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We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon
g − 2 anomaly. Within a Standard Model effective field theory approach, we find that scattering amplitudes
sourced by effective operators saturate perturbative unitarity at about 1 PeV. This corresponds to the highest
energy scale that needs to be probed in order to resolve the new physics origin of the muon g − 2 anomaly.
On the other hand, simplified models (e.g., scalar-fermion Yukawa theories) in which renormalizable
couplings are pushed to the boundary of perturbativity still imply new on-shell states below 200 TeV. We
finally suggest that the highest new physics scale responsible for the anomalous effect can be reached in
nonrenormalizable models at the PeV scale.
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I. INTRODUCTION

The recent measurement of the muon anomalous mag-
netic moment, aμ ≡ ðgμ − 2Þ=2, by the E989 experiment at
Fermilab [1], in agreement with the previous BNL E821
result [2], implies a 4.2σ discrepancy from the Standard
Model (SM),

Δaμ ≡ aμðExpÞ − aμðSMÞ ¼ ð251� 59Þ × 10−11; ð1:1Þ

following the muon g − 2 theory initiative recommended
value for the SM theory prediction [3]. Although a recent
lattice determination of the SM hadron vacuum polarization
contribution to aμ claims no sizeable deviation from the SM
[4], we work here under the hypothesis that Δaμ is due to
new physics. In particular, we focus on the case in which
new physics states are so heavy that their effects can be
parametrized via the so-called SM effective field theory
(SMEFT) and ask the following question: What is the scale
of new physics behind Δaμ?
This question is of practical relevance, given the futur-

istic possibility of resolving the new physics origin of Δaμ
via direct searches at high-energy particle colliders. As

explored recently in [5–8], a muon collider seems to be the
best option for this goal. However, while the very existence
of the SMEFToperators contributing toΔaμ could be tested
via processes like μþμ− → ZðγÞh or μþμ− → tt̄ at a multi-
TeV-scale muon collider [6], it is less clear whether the
origin of the muon g − 2 SMEFToperators can be resolved
via the direct production of new on-shell states responsible
for Δaμ. This is the question that we want to address in the
present work, using the tools of perturbative unitarity.
Unitarity bounds on the new physics interpretation of Δaμ
were previously considered in [5,8] focusing however on a
specific class of renormalizable models. Here, we consider
instead the most conservative case in which unitarity limits
are obtained within the SMEFT.
Generally speaking, given a low-energy determination of

an effective field theory (EFT) coefficient, unitarity meth-
ods can be used either within an EFT approach, in order to
infer an upper bound on the scale of new physics unitar-
izing EFT scattering amplitudes, or within explicit new
physics (renormalizable) models. In the latter case, one
obtains a perturbativity bound on certain renormalizable
couplings that can be translated into an upper bound on the
mass of new on-shell degrees of freedom. In the present
work, we are interested in both these approaches. First, we
consider a SMEFT analysis in which Δaμ is explained in
terms of a set of Wilson coefficients normalized to some
cutoff scale2, Ci=Λ2, and later deal with renormalizable
models featuring new heavy mediators that can be matched
onto the SMEFT. Schematically,
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Δaμ
mμv

∼
Ci

Λ2
¼ ðloopsÞ × ðcouplingsÞ

M2
on−shell

; ð1:2Þ

where Mon−shell denotes the mass of new on-shell states,
and we included possible loop factors in the matching
between the new physics model and the SMEFT operators.
Hence, by fixing the value of the SMEFT coefficients
Ci=Λ2 in terms ofΔaμ, we consider high-energy scatterings
sourced by the associated effective operators, determine theffiffiffi
s

p
that saturates perturbative unitarity (according to a

standard criterium to be specified in Sec. II), and interpret
the latter as an upper bound on the scale of new physics
responsible for the muon g − 2 anomaly. Analogously, in
the case of new physics models, we use the unitarity tool in
order to set perturbativity bounds on the new physics
couplings and in turn [given Eq. (1.2)] an upper limit on
Mon−shell. While the first approach is model independent
(barring possible degeneracies in the choice of the effective
operators) and yields the most conservative bound on the
scale of new physics, the second approach relies on further
assumptions, but it directly connects to new on-shell
degrees of freedom which are the prime targets of direct
searches at high-energy particle colliders.
The paper is structured as follows. We start in Sec. II

with a brief review of partial wave unitarity, in order to set
notations and clarify the physical interpretation of unitarity
bounds. Next, we consider unitarity bounds within a
SMEFT approach (Sec. III) and within renormalizable
models matching onto the SMEFT operators (Sec. IV).
Finally, we comment in Sec. V on nonrenormalizable
realizations which can saturate the unitarity bounds
obtained in the SMEFT. Our main findings and implica-
tions for the direct resolution of the muon g − 2 anomaly at
high-energy particle colliders are summarized in the con-
clusions (Sec. VI). Technical aspects of partial wave
unitarity calculations, both in the SMEFT and in renorma-
lizable setups, are deferred to Appendixes A and B.

II. PARTIAL WAVE UNITARITY

We start with an instant review of partial wave unitarity,
which will serve to set notations and discuss the physical
significance of unitarity bounds.
The key point of our analysis is the study of scattering

amplitudes with fixed total angular momentum J, the so-
called partial waves. Here, we focus only on the case of
2 → 2 partial waves (while the 2 → 3 scattering is dis-
cussed in Appendix A 2) defined as

aJfi ¼
1

32π

Z
1

−1
d cos θdJμiμfðθÞT fið

ffiffiffi
s

p
; cos θÞ; ð2:1Þ

with θ the scattering angle in the center-of-mass frame,
ð2πÞ4δð4ÞðPi − PfÞiT fið

ffiffiffi
s

p
; cos θÞ ¼ hfjS − 1jii, and S

the S matrix. Here, dJμiμf is Wigner’s d function that arises
in the construction of the two-particle incoming (outcom-
ing) state of helicities μi (μf) onto angular momentum J [9].
The S-matrix unitarity condition S†S ¼ 1 then yields the
relation

1

2i
ðaJfi − aJ

�
if Þ ¼

X
h

aJ
�

hfa
J
hi ⇒

ImðaJiiÞ ¼
X
h

jaJhij2 ≥ jaJiij2; ð2:2Þ

where we have restricted ourselves to the elastic channel
h ¼ i ¼ f. The equation on the right-hand side of (2.2)
defines a circle in the complex plane inside which the
amplitude must lie at all orders,

ðReaJiiÞ2 þ
�
ImaJii −

1

2

�
2

≤
1

4
; ð2:3Þ

suggesting the following bound, under the assumption of
real tree-level amplitudes,

jReaJiij ≤
1

2
: ð2:4Þ

Hence, in order to extract the bound, one needs to fully
diagonalize the matrix aJ. Once this is achieved, every
eigenvalue will give an independent constraint. In the
presence of multiple scattering channels, it follows from
Eq. (2.4) that the strongest bound arises from the largest
eigenvalue of aJ. When the latter bound is saturated, it
basically means that one needs a correction of at least 40%
from higher orders to get back inside the unitarity circle,
thus signaling the breakdown of perturbation theory (see,
e.g., [10,11]). Here, aJ stands for the leading order
expansion of the partial wave, both in the coupling
constants and in external momenta over the cutoff scale
for the case of an EFT.
Although the criterium is somewhat arbitrary, and hence

Eq. (2.4) should not be understood as a strict bound, we
stick to that for historical reasons [12]. Strictly speaking, a
violation of the perturbative unitarity criterium in Eq. (2.4)
should be conservatively interpreted as the onset of a
regime of incalculability due to the breakdown of the
perturbative expansion either in couplings or external
momenta. More specifically, in the case of an EFT (where
scattering amplitudes grow with energy) the scale of
unitarity violation, hereafter denoted as

ffiffiffi
s

p ¼ ΛU ⇒ jReaJiij ¼
1

2
; ð2:5Þ

can be associated with the onset of “new physics”, where
on-shell new degrees of freedom should manifest them-
selves and be kinematically accessible. Although one can
conceive exotic UV completions where this is not the
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case [13], well-known physical systems behave in this
way.1 Unitarity methods can be employed both in non-
renormalizable setups (as in footnote 1) and in renormaliz-
able ones. In the latter case, the unitarity limit corresponds
to the failure of the coupling expansion, and hence, the
bound on the renormalizable coupling can be understood as
a perturbativity constraint.

III. SMEFT

In this section, we present the unitarity bounds for the
new physics interpretation of the muon g − 2 anomaly
within a SMEFT approach. The strategy consists in fixing
the Wilson coefficients (Ci=Λ2) in terms of the observable
Δaμ and determine next the energy scale

ffiffiffi
s

p
that saturates

the unitarity bounds derived from the tree-level scattering
amplitudes sourced by the effective operator.

A. SMEFT approach to Δaμ
Assuming a short-distance new physics origin of Δaμ,

the leading SMEFT operators contributing up to one-loop
order are (see Refs. [6,14,15] for a more systematic
discussion)

LSMEFT
g−2 ¼ Cl

eB

Λ2
ðl̄Lσ

μνeRÞHBμν þ
Cl
eW

Λ2
ðl̄Lσ

μνeRÞτIHWI
μν

þ Clq
T

Λ2
ðl̄a

LσμνeRÞεabðQ̄b
Lσ

μνuRÞ þ H:c:; ð3:1Þ
which results in [6]

Δal ≃
4mlv

e
ffiffiffi
2

p
Λ2

�
ReCl

eγ −
3α

2π

c2W − s2W
sWcW

ReCl
eZ log

Λ
mZ

�

−
X

q¼t;c;u

4mlmq

π2
ReClq

T

Λ2
log

Λ
mq

; ð3:2Þ

where Ceγ ¼ cWCeB − sWCeW and CeZ ¼ −sWCeB −
cWCeW in terms of the weak mixing angle. For the
Wilson coefficients of the dipole operators that contribute
at tree level to Δal, one can consistently include one-loop
running, obtaining [16,17]

Cl
eγðmlÞ ≃ Cl

eγðΛÞ
�
1 −

3y2t
16π2

log
Λ
mt

−
4α

π
log

Λ
ml

�
: ð3:3Þ

A convenient numerical parametrization reads

Δaμ ≃ 2.5 × 10−9
�
277 TeV

Λ

�
2

ðReCμ
eγðΛÞ

− 0.28ReCμt
T ðΛÞ − 0.047ReCμ

eZðΛÞÞ; ð3:4Þ

where we have kept only the leading top-quark contribution
for CT (since we are interested in scenarios which maxi-
mize the scale of new physics), and the logs have been
evaluated for Λ ¼ 277 TeV. Note, however, that the full
log dependence will be retained in the numerical analysis
below. In the following, we drop the scale dependence of
the Wilson coefficients, which are understood to be
evaluated at the scale Λ.

B. Unitarity bounds

Given Eq. (3.1), we can compute the scale of unitarity
violation ΛU [defined via Eq. (2.5)] associated with each of
the dimension-6 operators involved. To do so, we consider
here only 2 → 2 scattering processes, since the 2 → 3
processes (mediated by OeW) turn out to be suppressed by
the weak gauge coupling and the 3-particle phase space, as
shown in Appendix A 2. The results obtained by switching
on one operator per time are collected in Table I, where the
bound in correspondence of different initial and final states
(i ≠ f) comes from the diagonalization of the scattering
matrix [cf. discussion below Eq. (2.4)]. In Appendix A, we
present the full calculation of the unitarity bounds stem-
ming from the SUð2ÞL dipole operator, which presents
several nontrivial aspects, like the presence of higher than
J ¼ 0 partial waves, the multiplicity in SUð2ÞL space, and
the possibility of 2 → 3 scatterings.
We next make contact with the physical observable Δaμ,

whose dependence from theWilson coefficients can be read
off Eq. (3.4). Turning on one operator at a time, we find the
following numerical values for the unitarity violation
scales:

(i) Oμ
eB ≡ ðl̄Lσ

μνeRÞHBμν,

ΛU ≃ 277 TeV2
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cW þ 0.047sW

p
≃ 930 TeV:

ð3:5Þ

TABLE I. Unitarity violation scale for the SMEFToperators contributing to Δaμ. The shorthand 1=Λ2
i ≡ Ci=Λ2 is

understood here.

Operator ΛU i → f Channels J

1
Λ2
eB
ðl̄Lσ

μνeRÞHBμν 2
ffiffiffi
π

p jΛeBj BeR→H†lL 1=2
1

Λ2
eW
ðl̄Lσ

μνeRÞτIHWI
μν 2

ffiffiffi
π

p ð2
3
Þ1=4jΛeW j Wl̄L→H†ēR 1=2

1
Λ2
T;l
ðl̄a

LσμνeRÞεabðQ̄b
Lσ

μνuRÞ 2
ffiffiffiffiffiffiffi
π

3
ffiffi
2

p
q

jΛT;lj eRuR→QLlL 0

1Most notably, ππ scattering in chiral perturbation theory
yields ΛU ¼ ffiffiffiffiffi

8π
p

fπ ≃ 460 MeV which is not far from the mass
of the σ meson resonance f0ð500Þ.
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(ii) Oμ
eW ≡ ðl̄Lσ

μνeRÞτIHWI
μν,

ΛU ≃ 277 TeV2
ffiffiffi
π

p �
2

3

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sW − 0.047cW
p

≃ 590 TeV: ð3:6Þ
(iii) Oμt

T ≡ ðl̄a
LσμνeRÞεabðQ̄b

Lσ
μνuRÞ,

ΛU ≃ 277 TeV2
ffiffiffiffiffiffiffiffiffi
π

3
ffiffiffi
2

p
r ffiffiffiffiffiffiffiffiffi

0.28
p

≃ 240 TeV: ð3:7Þ

Hence, the scale of new physics is maximized if the origin
of Δaμ stems from a dipole operator oriented in the Uð1ÞY
direction.
If more than one operator is switched on, correlations can

arise between theWilson coefficients whenever they couple
same sectors of the theory. For instance, in the case in
which both the dipole operators Oμ

eW and Oμ
eB are present,

one can derive a combined bound [see Eq. (A13)] which
leads to the region displayed in Fig. 1. Note that for
ΛeB → ∞ (ΛeW → ∞), we reproduce the bound with Oμ

eW
(Oμ

eB) only. However, if both operators contribute sizeably
to Δaμ, the unitarity bound can be slightly relaxed above
the PeV scale.

IV. RENORMALIZABLE MODELS

We next consider simplified models featuring new heavy
states, which after being integrated out match onto the
dipole and tensor SMEFT operators contributing to Δaμ
[cf. Eq. (3.4)]. We then use unitarity methods to set
perturbativity limits on renormalizable couplings and in
turn set an upper bound on the mass of the new on-shell
physics states. To maximize the scale of new physics, we
focus on two renormalizable setups based scalar-fermion
Yukawa theories, allowing for a left-right chirality flip that
is either entirely due to new physics (Sec. IV. 1) or with a
top Yukawa insertion (Sec. IV. 2).

A. One-loop matching onto the dipole operator

In order to match onto the dipole operator at one loop, we
consider a simplified model with a new complex scalar
S ¼ ð1; 1; Y þ 1Þ and two vectorlike fermions Fl ¼
ð1; 2; Y þ 1

2
Þ and Fe ¼ ð1; 1; YÞ. The hypercharge is left

unspecified, since later we are interested in taking the large
Y limit, which maximizes the scale of new physics. The
Lagrangian, allowing for a mixing via the SM Higgs, reads
(see also [5,8,18–22])

Lg−2
FFS ¼ λLF̄llLSþ λRF̄eeRSþ F̄lðyLPL þ yRPRÞFeH

þ H:c: −MlF̄lFl −MeF̄eFe −m2
SjSj2

− κjHj2jSj2 − λSjSj4: ð4:1Þ

The Fermion-Fermion-Scalar (FFS) model allows for a
chirality flip of the external leptons via the product of
couplings λ�LyL;RλR (cf. Fig. 2), which can be used to
maximize the scale of new physics. For vyL;R ≪ Ml, Me,
mS, we can integrate out the new physics states and find at
one loop

Cμ
eγ

Λ2
¼ −

eλ�LλR
32π2m2

S

ffiffiffiffiffiffiffiffiffi
xlxe

p
ðxl − xeÞ

�
QS

�
yRðgSðxlÞ − gSðxeÞÞ

þ yL

� ffiffiffiffiffi
xl
xe

r
gSðxlÞ −

ffiffiffiffiffi
xe
xl

r
gSðxeÞ

��

þQF

�
yRðgFðxlÞ − gFðxeÞÞ

þ yL

� ffiffiffiffiffi
xl
xe

r
gFðxlÞ −

ffiffiffiffiffi
xe
xl

r
gFðxeÞ

���
; ð4:2Þ

FIG. 1. In blue, the region in the (ΛeB,ΛeW) plane that is needed
to reproduce the experimental value of Δaμ at the 2σ level (with
the central line corresponding to the central value of Δaμ). The
dashed isolines represent the unitarity bound ΛU , defined
according to Eq. (A13).

FIG. 2. Sample diagram of the FFS model matching onto Cμ
eγ at the scale Λ.
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whereQS ¼ Y þ 1,QF ¼ Y, xl;e ¼ M2
l;e=m

2
S, and the loop

functions are given by

gFðxÞ ¼
x2 − 4xþ 3þ 2 log x

2ðx − 1Þ3 ;

gSðxÞ ¼
x2 − 2x log x − 1

2ðx − 1Þ3 : ð4:3Þ

This result agrees with Ref. [21] in which the special case
yL ¼ yR was considered. Note that in Eq. (4.2) we already
matched onto the photon dipole operator at the scale Λ,
while the connection with the low-energy observable Δaμ
is given in Eq. (3.4).
Our goal is to maximize the mass of the lightest new

physics state for a fixed value of the Wilson coefficient.
This is achieved in the degenerate limit mS ¼ Ml ¼ Me,
yielding

Cμ
eγ

Λ2
¼ −

eλ�LλR
384π2m2

S
½ð1þ 2YÞyL − ð1þ 4YÞyR�

≃
eYλ�LλR
192π2m2

S
ð2yR − yLÞ; ð4:4Þ

where in the last expression we took Y ≫ 1.
The unitarity bounds for the FFS model are summarized

in Table II, where in the case of multiple scattering channels
the bound corresponds to the highest eigenvalue of aJ. We
refer to Appendix B for further details on their derivation.
Applying these bounds, the maximum value of the combi-
nation jReðλ�LλRð2yR − yLÞÞj entering Eq. (4.4) is ≈121,
while jeYj≲ 3.5. Hence, we obtain

Δaμ ≃ 2.5 × 10−9
�
131 TeV

mS

�
2
�
eY
3.5

�

×

�
Reðλ�LλRð2yR − yLÞÞ

121

�
; ð4:5Þ

which shows that the Δaμ explanation in the FFS model
requires an upper bound on the mass of the new on-shell
states of about 130 TeV (which is compatible, e.g., with the
upper bound found in [8]). On the other hand, due to the
extra loop suppression, it is not possible to saturate the
unitarity bound that was obtained within the SMEFT
[see Eq. (3.5)].

B. Tree-level matching onto the tensor operator

We now consider a simplified model that matches onto
the tensor operator Oμq

T . The scalar leptoquarks R2 ¼
ð3; 2; 7

6
Þ and S1 ¼ ð3; 1;− 1

3
Þ allow for a coupling to the

top quark with both chiralities (see, e.g., [23]), thus
maximizing the effect on Δaμ via a top-mass insertion.
Massive vectors can also lead to renormalizable extensions,
but they result at least into a mb=mt suppression compared
to scalar extensions (see, e.g., [24]).
Let us focus for definiteness on the R2 case (similar

conclusions apply to S1). The relevant interaction
Lagrangian reads2

Lg−2
R2

⊃ λLt̄Rla
LεabR

b
2 þ λRq̄aLμRR2a þ H:c:; ð4:6Þ

where a and b are SUð2ÞL indices, and ε ¼ iσ2. Upon
integrating out the leptoquark with mass mR2

≫ v
(cf. Fig. 3), one obtains [14,25]

Cμt
T

Λ2
¼ −

λ�LλR
8m2

R2

: ð4:7Þ

TABLE II. Unitarity bounds for the FFS model.

Unitarity bound i → f Channels J

jReðλ�LλRÞj < 8π eRFlR
→ eRFlR 0

jReðy�LyRÞj < 8π=
ffiffiffi
2

p
FeRF̄eL → FeRF̄eL

0

jReðy�LyRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jλLj2jλRj2 þ ðy�LÞ2y2R

p
j < 16π i; f ¼ FlR F̄eL ; eRl̄L 0

2jλLj2 þ jλRj2 < 8π i; f ¼ FlR l̄L; FeL ēR 0

jyRj <
ffiffiffiffiffi
8π

p
HFlL → HFlL 1=2

jλRj2 þ 2jyLj2 < 16π i; f ¼ SeR;H†Fl;R 1=2

jReðyLλ�LÞj < 8π=
ffiffiffi
2

p
i; f ¼ FeRS

†; eRH 1=2

jλRj2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32jyLj2jλRj2 þ jλRj4

p
< 32π i; f ¼ SF̄eL ; H

†lL 1=2

jReðλLyLÞj < 16π=
ffiffiffi
2

p
lLF̄eL → SH† 1

jReðy�LλRÞj < 16π=
ffiffiffi
2

p
FlR

ēR → HS 1

jκj < 8π=
ffiffiffi
2

p
HH† → SS† 0

jgYðY þ 1Þj < ffiffiffiffiffi
6π

p
SBμ → SBμ 1=2

2Note that the leptoquark models in Eq. (4.6) can be under-
stood as a variant of the FFS model in Eq. (4.1), where Fl and Fe
are replaced by the SM states qL and tR, whereas S is the scalar
leptoquark (that is, the only new physics state). Substituting
instead Swith the SM Higgs and integrating out the heavy Fl and
Fe fermions gives contributions to Δaμ through dimension-9
SMEFT operators.
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The unitarity bounds for the R2 model (see Appendix B for
details) are collected in Table III, and they imply
jReðλ�LλRÞj≲ 12. Hence, we can recast the contribution
to Δaμ via Eq. (3.4) as

Δaμ ≃ 2.5 × 10−9
�
180 TeV

mR2

�
2
�
Reðλ�LλRÞ

12

�
: ð4:8Þ

Hence, we conclude that in the leptoquark model one
expects mR2

≲ 180 TeV (the same numerical result is
obtained for S1). Moreover, since the matching with the
tensor operator is at tree level, the leptoquark mass is not far
from the unitarity bound obtained with the SMEFToperator
[see Eq. (3.7)].

C. Raising the scale of new physics via multiplicity?

Naively, one could be tempted to increase the upper limit
on the scale of new physics by adding N copies of new
physics states contributing to Δaμ. However, while both
Ceγ and CT increase by a factor of N , the unitarity bounds
on the couplings gets also stronger due to the correlation of
the scattering channels, so that larger new physics scales
cannot be reached.
In order to see this, consider, e.g., the FFS model withN

copies of Fl, Fe, and S. The scaling of the unitarity bounds
is most easily seen in processes where the SM states are
exchanged in the s channel, for example, SiFi

lR
→ SjFj

lR
.

Since lL is coupled to all copies in the same way, the T
matrix can be written as

T J¼1=2 ¼ 1

32π
jλLj2JN ; ð4:9Þ

where JN is a N ×N matrix filled with 1. Given that the
largest eigenvalue of JN is N , the unitarity bound on λL
reads

jλLj <
ffiffiffiffiffiffiffiffi
16π

N

r
: ð4:10Þ

Similar processes can be considered for all the couplings in
Eq. (4.1), leading to a 1=

ffiffiffiffiffi
N

p
scaling for each Yukawa

coupling. Hence, the overall N contribution to Δaμ ∝
NReðλ�LλRyL;RÞ=m2

S is compensated by the 1=
ffiffiffiffiffi
N

p
scaling

of the unitarity bounds on the couplings, and for fixed Δaμ,
the mass of extra states gets even lowered at largeN . In this
respect, we reach a different conclusion from the analysis
in Ref. [8].3

The same considerations apply if we consider just one
new scalar and N new fermions. The situation is different
with N scalars and just one family of fermions, since S
does not couple directly to the Higgs [barring the portal
coupling κ in Eq. (4.1), which however does not contribute
to Δaμ]. This implies that only λL and λR will scale as

1=
ffiffiffiffiffi
N

p
, which in turn means that Δaμ does not change.

Similar arguments apply when considering larger SUð2ÞL
representations, thus implying that the minimal choice we
made for the FFS model ensures thatmS is maximized. The
case of the leptoquark R2 is analogous to what we have just
described for N new scalars, with the new fermions of the
FFS model replaced by SM fields. Given that λL and λR
would scale as 1=

ffiffiffiffiffi
N

p
, there is no gain in taking N copies

of leptoquarks.

V. NONRENORMALIZABLE MODELS

Until now, we focused on renormalizable extensions of
the SM addressing Δaμ and showed that they predict on-
shell new physics states at Oð100 TeVÞ, well below the
unitarity bound obtained from the SMEFT dipole oper-
ators, which lies around the PeV scale. Nonetheless, the
SMEFT bound should be understood as the most
conservative one and applies if the origin of Δaμ can be,
for instance, traced back to a strongly coupled dynamics.
While such a scenario could have calculability issues, we
want to provide here an intermediate step in which the
SMEFT dipole operators are generated via a tree-level
exchange of a new vector resonance, which could arise

FIG. 3. Sample diagram of the leptoquark model matching onto Cμt
T at the scale Λ.

TABLE III. Unitarity bounds for the couplings of the lepto-
quark model defined in Eq. (4.6).

Unitarity bound i → f Channels J

jλLj2 þ jλRj2 < 8π i; f ¼ tRl̄L; qLμ̄R 0

jReðλRλ�LÞj < 8π=
ffiffiffi
3

p
μRl̄L → qLt̄R 0

jλRj2 < 8π=3 qLR�
2 → qLR�

2 1=2
jλLj2 < 16π=3 tRR�

2 → tRR�
2 1=2

3Higher multiplicities are also disfavored by the requirement
of avoiding sub-Planckian Landau poles in the SM gauge
couplings [8].
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from a strongly coupled sector analogously to the case of
the ρ meson in QCD.
Spin-1 vector resonances are conveniently described via

the two-index antisymmetric tensor field Vμν, following the
formalism of Ref. [26]. In particular, we consider a
composite spin-1 state featuring the same gauge quantum
numbers of the SM Higgs doublet and described via the
effective Lagrangian

LV ¼ −DμV†
μνDρVρν þ 1

2
m2

VV
†
μνVμν

þ cHBV
†
μνHBμν þ cHWV

†
μντIHWI;μν

þ cleVμνðl̄Lσ
μνeRÞ þ…; ð5:1Þ

where we neglected Vμν self-interactions as well as other
higher-dimensional operators. In fact, Eq. (5.1) should be
understood as the leading term of an effective nonrenor-
malizable Lagrangian, with cutoff scale ΛV above mV . The
free Lagrangian of Eq. (5.1) propagates three degrees of
freedom describing a free spin-1 particle of mass mV , with
propagator [26–28]

iΔμν;ρσðqÞ ¼
2i

m2
V − q2

�
Iμν;ρσðqÞ −

q2

m2
V
Pμν;ρσðqÞ

�
; ð5:2Þ

where Iμν;ρσ ¼ ðgμρgνσ − gμσgνρÞ=2 and Pμν;ρσ ¼
ðPμρ

T Pνσ
T − Pμσ

T Pνρ
T Þ=2 with Pμν

T ¼ gμν − qμqν=q2.
Assuming that there is a calculable regime where one
can parametrically keep mV ≲ ΛV (in analogy to the chiral
approach to the ρ meson in QCD, for which
mρ ≲ Λχ ∼ 1 GeV), we can integrate Vμν out and get the
following tree-level matching contribution with the photon
dipole operator (cf. also Fig. 4):

Cμ
eγ

Λ2
¼ −

2ðcWcHB − sWcHWÞcle
m2

V
: ð5:3Þ

Hence, we obtain

Δaμ ≃ 2.5 × 10−9
�
1 PeV
mV

�
2

×

�
Reðð−cWcHB þ sWcHWÞcleÞ

7.5

�
; ð5:4Þ

where we normalized mV at the PeV scale, that is, in the
ballpark of the unitarity bound obtained from the SMEFT
dipole operators. It should be noted that although the
operators in the second line of Eq. (5.1) have canonical
dimension equal to 4, scattering amplitudes involving the
cHB;HW;le couplings, as, e.g., HB → eRl̄L, grow like s=m2

V
due to the high-energy behavior of the propagator in
Eq. (5.2). Hence, the effective description of the vector
resonance breaks down not far above mV , being the theory
nonrenormalizable.4

VI. CONCLUSIONS

Unitarity bounds are a useful tool in order to infer the
regime of validity of a given physical description. In EFT
approaches, the energy scale at which unitarity is violated
in tree-level scattering amplitudes can be often associated
to the onset of the new physics completing the effective
description. Instead, within renormalizable setups unitarity
bounds are a synonym of perturbativity bounds on the size
of the adimensional couplings. In this work, we have
investigated unitarity constraints on the new physics
interpretation of the muon g − 2 anomaly. Assuming a
short-distance SMEFT origin of the latter, we have first
computed unitarity bounds considering a set of leading
(dipole and tensor) operators contributing to Δaμ. It turns
out that the scale of tree-level unitarity violation is
maximized in the case of dipole operators and reaches
the PeV scale when both Uð1ÞY and SUð2ÞL dipoles are
switched on (cf. Fig. 1). Hence, most conservatively, in
order to resolve the new physics origin of the SMEFT
operators behind Δaμ, one would need to probe high-
energy scales up to the PeV. This most pessimistic scenario,
outside from the direct reach of next-generation high-
energy particle colliders, can be understood as a no-lose
theorem for the muon g − 2 puzzle. Of course, the new
physics origin of Δaμ might reside well below the PeV
scale, as it is indeed suggested by simplified models based
on renormalizable scalar-Yukawa theories. In the latter
case, we have considered a couple of well-known scenarios
matching either on the tensor (at tree level) or the dipole (at

FIG. 4. Tree-level matching onto the photon dipole operator via the exchange of a spin-1 vector resonance.

4Another way to generate the dipole operators relevant for Δaμ
at tree level is to consider nonrenormalizable models, involving,
for example, a new vectorlike fermion F ¼ ð1; 2;− 1

2
Þ [29].
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one loop) operators of the SMEFT analysis. In both cases,
we have computed unitarity bounds on renormalizable
couplings, thus allowing the mass of the new on-shell
states to be maximized. The latter are found to be
Mon−shell ≲ 130 TeV and ≲180 TeV, respectively, for the
dipole and the tensor operators. Moreover, we have shown
that multiplicity does not help to relax those bounds
because unitarity limits scale as well with the number of
species.
Since the bound obtained within renormalizable models is

well below the SMEFT bound, it is fair to ask which UV
completions could lead to a new physics resolution of the
muon g − 2 puzzle hidden at the PeV scale. Here, we have
provided a scenario in which the SMEFT dipole operators are
generated via the tree-level exchange of a new spin-1 vector
resonance described by a two-index antisymmetric tensor
fieldVμνwith the samequantumnumbersof theSMHiggsand
whose origin could be traced back to the dynamics of a
strongly coupled sector. This effective scenario provides a
nontrivial example in which the dipole effective operators are
generated via tree-level matching, thus suggesting that the
SMEFT unitarity bound can be saturated with new on-shell
states hidden at the PeV scale. It would be interesting to
investigate whether a UV dynamics leading to such an
effective scenario can be explicitly realized.
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APPENDIX A: UNITARITY BOUNDS
IN THE SMEFT

In this appendix, we expand on some aspects of the
calculation of unitarity bounds in the SMEFT. The case of
the operator OeW ¼ ðl̄Lσ

μνeRÞτIHWI
μν is analyzed in

detail, since it offers the possibility of discussing several
nontrivial aspects, like the multiplicity of the scattering
amplitude in SUð2ÞL space, the contribution of higher
partial waves, and that of 2 → 3 scatterings. The calcu-
lations of the unitarity bounds for OeB and OT follow in
close analogy and are not reported here.

1. 2 → 2 scattering

Consider the 2 → 2 scattering WIl̄a
L → H†;bēR sourced

by OeW, where we have explicitly written the SUð2ÞL
indices (I ¼ 1; 2; 3 in the adjoint and a, b ¼ 1; 2 in the
fundamental). Taking aW with positive helicity, the lowest
partial wave is J ¼ 1=2. The only possible source for a
multiplicity of states in this sector is given by SUð2ÞL,
giving a total of 3 × 2þ 2 ¼ 8 states, so the J ¼ 1=2 sector
is a 8 × 8 matrix, with entries given by ðτIÞab. Ordering
the states as fW1l̄1

L;W
1l̄2

L;W
2l̄1

L;W
2l̄2

L;W
3l̄1

L;W
3l̄2

L;
H†;1ēR; H†;2ēRg, we have

aJ¼1=2
fi ¼ a1=2

0
BBB@

0 0 0 τ1

0 0 0 τ2

0 0 0 τ3

τ1 τ2 τ3 0

1
CCCA; ðA1Þ

where a1=2 ¼
ffiffi
2

p
16π

s
Λ2
eW

encodes the result of Eq. (2.1) (and

whose calculation is reported below). The largest eigen-
value of this matrix is aJ¼1=2

ii ¼ ffiffiffi
3

p
a1=2, leading to the

bound

ffiffiffi
s

p
< ΛU ¼ 2

ffiffiffi
π

p �
2

3

�
1=4

jΛeWj: ðA2Þ

We now report the computation of the amplitude a1=2 of
Eq. (A1). The process is

Wðp;þÞ þ l̄LðkÞ → Hðp0Þ þ ēRðk0Þ; ðA3Þ

with p⃗ chosen along the ẑ direction and the scattering angle
θ the one formed by p⃗ and p⃗0, and we have suppressed
SUð2ÞL indices. The T -matrix element is

T fi ¼
1

Λ2
eW

ðpμε
ðþÞ
ν ðp⃗Þ − pνε

ðþÞ
μ ðp⃗ÞÞðv̄ðRÞðk⃗ÞσμνvðLÞðk⃗0ÞÞ

¼ 2
ffiffiffi
2

p s
Λ2
eW

cos
θ

2
: ðA4Þ

Since the lowest partial wave is J ¼ 1=2, and
μi ¼ μf ¼ 1=2, we need the d function d1=21=2;1=2ðθÞ ¼
cos θ

2
. Plugging this into Eq. (2.1) gives

a1=2 ¼
1

32π
2

ffiffiffi
2

p s
Λ2
eW

Z
1

−1
d cos θcos2

θ

2
¼

ffiffiffi
2

p

16π

s
Λ2
eW

: ðA5Þ

2. 2 → 3 scattering

Here we show how the unitarity bound for the 2 → 3
scattering is weaker than the one obtained for 2 → 2
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processes, in the special case of the operator OeW. This is
due to the presence of the weak gauge coupling g2 ≃ 0.6, in
addition to the phase-space suppression of the 3-particle
final state. Extracting the 2 → 3 partial wave is slightly
more involved, since one needs to construct the three-
particle states at fixed total J, which in the center-of-mass
frame have five degrees of freedom we have to integrate
over, instead of the only two polar angles of the two-
particle case. In particular, a convenient set of variables is
the one obtained by combining two particles together (as it
is done, e.g., for semileptonic hadron decays, in which one
usually considers the lepton pair). Fixing their mass m2

R,
and boosting to the frame in which these are back to back,
one can construct a state with fixed JR (and helicity λR) out
of the two particles and then combine this with the third to
form the eigenstates of the total angular momentum J. The
explicit expression is given by

j ffiffiffi
s

p
; m2

R; JM; λ⃗i

¼ Nð3Þ
J ðλ⃗Þ

X
JR;λR

Z
dΩ1dΩRDJ�

M;λR−λ3ðϕR; θR;−ϕRÞ

×D
J�R
λR;λ1−λ2ðϕ1; θ1;−ϕ1Þj

ffiffiffi
s

p
; m2

R; θRϕR; θ1ϕ1; λ⃗i; ðA6Þ

where DMM0 ðα; β; γÞ are Wigner’s D matrices, with α, β, γ
Euler angles in the z − y − z convention, and

Nð3Þ
J ðλ⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p

4π

�X
JR;λR

1

2JR þ 1

�
−1=2

ðA7Þ

is a normalization factor. The angles θ1 and ϕ1 are the polar
angles of particle 1 in the center of mass of particles 1
and 2,5 θR and ϕR the polar angles of p⃗1 þ p⃗2 in the center
of mass of the three particles (i.e., p⃗1 þ p⃗2 þ p⃗3 ¼ 0), and
λ⃗ ¼ ðλ1; λ2; λ3Þ the helicities. The dependence on λ⃗ in the
normalization factor is implicit, since the helicities deter-
mine over which values the sum over JR, λR runs. This will
have to be considered case by case, depending on the type
of particles involved and the partial wave one wants to
obtain. With these states, we can extract the 2 → 3 partial
wave at fixed m2

R, in the case of massless particles, as
follows:

aJfi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −m2

R

p
256π2

ffiffiffi
s

p
�X

JR

1

2JR þ 1

�
−1=2

×
X
JR

Z
d cos θ1d cos θRdJμi;μiðθRÞdJRμiþλ3;λ1−λ2ðθ1Þ

×Mfið
ffiffiffi
s

p
; m2

R; θ1; θR; r; s; λ⃗Þ; ðA8Þ

where r, s are the helicities of the incoming particles, and μi
is their sum. The largest eigenvalue is then given by

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

s

0

dm2
R½aJfið2 → 3;m2

RÞ�2
s

: ðA9Þ

Finally, the full diagonalization of the T matrix is then
achieved by considering the multiplicities in helicity and
gauge space, which can lead to further enhancements.
In the case of the operatorOeW, the largest channel is the

J ¼ 1=2 scattering HeR → lLWW, yielding the bound

ffiffiffi
s

p
< Λ2→3

U ¼ 32πffiffiffiffiffi
g2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8þ π2
1ffiffiffi
3

p
s

ΛeW: ðA10Þ

Comparing this with the 2 → 2 bound in Eq. (A2),
Λ2→2
U ¼ 2

ffiffiffi
π

p
ΛeW , one finds

Λ2→2
U

Λ2→3
U

≃ 0.3
ffiffiffiffiffi
g2

p
: ðA11Þ

3. A combined bound with OeW and OeB

Let us examine now the case in which both the operators
OeW and OeB are switched on. Consider again the scatter-
ing Wl̄L → H†ēR mediated by OeW. From the point of
view of SM gauge symmetry, the final state forces the
process to occur in the (1,2,1/2) representation. The same
applies to the process Bl̄L → H†ēR. We can therefore
construct the T matrix in a similar manner as above. Now
ordering the states as fWl̄L; Bl̄L;H†eRg, we find

aJ¼1=2
fi ¼ ã1=2

0
BBB@

0 0 1
Λ2
eW
A

0 0 1
Λ2
eB
12×2

1
Λ2
eW
A† 1

Λ2
eB
12×2 0

1
CCCA;

A ¼

0
B@

τ1

τ2

τ3

1
CA; ðA12Þ

with ã1=2 ¼ s
ffiffi
2

p
16π . The largest eigenvalue is aJ¼1=2

ii ¼
ã1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Λ4
eW
þ 1

Λ4
eB

q
; thus, we find

ffiffiffi
s

p
< ΛU ¼ min

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2

p
π

q �
3

Λ4
eW

þ 1

Λ4
eB

�
−1=4

; 2
ffiffiffi
π

p jΛeBj
�
:

ðA13Þ

Hence, as shown in Fig. 1, we can constrain simultaneously
CeB and CeW . It is worth noticing that, following the same
procedure with the scattering BeR → H†lL (which

5The ẑ axis is chosen along the direction of p⃗1 þ p⃗2 in the 3-
particle center of mass.
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minimizes the bound for OeB), i.e., considering also
WeR → H†lL, we would still find two independent bounds
for the two operators.6 This is due to the fact that the state
WeR transforms as ð1; 3;−1Þ, which cannot mix into the
SUð2ÞL singlet configuration formed by BeR.

APPENDIX B: UNITARITY BOUNDS IN
RENORMALIZABLE MODELS

In this section, we provide some details about the
computation of the unitarity bounds for the simplified
models of Sec. IV. Starting from the case of the R2

leptoquark, whose interactions relevant for the anomalous
magnetic moment are described by the Lagrangian (4.6),

Lg−2
R2

⊃ λLt̄Rla
LεabR

b
2 þ λRq̄aLμRR2a þ H:c:; ðB1Þ

one can see that several 2 → 2 scattering processes can be
considered, both scalar and fermion mediated. The goal is
therefore to analyze all of them, in order to identify which
channel gives the strongest bound. In general, since there is
more than one coupling (two in this case), the different
channels will yield independent (combined, in general)
bounds, as in Table III. The overall bound on the couplings
λL and λR can then be visualized as the region defined by
the intersection of all the individual constraints. In par-
ticular, if the interest lies in one specific combination of
said couplings, as for example in Eq. (4.7), one can
maximize the function over this region.
The best way to proceed in order to compute the unitarity

bounds is to classify the possible scattering sectors accord-
ing to their quantum numbers under the SM gauge
symmetry, exploiting the fact that different sectors cannot

mix due to gauge invariance. As an example, we show here
how the bound is obtained when the leptoquark R2 is
exchanged in the s channel; i.e., the gauge quantum
numbers are ð3; 2; 7

6
Þ. The lowest partial wave, giving the

strongest bound, is J ¼ 0 in this case, and the T matrix
takes the form

T J¼0
ð3;2;7=6Þ ¼

1

16π

� jλLj2 λ�Lλ
�
R

λLλR jλRj2
�
; ðB2Þ

where we have ordered the incoming and outgoing states as
ftRl̄L; qLμ̄Rg, and we have taken the high-energy limit.
Diagonalizing, the unitarity bound for the highest eigen-
value reads

jλLj2 þ jλRj2 < 8π: ðB3Þ

All other bounds in Table III are obtained in a similar way.
The case of the simplified models with one extra scalar

and two extra fermions (FFS) is very similar to the case just
described, with some complication due to the presence of
more fields and couplings, which increases the number of
channels one needs to consider. The philosophy, however,
is the same: consider all possible processes and identify the
strongest independent bounds (the results are in Table II).
Once this is done, one can extract a bound on the specific
combination of the couplings entering the formula for Δaμ.
Finally, the bounds on the parameter Y entering the
hypercharges of the fields Fe, Fl, and S have been obtained
by considering scattering channels that are completely
separated from the ones where the new Yukawa couplings
are involved, i.e., considering initial and final states
containing the B boson. This has the twofold advantage
of giving an independent bound on Y while also avoiding
issues of unphysical singularities arising in the exchange of
a massless vector boson.
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