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Abstract—Future automotive on-board networks are expected
to integrate various functions on only a few centralized processing
platforms. Combined with attack surfaces that originate from the
external connectivity of modern vehicles, this turns the design of
secure on-board networks into a challenging endeavor. Therefore,
we present a formal model to describe both confidentiality and
integrity requirements of applications in such a network using
security levels. The proposed model is then integrated into an
existing design methodology for the automatic configuration of
access protection units in MPSoCs. The resulting methodology
ensures that the above-mentioned requirements are automatically
enforced during runtime and is validated using a safety-critical
example scenario from the automotive domain.

Index Terms—Multilevel security, in-vehicle networks, multi-
processor system-on-chip, confidentiality, integrity.

I. INTRODUCTION

Modern vehicles are often equipped with up to a hundred
electronic control units (ECUs) interconnected via an on-board
network [1]. From a cybersecurity perspective, the steadily
increasing external connectivity of these systems leads to
significantly wider attack surfaces [2]. In 2015, for instance,
researchers were able to remotely access the main Controller
Area Network (CAN) of a production vehicle by exploiting a
vulnerability in its head unit [3]. In the automotive context,
such vulnerabilities can be exploited to cause physical harm
to humans or the environment, financial damage, operational
disruptions, and privacy breaches [4].

A strict physical partitioning of the on-board network can
help protect vehicles against successful attacks, but it is possi-
ble only to a certain extent as the ECUs are generally required
to exchange data [1]. In fact, the ongoing consolidation of
computing resources will even increase the need for on-board
connectivity [5]: Future electric/electronic (E/E) architectures
are expected to be centralized in the sense that a limited
number of powerful processing platforms, often based on a
multiprocessor system-on-chip (MPSoC), will tightly integrate
a variety of different functions [6]. In the design of such
systems, on-chip interconnects should therefore be treated as
an integral part of the on-board network.

A design methodology that is able to facilitate such an
approach was presented in [7]. It is targeted at networks

of MPSoCs in which communication links—primarily the
on-chip interconnects—are equipped with hardware entities
to enforce a certain access policy during runtime. Such an
entity is referred to as access protection unit (APU) and can be
configured with a specification of permitted transactions. An
example of a commercially available APU is the Xilinx Periph-
eral Protection Unit (XPPU) on the Zynq UltraScale+ MPSoC
from Xilinx [8]. In the above-mentioned methodology, design-
ers make use of a formal model to describe most importantly

1) the on-chip and off-chip architecture of the network,
2) applications running on the available execution units,
3) accepted information flows between applications, and
4) messages that the applications exchange.

From a model instance, the toolchain automatically de-
rives APU configurations that are as prohibitive as possible
but allow all specified messages that need to traverse a
communication link to be transmitted. Under the assumption
that all generated configurations are applied to their respec-
tive APU, the toolchain performs a static analysis to determine
all potentially feasible information flows and compares them
to the information flows that are specified as acceptable.

We consider such a fine-grained control of information flows
a powerful mechanism to achieve confidentiality and integrity.
However, the existing model is based on a rigorous whitelist
approach in which every permitted information flow between a
pair of applications needs to be explicitly specified. For highly
complex on-board networks, the need for such an explicit
specification can be a serious restriction.

We propose a design methodology that is based on the
concept of multilevel security and integrate it into the design
methodology from [7] in such a way that an explicit list of
accepted information flows does no longer need to be provided
as an input. Instead, the list is implicitly derived from security
level annotations applied to certain design entities.

This work is organized as follows: Section II gives an
overview of the proposed concept, while Section III summa-
rizes the original design methodology from [7]. We present
a suitable model extension in Section IV, describe its imple-
mentation and validation in Section V, and close this paper
with a discussion of related work in Section VI.
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II. BACKGROUND AND MOTIVATION

This section gives a short summary of relevant multilevel
security approaches and motivates their application to the
design of secure automotive on-board networks.

A. Preliminaries on Multilevel Security

The concept of multilevel security (MLS) in computer
systems dates back to the early 1970s, when government
organizations faced the challenge that machines were required
to handle pieces of information with varying security classi-
fications. To tackle this issue, Bell and LaPadula proposed a
model of a security policy to preserve confidentiality in such
systems [9]. It is based on subjects, which represent processes,
and objects describing passive entities such as data, files,
and I/O devices. Subjects and objects are assigned a security
level that consists of a classification from a totally ordered
set (such as Unclassified or Top Secret) and an arbitrary
number of categories (such as Nuclear or Crypto).

In this model, a security level a is said to dominate security
level b if and only if the classification of a is at least as high
as the classification of b and the category set of a includes the
category set of b. A subject is only allowed

• to observe an object if its security level dominates the
security level of the object (“no read up”) and

• to modify an object if its security level is dominated by
the security level of the object (“no write down”).

This model serves, for instance, as the basis of the MLS mode
implemented by SELinux [10]. Note, however, that it is not
concerned with and therefore unable to preserve the integrity
of a shared computer system.

Biba [11] proposed a model that is based on the concept
of integrity levels. In a particular manifestation, it requires
the enforcement of the “no write up” and “no read down”
property with respect to these integrity levels. This policy is
able to preserve the integrity of a shared computer system,
but it is not concerned with confidentiality. It can therefore be
seen as a complement to the Bell-LaPadula model.

In the following, we will refer to security levels from
the Bell-LaPadula model as confidentiality levels and use the
term security level to refer to both kinds of levels.

B. Overview of the Proposed Concept

In this work, we present a methodology for the model-based
design of on-board networks that applies adaptations of
the Bell-LaPadula and the Biba model to ensure that resulting
systems meet their confidentiality and integrity requirements
by construction. An adaptation of the approaches is necessary
because such networks are inherently distributed and therefore
fundamentally different than a single computer system. While
a traditional operating system is in control of all its subjects
and objects, information in an on-board network might tra-
verse multiple independent on-chip and off-chip nodes before
reaching its destination. Therefore, we reformulate the access
policies from the models in a manner that captures a possi-
ble propagation through the network and is independent of
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Fig. 1. Controller with its attached components

individual transactions. The policies resulting from this can
roughly be described as follows:

• Confidentiality is preserved⇔ Information from a source
that requires a certain confidentiality level must not flow
to a sink that provides a lower confidentiality level.

• Integrity is preserved ⇔ Information from a source that
provides a certain integrity level must not flow to a sink
that requires a higher integrity level.

A more precise definition of these properties will be given
along with the description of the concept in Section IV.

Example 1. Consider an artificial E/E architecture that com-
prises the combined infotainment and body controller shown
in Fig. 1. This controller is assumed to be implemented on
a single heterogeneous MPSoC and directly attached to the
vehicle’s primary touch display (“Display”) as well as to a
wireless module (“Bluetooth”) that allows users to connect
to the vehicle using a suitable device such as a smartphone.
The controller is further attached to two independent off-chip
buses (such as two CAN buses) that connect it to the doors
and the seats of the vehicle, respectively. Assume that the
following functional and non-functional requirements have
been specified for this subsystem:

1) Passengers shall be able to adjust the seats and control
the door locks from the touch display.

2) Authorized users shall be able to control the door locks
from outside the vehicle via Bluetooth.

3) For safety reasons, the driver seat must be adjustable
only from within the vehicle, i.e., not via Bluetooth.

To meet the first two requirements, the controller executes
the four applications shown in the figure as operating system
tasks, for instance. They interact with each other and their
respective peripheral in a suitable manner. For instance,
the “Bluetooth interface” application listens for user requests
from the Bluetooth module, forwards them to the “Door con-
trol” application, which in turn interacts with the individual
doors. The third requirement can be modeled by defining the
integrity levels i1 and i2 as follows:

• i1 represents all possible kinds of user input, while
• i2 represents user input from within the vehicle.

Here, i2 is “at least as trustworthy” as i1 and therefore
dominates i1. The concept proposed in this paper allows the



designer to label certain design entities (such as the Bluetooth
module or the doors) as providing or requiring a certain
integrity level. For the purposes of this example, the following
labeling is performed and can also be seen from Fig. 1:

• Since the Bluetooth module introduces remote input into
the on-board network, it is labeled as producing i1 output.

• Since the display outputs originate from within the vehi-
cle, they are labeled as having an integrity of i2.

• The seats must not be accessible from outside the vehicle
and are therefore labeled as requiring inputs with an
integrity level of at least i2.

• The doors are labeled as requiring inputs with an in-
tegrity level of at least i1.

Most importantly, this implies that an information flow from
the Bluetooth module to an entity that requires i2 inputs is
not possible. If the implementation of the on-board network is
performed in such a manner that this “contract” is satisfied, a
remote attacker that obtains access via the Bluetooth module
remains unable to interfere with the seats. It is crucial to
understand that the goal of the presented approach is not to
prevent exposed applications such as the Bluetooth interface
from becoming compromised. Instead, it supports designers to
construct on-board networks in which the impact of feasible
attacks is reduced to a tolerable level.

Similar considerations can be made for the confidentiality
case. Nevertheless, it is important to understand that integrity
and confidentiality levels can be defined and annotated to
model entities independently of each other. Furthermore, note
that this process can be performed without having to consider
low-level hardware details or possible attack paths.

III. DESCRIPTION OF THE ORIGINAL MODEL

The design methodology presented in [7], which forms the
foundation of this work, is based on a model that captures the
relevant aspects of a system under consideration in a formal
manner. We refer to it as the original model and will give a
short description of its structure in this section.

The original model consists of three layers and is summa-
rized in Table I, where P(·) denotes the power set. The table
presents details not relevant for the purposes of this paper
in a simplified manner. Most importantly, it merges similar
definitions from various layers of the original model and,
therefore, lists them as not belonging to a specific one.

The lowest layer (I) captures the platform architecture. It
consists of a set of units U , a set of links L, and a function φL

mapping every link to the set of units that it is attached to. In
general, an example of a unit is an I/O controller or an on-chip
processing core along with its real-time operating system.
Using the δ function, units can be marked as dependable.
Dependable units must be designed in such a manner that
they fulfill certain requirements. Most importantly, they are
expected to isolate applications from each other in such
a way that no unintended information flow between them
is possible, even if the underlying hardware is affected by
random faults. A fault-tolerant processing core executing a

TABLE I
RELEVANT DEFINITIONS FROM THE ORIGINAL MODEL

Layer Model element Description

I U = {u1, u2, . . .} Execution units (units) including
their runtime environments.

L = {ℓ1, ℓ2, . . .} On-chip and off-chip communica-
tion links (links) between units.

φL : L → P(U) Mapping of all links to the units
that are attached to them.

II FT = {t1, t2, . . .} Terminal features as sources and
sinks of information flow.

I ⊆ FT × FT Specification of all accepted infor-
mation flows.

III FF = {f1, f2, . . .} Forwarding features to pass on in-
formation to other features.

XR, XW ⊆ F × L× F Envisaged read (R) and write (W )
transactions over links.

XL : F × F Information flows implemented lo-
cally, i.e., within units.

ωL : L → {0, 1} Whether or not to protect a specific
link using an APU.

N/A F = FT ∪ FF Union of all terminal and forward-
ing features.

δ : (U ∪ F ) → {0, 1} Mapping of all units and features
to their dependability.

σ : F → U Mapping of each feature to the unit
that executes it.
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Fig. 2. Sample instance of the three-layered original model

trusted operating system or hypervisor is an example of a unit
that can be marked as dependable. Dependability declarations
are automatically taken into account during the determination
of all potentially feasible information flows.

Example 2. A sample instance of such a layer-I description
is visualized in the lowermost portion of Fig. 2, in which
the red horizontal lines separate the three model layers
from each other. This platform architecture is based on the
scenario described in Example 1 but, for demonstration pur-
poses, artificially limited to four units and two links. More
specifically, it consists of the units U = {u1, u2, u3, u4}
and the communication links L = {ℓ1, ℓ2}, where ℓ1 is an



on-chip interconnect attached to u1, u2, and u3, while ℓ2
is an off-chip interconnect (such as a CAN bus) attached to
u3 and u4. For the on-chip I/O controller u3, for instance,
this attachment is formally expressed as φL(u3) = {ℓ1, ℓ2}.
The on-chip processing core u2 is declared to be dependable,
while all other units are assumed to be undependable. We
further assume that u1 has direct and private access to a
dedicated Bluetooth module, while u2 has direct access to
the touch display and all doors of the vehicle. However, these
components as well as additionally relevant I/O controllers are
not modeled as part of this example to limit its complexity.

The next layer (II) captures the functional implementation.
Here, every application (such as a task executed by an oper-
ating system) is described as a terminal feature. The set of all
terminal features is referred to as FT . Every terminal feature
is mapped to the unit that delivers it via the σ function. Just
as units, terminal features can be marked as dependable using
the δ function. Dependable terminal features are expected to
be designed in such a manner that information they receive
is only passed on in a strictly controlled manner. An example
of a dependable terminal feature is one that does not contain
systematic faults, applies suitable fault tolerance mechanisms,
and cryptographically verifies all its inputs. Furthermore, this
layer comprises the relation I , which describes all accepted
information flows between terminal features. It represents
the previously described whitelist that all potentially feasible
information flows are compared against.

Example 3. In continuation of Example 2, we define the
set of terminal features as FT = {t1, t2, t3, t4, t5} and use
the σ function to map them to units as visualized in Fig. 2.
The set of all accepted information flows is defined as

I = {(t1, t2), (t3, t2), (t3, t4), (t3, t5), (t4, t5)}.

This corresponds to the most prohibitive assignment that
allows all functional requirements to be implemented. Since
we expect t3 to be able to influence t4, t4 to be able to
influence t5, and due to the fact that t4 is undependable, we
must also accept a flow from t3 to t5. In practice, the designer
is responsible to ensure that I contains only elements that are
in line with the desired information flow policy.

At the highest layer of the model (III), designers specify
the information flow implementation to describe how exactly
individual terminal features exchange information. Forward-
ing features defined in the table are comparable to terminal
features but have the sole purpose of forwarding or buffering
every piece of information they receive. The functionality of
a shared memory or an I/O controller, for instance, can be
modeled as a forwarding feature. We refer to the set F , which
contains the union of all terminal and forwarding features,
as the set of features. XR and XW capture the actual read
and write transactions that the designer intends to implement
using the modeled communication links. Similarly, XL is used
to describe all flows that shall be realized internally within a
unit, i.e., without involving a communication link. Finally, the
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Fig. 3. Excerpt of Gβ for the sample model instance

designer uses the ωL function to decide on a per-link basis
whether or not an APU configuration shall be generated for a
certain communication link ℓ ∈ L.

In the design methodology, a model instance is used to
conduct an information flow analysis. This step assumes that
during runtime, all links ℓ ∈ L for which an APU protection is
requested (ωL(ℓ) = 1) enforce access protection rules that are
as prohibitive as possible but allow all transactions from XR

and XW to occur. Based on this assumption and the model
instance, a beta graph (Gβ) is constructed. Most importantly,
it contains an input and an output node (tin and tout) for every
terminal feature t ∈ FT . Edges and helper nodes (such as
unit sharing nodes πu, unit-link input ports pin

ℓ,u, and unit-link
output ports pout

ℓ,u) are added in such a way that the resulting
graph reflects all potentially feasible information flows. More
specifically, a directed path from a tout to a tin node of Gβ

represents a potential end-to-end information flow between the
respective terminal features. The toolchain verifies that all such
flows are in line with I and, if this is the case, generates
platform-specific APU configurations that can be deployed to
the hardware to enforce exactly the access policy that the static
analysis assumed to be enforced. In case of a discrepancy
between I and the paths in Gβ , the designer has to refine the
model instance until the discrepancy is eliminated.

Example 4. We continue Example 3 by extending the partially
complete model instance with the definitions shown in the
uppermost portion of Fig. 2. More specifically, we introduce
the forwarding feature f1 ∈ FF to represent the functionality
of the I/O controller connecting the MPSoC to the off-chip bus.
We further request an APU configuration to be generated for
the on-chip interconnect ℓ1 and populate XW , WR, and XL

with values representing the interactions shown in the figure.
For instance, XW contains the tuple (t4, ℓ1, f1) to capture
that the implementation of the “Seat control” task uses the
on-chip interconnect of the MPSoC to issue write transactions
targeted at f1. An excerpt of the Gβ that the information flow
analysis procedure generates for the complete model instance
is shown in Fig. 3. All directed paths from a tout to a tin node,
such as from t4 to t5, are part of I , the relation that describes
all accepted information flows. Therefore, the toolchain will
automatically generate an APU configuration for ℓ1. In this



specific case, the configuration will for instance prevent u1

from directly writing to u3 via the on-chip interconnect. Such
a transaction would especially allow for an information flow
from t1 to t5, which is considered unacceptable.

IV. DEFINITION OF THE MODEL EXTENSION

In this section, we replace I with new model elements
that allow a designer to capture the desired information flow
policy without having to specify an explicit and exhaustive
list of all accepted end-to-end flows between terminal features.
The presented extension consists of a confidentiality and an
integrity framework. Although the frameworks share the same
underlying idea, they are independent of each other and can
also be used in isolation.

A. Confidentiality and Integrity Levels

The following definition is inspired by the Bell-LaPadula
model [9] and the terminology used in SELinux [10].

Definition 1. A security level is the combination of a sensi-
tivity from the totally ordered set

S = {s1, s2, . . . , sn} with sn ≥ sn−1 ≥ . . . ≥ s1

and an arbitrary number of categories from the set

K = {k1, k2, . . . , km}.

Here, si ≥ sj means that si is “at least as sensitive” as sj .
The set of all possible security levels is then given by

A = S × P(K),

where P(K) = {U | U ⊆ K} denotes the power set of K.
We adopt the definition from the Bell-LaPadula model and say
that the level ai = (si,Ki) ∈ A dominates aj = (sj ,Kj) ∈ A
if and only if si ≥ sj and Ki ⊇ Kj . In the following, this
relationship will also be expressed as ai ∝ aj .

Mathematically, (A,∝) forms a lattice in the sense that there
are binary operations to return the join (∨) and meet (∧) of any
two given security levels. In the specific case of (A,∝), the
join is obtained by choosing the maximum of the sensitivities
and unifying the category sets of the two security levels that
are combined. Analogously, the meet is calculated by choosing
the minimum of the sensitivities and intersecting the category
sets of the combined security levels. Therefore, these oper-
ations are commutative and associative. Furthermore, there
is a maximum security level, which dominates all others,
and a minimum security level, which is dominated by all
others: max(A) = (sn,K) and min(A) = (s1,∅).

Our methodology allows a dedicated set of security levels to
be defined for each framework. Depending on the framework
that it originates from, we refer to a security level as either
a confidentiality level or an integrity level. To avoid ambigui-
ties, we add a superscript “c” to confidentiality-related symbols
and a superscript “i” to integrity-related symbols.

Integrity
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Confidentiality
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Internal assets
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Fig. 4. Assets, inputs, and outputs of a terminal feature

Example 5. Consider a specific confidentiality framework that
the designer of an on-board network has defined as follows:

Sc = {sc1, sc2, sc3} with sc3 ≥ sc2 ≥ sc1,

Kc = {kcA, kcB , kcC , kcD}.

The set of all possible confidentiality levels Ac = Sc×P(Kc)
will then contain |Ac| = 3·24 = 48 elements, including the lev-
els ac1 = (sc2,∅), ac2 = (sc3, {kcB}), and ac3 = (sc2, {kcA, kcC}).
Note that that the latter two levels dominate the first one,
but there is no dominance relationship between ac2 and ac3.
Furthermore, observe that the following equations hold:

ac1 ∨ ac2 = ac2, ac1 ∨ ac3 = ac3, and

ac2 ∨ ac3 = (sc3, {kcA, kcB , kcC}) .

B. Annotation and Propagation of Security Levels

The original design methodology from [7] is based on the
idea that features receive inputs from other features and deliver
outputs that are in turn consumed by other features from the
model instance. It does not allow designers to distinguish
individual inputs and outputs of a specific feature. Instead,
every feature has exactly one pool of inputs and one pool
of outputs.1 They are represented by the tin and tout nodes
of Gβ . For the purposes of this paper, we refer to these pools
as the internal inputs and the internal outputs of a feature,
respectively. Furthermore, the original design methodology
assumes that every terminal feature has certain properties or
capabilities (such as being able to perceive the environment
or to influence the environment) that the designer considers
during the derivation of the I relation. In this work, we
refine and formalize this aspect as follows: In addition to its
internal inputs and outputs, every terminal feature is associated
with an arbitrary number of internal assets. Furthermore, it is
associated with an arbitrary number of external assets that it
has access to via its external interface (see Fig. 4). Internal
assets are integrated into the terminal feature itself and are
valuable from a confidentiality or an integrity perspective.
External assets are accessible entities from the environment of

1If necessary, an application or task needs to be decomposed into as many
features as are necessary to achieve the desired granularity.



TABLE II
IMPACT OF ASSETS AND THREAT AGENTS OF A TERMINAL FEATURE

Impact on the model instance

Entities Confidentiality Integrity

Internal and ex-
ternal assets

Determine the confiden-
tiality that is required at
the internal outputs.

Determine the integrity
that is required at the
internal inputs.

Threat agents Determine the confiden-
tiality that is provided at
the internal inputs.

Determine the integrity
that is provided at the
internal outputs.

M∨
m=1

acm

ac1
...

acM

(a) Confidentiality

N∧
n=1

ain

ai1
...

aiN

(b) Integrity

Fig. 5. Resulting security levels for converging information flows

the system under consideration that are again valuable from a
confidentiality or an integrity perspective.

Example 6. Consider the seat adjustment functionality that is
part of the model instance visualized in Fig. 2. It is represented
by the terminal feature t5 and, using an integrated actuator,
able to alter the position of the driver’s seat. Therefore, an
attack to this feature has the potential to interfere with driver’s
ability to control the vehicle. Under certain conditions (such
as at high speeds), this attack might lead to an accident
and, consequently, cause physical harm to humans. From the
perspective of t5, this capability can be considered as an
external asset that is relevant from an integrity point of view.

Example 7. The door control feature visualized in Fig. 2
might be implemented as an operating system task containing
a private key that the car manufacturer uses to communicate
with the individual doors in an secure manner. Since it must
be kept secret, this key can be seen as an internal asset of the
task that is relevant from a confidentiality point of view.

However, terminal features are not only associated with the
assets that need to be protected. Their external interfaces are
also the paths that threat agents might make use of in order to
attack the system’s assets (see Fig. 4). More specifically, threat
agents might try to use the terminal feature in order to gain
unauthorized access to information from the on-board network
or affect the on-board network in an unauthorized manner.

Based on all these considerations and the original design
methodology, we propose the following four-step approach to
prevent such attacks by design:

a) Security level definition: Before layer II of the model
instance is populated, suitable sets of confidentiality and/or
integrity levels are defined by the designer.

b) Security level annotation: The designer evaluates ev-
ery envisaged terminal feature individually to derive required
and provided security levels at the internal inputs and internal

outputs of the feature (see again Fig. 4). While doing so,
assets and threat agents of the feature under consideration
must be considered and will generally impact the resulting
security levels as described in Table II. For terminal features
with δ(·) = 0, the manner in which the internal outputs are
derived from the internal inputs is irrelevant during this step.
This is due to the fact that the potential for an unintended
information flow from its internal inputs to its internal outputs
is already reflected in Gβ . Dependable terminal features, on
the other hand, are special “trust anchors” for which this
assumption would be overly pessimistic. The manner in which
they derive their internal outputs from their internal inputs
therefore needs to be carefully assessed by the designer and
incorporated into the annotation of security levels.

c) Security level propagation: As the first step of the
information flow analysis, security levels from all internal out-
puts of terminal features are propagated along the edges of Gβ .
Whenever potentially feasible information flows converge dur-
ing this propagation, they are handled as visualized Fig. 5.

d) Information flow verification: Finally, it is verified
that the provided confidentiality at the internal inputs of ev-
ery t ∈ FT is sufficiently “high” and that the required integrity
at the internal inputs of every t ∈ FT is sufficiently “low”, both
with respect to the propagated security levels.

Before we describe the information flow analysis in more
detail in Section V, we focus on the second step and formalize
the security level annotation procedure as follows.

Definition 2. The confidentiality framework is based on a
set of confidentiality levels, Ac, and expects a confidentiality
requirement as well as a confidentiality to be specified for
every t ∈ FT . Formally, this labeling is performed at layer II
of the model by specifying the functions

λc
R : FT → Ac and λc

P : FT → Ac.

Here, λc
R describes the confidentiality requirement at all

internal outputs, while λc
P refers to the provided confidentiality

at all internal inputs. It is reasonable to set λc
R(t) = min (Ac)

for all t ∈ FT that do not introduce confidential information
into the system and λc

P (t) = max (Ac) for all t ∈ FT whose
data is guaranteed to be unaccessible to threat agents.

Definition 3. The integrity framework is based on a set of
integrity levels, Ai, and expects an integrity requirement as
well as an integrity to be specified for every t ∈ FT . This
labeling is performed by populating the layer-II functions

λi
R : FT → Ai and λi

P : FT → Ai.

λi
R captures the integrity requirement at all internal inputs,

while λi
P describes the integrity levels provided at all internal

outputs. In this case, min
(
Ai

)
and max

(
Ai

)
are neutral

elements for λi
R and λi

P , respectively.

C. Remarks on Dependability and the Scope of this Work

In the original model, a feature f ∈ F with δ(f) = 1 can
be mapped to an undependable unit. The information flow
analysis handles this case by implicitly setting δ(f) to 0 to



take unwanted effects of the untrustworthy execution platform
into account. For our purposes, however, this implicit handling
collides with the fact that dependable and undependable termi-
nal features need to be handled differently during the security
level annotation. In the extended model, dependable features
can therefore only be mapped to dependable units.

Finally, it is important to understand that threat agents might
try to attack an asset of the very terminal feature they use to
access the system. Such an attack is limited to one terminal
feature, unrelated to the on-board network per se, and therefore
beyond the scope of this work.

V. IMPLEMENTATION AND VALIDATION

The new model does no longer contain the I relation.
Instead, it comprises (A, ∝)c, λc

R, and λc
P from the confi-

dentiality framework as well as (A, ∝)i, λi
R, and λi

P from the
integrity framework. We incorporated the new model elements
into the original design methodology as follows:

1) Using the capabilities of the Xtext framework, we devel-
oped a domain-specific language (DSL) that designers
can use to describe instances of the extended model.

2) We integrated the Gβ construction algorithm described
in [7] into our toolchain. Since this algorithm does not
depend on I , this was possible without modifications.

3) We implemented a refined information flow analysis al-
gorithm that operates on the beta graphs to propagate the
security levels as outlined in Section IV. This algorithm
will be described in the next subsection in detail.

4) We implemented an adapter that automatically triggers
the APU configuration generators from the original
design methodology if and only if the information flow
analysis procedure is successful.

A. Algorithm for the Information Flow Analysis

The information flow analysis procedure is shown in Al-
gorithm 1 and will be executed twice by the developed
toolchain: once with mode m = c for the confidentiality
case and once with mode m = i for the integrity case. The
information flow analysis procedure is successful if and only
if both invocations return a “true” value (line 23).

The algorithm operates on two data structures: “levels” is a
map that stores the security level propagated to every Gβ node
at any point in time, while the “dirtySet” keeps track of all
the nodes for which a recently modified “levels” value has not
been propagated to the successors of the respective node yet.
Initially, the “levels” value of all nodes is set to the neutral
element with respect to the mode (line 4). Confidentiality
requirement and integrity annotations (λc

R and λi
P ) from the

model instance are then used to overwrite the respective “lev-
els” entries (line 6). Furthermore, the “dirtySet” is initialized
with all tout nodes (line 7). Then, as long as the “dirtySet”
is not empty, nodes from this set are visited. This means
that a new security level is calculated for all its immediate
successors as per Fig. 5. Furthermore, all modified successors
of a visited node are added to the “dirtySet”. At the end of this
phase, the propagated confidentiality requirement of all nodes

Algorithm 1 Information flow analysis for m ∈ {c, i}
1: levels ← newMap(V → Am) ▷ Initialization
2: dirtySet ← newSet(V )
3: for all v ∈ V do
4: levels(v) ← if m = c then min (Ac) else max

(
Ai

)
5: for all tout ∈ V with t ∈ FT do
6: levels(tout) ← if m = c then λc

R(t) else λi
P (t)

7: dirtySet.add(tout)
8: while ¬dirtySet.empty() do ▷ Propagation
9: x ← dirtySet.pop()

10: for all y in Gβ .successors(x) do
11: if m = c then
12: newLevel ← levels(x) ∨ levels(y)
13: else if m = i then
14: newLevel ← levels(x) ∧ levels(y)
15: if newLevel ̸= levels(y) then
16: levels(y) ← newLevel
17: dirtySet.add(y)
18: for all tin ∈ V with t ∈ FT do ▷ Verification
19: if m = c and ¬

(
λc
P (t) ∝ levels(tin)

)
then

20: return false
21: if m = i and ¬

(
levels(tin) ∝ λi

R(t)
)

then
22: return false
23: return true

dominates that of all direct and indirect predecessors, while
the propagated integrity of all nodes is dominated by that of
all direct and indirect predecessors. Finally, the confidentiality
and integrity requirement annotations (λc

P and λi
R) from the

model instance are compared against these propagated levels.
In both modes, the verification is successful if and only if the
provided security levels dominate the required ones. This is
verified in line 19 and 21, respectively.

B. Application to the Running Example

To validate the proposed concept and its implementation, we
created various model instances, performed a manual analysis
of potential attack paths, and derived from these considerations
whether we expect a positive or a negative outcome from the
information flow analysis. We then applied our implementation
to these instances and ensured that the expectations were met.
The following two paragraphs outline some of our findings
regarding the running example.

Example 8. Consider again Fig. 1 along with the model
instance from Fig. 2. To capture relevant integrity aspects,
we specified an Ai with Si = {i1, i2}, i2 ≥ i1, and an empty
category set. As suggested in Example 1, we set

λi
P (t1) = (i1, ∅), λi

P (t3) = (i2, ∅),

λi
R(t5) = (i2, ∅), λi

R(t2) = (i1, ∅),

and all other λi
P or λi

R values to their neutral elements. Our
manual analysis revealed that in this specific scenario, no
feasible attack paths that lead from t1 to t5, the safety-critical



seat adjustment feature, exist. We therefore expected the infor-
mation flow analysis to succeed. In fact, the final integrity that
propagated to the input node of t5, was (i2, ∅). Since this
provided integrity dominates the integrity requirement of t5,
i.e., λi

R(t5), the algorithm returned a “true” value.

Example 9. Based on the model instance from Example 8,
we derived several slightly modified instances for which the
information flow analysis should return a “false” value. If one
no longer requests an APU protection for ℓ1 by setting ωL(ℓ1)
to 0, for instance, no mechanism prevents u1 from directly
writing to u3. Other possibilities to create a vulnerability that
allows t1 to influence t5 in an unacceptable manner are to
set δ(u2) to 0 or to extend XL with (t2, t3). In all these
cases, the integrity that propagates to tin

5 is (i1, ∅). Since this
security level does not dominate (i2, ∅), the information flow
analysis returned “false” in all cases.

VI. RELATED WORK

Various approaches to secure automotive on-board networks
against different types of attacks have been proposed. Exam-
ples include probabilistic methods to guide security engineers
during the design of such networks [12], authentication [13]
and traffic monitoring [14] schemes, as well as novel gateway
architectures with isolation capabilities [15]. However, such
approaches typically focus on system-level interconnects and
neglect potential on-chip effects of attacks.

From an on-chip perspective, hardware units to control
transactions on the shared interconnect [16] have been pre-
sented as a potential security measure and are comparable
to APUs available on modern MPSoCs. The methodology
from [7] builds up on this concept and combines it with a
static analysis of how information is able to propagate through
the system, which again has similarities to information flow
tracking schemes such as the one presented in [17].

Our multilevel security extension pursues a similar goal as
the taint tracking approach from [18]. However, the authors of
this work propose a scheme based on the instrumentation of
binary executables, while our approach is performed offline
and eventually utilizes the platform-specific code generation
capabilities from [7]. Lattice-based security levels have been
applied to gate-level information flow tracking [19]. Compared
to our work, however, this approach considers information
flows in hardware circuits at a considerably lower level of
abstraction. It is able to capture potential side-channel attacks
but has limited applicability to software-centric systems such
as future automotive on-board networks.

VII. CONCLUSION

The goal of this work was to present a methodology to de-
sign automotive on-board networks that fulfill their confiden-
tiality and integrity requirements. Based on an existing design
methodology to enforce end-to-end information flow policies
in MPSoC-based systems, we showed that it is possible to
derive the exact policies to enforce implicitly from a security
level assignment that we consider to be more manageable than
an explicit specification of accepted information flows.

In the proposed concept, security levels are based on
sensitivities and categories. It is conceivable to allow them
to be drawn from arbitrarily defined lattices. Trading off
the flexibility that this creates against the increased tooling
complexity is a topic for future research.
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