (see Figure 7.16a). Contrary to dry fabrics, which
can be evaluated with a regular grid [205], the points are distributed in an
unstructured grid, as rovings are deformed from the manufacturing process
of the patch and not equally spaced. The deformation is recorded with a
Canon EOS 70D DSLR camera at 30 frames per second with a resolution of
4 pixels mm−1. The gray-value image is seeded with tracking points based on
regional brightness maxima of the image (see Figure 7.16b). A MathWorks
Matlab DIC tool [206] is used to compute the deformation of these tracking
points with a correlation window size of 21 pixels x 21 pixels. The resulting
deformation of the tracking points is then imported to Paraview for further
processing. A Delaunay triangulation is employed to generate a mesh be-
tween tracked points (see Figure 7.16c). After removing strongly distorted
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(a) Sketch of the bias extension setup (b) Photo of the bias extension setup
Figure 7.15: Bias extension test. The region without clamped carbon fibers is subjected to shear
deformation.

elements, the displacement can be interpolated with shape functions (see
Figure 7.16d) and the deformation gradient of each cell is computed. The
employed deformation measure is the Green-Lagrange strain (see Equation
(2.80)), which is computed from an element-size weighted average of all
elements.

Results. The resulting shear stress at room temperature is shown in Figure
7.17a for all tested samples. It is plotted over the Green-Lagrange shear strain
obtained from DIC.

The scatter between individual specimens in terms of stiffness and especially
in terms of strength is large. There is a statistically significant rate dependency
with a steeper initial slope at higher deformation rates (see Figure 7.18a), but
not distinct rate effect on strength (see Figure 7.18b). The results at 80 °C are
shown in Figure 7.17b for fewer samples. There is also large scatter between
samples and no distinct rate effect (see Figure 7.19).
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(a) Marker points (b) Initialization (c) Mesh (d) Evaluation
Figure 7.16: Steps for DIC analysis. (a) The specimen is prepared with white marker points. (b)
The tracking points are identified in the initial frame. (c) The resulting deformed points are
interpolated by Delaunay triangulation (d) The displacement field is interpolated with shape
functions and deformation measures are evaluated on the evaluation mesh.
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(a) Results of the shear tests at 20 °C
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(b) Results of the shear tests at 80 °C

Figure 7.17: Shear test results. The deformation of the highlighted dark colored specimen is
displayed in Figure 7.20.

The failure at 20 °C varies between abrupt fracture in well impregnated
patches to a progressive damage in patches with lower impregnation quality.
A representative sample for such a progressive failure is highlighted in dark
color in Figure 7.17a and the deformation is shown in Figure 7.20. The dis-
played strain is the maximum principal value of the Green-Lagrange strainq

(Exx °Eyy)2 +E 2
xy obtained from DIC. The specimen fails under shear load

first. This corresponds to the first peak in Figure 7.17a and can be seen as a

153



7 Characterization

0.00 0.05 0.10 0.15 0.20 0.25
5 mm min−1

50 mm min−1
500 mm min−1

(a) Shear stiffness in GPa

0 2 4 6 8 10
5 mm min−1

50 mm min−1
500 mm min−1

(b) Shear strength in GPa

Figure 7.18: Shear stiffness and strength at 20 °C.
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Figure 7.19: Shear stiffness and strength at 80 °C.

shift between bundles at the localized shear zone in Figure 7.20b. Then the
stitching yarn fails progressively with the formation of a single shear band
parallel to the rovings.

Discussion. The shear stiffness at 5 mm s−1 test velocity is 0.110 GPa at 20 °C
and increases apparently with increased deformation rates. For 500 mm s−1

test velocity, the rate Ė12 is nominally 0.06 s−1 and at E12 = 0.01 the shear
stress is º 3.5 MPa. This suggests a shear viscosity of approximately 10 MPa s
with the model in Equation (6.4). The value ¥M = 10MPas is subsequently
used as a rough approximation of the matrix viscosity of the patch without
considering shear-thinning effects. The fracture energy of 5 mJ mm−2 is esti-
mated from the enclosed area under the stress-displacement curve. Similar to
the tensile properties, all matrix properties are simply linearly discounted by
a factor 1/10 for a temperature increase from 20 °C to 80 °C. The results may
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Figure 7.20: Experimental deformation at 20 °C for different crosshead travel states. The failure
causes local loss of some facets, if these cannot be accurately correlated in a picture after cracks
occur.

be negatively affected by the introduction of adhesive tape in the clamping
region, even though the evaluation of strains via DIC negates some of this
error. The set of parameters in Table 7.9 is used in later simulations for the
shear parameterization of patches.

Table 7.9: Shear properties used for simulation of carbon fiber UD patch in B-stage

Matrix property Symbol 20 °C 80 °C

Shear modulus GM 0.110 GPa 0.011 GPa

Shear viscosity ¥M 10 MPa s−1 1 MPa s−1

Shear strength Y12 6 MPa 0.6 MPa

Fracture energy WM 5 mJ mm−2 0.5 mJ mm−2

Simulation. To verify correct qualitative and quantitative behavior of the pa-
rameterized model, the bias extension test is simulated with the patch model
described in Chapter 6 and using the material parameters from Table 7.7, Ta-
ble 7.8 and Table 7.9. The modeling domain is partitioned in clamping regions
and free region (see Figure 7.21). The free region is further partitioned with
5 mm wide sections representing the width of rovings in the patch. As this
is a characteristic length of the specimen, the entire domain is meshed with
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triangular elements of approximately 5 mm edge length. The partitioning
ensures that one edge of each element is always oriented in fiber direction.

horizontally fixed

horizontally fixed

locked free

fixed

prescribed motion

Figure 7.21: Boundary conditions and partitioning of the simulated bias extension test.

The patch clamping is critical and boundary conditions are chosen carefully.
The clamping regions are coupled to reference points with kinematic con-
straints that prohibit any motion in the direction of carbon fiber rovings. How-
ever, the transverse motion is not constrained, as the experimental clamping
does not reliably prohibit this motion. Instead, the edges marked at the top
right and bottom left in Figure 7.21 have constrained horizontal displacement
to ensure that the upper clamping does not deviate from the loading axis.
The recorded time-displacement curve from the testing machines are then
applied to the upper reference point, while the lower reference point remains
in a fixed position.

The resulting deformation behavior is illustrated in Figure 7.22. First, the
shear band forms and leads to a localized shift between bundles in Figure
7.22b. The position of the shear band is determined by numerical or experi-
mental imperfections. Its formation is observed either at the upper position
or at the lower position. Even after complete failure of the matrix material,
the stitching yarn still holds both halves of the specimen together (see Figure
7.22c). Finally, the stitching breaks completely and the specimen is sepa-
rated (see Figure 7.22d). This behavior qualitatively matches the observed
experimental behavior shown in Figure 7.20.
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Figure 7.22: Simulated deformation of a patch under bias extension loading at 20 °C and
500 mm min−1. The colormap shows the maximum principal value of the Green-Lagrange
strain with pink color representing values that exceed the color range.

The corresponding force-displacement curves are shown in Figure 7.23,
where the extracted positions of Figure 7.22 are marked by dots. The simula-
tion agrees with those experimental results showing a progressive damage
and the images at the extracted positions show that the same mechanisms
apply. The initial slope, maximum force and damage energy are close to the
experiments. Evaluations at 80 °C and different rates show similar results
and it is concluded that the model described in Chapter 6 and the calibra-
tion of parameters from this chapter allow a reasonable prediction of patch
deformation and damage initialization.
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Figure 7.23: Force-displacement curves of the bias extension test at 20 °C and 500 mm min−1.
Simulation results with the parameterization of this chapter are plotted on top of the experi-
mental results (light colors) in dark colors and the points indicate the position of the snapshots
shown in Figure 7.22.
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In contrast to the previous verification in Chapter 5 and Chapter 6, the vali-
dation compares the model predictions to experimental results. Therefore,
parts are molded with a wide range of geometries to explore merits and weak-
nesses of the proposed mesoscale modeling approach. An overview over the
validation cases is given in Table 8.1.

Table 8.1: Overview over the chosen validation cases.

Simple
Dome

Honeycomb
ribs

Press
rheometer

Complex
dome

IRTG demon-
strator

Section 8.1 8.2 8.3 8.4 8.5

SMC material UPPH-GF VE-GF UPPH-GF UPPH-GF UPPH-GF

Patch material - - - UPPH-CF -

Length 120 mm 310 mm 800 mm 120 mm 800 mm

Width 95 mm 310 mm 50 mm 94 mm 250 mm

Bundle length 25 mm 50 mm 25 mm 25 mm 25 mm

Bundle count ª15,000 ª17,000 ª40,000 ª18,000 ª150,000

Paste viscosity Newtonian Newtonian Cross-WLF Cross-WLF Cross-WLF

Compressible 7 7 3 3 3

Non-isothermal 7 7 3 3 3

Evaluation Flow front Flow front Press force Flow front Flow front

Orientation FVC Pressures FMS FMS

FMS Press force Orientation Co-molding Orientation

Curvature Press force
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8.1 Double curved dome with isothermal
Newtonian matrix1

The first validation example should show the general ability of DBS presented
in Chapter 5 to predict the fiber architecture in a 3D geometry under simpli-
fied Newtonian isothermal conditions. Therefore, a small geometry is molded
from SMC with different initial stack configurations and the resulting parts
are scanned by computer tomography. The real fiber architecture is then
compared to DBS and to the results of a simplified version of the macroscopic
model presented 4.

8.1.1 Experimental setup

The material under investigation is the glass fiber reinforced UPPH SMC
that has been described in Section 7.1. The specimen under investigation
is a curved dome with outer dimensions 120 mm x 94 mm and a nominal
thickness of 2 mm. The specimen is molded from two different initial stack
configurations. The split configuration is molded from two stacks with di-
mensions 80 mm x 30 mm x 5.3 mm, which are placed at both ends of the
mold, as illustrated in Figure 8.1a. This configuration leads to a knit line in
the center, where both stacks meet. The bundle architecture in vicinity of
this knit line is of particular interest, as it would represent a weak spot in a
structural application. The asymmetric configuration is molded from a single
stack with dimensions 80 mm x 60 mm x 5.3 mm, which is placed on one side
of the mold and enables a longer flow path, as shown in Figure 8.1b. The mold
is heated to 145 °C and closed with a Lauffer hydraulic press in collaboration
with Lucas Bretz at KIT wbk, Karlsruhe, Germany. The maximum press force
was limited to 50 kN.

1 Parts of this section are based on [195].
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Figure 8.1: The molded part has outer dimensions 120 mm x 94 mm. For the split stack configu-
ration, two SMC stacks are placed at both ends of the mold. For the asymmetric configuration, a
single stack is placed on one side of the mold.

The molded samples were analyzed by volumetric imaging using an Yxlon
X-ray µCT system with a Perkin Elmer flat panel Y.XRD1620 detector and a
reflection tube by Comet. A volumetric gray scale image is reconstructed
based on the Feldkamp, Davis and Kress (FDK) algorithm [207] with a result-
ing voxel size of 69µm. µCT scans and volumetric image reconstruction were
performed by Ludwig Schöttl at KIT IAM-WK, Karlsruhe, Germany.

8.1.2 Numerical setup

The experimental process is modeled with DBS and a macroscopic model
according to Chapters 4 and 5. The molding domain is represented by Eu-
lerian elements and only those Eulerian elements occupied by initial stack
positions are initially filled with material.

Both mold halves are represented by rigid shell elements. They interact with
the SMC paste through normal contacts and hydrodynamic friction (see
Equation (4.11)). While the lower mold is constrained at a fixed position, the
upper mold is closed with the profiles given in Figure 8.2. These profiles are
an idealization of experimentally recorded press profiles. The variation in the
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experimental profiles can be attributed partly to a non-uniform thickness of
SMC sheets and to the reaction time of the press control unit. The simulation
stops after a complete fill with the final part height and does not include the
subsequent holding and curing process.
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Figure 8.2: Distance between upper and lower mold during the compression flow phase of SMC.
Six parts of the split configuration were produced and are shown with light green lines. Four
parts of the asymmetric configuration were produced and are shown with light orange lines.
Additionally, the idealized mold profiles for simulations are shown in solid green and solid orange
for split stack configuration and asymmetric configuration, respectively. [195]

The macroscopic reference solution was obtained with a simplified (New-
tonian, no anisotropic interaction terms) version of the model described in
Chapter 4 that resembles the state of technology. The initial fiber orientation
is described by a planar isotropic fiber orientation tensor.

For the DBS, bundles are generated with the procedure described in Section
5.1.2, assuming a planar isotropic orientation distribution in the stacks. The
total number of bundles per stack is 7600, which is computed from the bundle
properties and a nominal bundle volume in the part of 5844 mm3 at the given
nominal fiber volume fraction. Each bundle is discretized with ten linear
truss elements.
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8.1 Double curved dome with isothermal Newtonian matrix

The explicit time integration requires a small time increment due to the high
resin viscosity. The mass of the entire model was therefore scaled by a factor
∑m to improve the time increment, while ensuring that kinetic energy remains
negligible small compared to the external work. A summary of the simulation
parameters is listed in Table A.6.

8.1.3 Results and discussion

8.1.3.1 Flow front progression

Figure 8.3 provides an overview on the compression molding process simula-
tion of the split stack configuration. The initial mold gap at t = 0s is 20 mm
and the lowest part of the upper mold is just not touching the SMC stacks.
Closing the mold initially deforms the stacks into the curved geometry, but
does not start material flow. During forming, the two-way coupled approach
pulls the stack sideways in the dome-shaped mold. This can be observed by
the lateral deformation of the stack tips depicted at t = 2s in Figure 8.3. The
mold gap is reduced to the initial stack height of 5.3 mm after approximately
two seconds. From there on, flow dominates the mold filling process and
fiber bundles are carried with the SMC until the final part thickness of 2 mm
is reached.

8.1.3.2 Orientation and separation effects

Figure 8.4 shows slices through the midplane of the upper and lower planar
regions of the scanned part in split stack configuration. The white strands
represent fiber bundles, which remain in their bundled structure even for
the applied high degree of deformation. The knit line features a severe fiber-
matrix separation and only a small amount of fiber bundles bridges the gap in
this zone. The inner slice in Figure 8.4 even shows some pores. Regions close
to the mold boundaries and the knit line show a bundle alignment parallel to
the boundary. Bundles perpendicular to the boundary are likely pulled out of
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t =0 s

t =2 s

t =4 s

Figure 8.3: Snapshots of the molding process for the split stack configuration. The compression
molding process starts with a deformation of the two initial stacks. Subsequently, the SMC is
forced to flow until the part reaches its final thickness of 2 mm. The DBS approach lets bundles
deform and flow with the matrix material while enforcing two-way coupling. Therefore, the flow
is naturally anisotropic and depends on the current bundle configuration. [195]

this region by forces acting over the entire length of the bundle and parallel
bundles remain close to the boundaries (see also Figure 2.9). Regions farther
away from boundaries show a regular random in-plane orientation.

The DBS result is sliced in the same planes and the result is depicted in
Figure 8.5. The simulation results show a slightly larger area of fiber-matrix
separation and bundles do not bridge the resin-rich knit line. This might be
caused either by the experimental setup, because the part was compressed
further than the nominal thickness, or by an underestimation of the drag
forces on bundles in the model. Similar to the µCT-scan, boundary regions
show a predominant orientation parallel to the boundaries.
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Figure 8.4: Slices through the upper and lower planar regions of the µCT Scan. Fiber bundles
stay intact during molding and fiber-matrix separation can be observed at the knit line. The knit
line region includes pores marked with red circles. [195]

For a quantitative comparison of the DBS to the macroscopic simulation and
the µCT scans, bundle orientations are evaluated on a uniform 12 x 16 x 4 grid
of sub-volumes. The discrete second-order fiber orientation tensor for each
of the sub-volumes is computed with the procedure described in Section
5.1.6.3. The slices of the µCT scan shown in Figure 8.4 are analyzed in 2D
using the OrientationJ plugin of the image processing software Fiji [208]. This
procedure assigns a major direction to each 10 x 10 pixel area. The discrete
fiber orientation tensor is evaluated on an equivalent 12 x 16 grid to represent
the orientation state as tensor components.

A comparison of the DBS approach, µCT scan and the conventional macro
fiber orientation model is depicted in Figure 8.6 for the split stack configu-
ration. The Axx-component of the µCT-analysis features three significantly
higher oriented vertical stripes at both ends of the mold and the knit line.
Conversely, the Ayy-component of the µCT-analysis indicates a dominant
orientation in horizontal direction at the top and bottom mold boundaries
with lower values at the vertical mold boundaries to the left and right of the
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Figure 8.5: Slices through the planar regions of the DBS result. Each gray cylinder represents
a bundle segment consisting of 200 individual fibers. The knit line at the center is matrix rich
and no bundles gap this region. Bundles close to the boundaries show a reduced fiber volume
fraction and more bundles are oriented parallel to the boundary. [195]

figure. The corresponding DBS is able to reproduce these three stripes of
higher vertical orientation at the correct positions. Characteristic gradients
and the level of orientation is predicted well. The macroscopic model using
fiber orientation tensors and Jeffery’s equation does not account for the con-
straints at mold walls and shows a homogeneous orientation distribution.
In homogeneous regions, such as the inner slice with some distance to the
knit line, Jeffery’s equation leads to a reasonable prediction of the orientation
state.

The DBS limits any bundle orientation normal to the molds, because bun-
dle segments cannot be physically arranged in normal direction in the con-
strained mold gap. Thus, the Azz-component is small in the planar regions of
the part. An investigation of a magnified µCT scan with higher resolution con-
firms that fiber bundles at the knit line are primarily oriented in-plane. The
computation based on fiber orientation tensors shows a dominant normal
component of fiber orientation at the knit line.
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Figure 8.6: Comparison of DBS results with µCT Analysis and fiber orientation tensor based
computation utilizing Jeffery’s equation for the split stack configuration. The first row shows
orientation tensor component Axx which indicates vertical fiber orientation in this representa-
tion. The second row shows the Ayy-component representing horizontal fiber orientation. The
third row shows the Azz-component representing fiber orientation normal to the observation
plane. The orientation analysis of the µCT image slices is limited to two dimensions. Thus, the
central image in the third row shows a high resolution µCT scan of the region indicated in the
illustration above. The magnified view reveals a dominant in-plane orientation of bundles. [195]

Figure 8.7 is analogous to Figure 8.6, but describes the evaluation of the
asymmetric stack configuration with a maximum flow path of 60 mm in y-
direction. This configuration confirms observations of the previous case with
significantly higher orientations parallel to mold walls that are not described
by tensor based theory. Despite a longer flow path, the magnitude of re-
orientation is similar to the split stack configuration due to a similar stretch
in y-direction (50% initial mold coverage each).
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Figure 8.7: Comparison of DBS results with µCT Analysis and fiber orientation tensor based
computation utilizing Jeffery’s equation for the asymmetric stack configuration. Refer to Figure
8.6 for a detailed explanation of the layout. [195]

8.1.3.3 Bundle curvature

The curvature of bundles is evaluated with the procedure described in Section
5.1.6.1 at each node k. A color-coded scatter plot of the curvature for the split
stack configuration is plotted in Figure 8.8. It shows that the largest curvatures
occur at corners and close to the knit line. The curvature at the knit line
originates probably from a flow in x direction compressing bundles to a zigzag
shape. The curvature in the µCT scan is obtained only for the central region
in order to have sufficient resolution for tracking bundle curvature [209].
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Figure 8.8: Simulation results of bundle curvature. The highest values occur at the corners of
the mold and at the knit line. The part’s three-dimensional shape is visible in this plot due to
the bending of bundles at curvatures of the geometry. High-resolution µCT curvature data for
the central area marked with a black rectangle is obtained by Ludwig Schöttl at KIT IAM-WK,
Karlsruhe, Germany. [195]

The projection of curvature values in the µCT scan region on the y direction
is plotted in Figure 8.9. The maximal values of the µCT scan agree well with
the maximal curvatures computed from the DBS. The mean curvature of DBS
slightly underestimates the curvature in the outer regions, but agrees well
around the knit line. It should be mentioned that simulated curvature might
depend on the segment length of bundles.

8.1.3.4 Number of contacts

An a priori estimate for the number of contacts per bundle segment is given
by equation (2.51). This estimate predicts about 6.2 contacts per bundle
segment. The total number of contacts (g < 0 in Equation (5.23)) in the
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Figure 8.9: Curvatures projected to the y axis in the scanned central region (see rectangular
section in Figure 8.8) encompassing the knit line.

DBS is evaluated for each frame of the simulation results and is plotted in
Figure 8.10. This averages to approximately 1.8£105 contact pairs for the
split stack configuration and 2.2£105 contact pairs for the asymmetric flow,
which has a slightly increased fiber volume fraction compared to the nominal
value. Considering the total amount of 77,438 and 87,950 bundle segments,
this evaluates to 4.6 and 5.0 contacts per bundle segment, respectively. This
evaluation fits well with the estimate given in equation (2.51).

8.1.4 Concluding remarks

The mold filling process of a double curved dome structure is described
with DBS using an isothermal Newtonian paste and an isotropic Newtonian
reference model. The predicted fiber architecture agrees well with measured
µCT data w.r.t. fiber miss-alignment at mold walls, knit line formation and
curvature. The flow of material is assumed to be isothermal in this validation
case. This assumption is quite common for the bulk material of SMC, as
the time scale of thermal diffusivity in SMC is large compared to the time
it takes the material to flow (less than 5 s). However, even small changes
in temperature can cause a relevant change in viscosity and is therefore
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Figure 8.10: Number of bundle-bundle contact pairs during the molding process. The number
of contact pairs decreases during the forming phase of the stack and increases during flow, when
the entire stack is compressed. [195]

introduced to later validation examples. Additionally, lubrication between
bundles is neglected in this validation example for computational efficiency,
since it has little effect on fiber architecture (see Section 5.2.3). The DBS is
able to predict fiber-matrix separation effects at the knit line and thus enables
a better description of structural weak spots in such areas. At regions close to
the mold walls and the knit line, DBS accounts for spatial constraints of the
fiber orientation due to mold boundaries and leads to more accurate fiber
orientation results than orientation tensor based macroscopic simulation
models. Nonetheless, Jeffery’s equation leads to reasonable results in planar,
homogeneous regions at up to ten times faster computational times.

8.2 Honeycomb ribs with isothermal
Newtonian matrix

Fiber-matrix separation is investigated in a plate mold with honeycomb
shaped ribs. The experiments were conducted as part of the Master’s thesis
by Florian Rothenhäusler at Volkswagen AG, Wolfsburg, Germany using a VE
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SMC with 50 mm fiber length [63].2 This section reports the application of the
DBS model to this geometry and material system. The resulting fiber-matrix
separation and compression forces are compared to the experimental results.

8.2.1 Experimental setup

The material in this example differs from the default material described in
Section 7.1. Here, the commercial SMC HUP EJ 43529 by Polynt Composites
Germany GmbH is used for compression molding. It has a fiber volume
fraction of 36% and fibers are 50 mm long with a fiber diameter of 20µm. The
mold is a plate with four insert positions, of which one is filled with a rib
structure consisting of thick ribs (2.5 mm width at top, 2° draft angle), one
is filled with a thin rib structure (2 mm width at top, 1° draft angle) and the
remaining two insert positions are filled with dummy plugs. The SMC is
molded in the two different configurations shown in Figure 8.11 on an RSP
160.42SZ hydraulic press by Röcher GmbH&Co KG Maschinenbau, Germany.
In configuration A, the stack is placed directly under the honeycomb ribs and
the ribs are filled at the beginning of the compression. In configuration B, the
stack is placed opposite to the honeycomb ribs and the material flows along
the mold before filling the ribs. Both configurations use a mold closing speed
of 10 mm s−1, mold temperature of 140 °C and maximum compression force
of 1500 kN. Press forces, velocity and displacement are recorded during trials.

The fiber volume fraction in the ribs is analyzed by thermal gravimetric
analysis (TGA). To limit the experimental effort, only the ribs in the position
marked with labels 1 to 6 in Figure 8.11 are analyzed. This position is chosen,
because these ribs show a challenging fiber-matrix separation pattern, but are
also reliably filled during the process. Each of the six walls is subdivided in a
lower, central and upper partition and TGA is performed following procedure

2 Parts of the Master’s thesis by Florian Rothenhäusler are included here for comparative
purposes. They will be published soon under the title Experimental and Numerical Analysis
of SMC Compression Molding in Confined Regions - a Benchmark.
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Figure 8.11: Mold configurations of the honeycomb experiments.

B of DIN EN ISO 1172:1998. The specimen is pyrolyzed for 30 min at 650 °C
and subsequently the mineral filler is dissolved by hydrochloric acid [63].
This procedure is repeated three times for each configuration (324 samples
in total) and the fiber volume content is calculated from the fiber mass after
the extraction procedure.

In addition to the fully molded samples, short shot moldings in configuration
A were produced by Simon Wehler at Volkswagen AG, Wolfsburg, Germany.
The short shots were obtained by inserting 1.6 mm and 4.8 mm thick rigid
spacers in the mold gap prohibiting complete closure of the mold. The surface
of the resulting parts were scanned with a 3D optical measurement system
ATOS by GOM GmbH, Braunschweig, Germany.

8.2.2 Numerical setup

The process is modeled with the Direct Bundle Simulation technique ex-
plained in Chapter 5. The upper and lower mold surfaces are extracted from
the CAD model of the part, placed at an initial distance of 12 mm and are
meshed with rigid body elements of 2 mm average edge length. The lower
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mold remains fixed, while the upper mold is either controlled by a virtual
press controller (see 4.1.5) following the press profile (configuration B), or
subjected to a constant force (configuration A). Configuration A is simulated
with a constant compression force, because the press comes effectively to a
stop after reaching the stack and proceeds in a force controlled mode in the
trials with this configuration. This is likely caused by the ribs clinging to the
SMC stack, which delays the start of the flow process. The Eulerian domain is
expanded upward and downward beyond the mold surfaces and meshed with
1 mm x 1 mm x 1 mm EC3D8R elements in the region of the honeycombs and
1 mm x 2 mm x 2 mm else. The in-plane boundaries are not implemented via
rigid body contact, but by constraining the velocity in normal direction to
zero. The regions of initial stacks are filled with material in the beginning and
17000 bundles of 50 mm are generated in the stack to represent the desired
fiber volume fraction. The bundle cross section area is set to 1.768£10−7 m2

assuming 560 fibers of 20µm thickness each.

The simulation is isothermal and quasi-incompressible due to a lack of de-
tailed material characterization of the material employed in this example.
The paste viscosity is set to a constant Newtonian value of 25 kPa s, which was
obtained as the zero-shear viscosity for the paste employed in this SMC and
applicable for shear rates up to approximately 10 s−1 [63]. Bundles interact
with each other, but tangential lubrication forces are disabled as the resulting
time step would become prohibitive. The friction between mold and SMC
is modeled with a conventional hydrodynamic friction model that has been
parameterized with a press rheometer at Fraunhofer ICT, Pfinztal, Germany
following the procedure described by [150]. A summary of all simulation
parameters can be found in Table A.7.

Both configurations are simulated three times each, with different initial
random fiber bundle distributions. This allows to investigate the effect of the
initial configuration on process results and allows to quantify the scatter of
computed fiber volume fraction.
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8.2.3 Results and discussion

8.2.3.1 Flow front progression

The snapshots of the flow front progression in Figure 8.12 show the rib filling
process for both configurations.

t=0 s

t=0.4 s

t=0.8 s

t=2.4 s

(a) Configuration A

t=0 s

t=2 s

t=3 s

t=4 s

(b) Configuration B
Figure 8.12: Snapshots of the honeycomb mold filling process.

In configuration A, ribs are filled shortly after the start of the compression
process. There is a slight tendency for ribs down the flow path to fill later, but
the overall filling process occurs quite homogeneous. After 0.8 s simulation
time, the ribs are completely filled and the flow front in the plate region flows
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until it reaches the end of the mold. Long fibers, which are entangled in the
ribs, influence the flow and lead to a significant alignment of fiber bundles in
flow direction. This can also be seen in Figure 8.13, where the matrix of an
entire plate was burned off and is compared to the simulated fiber bundle
architecture. Both, the simulation and pyrolyzed part, feature a distinct fiber
bundle alignment left to the ribs.

(a) Pyrolysis [63] (b) Simulation
Figure 8.13: Comparison of the fiber architecture in configuration A.

In configuration B, the stack elongates first similar to the linear compression
flow in a press rheometer. As soon as the flow front reaches the ribbed section,
a portion of the flow diverges in the ribs and the ribs closer to the initial stack
are completely filled before the ribs further away even begin to fill. The
diverged flow causes the formation of a knit line behind the ribs, which can
be also seen in the bundle architecture in Figure 8.14.

To validate the flow front progression, the filled domain is compared to 3D
optically measured surfaces of short shots of configuration A, which are
shown in Figure 8.15. Figure 8.15a is obtained from a specimen with 4.8 mm
thick spacers in the mold gap stopping the compression flow soon after
the stack is touched. Overlaying the simulation time step closest to this
thickness (see Figure 8.16a) shows that the flow front progression is captured
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(a) Pyrolysis [63] (b) Simulation
Figure 8.14: Comparison of the fiber architecture of the thick honeycomb in configuration B.

accurately. For a later compression state obtained with a 1.6 mm thick blank,
the simulation and scan also agree (see Figure 8.16b). The simulation predicts
equal flow front progression in both, thin and thick, ribs. However, the thinner
ribs appear to be filled slightly faster in the experiment. This is likely caused
by higher temperatures in the thin region that result in lower viscosity and a
faster filling progress, which is not accounted for in this isothermal simulation.
Further, the filling process may be affected by missing parallelism control of
the press, or the compressibility of the stack.

(a) Short shot 4.8 mm (b) Short short 1.6 mm
Figure 8.15: Surface scans of short shots obtained by Simon Wehler from Volkswagen AG, Wolfs-
burg, Germany.
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(a) Short shot overlay 4.8 mm (b) Short short overlay 1.6 mm
Figure 8.16: Comparison of scanned short shots (gray surface) with paste fill region (green
volume) of thick ribs in configuration A.

8.2.3.2 Fiber volume fraction

The focus of this evaluation are the thick honeycomb ribs labeled with num-
bers in Figure 8.11. These are regularly filled and the observations are qualita-
tively equivalent to the mirrored ribs in the thin honeycomb. An evaluation
mesh representing the experimental partitions is used to compute fiber vol-
ume fractions of the DBS (see Section 5.1.6.3).

A comparison between thermal gravimetric analysis and the simulation re-
sults for configuration A is shown in Figure 8.17. The numbers at the bottom
indicate the rib label according to Figure 8.11 and the ± values indicate the
standard deviation between samples at each position. The experimental
results show a homogeneous fiber volume fraction distribution in the ribs
with small deviation between the three analyzed samples. The ribs, which are
placed directly above the initial stack position (1,2,3) exhibit slightly higher
fiber volume fractions than the other ones. Contrary, the corresponding
simulation predicts severe fiber-matrix separation with local fiber volume
fractions well above the experimentally observed values. An investigation of
the simulation progress reveals that the ribs fill homogeneously first, but fiber
bundles are pulled out subsequently. Fiber bundles entangle at the bottom of
ribs with multiple adjacent ribs (e.g. 1,3,6) and lead to a concentration at the
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(a) Fiber volume fraction measured by TGA [63]
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(b) Fiber volume fraction obtained by Direct Bundle Simulation
Figure 8.17: Fiber volume fraction distribution in thick ribs of configuration A.

bottom of these ribs. The discrepancy between simulation and experiment is
likely caused by missing shear thinning properties of the matrix material in
the model, which lead to smaller forces on the bundle ends extending to the
base plate. Another reason could be the gap correction described in Section
5.1.5.3, which is just a coarse approximation of the actual bundle shape.

The experimental result of configuration B predicts a gradient in volume
fraction from the top left to the bottom right in Figure 8.18a. The top sections
of ribs 1 to 3 exhibit large experimental uncertainties - up to 13.3% standard
deviation at a mean value of 16.6%. The fiber architecture in these regions
depends strongly on individual realizations of randomness in the mold filling
process. The numerical model predicts overall slightly higher fiber volume
fractions and severe separation in Rib 2, that occurs reliably in all three
repetitions.
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(a) Fiber volume fraction measured by TGA [63]
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(b) Fiber volume fraction obtained by Direct Bundle Simulation
Figure 8.18: Fiber volume fraction distribution in thick ribs of configuration B.

8.2.3.3 Compression forces

The simulated compression force, velocity and mold gap are compared to
press data in order to evaluate the model’s ability to predict not just the
fiber architecture, but also resulting press parameters. The press used in the
experiments is not designed for precise measurements, but for industrial
manufacturing processes, and does not have parallelism support. For exam-
ple, the closing velocity differs from the prescribed value of 10 mm s−1 during
the displacement control and the compression force is not reliably held at
the nominal value of 1500 kN. This can be seen from the gray experimental
recordings shown in Figure 8.19 for configuration A and in Figure 8.20 for
configuration B. The dots in both figures indicate the snapshots positions
for an easier comparison to Figure 8.12. In configuration A, the press effec-
tively stops at contact with the stack and tries to proceed force controlled.
Hence, the DBS model also utilizes a constant compression force in this case.
This results in a rapid initial compression similar to the experimental veloc-
ity. However, the subsequent filling phase is faster than the experimental
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records indicate, which is partially caused by the lower than nominal com-
pression force in the experiment and partially caused by skipping the initial
pre-compression phase. In configuration B, the virtual press controller fol-
lows the averaged press velocity profile and switches to force control, after
the maximum force of 1500 kN is reached. The resulting displacement dur-
ing the force control phase is comparable to the experimentally observed
displacements.
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Figure 8.19: Compression press data in comparison to DBS for configuration A. Dots mark the
snapshot positions shown in Figure 8.12.
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Figure 8.20: Compression press data in comparison to DBS for configuration B. Dots mark the
snapshot positions shown in Figure 8.12.
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8.2.4 Concluding remarks

The molding of a plate with honeycomb shaped ribs has been simulated
with DBS employing isothermal, Newtonian paste viscosity. The flow front
progression is reasonable and verified by short shorts. The thin honeycomb
is filled slightly faster, which can be likely attributed to the neglected tempera-
ture change. The predicted fiber volume fraction in configuration A disagrees
with the experimental result, as the effect of fiber bundle pull out is too large
compared to the experiments. Conversely, the fiber volume prediction in
configuration B is able to correctly identify critical regions at the top of Rib 1
and Rib 2. A comparison to other simulation tools (Moldex, 3DTimon DFS)
showed that macroscopic models are not able to predict the fiber-matrix
separation in this example and that a neglection of fiber-fiber interactions
can lead to unreasonably high fiber volume fractions, because multiple fibers
can occupy the same space [63]. The consideration of non-isothermal con-
ditions and a non-Newtonian paste seems required to accurately predict
compression forces as well as bundle architectures in thin structures.

8.3 Press rheometer

A press rheometer is a plate mold for rheology experiments at component
scale and has been introduced in Section 4.2, Figure 4.4 and the characteriza-
tion of friction in Section 7.1.4. Typically, such a mold is used to characterize
the macroscopic elongational viscosity and hydrodynamic friction properties
of the stable plug-flow with an array of pressure sensors that is distributed
within the mold. The macroscopic elongational viscosity can be measured
only in such a large mold because only this way it can be ensured that the
fiber length is sufficiently short compared to the dimensions of the measure-
ment instrument. Conversely, the proposed DBS model only requires the
paste rheology and thus the press rheometer is used in terms of validation to
investigate whether the observed pressures agree with the bottom-up DBS
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model. This is done with precise parallelism controlled presses and the full
non-isothermal, non-Newtonian, compressible material model.

8.3.1 Experimental setup

The experimental setup is already described in Section 7.1.4 and the experi-
ments are extended by additional trials with the stack configuration 200 mm
x 450 mm (8 layers, 25% mold coverage) on a Dieffenbacher DYL630/500
hydraulic press with parallel cylinder control in collaboration with Sergej
Ilinzeer at Fraunhofer ICT, Pfinztal, Germany. The part and the initial stack
configurations are sketched in Figure 8.21. The pressures of sensors, displace-
ment of hydraulic cylinders and compression force are recorded during the
trials. The recorded data of five specimens in each configuration is aligned at
the switch-over point to force control. This point is t = 0 in the evaluation,
hence t < 0 means that the press operates in displacement control and t > 0
means that the press tries to keep the force to a constant value of 4.4 MN.

800 mm
200 mm

450
m

mey

ex

200 mm 200 mm

25 % 50 % 75 %

Figure 8.21: Mold configurations of the press rheometer experiments.

183



8 Validation cases

8.3.2 Numerical setup

The SMC flow is dominated by a horizontal one-dimensional elongation and
the variance in transverse direction is expected to be rather small. Hence, for
computational efficiency, the DBS domain width is reduced to B = 50mm,
which is twice the fiber length. The length is Xmax = 800mm and the in-
plane Eulerian mesh size is 2.5 mm x 2.5 mm. The Eulerian mesh size in
thickness direction (z) ranges from 0.6 mm in the region of the final part
geometry to 2 mm at the top. The velocity in normal direction is set to zero
at all boundaries of the domain. The domain of the initial stack is filled with
40000 fiber bundles with a length of L = 25mm, which are discretized by ten
truss elements each. Bundles interact with each other and with the mold
surfaces through contact forces, but tangential lubrication is disabled due to
its prohibitive restriction on the stable time step during explicit integration.
The initial temperature distribution is precomputed assuming 10 s contact
with the lower mold between stack placement and the upper mold arriving
at the stack. The pre-computed temperature and Eulerian mesh profile are
depicted in Figure 8.22.

0.0

50.0

100.0

150.0

Temperature in °C

Figure 8.22: Initial stack at the flow front. The colors indicate the initial temperature distribution
in all elements that are initially filled with material. Both mold halves are heated to a fixed value
of 145 °C.

The SMC paste is a compressible, non-Newtonian and non-isothermal mate-
rial with properties listed in Table A.8. Both mold halves are rigid body shells
(element size 2.5 mm x 2.5 mm) with constraint degrees of freedom and a
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prescribed temperature of 145 °C. The upper mold’s vertical motion is con-
trolled by a VUAMP subroutine that mimics the press controller, as described
in Section 4.1.5.

The Eulerian domain is subdivided at the sensor positions to evaluate the
pressure as average of the nodal pressures which are filled with material at
any given time. The compression force of the reference point linked to the
upper rigid body mold is smoothed with a Butterworth filter, to eliminate
spurious noise that occurs during the explicit time integration.

8.3.3 Results and discussion

8.3.3.1 75% mold coverage

The recorded press data for 75% mold coverage is depicted in Figure 8.23 in
light colors. The data lines represent the mean of five repetitions and the
small standard deviation is depicted as light colored area behind the lines.
All data is temporally aligned with the switch to force control, such that t < 0
refers to the displacement controlled profile and t > 0 refers to the force
controlled profile. The mold is closed with a constant velocity of 1 mm s−1

until it is controlled by the constant force resulting in a flatter slope and
finally reaches its final thickness. For reference, the final thickness of the
part is indicated with a dashed line and shows that the press displacements
recordings are well calibrated. However, the final parts are approximately
0.25 mm thinner than the expected thickness from volumetric considerations
accounting for the measured compressibility. This is most likely caused by
loss of material through the mold gap due to the high pressure experienced
in this configuration. The pressure sensors show the expected behavior for
a plug-flow with the left most sensor reaching the highest pressures and a
decrease in pressure towards the flow front. However, the pressure of the left
most sensor might reach its maximum capability of 200 bar and therefore
might underestimate the maximum pressure in the mold. The resulting plates
are homogeneous without any flow marks.

185



8 Validation cases

°3 °2 °1 0 1 2 3 4 5
0

2

4

6

8

10

Time in s

G
ap

in
m

m

Experiment
Simulation
Part thickness

°3 °2 °1 0 1 2 3 4 5
0

1

2

3

4

5

Time in s

C
om

p
re

ss
io

n
fo

rc
e

in
M

N

Experiment
Simulation

°3 °2 °1 0 1 2 3 4 5
0

50

100

150

200

250

Time in s

Pr
es

su
re

in
ba

r

Figure 8.23: Press data at 75% mold coverage - experiment (light colors) and DBS model (dark
colors).

The DBS model is used to simulate the compression molding process in the
press rheometer with 75% mold coverage and the result is shown in Figure
8.23 in dark colors. As described previously, the numerical model predicts
a thicker part than produced in the experiments, which is likely caused by
leakage in the experiments. The displacement slope reduces correctly as
soon as the virtual press controller reaches the force controlled phase. The
time until the switch agrees with the experiments and the compression force
is controlled reliably at the prescribed level. The spread between pressure
sensors is similar to the experimental results and the general pressure levels
are predicted correctly. However, the exact values are not met because of the
earlier completion of the filling process in the simulation due to leakage, the
maximum sensor capability of 200 bar and idealizations in the model.

186



8.3 Press rheometer

8.3.3.2 50% mold coverage

The experimental results with 50% initial mold coverage are depicted in
Figure 8.24 in light colors. The compression force features a hump at which
the rate of compression force increase slows down for a moment before
reaching the maximum force. This phenomenon can be likely attributed to a
transition from a sticking friction to a hydrodynamic lubricated friction. The
final thickness of the parts agrees with the measured mold deformation and
is in line with the expected thickness from mass conservation considering
compressibility.

°4 °3 °2 °1 0 1 2 3 4
0

2

4

6

8

10

Time in s

G
ap

in
m

m

Experiment
Simulation
Part thickness

°4 °3 °2 °1 0 1 2 3 4
0

1

2

3

4

5

Time in s

C
om

p
re

ss
io

n
fo

rc
e

in
M

N

Experiment
Simulation

°4 °3 °2 °1 0 1 2 3 4
0

50

100

150

200

250

Time in s

Pr
es

su
re

in
ba

r

Figure 8.24: Press data at 50% mold coverage - experiment (light colors) and DBS model (dark
colors).

The measured pressures exhibit a larger variance between individual plates,
which is indicated by the colored background areas representing the differ-
ence between the upper and lower quartile of results. Contrary to the results
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of 75% mold coverage, the left most pressure sensor P1 does not record the
highest pressures and the molded plates show evenly sized zones with dis-
turbed fiber bundles exhibiting higher curvature at both ends of the molds
(see Figure 8.25). The separation lines between these zones are displayed as
gray lines in the mold coverage sketch in Figure 8.24.

Figure 8.25: Photos of exemplary plates molded with 50% initial mold coverage. Both ends
feature a darker zone with highly curved compressed fibers.

The results of the DBS simulation with 50% mold coverage are displayed in
Figure 8.24 in dark colors. The time to reach the compression force switch
over point and the total compression time to fill the mold agree with the
experimental data. The initial compression force increase and plateau are
not met by the model even after accounting for an initial sticking behavior in
the friction model. The used wall stress of 150 kPa should be sufficiently large
to cause a steep compression force increase in the beginning according to
the previous parametric study with one-dimensional model. An evaluation
of the tangential mold stress reveals that this tangential stress is not properly
enforced by Simulia Abaqus/Explicit at the reconstructed surface between
molds and SMC, because it is only enforced if a surface overclosure is present.
However, the contact initially oscillates between a closed and open state in
many regions and thus allows a stack motion, whenever the contact is open.
Hence, the initial compression force and the initial pressures are underes-
timated. The DBS does not explicitly account for individual sheets and is
therefore not capable to replicate the shear induced stack deformation that
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causes the pressure sensor P1 to report pressures below the values obtained
by P2.

8.3.3.3 25% mold coverage

The experimental results for 25% initial mold coverage are depicted in Figure
8.26 in light colors. This data was recorded on a smaller press, which deforms
noticeably at the given load. Hence, the plot distinguishes the gap computed
from press displacement and a true gap, which is corrected by the stiffness of
mold and press. The true gap agrees with the measured final part thickness.
The compression force increases in a relatively flat slope until the mold is
almost filled and then raises quickly to the maximum compression force.
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Figure 8.26: Press data at 25% mold coverage - experiment (light colors) and DBS model (dark
colors).
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The measured pressure does not adhere to the expected behavior of an ideal
plug-flow (compare Figure 4.5), as the pressure does not monotonically de-
crease from the wall towards the mold front. Instead, the leftmost pressure
sensor P1 records small pressures and at times the sensor P3 records the
highest pressure. This is corroborated by the formation of large zones with
disturbed fiber bundles, which are indicated by gray lines in Figure 8.26. De-
spite the asymmetrical initial stack placement, these zones are approximately
even in size at both ends of the mold.

The formation of the zones is likely caused by a shear deformation of the stack.
To analyze this effect, a sheet at the center of the nine-layered stack is colored
by black paint to track its deformation. The black sheet is clearly visible after
molding through the other sheets (see Figure 8.27) and its shape is similar to
the central zone observed without coloring. This suggests that the central
sheets are stretched less than predicted by the ideal plug-flow model and
the upper and lower sheets fill the room at both ends, which originates from
the reduced stretch of the central sheets. This mechanism is in line with the
observations by Hohberg [158], but it is a stark contrast to the assumptions of
the classical plug-flow models. Temperature gradients must affect more than
just a very thin lubrication layer at the mold surface.

Figure 8.27: Photos of exemplary plates molded with 25% initial mold coverage. The left plate is
molded from nine sheets, were the central sheet was colored black.

The DBS result with 25% initial mold coverage is displayed in Figure 8.26 in
dark colors. The experimental results of this case were obtained on a smaller
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press, which is compliant under the given loads and results in 0.2 mm appar-
ently measured displacement at 4400 kN, even if there is none. Hence, the
experimental gap determined from press displacement is corrected for the
compliance by an empty reference press stroke. To model the compression
process accurately, the virtual press controller mimics the press compliance.
The resulting compression time and compression force agree with the ex-
perimental data, but similar to the case with 50% initial mold coverage, the
initial increase and pressure drop of the left-most sensors due to the stack
deformation are not captured.

The orientation evolution in the plate is shown in Figure 8.28. The bundle ori-
entations are mapped to an evaluation cell encompassing the entire domain
using the procedure described in Section 5.1.6.3. The resulting orientation
tensor represents the global orientation state in the cavity and its compo-
nents are plotted as solid lines in Figure 8.28. The orientation has an initial
preferred direction in the flow direction, because the removal of truss ele-
ments at boundaries during the cutting procedure affects this direction less
than the transverse direction with its longer boundary. Fiber bundles orient
themselves in flow direction during the process, as expected. The solution
of the one-dimensional reference model based on Jeffery’s equation and the
IBOF closure approximation is plotted as dotted lined for comparison. This
solution assumes an ideal transversal isotropic initial fiber orientation state
and is therefore shifted in comparison to the DBS result. However, except
for the shift, this simple model agrees well with the mesoscale model. This
suggests that the orientation evolution in a sufficiently large planar SMC
region can be described equivalently with this macroscopic model and no
further interaction parameters.

8.3.4 Concluding remarks

Press rheometer trials with distributed in-mold pressure sensors allow for an
in-depth analysis of the compression molding process that allows to distin-
guish contributions from compressibility, friction and the elongation of SMC
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(a) 75% mold coverage
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(b) 50% mold coverage
Figure 8.28: Orientation evolution for the entire cavity computed by DBS (solid) and with the
macroscopic model using Jeffery’s model (dotted).

itself. The experimental results show that the SMC under investigation does
not follow the ideal plug flow assumption for thick initial stacks. Contrary,
the introduction of a colored sheet in the center of the stack proves that the
central sheet is not stretched to the entire mold length and the outer layers
fill the remaining region with a disturbed bundle structure. The bundle archi-
tecture is not just a question of whether it is the region of the initial stack, but
the result of complex flow mechanisms that can transport entire sheets to the
center of the mold.

The novel mesoscale simulation method can predict the compression time
and occurring compression forces accurately with viscous behavior based
only on a paste viscosity characterization at coupon scale. This coupon scale
characterization is much simpler than press rheometry, but has the disadvan-
tage that the pure paste might not be available for commercial SMC prepregs.
The contributions from friction and anisotropic viscosity of the bundle sus-
pension are proportionate. The non-isothermal simulation model accounts
for compressibility of SMC, non-Newtonian viscosity, bundle-matrix interac-
tions, bundle-bundle interactions (excluding lubrication), press compliance
and press control. The predicted pressure differences between sensor po-
sitions and overall pressure levels are predicted correctly, even if the exact
pressures of the experiment are not met exactly. Reasons for the difference are
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on the one hand experimental deficiencies, such as the maximum pressure
capability of the sensors, leakage through the mold gap or the point-wise
nature of the measurement, as well as on the other hand limitation in the
simulation model, such as no explicit resolution of individual sheets and
imperfect contact enforcement of the Simulia Abaqus/Explicit solver. Even
though the initial sticking behavior cannot be accurately enforce in the con-
tact, it is concluded that such a sticking friction is needed to model the entire
compression process including squish and flow phase. Modeling the pres-
sure drop of the first sensor and the motion of the inner sheet likely requires
different fluid phases that represent individual SMC sheets. However, this
would require a much finer Eulerian mesh and a solution for merging these
phases with progressing simulation time, as heating and deformation remove
any distinguishability of the sheets.

8.4 Complex small part and co-molding

A successor to the double curved dome in Section 8.1 has been designed
in cooperation with Lucas Bretz and manufactured at KIT wbk, Karlsruhe,
Germany. The part is used to validate the combined application of all DBS
model features (non-isothermal, non-Newtonian, compressible, co-molding
with patches) in a single part that contains beads and ribs.

8.4.1 Experimental setup

The part and initial stack position are shown in Figure 8.29. Two beads with
different flank angles are positioned in the part and a rib is placed centrally
in each bead. Both ribs are 2 mm wide at the top and have a draft angle of 3°.
The rib height varies from 15 mm at one end to 0 mm at the other end. A lever
is integrated into the part for easier recovery from the mold. The SMC stack
has the initial dimensions 100 mm x 75 mm x 7 mm and is placed centrally
into the mold, which is heated to 145 °C. Optionally, a single ply patch with
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dimensions 80 mm x 7 mm x 0.45 mm can be placed in the narrow bead and
a patch with dimensions 80 mm x 15 mm x 0.45 mm in the wide bead. The
press profile is prescribed as a table with a maximum compression force of
130 kN and parts are molded on a Lauffer hydraulic press in collaboration
with Lucas Bretz at KIT wbk, Karlsruhe, Germany.

120 mm

94
m

m
75

m
m

100 mm

eyex

(a) Top view (b) Perspective view
Figure 8.29: Complex small part geometry comprising two beads with different flank angles and
centrally placed ribs with decreasing height. The molded part has outer dimensions 120 mm x
94 mm. Patches are optionally placed inside the beads.

The molded samples were analyzed by volumetric imaging using the same
setup as described in Section 8.1, but with the resolutions 31µm and 50µm
for the high resolution and low resolution scans, respectively. The µCT scans
and volumetric image reconstruction were performed by Ludwig Schöttl at
KIT IAM-WK, Karlsruhe, Germany.

8.4.2 Numerical setup

The process is modeled with the Direct Bundle Simulation technique ex-
plained in Chapter 5. The upper and lower mold surfaces are extracted from
the CAD model of the part, placed at an initial distance of 22.4 mm and are
meshed with rigid body elements of 1 mm average edge length. The lower
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mold remains fixed, while the upper mold is controlled by a virtual press con-
troller (see 4.1.5) following the press profile listed in Table A.9. The Eulerian
domain is expanded upward and downward beyond the mold surfaces and
meshed with 0.8 mm x 0.8 mm x 0.8 mm EC3D8RT. The in-plane boundaries
are implemented by constraining the velocity in normal direction to zero. The
regions of initial stacks are filled with material in the beginning and 18000
bundles of 25 mm are generated in the stack to represent the desired fiber
volume fraction. The paste material is compressible, non-isothermal and
non-Newtonian with parameterization from Section 7.1. A hydrodynamic
friction model with parameters from Section 8.3 is employed at the mold
walls. All simulation parameters are summarized in Table A.9.

The basic configuration does not include unidirectional reinforcement
patches. But patches can be added via 3.5 mm x 4 mm and 3.75 mm x 4 mm
S4RT shell elements following the model described in Chapter 6 and with the
parameterization in Section 7.2. The interaction between the patch surfaces
and the SMC paste is modeled via no-slip conditions, as both utilize the same
sticky matrix material. The interaction between the molds and patches is
modeled with a Coulomb contact with a friction coefficient µ= 0.3 according
to the measurements by Bücheler [169].

8.4.3 Results and discussion

8.4.3.1 Flow front progression

The deformation of the SMC stack is shown in Figure 8.30 for the simulation
and short-shots at corresponding thicknesses. First, the stack is formed to
the shape of the mold without a flow process. As soon as the mold gap
decreases below the thickness of the formed stack, a flow process starts and
fills the ribs. It is noticeable that fiber bundles are pressed against the stamps,
because both ends of fibers oriented in x direction are pulled in different
directions, while the stamps press them down. Both ribs are filled equally
from the bottom and the side connected to the bead wall. Hence, the last
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filled region is not equivalent to the maximum rib height, but the volume
farthest away from any entry to a rib. This behavior is coherent between
simulation and experimental short-shots. As the mold is completely filled,
a fraction of the simulated paste penetrates the rigid body walls and floats
through the domain as droplets.

t =0 s

t =0.6 s

t =0.72 s

t =1.05 s

h =5.9 mm

h =5.2 mm

h =2.8 mm

Figure 8.30: Snapshots of the compression process with two beads and ribs. The left column
shows the simulation results and the right column shows short shots of the molded parts.
The complex geometry leads to leakage of the paste through the rigid mold surfaces due to
inaccurate contact handling between the Eulerian surface and Lagrangian surface in Simulia
Abaqus/Explicit.
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8.4.3.2 Fiber-matrix separation

Fiber-matrix separation can be observed with bare eyes in the molded parts
due to the opaque resin. A exemplary part is scanned via µCT and a section
across the rib in the wider bead is shown in Figure 8.31. Figure 8.31a shows a
volumetric image reconstruction of the fiber architecture in the wider bead.
The fiber bundles displayed here stay intact even after entering a rib. The
slice of a lower resolution scan shown in Figure 8.31c reveals that a resin-
rich region forms in the region that is filled last according to the simulated
flow front progression. A higher resolution slice of this region is shown in
Figure 8.31b. The mesoscale simulation approach predicts a similar pocket
of resin in the same region, even though the actual detailed realization of
the fiber architecture depends on the randomness of the initial charge in the
simulation as well as the experiment.

(a) 3D µCT view (b) High resolution µCT slice

(c) Low resolution µCT slice.

(d) Direct Bundle Simulation
Figure 8.31: Fiber-matrix separation in the ribs. The µCT images were obtained by Ludwig
Schöttl at KIT IAM-WK, Karlsruhe, Germany.
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8.4.3.3 Patch damage

The quality of parts molded with single patch layers varies significantly be-
tween parts with intact patches and parts with defects such as fracture, dis-
placement and deformation of patches. This is shown in Figure 8.32 and
the variance is in line with the large scatter observed in the characterization
experiments in Section 7.2.

Figure 8.32: Patch defects observed in molded parts.
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Figure 8.33: Simulation results of the section points adjacent to the mold surface.

The result of a simulation with patches and fiber bundles is shown in Figure
8.33. The flow front progress and resulting fiber architecture is unaffected
by the presence of patches, except for a slightly faster filling process due to
the volume occupied by patches in the cavity. The maximum temperature
of patches adjacent to the mold surface is approximately 75 °C and therefore
within the temperature range investigated during characterization. The patch
model does predict damage and deformation in the patches, but the defor-
mation mode does not strictly match the experimental results. Some paste
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material reaches between patch and mold surface, because leakage at convex
mold surfaces allows material to get to the other side of the patch.

8.4.4 Concluding remarks

The application example demonstrates the ability of the developed models
to describe non isothermal compression molding and co-molding at com-
ponent scale. The mold filling process and formation of resin-rich areas is
predicted qualitatively correct and the µCT images illustrate that fiber bun-
dles stay intact even after entering a rib. The partial penetration of Eulerian
material through mold surfaces is a well known problem in compression
molding simulations with the Coupled Lagrangian Eulerian framework of
Simulia Abaqus/Explicit [158, 210]. It can occur at convex curved mold sur-
faces due to the employed surface reconstruction method [194] of the internal
solver. Large pressures and low viscosity foster the formation of droplets that
penetrate the wall. Even though a finer mesh and smaller time step can
reduce the effect, it always remains a disadvantage of the employed sur-
face reconstruction technique. The integration of patches in the mesoscale
compression molding process simulation is possible and the occurrence of
damage in patches is predicted correctly. However, the accurate prediction
of patch defects is difficult due to the inhomogeneous patch quality, which
results in different experimental outcomes and uncertain model parameters.

8.5 Demonstrator compression molding

The demonstrator component of IRTG GRK 2078 serves as a use case that
validates the applicability of the developed mesoscale DBS at larger scale
components. The component is designed collaboratively within IRTG GRK
2078 to incorporate three beads that reinforce the part under bending load.
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8.5.1 Experimental setup

The mold consists of a base mold with dimensions 800 mm x 250 mm and an
insert geometry with dimensions 230 mm x 230 mm. This insert geometry is
visualized in Figure 8.34a. The upper insert can be replaced with a ribbed
structure that has varying rib features in each bead (see Figure 8.34b). The
outer beads have six crossing rib pairs each, with a thickness of 3 mm and
2 mm, respectively. The radius at the rib base varies between 0.5 mm and
1.5 mm in these outer beads. The central bead has a higher rib density with a
total of eight crossing rib pairs, but constant radii of 1.5 mm and a constant
thickness of 2 mm.

800 mm
320 mm

250
m

m

240
m

mey

ex

(a) Insert without ribs and insert-centered stack

3 mm

2 mm

2 mm
ey

ex

(b) Insert with ribs and full mold coverage
Figure 8.34: Molds and initial stack configurations of the IRTG demonstrator component.

The components are manufactured from UPPH-GF by Sergej Ilinzeer at Fraun-
hofer ICT, Pfinztal, Germany on a Dieffenbacher COMPRESS PLUS DCP-G
3600/3200 AS and a Dieffenbacher DYL630/500 hydraulic press with parallel
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cylinder control. Compression force and cylinder displacements are recorded
during these manufacturing molding trials. Parts without ribs are molded
from a 320 mm x 240 mm x 7 mm initial stack that is placed centrally over
the insert in the mold and parts with ribs are manufactured with full mold
coverage of two SMC sheets.

The demonstrator component’s size prohibits an efficient evaluation of the
fiber orientation via µCT for the entire component. However, the opacity of
the employed resin system enables fluoroscopy with visible light. Hence, a
fluoroscopy workflow was developed in collaboration with Sven Revfi from
KIT IPEK, Karlsruhe, Germany and the workflow is depicted in Figure 8.35.

Camera

Specimen

Overhead
projector

Merge and
processing

Orientation
evaluation

Figure 8.35: Image acquisition and image processing workflow. The specimens are placed on an
overhead projector and images of the shine through region are taken. The images are merged and
the lighting is homogenized in an image processing software to obtain a gray valued image of the
entire specimen with 12.5 pixels mm−1. The gray valued image is then analyzed with orientation
analysis software. (The procedure was developed and applied together with Sven Revfi from KIT
IPEK, Karlsruhe, Germany and Ludwig Schöttl from KIT IAM-WK, Karlsruhe, Germany.)

Specimens are placed on an overhead projector and partial images are ac-
quired with a Canon EOS 70D DSLR due to size restrictions and to improve
the image resolution. These partial images are digitally processed to correct
inhomogeneous lighting, distortions and improve contrast. Subsequently
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they are aligned and merged to a single gray value image of the entire compo-
nent. The procedure is repeated for the top and bottom side of three parts in
total. Each image is analyzed with OrientationJ [208] utilizing a smoothing
length of 1 pixel and a grid size of 5 pixels at which orientation vectors are
determined. In addition, the orientation on image data is analyzed using
structure tensors [211]. The fluoroscopy procedure is corroborated by µCT
with 42 mm resolution and 56µm resolution. The µCT scans, volumetric im-
age reconstruction and fiber orientation analysis by structure tensors were
performed by Ludwig Schöttl at KIT IAM-WK, Karlsruhe, Germany.

8.5.2 Numerical setup

The production process is modeled with the Direct Bundle Simulation tech-
nique explained in Chapter 5. The upper and lower mold surfaces are ex-
tracted from the CAD model of the part, placed at an initial distance of
25.2 mm and are meshed with rigid body elements of 2.5 mm average edge
length in the planar region and 1.0 mm average edge length in the bead region.
The lower mold remains fixed, while the upper mold is controlled by a virtual
press controller (see 4.1.5) following the press profile listed in Table A.10. The
Eulerian domain encompasses the entire region between the molds and is
meshed with 2.5 mm x 2.5 mm x 1.0 mm EC3D8RT elements in the planar
regions and 1.0 mm x 1.0 mm x 1.0 mm EC3D8RT elements in the region of
the beads. The normal velocity of the boundaries of the Eulerian domain is
constrained to zero and the region of the initial stack is filled with material
in the beginning. For the unribbed components, a total amount of 150000
bundles with L = 25mm length with element size l = 2.5mm are generated in
the stack to represent the desired fiber volume fraction. As the ribbed part is
molded from a full initial mold coverage and the plate region has only little
effect on the rib filling, the simulated domain is reduced to the insert area for
this case. This also reduces the number of simulated fiber bundles to 30000,
which are resolved finer with l = 1mm. The paste material is compressible,
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8.5 Demonstrator compression molding

non-isothermal and non-Newtonian following the parameterization of Sec-
tion 7.1. A hydrodynamic friction model with parameters from Section 8.3 is
employed at the mold walls. All simulation parameters are summarized in
Table A.10.

8.5.3 Results and discussion

8.5.3.1 Flow front progression

Snapshots of the filling process are depicted in Figure 8.36. Initially, the
stamps push the stack into the beads and fiber bundles are pulled into the
shape leading to a higher orientation perpendicular to the beads. The outer
stack contour is affected by this pull-in and the stack experiences out-of-plane
deformation. At 4.8 s, the beads are fully filled and the flow front extends
uniformly in both directions. However, leakage occurs at some convex mold
surface areas similar to the previous example in Section 8.4. Due to the
asymmetric placement on top of the insert, the flow front reaches one end
of the mold first (7.2 s) and the flow direction reverts in some regions to
completely fill the mold.

Flow marks with highly aligned fibers form at the ends of the beads during
molding (see Figure 8.37a, where flow marks are highlighted with a light green
color). For an insert-centered initial stack, these flow marks are symmetric
(equal length at both ends of the beads). The mesoscale DBS is able to predict
the formation of these flow marks as a result of bundles with restricted motion
due to the beads. As shown in Figure 8.37c, fiber bundles at the end of the
beads travel a shorter distance than those surrounding them, which leads to
an alignment of fibers. An adjustment of the initial stack to the mold center
results in longer flow marks that are restricted to one side of the part (see
Figure 8.37b, where flow marks are highlighted with a light green color). The
effect of this small shift by 6 cm can be reproduced by DBS, where similar
long flow marks are predicted (see Figure 8.37d). The fiber architecture shows
artifacts in the region of the beads, which are caused by leakage of paste
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t =0 s

t =2.4 s

t =4.8 s

t =7.2 s

Figure 8.36: Snapshots of the simulated mold filling process for the IRTG demonstrator com-
ponent without ribs and an insert-centered stack. The left column shows the top view on the
component and the right column shows a section through the center bead. The last snapshot
shows some droplets leaving the cavity due to leakage.

droplets through the mold surfaces. These artifacts can occur, if a droplet
leaves the domain rapidly and affects the neighborhood of a fiber bundle,
with which it interacts.
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8.5 Demonstrator compression molding

(a) Insert-centered stack (photo) (b) Mold-centered stack (photo)

(c) Insert-centered stack (DBS) (d) Mold-centered stack (DBS)

0.0 0.1 0.2 0.3
Displacement in m

Figure 8.37: Formation of flow marks in the demonstrator part without ribs. The displacement
describes the distance that each bundle traveled relative to its initial position. The insert-
centered stack results in symmetric flow marks at all ends of beads. The mold-centered stack
results in long one-sided flow marks, which are observed in experiments and the simulation.

The ribbed demonstrator component molded with full mold coverage shows
severe fiber-matrix separation in the ribs with resin-rich regions at the cross-
ing points of each rib pair. The separation can be observed visually, as de-
picted in Figure 8.38a, and seems to occur independent of rib width and radii
at the rib entrance. The ribs are completely filled with paste in the mesoscale
simulation, but fiber bundles are also segregated in the ribs, as shown in Fig-
ure 8.38b. The segregation is caused by entangled bundles as well as bundles
that have a limited capability to enter multiple ribs due to the inextensibility.
Additionally, the drag force on bundle ends that just reach into a rib is not
sufficient to move the entire bundle into the rib and increases separation.

The central bead of a exemplary ribbed part is scanned by µCT and depicted
in Figure 8.39a. The contour surface separating fiber bundles and matrix
agrees with the visually observed separation. The DBS also shows a clear lack
of bundles in the crossing points of ribs, as depicted in Figure 8.39b.
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(a) Photo (b) DBS
Figure 8.38: Overview on fiber-matrix separation in the insert region of the demonstrator com-
ponent. (a) The dark translucent shade at the crossing points of ribs can be clearly attributed to
fiber-matrix separation. (b) The crossing points of ribs are lacking fiber bundles. The matrix is
not shown for visualization purposes, but the simulation predicts a complete filling of the ribs
with matrix material and hence a fiber-matrix separation similar to the experiments.

(a) µCT scan

(b) DBS
Figure 8.39: Overview on the fiber architecture of the central bead obtained from µCT and DBS.

A more detailed view on the rib pair highlighted by a circle in Figure 8.39a is
displayed in Figure 8.40 and compared to the corresponding simulation result.
The flow front progression towards the center of the bead and resulting fiber
architecture is predicted correctly. This is remarkable, as a recent study on
very similar structures with commercial macroscopic models falsely predicted
a preferred filling of the wider central crossing points of ribs [212]. The
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8.5 Demonstrator compression molding

authors assume that this stems from a lack of anisotropy in their models,
but the results presented here suggest that the mesoscale structure plays an
important role in the fill pattern of such ribs.

(a) µCT scan (b) DBS
Figure 8.40: Zoom into the fiber architecture in a central rib pair. The section is highlighted by a
circle in Figure 8.38

8.5.3.2 Fiber orientation

The A11 component of the fiber orientation tensor is depicted in Figure 8.41
for the analysis with OrientationJ on fluoroscopy images, structure tensors
on fluoroscopy images, structure tensors on µCT scanned sections and the
DBS result. The image data is evaluated on an exemplary sample and the
DBS result is mapped on a 2.5 mm x 2.5 mm x 2 mm evaluation mesh with
the method described in Section 5.1.6.3.

Both results based on image data show a predominant orientation in x-
direction with a major perpendicular orientation in the beads and at the
ends of the mold. This perpendicular orientation is more prominent in the
structure tensor based computation. It is likely that this structure tensor
based computation is more accurate due to better image pre-processing.
Additionally, the structure tensor based computation leaves out the region
with the sample label to avoid misinterpretation of the orientation in this
region. Compared to image data, the evaluation of regions analyzed via µCT
show a higher orientation in terms of absolute values, but the same trend of
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(a) Fluoroscopy (OrientationJ) (b) Fluoroscopy (structure tensor)

(c) µCT (structure tensor) (d) DBS (see Section 5.1.6.3)

0.0 0.5 1.0
A11

Figure 8.41: Orientation tensor component A11 for an exemplary part analyzed with all de-
scribed methods. The computation in (b) leaves out the region with the sample label to avoid
misinterpretation of the orientation in this region.

perpendicular orientation in the beads. As the µCT scan contains informa-
tion through the thickness of the sample, this suggests that the fluoroscopy
method underestimates strong alignment due to its thickness averaging prop-
erty. The DBS features distinct highly oriented regions at the end of each
bead that correspond to the flow marks described in the previous section.
These are less pronounced in the experimental data, even though strong fiber
alignment is visually observed in the molded parts. The mesoscale simulation
does predict a strong perpendicular orientation in the beads and even be-
tween beads. This is reasonable, as fibers are pulled into the beads such that
the initial stack is stretched ª140% in y-direction at the central area. Pulling
fibers into the beads affects also the region between beads due to the fiber
length of 25 mm. However, the effect is less pronounced in the experimental
data and only visible in the central section of the µCT scan. More µCT scans
of the other beads would be necessary to investigate the fiber architecture of
this region in more detail.
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8.5 Demonstrator compression molding

8.5.3.3 Compression force

The compression force of the demonstrator part is plotted in Figure 8.42. The
plot shows the mean force of five trials in dark gray as well as the area between
the lower quartile and upper quartile in light gray. The compression force
features a plateau just after the initial forming phase, in which the stamps
deform the stack to the beads. The most likely reason for this plateau is the
initial sticking friction at the mold surface. The DBS simulation features a
similar plateau, but it is less pronounced. This is likely affected by the poor
contact enforcement in Simulia Abaqus/Explicit between the Eulerian phase
and complex Lagrangian molds. Accordingly, the final thickness of the part is
also underestimated due to the leakage at convex mold features.
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Figure 8.42: Compression force and mold displacement during the demonstrator compression
molding process. Dots mark the snapshot positions depicted in Figure 8.36.

8.5.4 Concluding remarks

The mesoscale Direct Bundle Simulation approach is applied to a large-scale
component of dimensions 800 mm x 250 mm with ribs and beads. The model
is able to predict molding defects such as the formation of flow marks and
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fiber-matrix separation in ribs. In contrast to recent reports on macroscopic
models in similar structures [212], the rib filling process is described qual-
itatively correct from the outer borders towards the center and not with a
preferred flow in the wider center of crossing rib pairs. The comparison of
fiber orientation with experimental results shows a correct prediction of the
predominant fiber orientation in x-direction of the plate with perpendicular
orientation in the beads and at the end of the mold. However, the coarse
mesh and previously described penetration of droplets through the mold
walls cause artifacts in the bundle architecture and an underestimation of
the final part thickness. The mapping procedure of the orientation evalua-
tion can be also used to transfer the process simulation results to a mesh for
subsequent structural simulation. Contrary to regular macroscopic models
applied in the state of research, the new mesoscale model allows to transfer
fiber volume fraction and evaluate higher order fiber orientation tensors,
if desired. A comparison to results obtained with the commercial software
Autodesk Moldflow may be found in the thesis of Revfi [213].
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9 Summary

After a summary of the state of research in SMC compression molding and
stating the objective, this work proposes a macroscale reference model for
SMC process simulation. The model is supplemented by utility functions
such as a virtual press controller and a friction model, which are also used for
the mesoscale simulations. The main contribution is the development of a
mesoscale Direct Bundle Simulation (DBS) approach that models SMC paste
as a combination of paste moving in an Eulerian frame and Lagrangian truss
elements representing individual fiber bundles. The model includes bundle-
bundle interactions as well as bundle-matrix interactions. A collection of
pre- and post-processing tools for productive application at component scale
completes the mesoscale model. Additionally, an anisotropic patch model
with individual damage variables for stitching yarn and infiltrated UD carbon
fibers is developed. The required parameters of the models are characterized
and applied to several validation examples.

9.1 Conclusions

The prediction of fiber architecture via the novel mesoscale Direct Bundle
Simulation is improved in comparison to macroscale models in confined
regions and close to the mold walls. The method is able to predict the for-
mation of knit lines and flow marks in the same positions as experimentally
validated. All this can be applied for entire components and is to the au-
thors best knowledge the first method resolving individual bundles enabling
component simulations.
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9 Summary

For large planar SMC regions, Jeffery’s model without interaction parameters
seems to be a good choice for a macro model, as it agrees with the more
detailed DBS in such large planar regions. This is remarkable, because it
does not require additional interactions parameters and retarding principal
rate parameters as they have been developed for injection molding. The
macroscopic model features up to ten times faster computation times than
the mesoscale model, but it is not able to predict fiber-matrix separation and
bundle curvatures.

The proposed mesoscale method allows the prediction of fiber-matrix sepa-
ration and bundle curvature, because flexible bundles and paste are able to
move at different speeds. The predicted locations of resin-rich regions agree
with experimental results.

Lubrication forces between individual fiber bundles are incorporated into
the model, but are numerically challenging due to the resulting small time
step during explicit integration. The introduction of lubrication affects the
compression force during molding of planar SMC parts, while the orientation
is hardly affected. In most cases, mold friction is a dominant contributor
to compression force in comparison to lubrication and lubrication may be
neglected in favor of faster computation times.

The ideal plug-flow assumption has limited validity for the considered UPPH-
GF SMC and sheets do slip relative to each other, which has been proven by a
colored sheet. Even with mesoscale DBS and accounting for mold friction,
press compliance, compressibility, non-Newtonian non-isothermal paste, it
is not possible to describe this layer-induced mechanism with a single matrix
phase. Likely, it would require separate matrix phases, which arises new
challenges w.r.t mesh resolution and the ability to merge such phases.

To model the squish and flow phase of SMC, sticking friction should be added
to the hydrodynamic friction model. Therefore, a friction model is suggested
that transitions from an initial sticking behavior to a hydrodynamic power-
law friction model. However, the friction model relies on the implementation
of the surface reconstruction from the Eulerian phase. The employed Simulia
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9.2 Outlook and recommendations

Abaqus/Explicit CEL method shows some weaknesses in this area that lead to
an imperfect contact and leakage of paste material through the mold surfaces.

Patches from the in-house production suffer from significant scatter due to
a missing series production quality control. They can be integrated to the
simulation and the occurrence of damage is predicted correctly, but the exact
deformation mode cannot be predicted reliably due to the scatter in patch
properties.

9.2 Outlook and recommendations

For macroscopic SMC orientation models, the mesoscale simulation results
suggest that a focus on further development of refined fiber orientation
parameters is not necessary for large planar SMC regions. Instead, it seems
more promising to further develop models that account for confinement in
narrow regions following for example the work of Perez et al. [25].

The mesoscale process model can enrich the previously developed CAE chain
for SMC [6] with higher-order fiber orientation tensors, fiber volume frac-
tion, bundle curvature and other information given by the more detailed
prediction of fiber bundle architecture. Given the probabilistic nature of
some molding mechanisms, the scatter should be assessed with a continuous
probabilistic CAE chain that leverages the ability of the developed model to
predict different realizations for different initial randomly generated stacks
under identical processing conditions.

The mesoscale model itself could be improved by extensions to model flat-
tening of bundles and disintegration of bundles that can occur in rare cases.
For example, a damage variable could describe the disintegration of the bun-
dle character based on the subjected shear stress on bundles. Finally, the
use of an improved implementation could address the leakage problem and
generally improve the computation performance in Simulia Abaqus/Explicit
CEL.
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A Appendix

A.1 Sketches for geometric considerations

Equation (5.20) was obtained by a projection, which is illustrated in Figure
A.1a. The normal direction is computed from the distance between the tip
of p j and the projection of p j on the unit vector in direction of the velocity
[[¢v j ]].

The curvature given in Equation (7.4) is the inverse radius of the bent section.
The radius Rb comprises a lower section with length r0 sinÆb and an upper
section with length (r0 + r0 cos(Æb))cotÆ.

p j

[[¢vj ]]

q j

pj · [[¢vj ]]

(a) Normal direction

Æb

Æb

R
b

r0

(b) Bending
Figure A.1: Sketches for the derivation of Equation (5.20) and Equation (7.4)

215



A Appendix

A.2 Simulation parameters

Table A.1: Parameter variation of the reference model presented in Figure 4.6 in Section 4.3.

Description Symbol Default value Changed value

Initial length X0 0.29 m

Width B0 0.25 m

Density Ω0 1900 kg m−3

Initial orientation Axx,0 0.5

Ay y,0 0.5

Ax y,0 0.0

Fiber volume fraction f 0.0

Shear viscosity ¥ 1000 Pa s 2000 Pa s

Bulk modulus K0 190 000 Pa 1900 Pa

Short-range interaction kD 0.0

Shear factor Ns 0.0

Friction ∏ 0 N s m−3 50 N s m−3

Force Fmax 1000

Profile h0, ḣ0 9 mm, −1 mm s−1

h1, ḣ1 0 mm, −1 mm s−1
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Table A.2: Simulation parameters for anisotropic flow verification in Section 5.2.2.

Parameter Symbol Isotropic Macro DBS

Truss element size l - - 2.5 mm

Fluid element size - 2.5 mm x 2.5 mm x 1.0 mm

Stack dimensions - 25 mm x 25 mm x 15 mm

Density Ω0 1900 kg m−3

Initial orientation Axx,0 0.5 0.0 0.0

Ay y,0 0.5 1.0 1.0

Ax y,0 0.0 0.0 0.0

Fiber volume fraction f 0.25%-2.5%

Matrix viscosity ¥ 0.1 Pa s

Aspect ratio rp 50

Nominal bundle length L 10 mm

Bulk modulus K0 1500 Pa

Short-range interaction kD 0 0 -

Shear factor Ns 0 0 -

Friction ∏ 0 N s m−3

Profile h0, ḣ0 20 mm, −1 mm s−1

h1, ḣ1 0 mm, −1 mm s−1

Table A.3: Simulation parameters for linear compression example with 0% fiber volume fraction.

Parameter Symbol 1D model 3D model DBS

Initial length X0 50 mm

Width B0 50 mm

Fluid element size - 1.25 mm 1.0 mm x 1.0 mm x 1.0 mm

Density Ω0 1900 kg m−3

Mass scaling ∑m 1000

Matrix viscosity ¥ 100 kPa s

Bulk modulus K0 190 MPa

Friction ∏ 0 N s m−3

Profile h0, ḣ0 5 mm, −1.667 mm s−1

h1, ḣ1 0 mm, −1.667 mm s−1
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Table A.4: Simulation parameters for linear compression example with 1% fiber volume fraction.

Parameter Symbol 1D model 3D model DBS

Initial length X0 50 mm

Width B0 50 mm

Truss element size l - - 2.5 mm

Fluid element size - 1.25 mm 1.0 mm x 1.0 mm x 1.0 mm

Density Ω0 1900 kg m−3

Mass scaling ∑m 10000

Initial orientation Axx,0 0.5 0.5 0.5

Ay y,0 0.5 0.5 0.5

Ax y,0 0.0 0.0 0.0

Fiber volume fraction f 1.0%

Aspect ratio rp 72.9 72.9 -

Nominal bundle length L - - 25 mm

Equivalent diameter d - - 0.2 mm

Matrix viscosity ¥ 100 kPa s

Bulk modulus K0 - 190 MPa 190 MPa

Bundle elastic modulus E - - 72 GPa

Friction ∏ 0 N s m−3

Profile h0, ḣ0 5 mm, −1.667 mm s−1

h1, ḣ1 0 mm, −1.667 mm s−1
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Table A.5: Simulation parameters for linear compression example with 25% fiber volume fraction.

Parameter Symbol 1D model 3D model DBS

Initial length X0 50 mm

Width B0 50 mm

Truss element size l - - 2.5 mm

Fluid element size - 1.25 mm 1.0 mm x 1.0 mm x 1.0 mm

Density Ω0 1900 kg m−3

Mass scaling ∑m 10000

Initial orientation Axx,0 0.5 0.5 0.5

Ay y,0 0.5 0.5 0.5

Ax y,0 0.0 0.0 0.0

Fiber volume fraction f 25.0%

Aspect ratio rp 72.9 72.9 -

Nominal bundle length L - - 25 mm

Equivalent diameter d - - 0.2 mm

Matrix viscosity ¥ 100 kPa s

Bulk modulus K0 - 190 MPa 190 MPa

Bundle elastic modulus E - - 72 GPa

Friction ∏ 0 N s m−3

Profile h0, ḣ0 5 mm, −1.667 mm s−1

h1, ḣ1 0 mm, −1.667 mm s−1
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Table A.6: Simulation parameters for simple double curved dome.

Parameter Symbol Macro DBS

Truss element size l - 2.5 mm

Fluid element size - 1.0 mm x 1.0 mm x 1.0 mm

Density Ω0 1900 kg m−3

Initial orientation Axx,0 0.5 0.5

Ay y,0 0.5 0.5

Ax y,0 0.0 0.0

Fiber volume fraction f 23%

Matrix viscosity ¥ 1£105 Pa s

Nominal bundle length L 25 mm

Bulk modulus K0 1.9 GPa

Short-range interaction kD 0 -

Shear factor ns 0 -

Bundle elastic modulus E - 72 GPa

Bundle density Ωb - 2600 kg m−3

Bundle radius R - 0.1 mm

Friction ∏ 1£106 N s m−3

m 0.6

v0 0.001 m s−1

Mass scaling factor ∑m 1£106

Time step ¢t 3£10−4 s
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A.2 Simulation parameters

Table A.7: Simulation parameters for the honeycomb part.

Parameter Symbol Value

Truss element size l 2.5 mm

Fluid element size - 1.0 mm x 1.0 mm x 1.0 mm

Density Ω0 1480 kg m−3

Initial orientation Axx,0 0.5

Ay y,0 0.5

Ax y,0 0.0

Fiber volume fraction f 36.6%

Matrix viscosity ¥ 25 000 Pa s

Nominal bundle length L 50 mm

Bulk modulus K0 1.48 GPa

Bundle elastic modulus E 73 GPa

Bundle density Ωb 2600 kg m−3

Bundle radius R 0.237 mm

Friction ∏ 5.59£106 N s m−3

m 0.66

v0 0.001 m s−1

Mass scaling factor ∑m 1£104

Max. compression force Fmax 1500 kN

Initial gap h0 12 mm

Press profile (B) h1, ḣ1 14 mm, −10 mm s−1

h2, ḣ2 10 mm, −2.5 mm s−1

h3, ḣ3 0 mm, −10 mm s−1
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Table A.8: Simulation parameters for the press rheometer.

Parameter Symbol Value

Truss element size l 2.5 mm

Fluid element size - 2.5 mm x 2.5 mm x 0.6 mm

Density Ω0 1480 kg m−3

Initial orientation Axx,0 0.5

Ay y,0 0.5

Ax y,0 0.0

Fiber volume fraction f 23%

Matrix viscosity D1 72 000 Pa s

∞0 0.1

n 0.385

T§ 40.73 °C

A1 7.94

A2 105.69 °C

Thermal conductivity ∑ 0.163 W m−1 K−1

Specific heat capacity cp 1530 J kg−1 K−1

Nominal bundle length L 25 mm

Equation of state p(¢") see Table 7.4

Bundle elastic modulus E 73 GPa

Bundle density Ωb 2600 kg m−3

Bundle radius R 0.1 mm

Friction ∏ 3.0£106 N s m−3

m 0.6

v0 0.001 m s−1

ø0 150 kPa

vt 10 mm s−1

Gap conductance kT 403 W m−2 K−1

Mass scaling factor ∑m 1£104

Max. compression force Fmax 4400 kN

Press profile h0, ḣ0 9 mm, −1 mm s−1

h1, ḣ1 0 mm, −1 mm s−1

222



A.2 Simulation parameters

Table A.9: Simulation parameters for the complex small part.

Parameter Symbol Value

Truss element size l 1 mm

Fluid element size - 1 mm x 1 mm x 1 mm

Density Ω0 1480 kg m−3

Initial orientation Axx,0 0.5

Ay y,0 0.5

Ax y,0 0.0

Initial temperature T0 25 °C

Fiber volume fraction f 23%

Matrix viscosity D1 72 000 Pa s

∞0 0.1

n 0.385

T§ 40.73 °C

A1 7.94

A2 105.69 °C

Thermal conductivity ∑ 0.163 W m−1 K−1

Specific heat capacity cp 1530 J kg−1 K−1

Nominal bundle length L 25 mm

Equation of state p(¢") see Table 7.4

Bundle elastic modulus E 73 GPa

Bundle density Ωb 2600 kg m−3

Bundle radius R 0.1 mm

Friction ∏ 3.0£106 N s m−3

m 0.6

v0 0.001 m s−1

ø0 150 kPa

vt 10 mm s−1

Gap conductance kT 403 W m−2 K−1

Mass scaling factor ∑m 1£105

Max. compression force Fmax 130 kN

Initial gap h0 22.4 mm

Press profile h1, ḣ1 25 mm, −35 mm s−1

h2, ḣ2 10 mm, −25 mm s−1

h3, ḣ3 5 mm, −15 mm s−1

h4, ḣ4 2.5 mm, −3 mm s−1

h5, ḣ5 0 mm, −3 mm s−1
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Table A.10: Simulation parameters for the IRTG demonstrator part.

Parameter Symbol Without ribs With ribs

Truss element size l 2.5 mm 1.0 mm

Fluid element size - 2.5 mm x 2.5 mm x 1 mm 1 mm x 1 mm x 1 mm

Density Ω0 1480 kg m−3

Initial orientation Axx,0 0.5

Ay y,0 0.5

Ax y,0 0.0

Initial temperature T0 30 °C 25 °C

Fiber volume fraction f 23% 18%

Matrix viscosity D1 72 000 Pa s

∞0 0.1

n 0.385

T§ 40.73 °C

A1 7.94

A2 105.69 °C

Thermal conductivity ∑ 0.163 W m−1 K−1

Specific heat capacity cp 1530 J kg−1 K−1

Nominal bundle length L 25 mm

Equation of state p(¢") see Table 7.4

Bundle elastic modulus E 73 GPa

Bundle density Ωb 2600 kg m−3

Bundle radius R 0.1 mm

Friction ∏ 3.0£106 N s m−3

m 0.6

v0 0.001 m s−1

ø0 150 kPa

vt 10 mm s−1

Gap conductance kT 403 W m−2 K−1

Mass scaling factor ∑m 1£105

Max. compression force Fmax 1400 kN

Initial gap h0 25.2 mm 22.2 mm

Press profile h1, ḣ1 50 mm, −30 mm s−1 23 mm, −15 mm s−1

h2, ḣ2 10 mm, −5 mm s−1 5 mm, −1 mm s−1

h3, ḣ3 5 mm, −1 mm s−1 0 mm, −1 mm s−1

h5, ḣ5 0 mm, −1 mm s−1
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