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Abstract. SPHINCS+ is a state-of-the-art hash based signature
scheme, the security of which is either based on SHA-256, SHAKE-256 or
on the Haraka hash function. In this work, we perform an in-depth anal-
ysis of how the hash functions are embedded into SPHINCS+ and how
the quantum pre-image resistance impacts the security of the signature
scheme. Subsequently, we evaluate the cost of implementing Grover’s
quantum search algorithm to find a pre-image that admits a universal
forgery.
In particular, we provide quantum implementations of the Haraka and
SHAKE-256 hash functions in Q# and consider the efficiency of attacks
in the context of fault-tolerant quantum computers. We restrict our find-
ings to SPHINCS+-128 due to the limited security margin of Haraka.
Nevertheless, we present an attack that performs better, to the best of
our knowledge, than previously published attacks.
We can forge a SPHINCS+-128-Haraka signature in about 1.5·290 surface
code cycles and 2.03 · 106 physical qubits, translating to about 1.55 · 2101

logical-qubit-cycles. For SHAKE-256, the same attack requires 8.65 · 106

qubits and 1.6 ·284 cycles resulting in about 2.65 ·299 logical-qubit-cycles.

Keywords: Post-quantum cryptography · quantum implementation ·
resource estimation · cryptanalysis.

1 Introduction

Overview and Related Work Ongoing research in the area of quantum tech-
nologies has led to the belief that quantum computers will be able to break
current public-key cryptosystems within the coming decades. On the contrary,
symmetric-key primitives are believed to be somewhat resistant against quantum
attacks, with the most promising generic attack being Grover’s search algorithm
[15]; Its quadratic improvement over a classical brute force search can easily be
countered by doubling the key length of the underlying primitives.

In order to prepare for the (public-key) quantum menace the National In-
stitute for Standards and Technology (NIST) started the post-quantum stan-
dardization competition in 2017. From the initial 69 submissions, only 7 were
selected as finalists [24]. Additionally, 8 schemes were chosen as alternate can-
didates based on a high confidence of their security, but with a drawback in
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performance compared to the 7 finalists. Briefly speaking, they may be consid-
ered as Backup candidates for standardization. Among the alternate candidates
is the stateless hash-based signature scheme SPHINCS+ [16]. SPHINCS+ builds
on the hardness of inverting one-way functions, i.e., Haraka [20], SHAKE-256 [22]
or SHA-256 [11], the first of which can be derived from block-ciphers and thus
is believed to provide similar security guarantees against quantum adversaries.

An estimate of the security of SPHINCS+, based on cryptographic assump-
tions, was given within the scope of the NIST submission: The authors consid-
ered general attacks [16, Sec. 9.3.1] on the distinct-function multi-target second
preimage resistance of the underlying hash functions and estimated the success
probability of such an attack as Θ

(
(qhash+1)2/2n

)
, where qhash is the number of

hash queries and n a security parameter. Generally, they quantify the security
based on the number of required hash function invocations and thus on the
probability of an successful adversary.

The NIST competition features 5 security levels [24,23]: The first level pro-
vides security equivalent to performing a key search on AES-128, the second
a collision attack on SHA-256 and the fifth a key search on AES-256. More-
over they categorize attacks with quantum computers according to the maximal
circuit depth, where each level resembles a number of gates that can be seri-
ally computed over a plausible time period. Specifically, NIST estimates that
quantum circuits up to a depth of 240 gates can be computed within a single
year, up to a depth of 264 in a single decade and up to 296 in a millennium.
Respectively, the number of quantum gates to break AES is estimated by NIST
to be 2170/maxdepth, i.e. 2130, 2104 and 274. [17] gave precise estimates for at-
tacking AES-128 for different values of maxdepth and respective parallelization.
Equivalently, NISt estimates 2143 classical computational steps. However, we
note the most promising attack on AES-128 can be performed in 2126.1 classical
steps as shown by [4]. SPHINCS+ features parameters for each security levels,
i.e. SPHINCS+-SHAKE-256 and SPHINCS+-SHA-256 both provide a sufficient
amount of security for all 5 NIST security levels. On the other side, SPHINCS+-
Haraka achieves security level 1 or 2 at most.

An analysis of the security of SHAKE-256 has been given by [1], whose re-
sult is the main motivation for our work. They present a quantum circuit to
implement a Grover search and attack the 256-bit pre-image resistance of the
SHA3-256 hash function and give concise and fault-tolerant estimates for the
resources required to implement such a circuit: They claim that their circuit re-
quires 2153.8 surface code cycles using 212.6 logical qubits, resulting in an overall
requirement of about 2166.4 logical-qubit-cyles using 2128 black box queries for
a 256-bit preimage search. Their results may be adapted to estimate the work
required to break the hash function for the SPHINCS+ signature scheme. How-
ever, there is still considerable ambiguity on the specific construction to forge a
signature.

The quantum security of Haraka has not been explicitly analyzed yet. How-
ever, due to the capacity of the sponge construction in SPHINCS+-Haraka using
only 256 bits, attacking the second-preimage-resistance as described in [3] only
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requires about 2129.5 classical hash function invocations, producing a collision
on the internal state of the hash function in the process. The best known generic
quantum collision attacks on hash functions is the BTH algorithm by [7], which
finds a collision using O(2n/3) Grover iterations, (where n is a security param-
eter), however, also requiring O(2n/3) quantum RAM (QRAM) . The concept
of QRAM is highly controversial, as quantum states that interact with the en-
vironment eventually decay. [10, Thm 2] presented a trade-off using only Õ(n)
QRAM but Õ(22n/5) Grover iterations, resulting in a work effort of about 2102

iterations for a collision search with n = 256 on Haraka.

The (quantum) invocation of the hash function induces a significant overhead
and has to be accounted for. Moreover the implementation on a fault-tolerant
quantum computer requires additional overhead to compensate for error correc-
tion within the circuit. In our analysis we adapt the concept of logical-qubit-
cycles as quantum cost metric, such that each cycle is roughly equivalent to a
single (classical) hash function invocation [1]. Briefly speaking, a logical-qubit-
cycle is the time-space product of the (fault-tolerant) number of quantum gates
and the number of qubits (space) that is used during the computation. The cost
to implement the generic attack on a fault-tolerant quantum computer has not
been analyzed yet. Instead we can consider the time-space product of Grover
iterations and memory, which is Õ(23n/5), resulting in a cost of about 2153.

Contribution In this work we consider attacks on SPHINCS+ based on in-
verting the underlying hash functions at specific points, i.e. attacking the XMSS
or FORS structure. We chose particularly Haraka, because of its placement as
a potential component within the NIST competition. Moreover, preimage resis-
tance of the Haraka [20] hash function has not, to the best of our knowledge, been
explicitly evaluated in the quantum setting in any literature. We evaluate the
logical resources required to implement our attacks on the Haraka as well as the
SHAKE-256 hash-functions and further estimate the fault-tolerant cost to attack
the SPHINCS+-128 scheme. For the sake of completeness and comparability we
also present the numbers to attack the SPHINCS+-256 scheme.

In Section 2 we recall parts of the SPHINCS+, Haraka and SHAKE-256
scheme, and review the Grover algorithm with respective metrics for fault-
tolerant quantum computing. In our work, we use the logical-qubit-cycles metric
(introduced in [1]) which compares to classical hash function invocations. Sec-
tion 3 shows the results for our implementation1 of the hash functions in Q#. To
construct a circuit for Haraka, we partially reused the work of [17] on AES func-
tions, resulting in the first implementation of the Haraka hash function in the
quantum setting. The implementation for SHAKE-256 was built from scratch.
For both circuits, we consider the number of qubits as well as different metrics
based on the gate count and T-Depth. As a result, our implementation of the
Haraka512 permutation in the hash function consumes about 2.2 · 106 quantum
gates on 1144 logical qubits. Our Keccak permutation in the SHAKE-256 hash
function consumes about 3.3 · 106 quantum gates on 3200 logical qubits.

1 https://github.com/RobinBerger/Grover-Sphincs

https://github.com/RobinBerger/Grover-Sphincs
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In Section 4, we analyze the most promising points of attack in the
SPHINCS+ signature scheme. We propose that the weakest link is the XMSS
authentication path for a given WOTS+ public key, as this allows a univer-
sal forgery attack. Our most promising attack on SPHINCS+-128-Haraka re-
quires about 1.6 · 286 quantum gates. The same circuit to attack SPHINCS+-
128-SHAKE-256 has about 1.2 · 286 gates.

In Section 5, we partially follow the approach of [1] to estimate the resources
for this attack in the context of fault-tolerant quantum computing. We compute
the amount of error correction in terms of surface code cycles and the optimal
scheme for magic state distillation.

For the Haraka hash function, our attack requires 3.91 · 1030 ≈ 1.55 · 2101
logical-qubit-cycles on 2.03 ·106 physical qubits, which is better than the generic
quantum collision attack on the hash function, which requires 2102 quantum
hash function invocations (without considering the cost of implementing the
hash function), or a time-space product of 2153, which appears to be the more
realistic comparison to the cost of logical-qubit-cycles. Performing our attack
with the SHAKE-256 hash function instead requires 7.44 · 1029 ≈ 2.65 · 299

logical-qubit-cycles on 8.65 · 106 physical qubits.

2 Preliminaries

2.1 The SPHINCS+ Signature Scheme

In this section we partially review the SPHINCS+ signature scheme as proposed
and submitted by [16] to the second and third round of NIST’s post-quantum
cryptography competition. The structure of the SPHINCS+-scheme combines a
hypertree (HT) of eXtended Merkle Signature Schemes (XMSS) and Winter-
nitz One-Time Signature schemes (WOTS) with a Forest Of Random Subsets
(FORS) as represented in the attack Fig. 3.

In the following, we consider a signature σxy using the scheme y to sign the
message x and a hash function H ∈ {SHAKE-256, Haraka-512, Haraka-sponge}
for all the subsequent hashes. Moreover, each scheme is associated with a
KeyGen(·), Sign(·) and V erify(·) functionality. Let pkSPHINCS+ , skSPHINCS+

be a SPHINCS+ key pair associated with seeds to deterministically generate
the subsequent keys of the scheme. Then a signature of a message m is a tu-
ple of value σr and signatures from the hypertree and FORS: σm

SPHINCS+ :=

(σr||σmFORS ||σ
pkFORS

HT ). The value σr will be mostly ignored in the remaining
paper.

During signing, one generates a FORS instance, signs a message digest with
the FORS key, and signs the FORS pk with the hypertree. The hypertree consists
of several layers of XMSS instances. Each XMSS instance is a binary hash tree
with WOTS schemes at the leaves, where the value of each node is the output of
hashing its child nodes. Each XMSS tree is associated with a root node pkXMSS

and a set of WOTS keys pkWOTS , skWOTS . An XMSS signature consists of a
WOTS signature and an authentication path σxXMSS := (σxWOTS ,pathXMSS),
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Algorithm 1: SPHINCS+ − KeyGen()

1 skseed
$←− {0, 1}n, skprf

$←− {0, 1}n, pkseed
$←− {0, 1}n

2 pkroot ← KeyGenHT(skseed, pkseed)
3 return (pkSPHINCS+ := (pkseed, pkroot), skSPHINCS+ := (skseed, skprf))

Algorithm 2: SPHINCS+ − Sign(m := {0, 1}∗, skSPHINCS+)

1 r
$←− {0, 1}n

2 σr ← prf msg(skprf, r,m)
3 md← H(σr, pkseed, pkroot,m)

4 σmd
FORS ← SignFORS(md, skseed, pkseed)

5 pkFORS ← pkFromSigFORS(σFORS ,m, pkseed)

6 σ
pkFORS
HT ← SignHT(pkFORS, skseed, pkseed,md)

7 return (σ := (σr||σmd
FORS ||σ

pkFORS
HT ))

where pathXMSS consists of all sibling nodes on the path from a leaf to the root
of the tree. The WOTS instances at the leaf nodes are then used to sign the
root node of the next layer, resulting in a hypertree. The root node of the top
tree is the public key of the hypertree. The bottom WOTS instances represent
the respective secret key of the hypertree that is used to create the signature

σ
pkFORS

HT .
To validate a signature σm

SPHINCS+ , one first computes a FORS public key

from σmFORS and then verifies the hypertree signature σ
pkFORS

HT . For the lat-
ter, one has to compute the authentication path through the hypertree and
finally compare the resulting public key pk′HT to the key associated with the
SPHINCS+ signature scheme. The Algorithms 1, 2, 3 review these procedures
using the respective signature schemes and a function prf msg, that generates a
pseudo-random value as part of the signature. We note that the description is
not complete (as in [16]), i.e. it is restricted to a level appropriate to follow the
remaining paper.

2.2 Quantum Computing

We assume the reader to be familiar with the basics of quantum information the-
ory (e.g. see [25]). In the following we first describe the general attack strategy
using Grover’s algorithm [15]. Then, we recall the setup to estimate quantum
resources on a fault-tolerant quantum computing architecture based on the ex-
cellent description of [19] using surface codes [13] and magic state distillation
[8].

2.3 Grover’s Algorithm on Preimage Resistance

For a fixed n, given a predicate p : {0, 1}n → {0, 1} marking M elements x ∈
{0, 1}n, Grover’s algorithm finds an element x, for which p (x) = 1. Let the initial
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Algorithm 3: SPHINCS+ − Verify

(σ := (σr||σmdFORS ||σ
pkFORS

HT ),m,pkSPHINCS+)

1 md← H(σr, pkseed, pkroot,m)
2 pkFORS ← pkFromSigFORS(σFORS ,m, pkseed)
3 return V erifyHT(pkFORS , σHT , pkseed,md, pkroot)

superposition be |φ〉 =
√

(N−M)/N |{x|p(x) = 0}〉+
√
M/N |{x|p(x) = 1}〉. Then

the algorithm of Grover operates in the space spanned by |φ〉 and |{x|p(x) = 1}〉,
where 〈φ| |{x|p(x) = 1}〉 = sin(θ). The initial value is θ = arcsin(

√
M/N), and

is increased in every iteration by roughly
√
M/N, where the advance diminishes

during the last few iterations. Thus the probability to measure a marked element

is the largest after R =
⌊
π/4
√
N/M

⌋
Grover iterations. Our implementation of

the Grover iteration follows the principle construction for oracle invocations.
If the number of matches M is not (exactly) known, and one performs too

many iterations, the value of θ decreases. Instead one can run Grover’s algorithm
multiple times with different values for M . [6, Theorem 3] have shown that the
expected number of iterations remains in O(

√
N/M).

In the context of hash functions and the random oracle model, we assume
the number of matches to be M = 1, i.e. we are given a value y and we are
looking for a single value x, so that y = H (x). Whereas there is no guarantee
that there are no collisions (i.e. M > 1), M = 1 is to be expected, since the
input and output domain of the hash functions are of equal size in our case.

2.4 Fault-tolerant Resource Estimation

The layered architecture in [19] describes the physical design of a fault-tolerant
quantum computer. The first and second layer cover the physical processes and
the virtual interfaces of the hardware and are not considered in the analysis. The
third layer provides reliable QubitClifford-gates, but not T-gates, by performing
a series of measurements and faulty gate applications on physical qubits to cor-
rect errors. Each of these intervals is called a surface code cycle. Then, the logical
layer provides a universal gate set. The final layer consists of the application of
Grover’s algorithm.

In the following we describe the layers in more detail, review the cost metrics
of [1] in our setting and explicitly mention the assumptions (since quantum
benchmarks are not available) required for the analysis. Our description of the
different layers, which are pictured in Fig. 1, is tailored to our resource estimate.
We combine these with the cost metrics used by [1] for comparability.

Assumption 1 The cost for a computation of a large-scale fault-tolerant quan-
tum computer is well approximated using surface codes [1,26,18].

The following parameters approximate today’s state of the art [1,12]. We use
these for comparability, but note that other values have also been suggested [19].
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Quantum Error Correction

Logical

Application

Physical qubits, processes

Faulty qubits, gates

Reliable qubits, basic gates

Reliable qubits, universal gates

Surface code
distance d

pin

pout

Surface code constants
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Distillation layer 1 Distillation layer 2

Surface code
distance d1

Surface code
distance d2

poutpinpout
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pgate

pgate, pin
Logical error rate

ε
ε

Fig. 1: Layered architecture for quantum computers including parameters for the
error correction layer (left) and exemplary magic state distillation (right).

While Assumption 3 does not hold for our oracle implementation per se, it does
so for the Grover algorithm over multiple Grover iterations.

Assumption 2 pin is the initial error probability of a quantum state, i.e. before
any layer of error correction pin ≈ 10−4. pgate ≈ pin/10 is the gate error rate.
tsc = 200ns is the approximate time for a single surface code cycle.

Assumption 3 All quantum gates are distributed uniformly across all layers.

Quantum Error Correction Let C1, C2, εtresh be parameters determined by
the implementation of the surface code with distance d. Given an initial error
rate of pin one can calculate the distance d for a targeted error rate pout as per

pout ≈ C1 (C2
pin/εtresh)

bd+1/2c
[19, Sec. IV.B]. We follow the suggestion in [14,

Fig. 8] and estimate that each logical qubit requires 2 · (d+ 1)2 physical qubits
to be implemented in a surface code with distance d.

Logical Layer We deploy the Reed-Muller-15-to-1 distillation introduced by
[8], each layer uses 15 magic states with an input error rate of pin and produces
one magic state with lower error rate pdist ≈ 35pin

3. We follow the work of [1] and
assume that the amount of logical errors introduced during distillation is already
covered in the process resulting in pout = (1 + ε) pdist, hence pin ≈ 3

√
pout/35(1+ε)

The distillation is repeated until pout reaches a target value.
Let di be a surface code distance for layer i with i = 1 being the top layer

of distillation, where each distillation requires 10 · di cycles. For this, [12, Sec.
II] gives an example calculation, [1, Alg. 4] gives an explicit algorithm that
takes an initial gate error pgate and calculates the number of layers of magic
state distillation as well as their respective surface code distance. Each layer i
requires 16 · 15(i−1) logical qubits. The number of physical qubits in the code is
calculated based on the respective surface code.
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Algorithm 4: Haraka512Permutation(A[x] : {0, 1}128 , 0 ≤ x < 4)

1 for 0 ≤ i < 5 do
2 for 0 ≤ j < 4 do
3 A[j] := aesEnc(aesEnc(A[j], keyi,j,1), keyi,j,0)

4 A := mix(A)

5 return A

Application Layer For our implemented circuits we consider the total count
for T-, CNOT- and QubitClifford gates, along with the T-depth and T-width,
motivated in [17,1]. For a circuit implementing our attacks, i.e. using Grover’s
algorithm, let gd be the total depth (i.e. number of layers) of a circuit and let
scc be the number of surface code cycles for each layer. First, we consider the
total number of surface code cycles as costSCC = scc·gd. Then, we consider the
number of logical qubits qlog

G required to implement the Grover algorithm and

the number of logical qubits qlog
MD to perform the magic state distillation. Finally,

we consider the metric of logical-qubit-cycles from [1, As. 4 and Cost Metric 1],
where each cycle is comparable to one (classical) hash function invocation. The
number of logical-qubit-cycles is considered to be the total cost of the attack:
costlqc = costSCC ·(qlog

G +qlog
MD). We consider this metric to be the most fitting

in comparison to the time-space product given for the best generic attack in [10].

3 Reversible Implementations

We implemented2 the Haraka and SHAKE-256 hash functions in Q#. We briefly
review the schemes and describe our reversible implementations. To the best of
our knowledge, this is the first reversible implementation of Haraka.

3.1 Haraka

Haraka, as specified in [20], consists of AES encryptions (aesEnc) and a mixing
step (mix) for the permutation, which is used in turn to instantiate a sponge
construction with a capacity of 256 bits, resulting in the Haraka-Sponge hash
function. The Haraka512 hash function is defined as the truncated XOR of the
input value and the output of the Haraka512 permutation on said input. Al-
gorithm 4 describes the Haraka512 permutation. We partially reuse the AES
implementation from [17] and adjust it to our use case.

For the AES encryption[21], we implement each of its four steps. The
SubBytes step consists of applying the AES S-Box on each 8-bit block of the
input. We use the implementation of [17] for the S-Box and additionally imple-
ment its inverse based on the proposed circuit in [5] using 120 ancillary qubits.

2 https://github.com/RobinBerger/Grover-Sphincs

https://github.com/RobinBerger/Grover-Sphincs
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(a) Quantum circuit of the AES encryption
step.
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χ χ−†

|out〉

|in〉

θ1 θ2 θ3

ρ π |0〉

|0〉 |0〉

(b) Quantum circuit of the Keccak round
function.

Fig. 2: Implementation of the round function components of Haraka and
SHAKE-256.

This allows us to compute the output of the operation into new qubits and then
using the adjoint inverse S-Box to reset the input qubits. In contrast to the
implementation in [17], this allows us to recursively apply AES multiple times
without needing additional qubits for every application, at the cost of additional
quantum gates required. The ShiftRows step swaps qubits. thus we simply ap-
ply all following gates to different qubits (resulting in no additional cost). The
MixColumns operation is the same implementation as the one by [17]. The
AddKey operation is implemented using classically controlled NOT gates, as
we use classical AES round keys, whereas [17] use quantum round keys. Fig. 2a
shows the complete circuit for the AES encryption.

Similarly to the ShiftRows operation, we implemented the mixing step for
the Haraka permutation by redirecting the quantum wires.

The AES encryption operation computes the output into a new set of qubits,
freeing up the input qubits. We apply this twice on each input block, alternating
the input and output qubits, followed by the mixing step. This completes the
round function that is repeated a total of 6 times for the Haraka512 permutation.

We implement the Haraka512 hash function by copying the input into an-
cillary qubits using CNOT gates, then applying the Haraka512 permutation on
these qubits. Next, the relevant qubits from the output of the permutation and
the input of the hash function are XORed into the output qubits using CNOT
gates. Finally, the ancilla qubits are freed up again by applying the adjoint
Haraka512 permutation. The Haraka-based sponge construction is implemented
by instantiating a sponge construction with the Haraka512 permutation.

The quantum gate count for our implementations of the Haraka permuta-
tion and hash function can be seen in Table 1. Note that Q# optimizes the
width of the quantum circuit, reusing ancillary qubits whenever possible, even
if this results in a significantly higher depth of the quantum circuit. As the
exact amount of quantum gates required depends on the SPHINCS+ instance,
all round constants for determining the gate count here and in the rest of this
work are assumed to be zero. When using the default round constants, 2582
additional NOT gates are required for every application of the Haraka512 per-
mutation, which is negligible compared to the gates required for the rest of the
implementation.
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Table 1: Resources for our implementation of the Haraka512 permutation and
hash function. The width of the circuit includes the input and output qubits.

T CNOT QubitClifford T-Depth Width

Permutation 609 289 1 383 040 189 440 69 125 1144
Hash Function 1 218 560 2 767 616 378 880 138 250 1912

Algorithm 5: KeccakPermutation(A[x][y][z] : {0, 1} , 0 ≤ x, y <
5, 0 ≤ z < 64)

1 for 0 ≤ i < 24 do
2 A := ι ((χ ◦ π ◦ ρ ◦ θ) (A) , i)

3 return A

3.2 SHAKE-256

The SHAKE-256 hash function, as specified in [22], consists of the Keccak per-
mutation, which is used to instantiate a sponge construction. The Keccak per-
mutation consists of iterating the steps θ, ρ, π, χ and ι 24 times. The complete
permutation is described in Algorithm 5, where the five steps are defined as

θ : C[x][z] :=
⊕

0≤j<5

A[x][j][z]

D[x][z] := C[x− 1][z]⊕ C[x+ 1][z − 1]

A′[x][y][z] := A[x][y][z]⊕D[x][z]

ρ : A′[x][y][z] := A[x][y][z + c[x][y]]

π : A′[x][y][z] := A[x+ 3y][x][z]

χ : A′[x][y][z] := A[x][y][z]⊕ ((A[x+ 1][y][z]⊕ 1) ·A[x+ 2][y][z])

ι : A′[x][y][z] :=

{
A[x][y][z]⊕RCi[z] x = 0 ∧ y = 0

A[x][y][z] otherwise
.

We note that our implementation follows closely the definition in [22] and
thus has a similar structure to the one used by [1]. The operation θ is split into
three parts θ1,2,3. θ1 and θ2 are a straight forward implementation of the SHA-3
specification, where we compute intermediate values in step θ1 which are used in
θ2 to compute the output of the θ step. θ3 implements θ−1 to uncompute inter-
mediate values and is based on the KeccakTools reference implementation[2]. All
XOR operations are implemented using CNOT gates. ρ and π are permuting the
input and output bits by adjusting the subsequent quantum wires. The χ step of
the Keccak permutation is a straight forward implementation of the specification
with binary addition and multiplication based on CNOT and Toffoli gates, χ−1

is the respective inverse, where the adjoint χ−1 uncomputes the input qubits.
This is the design also used by [1]. The ι step XORS a round constant on the
state, which is implemented using classically controlled NOT gates.
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Table 2: Quantum gate count for our implementation of the Keccak permutation
and for the work by [1]. Gate counts for θ and χ are given for one round. Gate
counts for ι, and the complete Keccak permutation are given for all 24 rounds.

step T CNOT QubitClifford T-Depth Width

Our implementation

θ1,2,3 0 63 040 0 0 2240
χ 11 200 19 200 3200 25 3200
χ−1 13 440 23 360 3840 30 3200
ι 0 0 86 0 1600

Keccak 591 360 2 534 400 169 046 1176 3200

Implementation in [1]
Keccak 591 360 33 269 760 169 045 792 3200

optimized 499 200 34 260 480 169 045 432 3200

The padding for the sponge construction is implemented using classically
controlled NOT gates on the state.

The quantum circuit for the round function is represented in Fig. 2b. The
Keccak permutation consists of applying this implementation 24 times while
alternating input and output qubits.

The quantum gates for our implementation of the Keccak permutation and
a comparison with [1] can be seen in Table 2. The most notable differences are
that we use more than an order of magnitude fewer CNOT gates, because we
use ancilla qubits for the θ operation and that we use the T-depth 5 Toffoli gate
provided by Q# while [1] use a T-depth 3 Toffoli gate.

4 Attacking the SPHINCS+ Signature Scheme

We analyzed the WOTS, FORS and XMSS components of the SPHINCS+

scheme to identify weak points and compared resources to mount an attack.
Briefly speaking, we determined that forging an XMSS signature requires the
fewest logical resources to forge a complete SPHINCS+ signature. In the follow-
ing sections we describe two of our attacks in more detail.

4.1 Forging a SPHINCS+ Signature on the XMSS component

To compute a universal forgery for a signature of a message m̃, we create a new
SPHINCS+ instance associated with a secret key s̃kSPHINCS+ . The root node
of the topmost XMSS instance of our new hypertree evaluates to the original
public key pkSPHINCS+ as in Fig. 3.

Let σ̃m̃
SPHINCS+ := (σ̃m̃FORS , σ̃

p̃kFORS

HT ) be a forged signature. The FORS sig-
nature is a freshly generated signature and the validation of which depends only

on the new key pair. To forge the signature σ̃
p̃kFORS

HT we use the public key of the

topmost WOTS instance generated from s̃kSPHINCS+ and replace the respective
XMSS signature with a forged signature σ̃XMSS : Therefore, we need to find an
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Forged XMSS
signature

p̃kWOTS

pkHT

XMSS tree d̃

p̃kWOTS p̃kWOTS
· · ·

. . .

σ̃WOTS

p̃kFORS

FORS tree 1̃ FORS tree k̃· · ·

�
σ̃WOTS

Signed with
s̃kSPHINCS+

Fig. 3: Forged SPHINCS+ signature using a forged XMSS signature.

authentication path ˜pathXMSS in the respective tree, so that computing the root
node of the tree along the path with the respective WOTS public key results in
the given XMSS public key.

Let p1 . . . ph′ be the nodes on the path from the given WOTS public key node
to the root of the XMSS tree with p1 being the leaf and ph′ being the root node.
Also, let v1 . . . vh′−1 be the respective sibling nodes. p1 is the WOTS public key
and pi is computed from pi−1 and vi−1 for i > 0.

To find values vi for an authentication path, we select the first h′ − 2 values
v1 . . . vh′−2 at random from {0, 1}n. This results in fixed values p1 . . . ph′−1. Then
we can forge the authentication path ˜pathXMSS if we can find a value vh′−1 to
complete the path. We can estimate the probability of such a preimage vh′−1
existing for a fixed v1 . . . vh′−2 and a given public key, if we assume that the
deployed hash function behaves like a random oracle, i.e. with each value H (x)
being chosen uniformly at random independently from each other:

P (∃x ∈ {0, 1}n : H (x) = pk) = 1− P (∀x ∈ {0, 1}n : H (x) 6= pk)

≥ 1− 1

e

(1)

This means that a preimage vh′−1 exists with probability ≥ 1− 1/e. Therefore,
forging a valid signature for a message depends only on finding the value vh′−1.
In the remaining paper we are concerned with estimating the resources to find
this value using Grover’s algorithm on a fault-tolerant quantum computer.

While this attack can be modified by generating WOTS instances for one half
of the attacked XMSS instance, allowing to easily forge signatures for multiple
messages if they fall on that side of the XMSS tree, the setup and the cost for
the preimage search is the same, so we will not go into more detail with this.

Resource Estimate To forge the XMSS signature, we need to find a preimage
of the Haraka-based sponge or the SHAKE-256 hash function using Grover’s
algorithm. In the following estimate, let n be the security parameter in bits.
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Table 3: Gate count for our implementation of the Grover components in one
Grover iteration.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 2 438 891 5 535 202 758 282 275 713 1400
SPHINCS+-128-SHAKE-256 1 184 491 5 071 842 338 614 3635 3456
SPHINCS+-256-Haraka 2 440 683 5 538 274 758 794 276 865 1656
SPHINCS+-256-SHAKE-256 1 186 283 5 076 450 339 126 4787 3712
Grover Diffusion (128 bit) 1771 2530 1022 1139 –
Grover Diffusion (256 bit) 3563 5090 2046 2291 –

Table 4: Resource estimate for a preimage search to forge an XMSS signature,
where the target column indicates if the left or right node of the hash tree is
attacked.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.6 · 286 1.7 · 281 1.1 · 292

SPHINCS+-128-SHAKE-256 1.2 · 286 1.8 · 275 1.5 · 287

SPHINCS+-256-Haraka 1.6 · 2150 1.7 · 2145 1.4 · 2156

SPHINCS+-256-SHAKE-256 1.2 · 2150 1.4 · 2140 1.2 · 2152

For the Haraka instantiation, the input to the hash function consists of a 256
bit address and two n-bit values, one of which is the hash value of a node in
the XMSS tree, the other one is the value searched for by Grover’s algorithm
to forge the signature. For the SHAKE-256 instantiation, the input to the hash
function consists of a n-bit public key seed and the same inputs as with Haraka.

Using n = 128 for the Haraka instantiation, we can save resources by precom-
puting one iteration of the Haraka512 permutation. As the rate of the sponge
instantiation is 256 bits, the first iteration absorbing the address can always
be precomputed, so the quantum circuit is implemented using a different ini-
tial state, skipping this iteration. Using the same security parameter for the
SHAKE-256 instantiation, none of the iterations can be precomputed. The gate
count for the implementation of these Grover oracles as well as for the Grover
diffusion operator for the SPHINCS+-128 and SPHINCS+-256 parameter sets as
determined by Q# are shown in Table 3. While we include the 256-bit parameter
sets for comparison, we want to note that for the Haraka hash function, more
efficient attacks exist for that parameter set.

For n = 128, Grover’s algorithm requires roughly 1.6 · 263 iterations. Com-
bining these gate counts with the amount of Grover iterations, we can evaluate
two cost metrics for this attack. These results are shown in Table 4.

We can see that the attack using the SHAKE-256 hash function performs
better on both cost metrics than the attack using Haraka. This results from the
additional iterations of the Haraka permutation compared to SHAKE-256.
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4.2 Forging a SPHINCS+ Signature on the WOTS Component

An alternate approach to forging SPHINCS+ signatures is to attack the WOTS
component. Similarly to the previous attack, this is a universal forgery attack,
however we also require a message m, that already has a valid signature σ.

The general attack strategy is similar to [9], i.e. the selection of the WOTS
instance and the construction of the SPHINCS+ signature from the other com-
ponents: We generate a SPHINCS+ signature for a new message using a new
secret key, making sure that this signature uses the first-layer WOTS instance
at the same position as the one in σ. We then forge a WOTS signature, that
authenticates our second-layer XMSS public key for the first-layer WOTS pub-
lic key in the original structure. In comparison to [9], who use a fault injection
attack, we forge the WOTS signature using a quantum preimage attack.

Custom Selection of WOTS Instances Similarly to [9], when creating a
SPHINCS+ signature σ∗ for a message m∗, we need to use a FORS instance,
that results in σ∗ using the first-layer WOTS instance at the same position as
σ does. They state that this is possible on a classical computer with feasible
effort. In the setting of SPHINCS+-128 [16], this takes an average of ≈ 29 hash
function invocations.

Forging WOTS Signatures As the WOTS signature scheme divides a mes-
sage into message and checksum blocks and then signs each block individually,
forging a WOTS signature requires forging a signature for each block. A signa-
ture for a block containing a message mi consists of the mi-th element of a hash
chain.

Let mi and m∗i be the message in the i-th block of m and m∗ respectively.
For mi ≤ m∗i , a signature for block i can be computed, by advancing in the hash
chain m∗i −mi times by applying the hash function. For mi > m∗i , we need to
go back mi − m∗i times in the hash chain. To do this, we can apply Grover’s
algorithm.

Such a preimage to a value of the hash chain must exist, as σ was generated
using this value. As it might not be unique, but only the value used to generate
σ is guaranteed to have a preimage again, this means that instead of applying
Grover’s algorithm multiple times, to go back in the hash chain once in each
step, we need to do a preimage search on a recursive application of the hash
function in a single step. If multiple preimages of the recursive application of the
hash function exist, any one of them produces a valid signature for that block.

Let the length of each block be log2 w. As the messages for the WOTS signa-
ture scheme are outputs of a hash function and therefore the message blocks mi

and m∗i are blocks of an output of a hash function, it is reasonable to assume,
that they are distributed uniformly at random from the set {0, . . . , w − 1}, inde-
pendently from each other. However we cannot assume this assumption to hold
for the checksum blocks. Using this assumption for the message blocks, we can
estimate the recursion depth of the hash function required for this attack. We
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Table 5: Gate count required by our implementation of the Grover oracles for a
recursion depth 5 of the hash functions.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 12 187 371 27 667 810 3 789 310 1 369 814 1912
SPHINCS+-128-SHAKE-256 11 828 971 50 694 370 3 381 550 26 098 3968
SPHINCS+-256-Haraka 12 189 163 27 674 850 3 789 822 1 357 142 2680
SPHINCS+-256-SHAKE-256 11 830 763 50 700 770 3 382 062 27 250 4736
Grover Diffusion (128 bit) 1771 2530 1022 1139 –
Grover Diffusion (256 bit) 3563 5090 2046 2291 –

will follow a simple approach, only considering a single preimage search for a
message block, neglecting the amount of preimage searches required for check-
sum blocks and the possibility of searching for weak instances. A more detailed
approach also considering the aforementioned aspects is beyond the scope of this
work.

For the recursion depth required for a preimage search we take the value d,
so the probability of a recursion depth of ≥ d and ≤ d being required for the
preimage search is ≥ 1/2. For the SPHINCS+ parameters proposed in [16] with
logw = 4, this results in d = 5.

Resource Estimate For forging a WOTS signature and carrying out this at-
tack, we need to do multiple preimage searches of a recursive application of the
SHAKE-256 or Haraka512 hash function. Let n be the security parameter in bits
in the following resource estimate.

For the Haraka instantiation, the input to the hash function consists of a
256 bit address and the n bit value searched for. The SHAKE-256 instantiation
additionally gets an n bit public key seed as input.

Using n = 128, we will only go into detail for a hash function recursion depth
of 5, as calculated previously. The gate count required for the Grover oracles for
this attack for both of the hash functions and for the diffusion operator are
shown in Table 5.

As with the previous attack, for n = 128, ≈ 1.6 · 263 Grover iterations are
required for one preimage attack. We can again combine this with the gate
counts from Table 5 to evaluate the cost metrics for this attack. This is shown
in Table 6. As mentioned previously, the cost metric does not capture that this
attack requires multiple preimage attacks of variable recursion depths.

As the Haraka512 hash function is used here and not the Haraka-Sponge hash
function used in the previous attack, the amount of applications of the underlying
permutation is the same for the Haraka and SHAKE-256 instantiation, with the
Haraka permutation requiring fewer quantum gates explaining the results of the
gate count metric. As in the previous attack, Haraka performs worse in the T-
Depth-Times-Width metric, as the Haraka permutation has a significantly higher
T-Depth.
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Table 6: Resource estimate for a preimage search to forge a WOTS signature.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.0 · 289 1.0 · 284 1.9 · 294

SPHINCS+-128-SHAKE-256 1.5 · 289 1.3 · 278 1.3 · 290

SPHINCS+-256-Haraka 1.0 · 2153 1.0 · 2116 1.3 · 2159

SPHINCS+-256-SHAKE-256 1.5 · 2153 1.4 · 10142 1.6 · 2154

5 Fault-tolerant Cost

In this section, we give tight cost estimates of carrying out the most promis-
ing attack on XMSS signatures in Section 4.1. In particular, we analyze the
resource requirements for the SPHINCS+-128 parameter sets, i.e. Haraka and
SHAKE-256 hash function. A comparison of all results can be found in Table 7.
The analysis follows the approach by [1], but optimizes the parallelization of the
magic state distillation.

5.1 Haraka

Setup The entire Grover circuit for the attack using the Haraka hash function
consists of tHaraka = 3.54 · 1025 T-gates, gcnotHaraka = 8.02 · 1025 CNOT-gates and
gcHaraka = 1.1 · 1025 QubitClifford-gates with the Hadamard-gates dominating,
thus other types of gates are ignored. The circuit has a width of qwHaraka = 1400
and a T-depth of tdHaraka = 4.01 · 1024.

Magic State Distillation Given the desired output error rate relative to the
size of the circuit pout = 1/td

Haraka and the assumptions given in Section 2.4 one
can determine the number of layers of magic distillation required. We require
two layers as in Fig. 4a, each with a surface code distance di, number of logical
qlog
i and respectively physical qubits qphy

i . In total, the number of logical qubits

for a single distillery is qlog
MD, Haraka = 240.

The layers can be optimized based on the cost metrics from Section 2.4, i.e.
costlqc = costSCC · (qG + qMD) and costSCC = scc · gd, thus increasing
the number of cycles scales the cost by both, cycles and qubits. Consider an
increase of cycles by a factor X and an increase of qubits by a factor Y . Then
the optimal distillery can be found by computing min

X,Y
XqG +XY qMD.

Surface Code The gates in the circuit are embedded into a surface code of dis-
tance dG,Haraka = 25, with pout = 1/ (gcnotHaraka + gcHaraka) as targeted error rate.

This results in each of the qlogG,Haraka = 1400 logical qubits to require 1352 phys-

ical qubits. In total, the algorithm requires qphyG,Haraka ≈ 1.89 ·106 physical qubits.

Results On average, about 9 T-gates are applied in each layer of T-depth.
The number of physical qubits is dominated by the surface code, therefore we
suggest to compute all magic states in parallel using 3 magic state distilleries and
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(a) Distance of the er-
ror correcting code di and
number of logical and
physical qubits for each
layer i.

Layer i di q
log
i qphy

i

Top 1 19 16 12800
Bottom 2 9 240 48000

(b) Pipelining the production of 3 magic states allows to
reuse the qubits from the bottom layer in the top layer.

90
4.8·104

90
4.8·104

90
4.8·104

190

1.28·104

190

1.28·104

190

1.28·104

460.0
cycles

4.8·104 qubits

Fig. 4: Magic state distillation scheme for attacking SPHINCS+-128.

qphy
MD = 3·48000 = 1.6·104 physical qubits in sccmHaraka = 460 cycles. The average

number of gates per layer of T-depth for each CNOT and QubitClifford gates,
gcnot
Haraka/qw

Haraka·t
d
Haraka ≈ 0.0143 and gc

Haraka/qw
Haraka·t

d
Haraka ≈ 0.002, is significantly

smaller than the number of surface code cycles required to implement a single
layer required for magic state distillation.

Therefore, the total number of surface code cycles for the entire algorithm
is dominated by the magic state distilleries, which is costSCC = sccmHaraka ·
tdHaraka = 460 · 4.01 · 1024 ≈ 1.5 · 290. The total number of logical qubits required
is 2120. With 200ns per surface code cycle, this would take 1.17 ·1013 years. The
total cost of running the attack is then costlqcHaraka = costSCC · (1400 + 3 ·
240) = 1.5 · 290 · (2120) ≈ 3.91 · 1030 ≈ 1.55 · 2101.

5.2 SHAKE-256

Setup When using the SHAKE-256 hash function, our quantum circuit for the en-
tire Grover algorithm for the attack contains gTSHAKE-256 = 1.72·1025 T-gates and
gcnotSHAKE-256 = 7.35 · 1025 CNOT-gates. It also contains gcSHAKE-256 = 4.92 · 1024

QubitClifford gates, most of which are Hadamard-gates. We will ignore
any QubitClifford gates, that are not Hadamard-gates. The quantum cir-
cuit has a logical width of qwSHAKE-256 = 3456 qubits and a T-Depth of
tdSHAKE-256 = 6.92 · 1022.

Magic State Distillation The number of layers and thus the values for magic
state distillation are reminiscent to those of Section 5.1, in particular, of Fig. 4a.

Surface Code The distance of the surface code remains as dG,SHAKE-256 = 25,

with the same targeted error rate. This results in each of the qlog
G,SHAKE-2563456

logical qubits to require 1953 physical qubits. In total the algorithm requires
qphy
G,SHAKE-256 ≈ 6.75 · 106 physical qubits.

Results On average, about 249 T-gates are applied in each layer of T-depth.
Therefore, we suggest to use 83 distilleries each generating 3 states in parallel,
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Table 7: Fault-tolerant cost for our attack from Section 4.1 using the SHAKE-256
and Haraka hash functions. The collision attack of [10] refers to attacking the
internal state of Haraka.

SPHINCS+- SHAKE-256 Haraka

Collision Attack
[10]

#Grover Iterations − 1.32 · 2102

Time-Space Product − 1.51 · 2153

#Classical hash function invocations − 2129.5

Our Attack on
128

#Distilleries φ 83× 3 3× 3

#Log. Qubits qlog 23876 2120

#Total Phys. Qubits qphy 8.65 · 106 2.03 · 106

#Total ECC cycles costSCC 1.6 · 284 1.5 · 290

logical-qubit-cycles costlqc 2.65 · 299 1.55 · 2101

Our Attack on
256

#Distilleries φ 42× 4 9× 1

#Log. Qubits qlog 1.7 · 105 0.38 · 105

#Total Phys. Qubits qphy 5.8 · 107 1.5 · 107

#Total ECC cycles costSCC 1.02 · 2152 3.95 · 2154

logical-qubit-cycles costlqc 1.31 · 2169 1.44 · 2171

using a total of qphy
MD = 83 ·48000 = 3.98 ·106 physical qubits in sccmSHAKE-256 =

460 cycles. The average number of CNOT gates per layer of T-depth is 0.31, and
0.021 Hadamard gates.

Again, magic state distillation dominates resulting in a total number of
costSCC = sccmSHAKE-256 · tdSHAKE-256 = 460 · 6.92 · 1022 ≈ 1.6 · 284 surface
code cycles.

The total number of logical qubits required is 23876. With 200ns per surface
code cycle, this would take 2.02 ·1011 years. The total cost of running the attack
is then costlqcSHAKE-256 = costSCC · (3456 + 83 · 240) = 1.6 · 284 · (23876) ≈
7.44 · 1029 ≈ 2.65 · 299.

6 Conclusion

We presented quantum implementations for the Haraka (and respectively
SHAKE-256) hash function in the context of the SPHINCS+ signature scheme.
Subsequently, we proposed and reviewed multiple points of attack in the
SPHINCS+-128-Haraka signature scheme based on applying Grover’s algorithm
to find pre-images. A tight estimate of the resources required to carry out the
most promising attack on a fault tolerant quantum computer is given. Our at-
tack, that forges a signature in 1.55 · 2101 steps, improves over the previously
best known attack on SPHINCS+-128-Haraka.

Following the suggestion by NIST to review the security in terms of a maximal
depth for quantum circuits, it is clear that for a depth of 296 the attack can be
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implemented without any further constraints and would be more efficient than
the classical counter part. For a depth of 240 and 264 the overhead induced by
error correction needs to be reevaluated and optimized to the respective depth.
A detailed analysis is out of scope for this paper and left as future work.
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