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The security of software-intensive systems is frequently attacked. High fines or loss in reputation are
potential consequences of not maintaining confidentiality, which is an important security objective.
Detecting confidentiality issues in early software designs enables cost-efficient fixes. A Data Flow
Diagram (DFD) is a modeling notation, which focuses on essential, functional aspects of such early
software designs. Existing confidentiality analyses on DFDs support either information flow control or
access control, which are the most common confidentiality mechanisms. Combining both mechanisms
can be beneficial but existing DFD analyses do not support this. This lack of expressiveness requires
designers to switch modeling languages to consider both mechanisms, which can lead to inconsis-
tencies. In this article, we present an extended DFD syntax that supports modeling both, information
flow and access control, in the same language. This improves expressiveness compared to related work
and avoids inconsistencies. We define the semantics of extended DFDs by clauses in first-order logic.
A logic program made of these clauses enables the automated detection of confidentiality violations
by querying it. We evaluate the expressiveness of the syntax in a case study. We attempt to model
nine information flow cases and six access control cases. We successfully modeled fourteen out of
these fifteen cases, which indicates good expressiveness. We evaluate the reusability of models when
switching confidentiality mechanisms by comparing the cases that share the same system design,
which are three pairs of cases. We successfully show improved reusability compared to the state of
the art. We evaluated the accuracy of confidentiality analyses by executing them for the fourteen cases
that we could model. We experienced good accuracy.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In software-intensive systems, software contributes an es-
ential influence on the design, construction, deployment, and
volution of the system as a whole (Institute of Electrical and
lectronics Engineers, 2000). Consequently, software-intensive
ystems certainly cover all software systems but also cover, for
xample, modern production systems, cyber–physical systems or
he internet of things. Many attacks target software-intensive
ystems (Deogirikar and Vidhate, 2017; Sadeghi et al., 2015).
hus, establishing and maintaining security of software-intensive
ystems is necessary. There are various security objectives that
hall be established. Confidentiality, which is one of these security
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164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
objectives, ensures that “information is not made available or dis-
closed to unauthorized individuals, entities, or processes” (Inter-
national Organization for Standardization, 2018). Confidentiality
is hard to achieve in software-intensive systems (Alguliyev et al.,
2018) but it is important to consider in order to avoid high penal-
ties and loss of reputation. Strong data protection regulations
such as the General Data Protection Regulation (GDPR) (European
Union, 2016) of the European Union carry high financial penal-
ties for failing to protect the data of users. For instance, British
Airways is facing a penalty of £20m (Denham, 2020a) and Mar-
riott International is facing a £18.4m penalty (Denham, 2020b)
because of confidentiality breaches. Another threat to companies
is loss of reputation after information disclosure. For instance,
Facebook users lost trust (Weisbaum, 2018), which also affected
the market value, after the Cambridge Analytica scandal (Isaak
and Hanna, 2018).

Considering confidentiality is not a small polishing step in the
development process but has to be done right from the begin-
ning on. Big software vendors like Microsoft already consider
confidentiality in all development phases (Microsoft Corpora-
tion, 2020). Considering confidentiality in the software design is
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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specially crucial to avoid a significant increase in the overall
evelopment effort: Boehm et al. (1975) reported that fixing an
ssue becomes more expensive, the later it is fixed. Therefore,
ssues should be fixed as early as possible in the development
rocess. The same holds for security issues in the development
rocess (Microsoft Corporation and iSEC Partners, Inc., 2009; Hoo
t al., 2001; McGraw, 2006). This is critical because design issues
ause about 50% of all security issues (McGraw, 2006). Ensuring
roper software designs does not free developers from consid-
ring confidentiality in the remaining phases but builds a solid
oundation for further phases by identifying and fixing funda-
ental issues that can barely be fixed later even when spending
onsiderable effort.
Model-based confidentiality analyses are appropriate for iden-

ifying confidentiality violations caused by a confidentiality issue
n software design, as Jürjens (2005b) demonstrated as part of
case study. A confidentiality violation is a detectable violation
f a confidentiality requirement such as a system that receives
ata, to which it should not have access. A confidentiality issue is
he reason why a confidentiality violation occurs. For instance, a
ystem might acquire wrong data because of a wrong service call.
anual inspections of system designs can detect confidentiality
iolations but this task is complex and labor-intensive, which im-
edes fast and early detection of violations. A modeling language
hat is not capable of representing the important aspects for
etecting confidentiality violations makes the detection process
ven harder. Automated model-based confidentiality analyses op-
rating on appropriate models have the potential to speed up
inding violations (Tuma et al., 2020). Especially, model-based
onfidentiality analyses operating on DFDs are promising because
ecurity problems tend to follow the data flow (Shostack, 2014),
.e. to identify the cause of a violation, it is often necessary to
ollow the path that the data took. We already demonstrated that
odel-based confidentiality analyses based on software designs
iven as data flows can yield valuable results in Industry 4.0
ettings in previous work (Al-Ali et al., 2019). DFDs are part of,
mong others, the curriculum of requirements engineering cer-
ifications, such as the IREB certification (Pohl and Rupp, 2015),
nd textbooks on requirements engineering, such as (Dick et al.,
017; Wiegers, 2005), which is why designers are usually familiar
ith DFDs and do not require a steep learning curve.
Confidentiality analyses must support access control and in-

ormation flow control because both are important confidentiality
echanisms: Access control is the standard for protecting con-

idential data (Sabelfeld and Myers, 2003). Therefore, it is com-
only used in practice. For instance, a system might violate an
ccess control requirement by providing a user with information
f a certain type, which should be kept secret from that particular
ser. Information flow control can detect information leaks by
ata propagation that allow drawing conclusions without direct
ata flows (Hedin et al., 2017). For instance, a system might
iolate an information flow requirement by providing a user with
nformation that has been derived from other information, which
n turn should be kept secret from that particular user. Simple
nformation flow control approaches such as taint analysis (Arzt
t al., 2014) are applied in practice but more powerful informa-
ion flow control approaches such as fine-grained noninterference
nforcements are not (Staicu et al., 2019). Access control and
nformation flow control are valid options to use depending on
he system and the development context. Even combinations of
imple information flow control and access control are possible
t implementation level (Xu et al., 2006; Wang et al., 2009),
hich can improve the protection of information. If modeling and
nalysis approaches are not capable of representing information
low and access control, the chances are high that they are not

pplicable in a significant amount of cases in practice.

2

This article addresses the automatic detection of confiden-
tiality violations in data-oriented software designs. Related work
such as Tuma et al. (2019), van den Berghe et al. (2018) and
Alghathbar and Wijesekera (2003) (discussed in detail in Sec-
tion 4) as well as our previous work (Seifermann et al., 2019)
already suggested modeling languages and analysis semantics
in order to realize automated confidentiality analyses of soft-
ware designs. Nevertheless, we still see the need for further
research because of the following challenges that neither related
work nor our previous work addressed comprehensively so far:
(Ch1) A systematic consideration of all possible paths, which data
can take in a system design, is necessary to find violations sys-
tematically. (Ch2) Modeling and analyzing information flow and
access control within separate artifacts introduces consistency
issues, so a consistent modeling and analysis approach, which
supports both confidentiality mechanisms, is necessary. (Ch3)
User-defined analyses are necessary to cope with specific analysis
needs, which are hard or tedious to define in terms of estab-
lished confidentiality mechanisms. We describe these challenges
in more detail in Section 2. The following two contributions
address these challenges:

(C1) Extended DFD Syntax. We specify an extended DFD syntax
by a metamodel that addresses the previously described chal-
lenges via syntactical extensions for representing confidentiality
mechanisms. The metamodel introduces the concept of alterna-
tive data flows via pins to represent multiple data sources and
destinations (Ch1). The metamodel distinguishes between system
parts that depend on particular confidentiality mechanisms and
system parts that do not. Everything related to specific confi-
dentiality mechanisms is encapsulated in extensions that can be
defined by users (Ch3). An extension consists of confidentiality
properties and behavior descriptions, i.e. descriptions of how
the system changes these properties during its execution. The
metamodel can represent information flow and access control
(Ch2) by such extensions.

(C2) DFD Semantics for Confidentiality Analyses. We introduce
analysis semantics based on label propagation that support var-
ious types of confidentiality analyses. Confidentiality properties
are mapped to labels. Behavior descriptions are mapped to label
propagation functions. An analysis is defined by a comparison
of labels resulting from the label propagation with expected
labels stemming from requirements. The comparison can cover
information flow and access control analyses (Ch2) as well as
user-defined analyses (Ch3). The semantics explicitly consider all
possible data flows as well as their combinations, i.e. all data flow
paths (Ch1).

We evaluate the presented modeling and analysis approach
in a case study including fifteen cases. A case consists of a sys-
tem, confidentiality requirements given in terms of a particular
confidentiality mechanism as well as the properties and behav-
iors required to reason about confidentiality. We evaluate three
aspects of the approach: the expressiveness in specifying sys-
tems and analyses, the reusability when replacing confidentiality
mechanisms as well as the accuracy of analyses. We evaluate in-
formation flow analyses on nine cases and access control analyses
on six cases. All cases used to evaluate information flow analyses
and half of the cases used to evaluate access control analyses stem
from related work. The results indicate good expressiveness and
accuracy as well as improved reusability compared to the state of
the art.

The remainder of this article is structured as follows. Section 2
describes the three challenges that we address. We describe the
running example to illustrate our approach throughout the article
in Section 3. Section 4 covers the discussion of the state of the art
in DFD semantics as well as design time confidentiality analyses.

An overview on how the approach works is given in Section 5. The
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ore contributions are the syntax and the semantics, which we
escribe in Sections 6 and 7, respectively. We show how to detect
onfidentiality violations using both contributions in Section 8.
e briefly report on our tooling in Section 9. Section 10 presents

he evaluation of the expressiveness and reusability of the syntax
s well as the accuracy of defined analyses. Section 11 concludes
he article.

. Challenges

In this section, we describe the challenges in using the DFD
yntax of DeMarco (1979) for detecting violations of confiden-
iality requirements. DFDs as introduced by DeMarco (1979) are
raphs presenting a functional viewpoint on systems based on
ata processing. There are only four fundamental elements: Data
lows are unidirectional edges that connect nodes to describe a
ata transmission between them. Source and sink nodes (also
alled actors) start or terminate a sequence of data flows. Pro-
ess nodes transform incoming data to outgoing data. File nodes
also called stores) persist and emit data. DeMarco describes the
emantics of DFDs in an intuitive but incomplete way, so there is
o standard semantics.
The lack of full-fledged semantics and shortcomings of the

imple syntax make automated analyses of DFDs challenging.
specially, we see the following three open challenges that have
ot been addressed sufficiently yet.
(Ch1) Exploration of multiple data flow paths. A data flow path

s a sequence of nodes, which a data item took to reach a par-
icular node. Multiple paths providing the same type of data
o the same node commonly occur in realistic applications. For
nstance, branches can change call destinations and thereby also
he destination of sent data. Multiple calls arriving at a certain
ocation imply multiple sources of data for the callee. Modeling
pproaches have to provide means for describing these multiple
aths to represent realistic system designs. The corresponding
nalysis approaches have to consider all of these paths in a
ystematic way to detect possible violations. Often, not all com-
inations of data flows build a valid data flow path from a logical
oint of view. Therefore, modeling approaches should provide
eans to specify valid combinations. A common approach to

reat multiple data flows is to require an explicit selection of
ne particular path before the analysis but this is problematic
ecause it does not scale well: In theory, the cross product of all
ossible choices at every node in a DFD has to be considered if
o specification of valid paths is available.
(Ch2) Coverage of multiple confidentiality mechanisms. Usually,

FDs require extensions to capture the information required
o conduct confidentiality analyses. Single purpose models and
nalyses cover phenomenons pretty well and provide accurate
nalyses. However, the downside of single purpose approaches
s the lack of flexibility, i.e. designers have to choose a partic-
lar confidentiality mechanism, e.g. information flow or access
ontrol, before they start modeling. Switching to another con-
identiality mechanism implies remodeling large parts of the
ystem in the new modeling language even if fundamental parts,
uch as the system structure, could be reused. Remodeling large
arts may imply consistency problems: software designers have
o ensure that the shared part of both models actually represents
he same design. Creating (automated) mappings between two
ingle purpose models is possible in general but such kind of con-
istency management is challenging if the languages diverge too
uch (Torres et al., 2020). A feasible approach for addressing this
onsistency problem when switching confidentiality mechanisms
s necessary.

(Ch3) User-defined confidentiality analyses. Requirements to
eep information confidential can be formulated in various ways.
3

However, when designers are forced to use predefined confi-
dentiality mechanisms, even simple requirements such as that
a certain piece of information must not flow to one specific
node can become complex: In Role-based Access Control (RBAC),
a designer has to specify roles and assign these roles to data
and nodes in a way that the simple policy can be checked by
comparing roles. In information flow, a designer has to do roughly
the same steps but for labels instead of roles. Defining custom
analyses can be easier. To do so, designers need means for spec-
ifying custom analyses and according modeling concepts. As a
side effect, this would also allow to integrate new confidentiality
mechanisms. An underlying formalism supporting analyses of
various confidentiality mechanisms as well as an appropriate
modeling language is needed to provide such means.

3. Running example

To illustrate the concepts described in this article as well as the
limitations of the state of the art, we use the TravelPlanner case
study (Katkalov et al., 2013) of iFlow as a running example. The
case study consists of the four systems shown in Fig. 1: The travel
planner app queries flights and books them on behalf of the user.
The credit card center app manages the credit card information of
a user. An airline service provides flight information and allows
booking flights. A travel agency service mediates between the
travel planner and the airline. The scenario is that users query
flights, load their credit card data (CCD), book the flight with the
airline and the airline pays a commission for mediating to the
travel agency.

With respect to confidentiality, there are three totally ordered
security levels: The first level User,Airline,Agency contains infor-
mation accessible to all parties. The travel agency, airline and user
have clearance for this level. The travel planner and credit card
center apps belong to the user. Both apps and the user always
have the same clearance. The second level User,Airline dominates,
i.e., it is bigger than or at least equal to (⩾), the first level and
contains information regarding the flight booking. The airline and
user have clearance for this level. The third level User dominates
the previous levels and contains information only meant for the
user. The user has clearance for this level. The critical part of the
system is that credit card information from level three must not
be disclosed to entities with lower clearance level. However, the
airline needs the credit card information to process the booking.
Therefore, a declassification of the credit card data explicitly low-
ers the security level to the second level. If this declassification is
missing, there is a violation of the information flow requirements.

The corresponding DFD is shown in Fig. 2. The level, behavior
and user annotations are part of our extended DFD syntax. The
remaining elements follow the notation of DeMarco (1979). Infor-
mally speaking, nodes annotated with level 1 belong to the travel
agency, nodes annotated with level 2 belong to the airline and
the remaining nodes belong to the user. A process with the user
annotation (small actor symbol on the left side) is a step executed
by the user instead of the system.

4. State of the art

This article is about detecting violations of confidentiality re-
quirements in software designs by analyzing DFDs. In order to
analyze DFDs, we have to define the meaning of every element
of a DFD. Various attempts (see Section 4.1), which do not focus
on confidentiality, have been made to specify formal semantics
of DFDs. Although these semantics are not usable to analyze
confidentiality, they reveal shortcomings in the DFD semantics
by DeMarco (1979) that have to be addressed. Often, such short-
comings stem from ambiguities caused by imprecise or missing
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Fig. 1. Interactions of components during the booking of a flight in the TravelPlanner running example.
Fig. 2. DFD of TravelPlanner example annotated with security levels (1–3) and behavior types (D, F, J). The dashed edge introduces a violation.
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information in DFDs. Such ambiguities can be addressed the best
by providing additional information in an extended syntax. We
derive features that have to be considered by DFD semantics and
the corresponding syntax based on the identified shortcomings
and ambiguities. We show the significance of these features for
modeling and analyzing confidentiality by discussing where these
features are used in the running example. In general, the features
are an enabler for addressing the challenges (Ch1, Ch2, Ch3)
described in Section 2. However, the syntax and semantics can-
not address these challenges completely on its own but require
support from other parts of the approach such as the analyses.

Approaches for identifying violations of confidentiality re-
uirements do not have to use DFDs but can operate on various
rtifacts. Because approaches operating on data flows are most
losely related to our proposed approach, we separate the dis-
ussion of approaches for identifying violations of confidentiality
equirements in Section 4.2 by the paradigm of the analyzed
rtifacts: Section 4.2.1 discusses approaches operating on con-
rol flow descriptions and Section 4.2.2 discusses approaches
perating on data flow descriptions. We also discuss how the ap-
roaches realize the previously mentioned features and whether
he approaches sufficiently address the challenges described in
ection 2.

.1. DFD semantics

The publications about semantics of DFDs, which we describe
n the following, frequently report on four shortcomings of the
nformal semantics introduced for DFDs by DeMarco (1979). They
ddress these shortcomings by extensions. Consequently, we see
4

these extensions as required features for DFD semantics as well
as for the syntax if a syntax extension supports a semantical
extension. The features are (F1) properties of nodes, (F2) defined
meaning of multiple inputs, (F3) behaviors of processes and (F4)
behaviors of actors. In the following, we explain the signifi-
cance of these features for detecting confidentiality violations and
how well solutions proposed by related semantics address these
features.

F1 Node Properties. The properties of nodes are barely cov-
ered in related semantics but representing them is important:
in our running example, it would not be possible to represent
the clearance level of nodes, which is essential for comparing it
with the classification level of data to identify violations. France
(1992) and Petersohn et al. (1994) define execution semantics for
DFDs and cover node properties as part of the global execution
state. This means, properties can change dynamically. While this
is an interesting approach, dynamic annotations are more com-
plex to specify compared to static annotations. Therefore, we are
interested in exploring whether static annotations are sufficient
to represent and analyze common confidentiality mechanisms.

F2 Multiple Inputs. The handling of multiple inputs is a
ommonly addressed feature. If a process has multiple inputs,
hey usually relate to each other but it is not clear how. In our
unning example, it would be unclear that the two credit card
nputs are alternatives in book flight rather than two mandatory
nputs. However, the choice of a particular input can change the
nalysis results. The simplest solution is to always require all
nputs (Fensel et al., 1993; Larsen et al., 1994; Petersohn et al.,
994; Xiong et al., 2017) but this is often too restrictive: Requiring
ll inputs would not allow modeling the alternative input flows
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cd direct and declassifiedCCD in our running example. Expecting
ll inputs, which roughly equals to expecting all possible incom-
ng calls to be mandatory, is no realistic assumption. Building
lternative groups of particular data flows is possible by defining
reconditions to select flows (France, 1992; Liu and Tang, 1991;
lat et al., 1991; Wahls et al., 1993; Leavens et al., 1996, 1999) or
y building sets of data flows. However, an additional alternative
low implies changes in potentially multiple preconditions and
ets which can lead to inconsistent specifications in case of many
ata flows and preconditions or sets. In our running example,
dding another input providing credit card data to book flight
ould require adjusting the precondition or the sets. We see
otential to further simplify adding an alternative data flow.
F3 Behavior of Nodes. A formal framework to specify the

ehavior of processes with respect to the effect on data is nec-
ssary. In our running example, it is important to specify that
eclassify CCD lowers the classification level of yielded data. This
s not possible without means for specifying behavior. However,
inding a reasonable level of abstraction for the specification of
rocess behaviors is a challenging topic. Semantics focused on
xecution (Kavi et al., 1986; Brunza and van der Weide, 1989;
etersohn et al., 1994; Xiong et al., 2017) do not consider process
ehavior at all. Semantics using behaviors to specify trigger con-
itions (Plat et al., 1991; France, 1992; Fensel et al., 1993; Larsen
t al., 1994), i.e. conditions for when a process can run, do not
escribe an effect on yielded data. Both approaches would not
llow us to derive data properties from data processing by the
ystem. This means manual and error-prone data classifications
re necessary to still support powerful analyses. Specifications
f algorithms to calculate outputs (Liu and Tang, 1991; Wahls
t al., 1993; Leavens et al., 1996, 1999) can represent wide ranges
f effects by specifications given in general purpose languages.
owever, a generic specification language potentially is more
omplex to use than a tailored specification language.
F4 Behavior of Actors. The behavior of actors, i.e. the data

rocessing done by actors instead of systems, is often neglected
ut can be important to consider. In our running example, it
s crucial to know that the user does not pass the credit card
nformation received from the simple getter call back into the
ystem but the credit card information received from the de-
lassification operation. Actor behaviors allow to specify that the
ata is received and passed back into the system. Without such
escriptions, we could only guess the origin of data, which could
ead to incorrect analysis results. About half of the identified
emantics (Kavi et al., 1986; Liu and Tang, 1991; Brunza and
an der Weide, 1989; Fensel et al., 1993) ignore actor behavior
ut about the other half (Plat et al., 1991; France, 1992; Larsen
t al., 1994; Leavens et al., 1996, 1999) uses the same means as
or specifying process behaviors. Representing actor behavior by
he same means as for representing node behaviors is beneficial
ecause this provides a uniform way of specifying behavior. This
owers the learning effort.

.2. Confidentiality modeling and analysis approaches

To cope with the large amount of confidentiality modeling
nd analysis approaches focusing on the design and development
hases, we discuss categories of approaches and provide exam-
les from these categories. The examples illustrate limitations
ith respect to the required features identified before as well
s limitations in sufficiently addressing the challenges described
n Section 2. The limitations apply to the whole category. In
he following, we distinguish between approaches analyzing con-
rol flows (Section 4.2.1) and approaches analyzing data flows
Section 4.2.2). The latter approaches are closely related to the
pproach we present in this article.
5

Table 1
Overview on model-based confidentiality analysis approaches exploiting control
flows.
Approach F1 F2 F3 F4 Ch1 Ch2 Ch3

Gerking et al. (2018) a c/r s – c/r IF –
iFlow (Katkalov et al., 2013) a c/r s – c/r IF –
UMLSec (Jürjens, 2005a) a c/r s – c/r IF/AC wf

Hoisl et al. (2014) a c/r nt act c/r IF –

Almorsy et al. (2013) a c/r – – c/r AC wf
Abdellatif et al. (2011) a c/r – – c/r IF –

Used abbreviations: a (annotations), c/r (call and return), s (specification),
nt (node type), act (activities), IF (information flow), AC (access control), wf
(well-formedness).

4.2.1. Modeling and analysis of control flows
Control flow modeling and analysis approaches describe ac-

tions to be executed and the order, in which these actions are
executed. We distinguish between approaches working on ab-
stractions of the system (Gerking et al., 2018; Katkalov et al.,
2013; Jürjens, 2005a; Hoisl et al., 2014; Almorsy et al., 2013;
Abdellatif et al., 2011), such as models specified in the Unified
Modeling Language (UML), and approaches working with source
code (Arzt et al., 2014; Snelting et al., 2014; Runge et al., 2020;
Ahrendt et al., 2016). Creating an abstraction of a system usu-
ally requires an upfront effort for modeling. However, once the
model is created, it can be changed and analyzed for different
design alternatives (cf. what-if-analyses) much easier compared
to source code. This is because abstracting the system usually
reduces dependencies that need to be considered.

Model-based Approaches. One of the most fundamental de-
ision when creating a model-based approach is the level of
bstraction of the model to be used. Therefore, we distinguish
pproaches by the level of detail required to model the behavior
f nodes (F3). As illustrated in the overview on related model-
ased approaches operating on control flows in Table 1, we see
hree groups of approaches: (i) approaches requiring detailed
pecifications (s) in the top section, (ii) approaches using coarse-
rained specifications such as predefined behaviors based on
ode types (nt) in the middle section and (iii) approaches not
escribing the behavior at all (—) in the bottom section. In the
ollowing, we do not discuss the features F1, F2 as well as the
hallenge Ch1 individually because all approaches handle them
he same: Properties of nodes (F1) are covered by annotations.
he meaning of multiple incoming data flows (F2) is simple:
ecause data flows only happen via calls, every individual call is
n alternative data flow consisting of potentially many data items.
onsequently, all approaches address the challenge of discovering
ll data flow paths (Ch1) but restrict themselves to data flows via
alls, which cannot represent more complex data flow patterns
f DFDs.
The three approaches (Gerking et al., 2018; Katkalov et al.,

013; Jürjens, 2005a) requiring detailed specifications (i) use the
pecifications to prove information flow properties of the system
odel. All three approaches cannot represent data processing by

he behavior of actors (F4) but limit behaviors to individual calls
o the system. Therefore, they cannot provide full traceability
f data that is processed by a user. Besides information flow,
MLSec (Jürjens, 2005a) can analyze access control. However,
MLSec can only control access to actions but not access to
ata. The support for custom analyses (Ch3) is limited to simple
ell-formedness constraints. This means that custom analyses
an compare annotations and report violations on a structural
evel. A custom data propagation analysis is not possible without
ntrusive changes in the UMLSec source code.
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There are approaches operating on more abstract behavior
escriptions: Hoisl et al. (2014) use predefined behavior descrip-
ions for processes (F3) and actors (F4), which they assign based
n the type of various nodes. This is often simple to use for
esigners but also implies restrictions with respect to possible
nalyses and extensibility: The approach only supports taint anal-
ses, which is a simple information flow mechanism (Ch2), and
oes not support custom analyses (Ch3).
Approaches not providing behavior specifications (Almorsy

t al., 2013; Abdellatif et al., 2011) for processes (F3) or actors
F4) usually only have limited analysis capabilities. The approach
f Almorsy et al. (2013) supports a simple form of access con-
rol (Ch2) and means to define simple well-formedness analyses
Ch3). The approach of Abdellatif et al. (2011) only supports
nformation flow and no custom analyses. Both approaches do
ot analyze data propagation, so classifying data or other system
lements is a manual task and the analyses are limited to pattern
atching.
Source Code-based Approaches. There are three types of re-

ated approaches operating on source code: taint analyses such
s FlowDroid (Arzt et al., 2014), full-fledged information flow
nalyses such as JOANA (Snelting et al., 2014) or IFcB (Runge et al.,
020), and verification approaches such as KeY (Ahrendt et al.,
016). The approaches either associate properties of nodes (F1)
y the node type (e.g. a sensor of a certain type can always be
anipulated by an attacker) or by the value of attributes (e.g. a
lass has an attribute holding its clearance level). The handling of
ultiple inputs (F2 and Ch1) is the same as for the model-based
nalyses operating on control flows. The behavior of nodes (F3) is
iven by the source code and the behavior of actors (F4) is usually
ot covered. Because approaches based on source code are often
ighly specific to certain application domains or scenarios, they
nly support one particular confidentiality mechanism (Ch2) and
re barely extensible (Ch3). All approaches except for KeY only
upport information flow analyses. KeY does not prescribe a par-
icular confidentiality mechanism but supports custom analyses
Ch3) via preconditions and postconditions. However, approaches
ased on source code are not applicable at design time as already
otivated.

.2.2. Modeling and analysis of data flows
Design time approaches exploiting data flows are closely re-

ated to our work. Table 2 gives an overview on the approaches
iscussed in the following. The upper part of the table covers
hreat modeling approaches. The lower part covers data propa-
ation analyses.
Threat modeling (Abi-Antoun et al., 2007; Deng et al., 2011;

ampolskiy et al., 2012; Berger et al., 2016; Sion et al., 2018)
s frequently researched. Because of the flexible nature of threat
odeling, multiple confidentiality mechanisms (Ch2) and custom
nalyses (Ch3) are usually supported. All approaches support
ode properties (F1) by static annotations and do not consider
ctor behaviors (F4). All approaches allow multiple inputs but
nly Yampolskiy et al. (2012) distinguish mandatory and op-
ional data flows (F2). However, the selection process of their
ntroduced optional flows is not specified in their publication,
o systematically considering multiple flow paths is not possible
Ch1). The behavior of processes (F3) is often not represented:
nly Abi-Antoun et al. (2007) and Sion et al. (2018) describe
ehaviors by annotations. These annotations are compared to pat-
erns later. All analyses are limited to purely structural analyses
hat perform pattern matching and that do not derive properties
f exchanged data based on its processing. Therefore, reasoning
bout information flow requires either manually classifying all
xchanged data, which can be a complex task, or only yields
6

Table 2
Overview on model-based confidentiality analysis approaches exploiting data
flows.
Approach F1 F2 F3 F4 Ch1 Ch2 Ch3

Threat modeling a st – – – IF/AC m
Yampolskiy et al. (2012) a opt – – – IF/AC m
Abi-Antoun et al. (2007) a st a – – IF/AC m
Sion et al. (2018) a st a – – IF/AC m

Alghathbar et al. (2006) a st tbl tbl – IF/AC –
Tuma et al. (2019) a es pf – – IF –
Seifermann et al. (2019) a es pf pf – AC q
van den Berghe et al. (2018) a es s s – IF pr

Used abbreviations: a (annotations), st (structure only), opt (optional flows), es
(explicit flow selection), tbl (table), pf (propagation function), s (specification),
IF (information flow), AC (access control), m (manual), q (queries), pr (proof
requests).

results with the same granularity as simple taint analyses. Rea-
soning about multiple classification levels, like we do in the
running example, is not possible.

Data propagation analyses reduce the complexity of the label-
ing task by not requiring all data to be labeled manually. Manual
labeling is repetitive and sometimes challenging, so it is error
prone. Instead, data propagation analyses require a limited set of
initial labels that are propagated through the system. As a con-
sequence, only few labels have to be assigned manually, which
reduces the complexity compared to the category of approaches
discussed before. FlowUML (Alghathbar et al., 2006) derives DFDs
from UML sequence diagrams, models them in a logic program
and describes how to detect violations of information flow re-
quirements as well as DAC and MAC requirements. Therefore,
they support information flow and access control (Ch2). FlowUML
uses specific node types to represent properties of nodes (F1),
which is comparable to static annotations, and specifies behaviors
of processes (F3) and actors (F4) by tables that relate data flows.
The handling of multiple flows (F2) and also multiple data flow
paths (Ch1) is not described in the FlowUML paper (Alghathbar
et al., 2006), so it is unclear how well realistic systems can
be modeled and analyzed by the approach. Formulating custom
analyses (Ch3) is not described. We could not find any publi-
cations reporting on an evaluation of FlowUML. Therefore, it is
unclear whether the approach is applicable to realistic systems
and whether it provides accurate results.

Tuma et al. (2019) as well as our previous work (Seifermann
et al., 2019) have been evaluated for realistic systems. Both ap-
proaches describe the system behavior (F3) as a sequence of label
propagation functions and initial labels on data. Both approaches
represent properties of nodes (F1) as static annotations. Tuma
et al. only support information flow and do not consider the
behavior of actors (F4). Our previous work (Seifermann et al.,
2019) only supports access control and considers the behavior
of actors (F4) by label propagation functions. Considering actor
behaviors allows to specify, for instance, which particular credit
card information is passed to the system in our running example,
which in turn affects the analysis results. Both approaches only
support exactly one type of confidentiality analysis (Ch2). Our
previous work (Seifermann et al., 2019) additionally provides
means for specifying custom analyses (Ch3) via queries. Both
approaches do not provide means for systematically considering
all possible data flow paths (Ch1) in presence of multiple valid
selections of inputs but prescribe one particular input selection
(F2). Prescribing one selection allows analyses in presence of
ambiguities but does not guarantee to find violations produced
by other possible selections.

van den Berghe et al. (2017b) describe systems by data flows
between predefined processing operators to prove security prop-
erties including a simple form of information flow control but no
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ccess control (Ch2). They describe system behavior in the proof
ssistant Coq by stateful modeling in linear-time temporal logic.
hese behavior descriptions can be used to describe the behavior
f processes (F3) and actors (F4). Properties of nodes (F1) can be
efined freely and they can change dynamically. This also enables
ormulating custom analyses (Ch3). The behavior description of
odes includes the logic for selecting inputs (F2). However, the
aper does not report on systematically considering all possible
ata flow paths (Ch1). Additionally, including the selection logic
f inputs in behavior descriptions hinders reusability because
he same behavior cannot be used for two nodes with different
mounts of inputs. In our running example, we would have to
pecify a dedicated behavior for the book flight process instead
f just reusing the Forward behavior because the behavior would
ave to be extended by the selection logic of the alternative
ncoming flows of credit card information.

. Overview of the approach

Before describing the contributions in detail, we give a high-
evel overview on how our modeling and analysis approach is
pplied and how it works. The goal of the approach is to detect
iolations of confidentiality requirements. This, especially, cov-
rs requirements given in terms of information flow or access
ontrol. To apply the approach, the three activities illustrated in
ig. 3 are necessary: creating an analysis definition, modeling the
ystem and running the analysis. The analysis definition intro-
uces confidentiality-related model elements that are used while
odeling the system. Often, it is sufficient to create the analysis
efinition once and use it for various systems. We explain all of
hese activities in the following.

Creating an Analysis Definition. An analysis definition is a col-
lection of the following model elements: (1) properties of nodes
(F1), (2) properties of data, (3) behavior description of nodes
(F3 and F4) and (4) a comparison function. In our running ex-
ample, the properties of nodes (1) are the clearance levels and
the properties of data (2) are the classification levels. The be-
havior descriptions (3) define how nodes process data, i.e. what
properties outgoing data will have based on properties of in-
coming data. In our running example, the behavior descriptions
are Forward, Join and Declassify. The Forward behavior copies
ncoming data properties to outgoing data properties unchanged.
he Join behavior looks for the highest classification level on

all incoming data and applies that level to outgoing data. The
Declassify behavior explicitly sets the classification to the second
level. The comparison function (4) defines a pattern that indi-
cates a violation by comparing data and node properties. In our
running example, the comparison function looks for a node with
a clearance level lower than the classification level of any data
received by that node. A dedicated security expert creates the
analysis definition because it requires security expertise to map
a confidentiality analysis to the described four model elements.
Alternatively, a software designer can carry out these activities
if he/she has security expertise. Analysis definitions (or at least
parts of it) are often reusable. Therefore, defining an analysis is
7

only required if it has not been defined before. Consequently,
security experts do not have to take part in the design process of
every system but only in the processes that require new analysis
definitions. Decoupling the analysis-specific model elements, i.e.
the analysis definition, from the remaining DFD elements is not
only beneficial for assigning clear responsibilities: In previous
work (Heinrich et al., 2021), we demonstrated that this separa-
tion also improves maintainability. In addition, the separation is
beneficial for reusing models as we show in the evaluation in Sec-
tion 10. In our running example, the whole analysis definition can
be reused for other systems if the particular levels are renamed.
Because the analysis definition is sufficient to represent the core
elements of a confidentiality mechanism and creating the analysis
definition does not require intrusive extensions of the overall
approach via source code, the analysis definition addresses the
challenge of defining custom analyses (Ch3). As we will show in
the evaluation in Section 10, the analysis definition is expressive
enough to represent information flow and access control mecha-
nisms, so it also addresses the challenge about representing both
confidentiality mechanisms (Ch2).

Modeling the System. First, a software designer models the
structure of the system with the DFD elements, which DeMarco
(1979) introduced. Next, the designer integrates the confidential-
ity mechanism into the system by applying elements from the
previously defined analysis definition to DFD elements. In our
running example, the designer assigns each node a clearance level
and a behavior description. Assigning data properties explicitly
is not necessary: behavior descriptions can provide initial data
properties of newly created data and the analysis will determine
the remaining data properties later. In our running example, the
behavior description of the FlightPlanner specifies that outgoing
data always is classified by the first level. In contrast, the Forward-
ng behavior of the dispatch request process does not provide an
nitial data classification but will derive the classification during
he analysis.

Running the Analysis. The software designer starts the fully
utomated analysis. The result is a list of detected violations
ccording to the comparison function. The fundamental idea of
he analysis is to map the DFD, the properties and the behavior
escriptions to a label propagation network. Properties become
abels, nodes become label propagation functions according to
heir behavior description and data flows define the connections
etween the label propagation functions. The analysis propagates
ll labels through the network. After that propagation, the labels
f all data at all nodes are known. In the last step, the compar-
son function compares the labels to identify a violation. To find
nformation flow violations in our running example, we look for
n edge with a higher classification label than the clearance level
f the receiving node. The dashed edge in Fig. 2 causes such a
low: The dashed flow circumvents the declassification process,
hich makes the credit card data arriving at book flight level 3

instead of level 2. The process booking process receives this level
3 data but its clearance is only valid up to level 2. This means
that we found a violation. The dashed data flow as well as the
solid data flow transport credit card data to the process booking
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Fig. 4. Metamodel of DFD (gray elements) with confidentiality extensions (non-filled elements).
rocess. As we will explain in Section 6, we introduced a notion
o clearly state that both flows are alternative flows (F2), which
eans that exactly one of these flows has to be chosen. As we
ill explain in Section 7, the analysis systematically explores all
ossible combinations of data flows transporting labels, which
ddresses the corresponding challenge Ch1.
In the presented running example, the violation is easy to spot

ut in more complex systems, finding all possible sources and
roperties of incoming data is challenging. Using the sketched
nalysis can help designers to identify issues in software designs
nd correct them before the implementation of the introduced
ssue starts. In the running example, a designer has to ensure that
ata, which has not been declassified, never arrives at the book
light process by removing the faulty data flow. Programmers
ater have to adhere to this specification and ensure that data
lways goes through a declassification operation.

. Syntax of extended data flow diagram

In order to realize the identified missing features of DFD
emantics described in Section 4.1, we have to extend the syntax
nd the semantics of DFDs. It is not sufficient to only extend
he semantics because we need additional information to solve
mbiguities such as the handling of multiple inputs and outputs.
n this section, we introduce the syntactical DFD extensions that
upport the definition of semantics discussed in Section 7. An
verview on the syntax is given by the metamodel in Fig. 4. Gray
lements are DFD elements as introduced by DeMarco (1979).
on-filled elements are the extending elements introduced in this
rticle. As part of the following descriptions, we relate the syntax
o the metamodel used in our previous work (Seifermann et al.,
019) as well as to closely related approaches (Tuma et al., 2019;
an den Berghe et al., 2018).
Node Characteristics (F1). To cover relevant properties of nodes,

we introduce typed characteristics. Strong types are beneficial
because identifying and matching properties becomes possible.
Sets of discrete values can represent relevant properties such as
roles or classification levels. We call such a discrete value Label.
An Enumeration builds an ordered set of corresponding labels.
Analyses can make use of the order, e.g. to determine dominance
between labels. In our running example, the security levels are
an enumeration of ordered labels. Labels with a higher index in
such a list dominate labels with a lower index. A Character-
isticType is the type of a property with a value range given
by an enumeration. In our running example, the clearance and
8

classification are characteristic types referring to the enumera-
tion of security levels. A Characteristic is an instance of a
characteristic type selecting a subset of available labels, which
means that these labels apply. Every node can hold multiple
characteristics, which means that the selected labels apply to
the node. In our running example, we use a number inside the
node to visualize a node characteristic. The number indicates a
particular label, i.e. clearance level, that has been selected from
the characteristic type for clearance levels. In contrast to related
work (Tuma et al., 2019; van den Berghe et al., 2018) and to our
previous work (Seifermann et al., 2019), labels can be ordered and
that order can be used in analyses, which we describe later.

Pins (F2). We introduce the concept of a Pin to clearly spec-
ify required data. A pin describes either a required input data
or output data. The set of all input and output pins describes
the interface of the node. The pins are similar to pins in the
UML (Object Management Group (OMG), 2017, pp. 444), which
also distinguishes inputs and outputs. In contrast to the UML, we
use one fixed meaning of how data is transferred through pins to
simplify the usage of pins. We will see this in the following and
in the definition of the semantics for pins in Section 7. Multiple
DataFlow edges to an input or output pin represent multiple
sources or destinations for the same data, respectively. This con-
cept lowers the complexity while modeling because connecting
a new data flow has one clear meaning: An additional flow to
an input pin is an alternative flow. An additional flow from an
output pin is another forked flow. A new mandatory input or
output requires a new dedicated pin, to which the new data flow
connects to. In Fig. 2, we visualize multiple flows for the same
pin by overlapping edges. For instance, the book flight process
receives credit card information from two sources when consid-
ering the dashed data flow. These two flows are alternatives, so
they connect to the same pin. To foster this clear meaning of
data flows, all data flows have to go through pins. Compared to
related work (Tuma et al., 2019; van den Berghe et al., 2018) and
our previous work (Seifermann et al., 2019), pins simplify adding
additional, alternative flows because the flow just has to be added
instead of integrated into existing behavior specifications of the
node. Without pins, it was necessary to duplicate the specification
of processing effects for these additional flows and to define the
order, in which these flows shall be considered.

Data Processing Behavior (F3). We describe the data process-
ing behavior of nodes by BehaviorDefinitions. A behavior
definition is meant to be reusable to reduce the specification
effort to be done by a security expert. In our running example,
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Listing 1: Examples of clauses used in Prolog.
1 cat(jane). % fact with constant jane
2 bird(john). % fact with constant john
3 chases(X,Y) :- % rule taking arguments X and Y
4 cat(X), % term testing whether X is a cat
5 bird(Y). % term testing whether Y is a bird
6 sum(0,[]). % fact stating that an empty list has sum 0

the behaviors Declassify, Forward and Join are behavior defini-
tions shared between the various processes. In Fig. 2, the letters
in the processes indicate the reused behavior definition. Such
a definition consists of input and output pins as well as As-
ignments of labels to output pins. A Term specifies whether
label shall be assigned. It can refer to labels of input pins or
odes as well as to constants. The set of assignments specifies
he label propagation function. Our previous work (Seifermann
t al., 2019) neither provides means to specify types of behavior
pecifications or means to reuse them. Related work provides
ixed types of behavior definitions (Tuma et al., 2019) or means
o specify types (van den Berghe et al., 2018). Not considering
ypes complicates the interaction between designers and security
xperts because security experts have to inspect every node in the
FD instead of only providing a few behavior types.
Actor and Store Behavior (F4). To cover behavior of actors and

tores, we apply BehaviorDefinitions to these node types as
ell. Stores act like forwarding processes, i.e. they redirect all

abels from the input to the output. Because we do not represent
ime or state in the model and systematically consider all possible
ncoming flows into the store, the forwarding behavior fits the
emantics of a store that saves data and emits unchanged data.
n our running example, the Flight Storage emits the same flights
s the flights entered by the FlightPlanner. Actors usually use
ehaviors specific to them that cannot be reused. Additionally,
e add the ActorProcess to describe complex data processing
one by actors. These processes act like regular processes and
an reuse behavior definitions but act on behalf of the actor.
onsequently, the node properties, i.e. characteristics, of the ac-
or, also apply to these processes. In our running example, the
elect flight process is an actor process because the user manually
elects a flight from a list. In contrast to related work (Tuma
t al., 2019; van den Berghe et al., 2018), we represent actors
nd stores with dedicated elements, which we already did in
revious work (Seifermann et al., 2019). Additionally, we clearly
istinguish the behavior of the system from the behavior of
ctors. This is beneficial because developers can distinguish parts
o develop from parts only describing usage.

. Semantics of extended data flow diagram

In the previous section, we introduced extensions to the DFD
yntax to ease defining unambiguous semantics, which we intro-
uce in this section. We define the semantics of the extended
FD by mapping it to clauses in first-order logic. We chose to
ormalize the semantics in first-order logic using Prolog because
rolog provides comprehensive capabilities of exploring all pos-
ible data flow paths, which we will discuss later. We explain the
emantics in three steps: In Section 7.1, we recap foundational
nowledge about Prolog. Section 7.2 explains how to map DFD
lements to clauses in first-order logic. Afterwards, Section 7.3
iscusses the resulting semantics of the logic program.
9

7.1. Foundations on Prolog

Analyses presented in this article rely on the semantics given
by a transformation from the DFD into a logic program given
in Prolog (Bramer, 2013). Prolog is an established logic pro-
gramming language that requires a programmer to specify the
knowledge to solve a problem rather than the procedure. A Prolog
program consists of clauses (Bramer, 2013, pp. 13), which can be
facts or rules. Facts such as the ones shown in lines 1 and 2 of
Listing 1 are always true. A rule is only true if all of the terms
of its body are true. In Listing 1, line 3 is the head of the rule
and the lines 4 and 5 are the body terms. Terms are constants,
variables, lists and compound terms. Compound terms consist of
a name and arguments, which are also terms. Facts and the head
of a rule are compound terms. By convention, variable names are
always upper case while constants are lower case. Quoted strings
and numbers are constants as well. Lists are denoted by square
brackets. Empty brackets mean empty lists as shown in line 6.
In Prolog, rules are given as Horn clauses, i.e. the conjunction of
terms in the body imply the term in the head. From a procedural
point of view, the rule in line 3 to 5 can be read as follows: In
order to prove chases(X,Y), prove cat(X) first and bird(Y)
second. Queries ask the program to find answers to a question.
A query is a list of goals that Prolog interpreters try to solve.
Goals and terms in the body of rules can be connected with a
logical conjunction , or logical disjunction ;. Negation \+ is also
possible but does not have the exact same meaning as negation
in boolean logic (Kifer and Liu, 2018, pp. 17). Terms in queries can
contain variables, for which the interpreter finds values that make
all goals true. Informally speaking, Prolog interpreters find all
instantiations of variables that make all goals true, which means
that they can be deduced based on facts and rules. Selection Rule
Driven Linear Resolution for Definite Clauses (SLD) (Nugues, 2006,
pp. 447) is the most commonly used resolution process for finding
variable bindings in Prolog but detailed knowledge about that
process is not required for the remainder of this article.

7.2. Mapping to logic program

In this section, we describe the mapping from the extended
DFD syntax to clauses in first-order logic formulated in Prolog. To
keep things simple, we focus on the fundamental principles but
omit implementation details such as the helper clauses that are
always added as a preamble to the mapping result. Additionally,
we use simple identifiers instead of unique identifiers that would
be hard to read in our examples. The full specification of the
transformation is given by a model to model transformation in
our data set (Seifermann et al., 2021a).

DFD Nodes. First, we map the DFD nodes Actor, Store and
rocess, which DeMarco (1979) introduced, to clauses. Fig. 5
llustrates the mapping logic for these nodes and others that
e describe later. The clauses only state that an element of the
pecified type exists with the given unique identifier. For in-
tance, a store becomes a store clause with its identifier given as
rgument. Defining that elements exist is necessary to establish
elations and specify further details such as behaviors as we will
ee later. For every node, we create one clause.
Actor Behavior (F4). An ActorProcess represents one activity,

hich an actor does. A set of such processes represents all activi-
ies done by an actor. The mapping of actor processes consists of
wo steps: First, we treat an actor process like a regular process,
hich means we generate a process clause as described before.

By doing so, we can reuse all the logic for describing behaviors
of nodes. Additionally, we do not need special logic for handling
actor processes during label propagation. Second, we introduce

an additional clause actorProcess stating that a process with
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given identifier belongs to an actor with a given identifier. This
is necessary to find all activities of an actor. The clauses are
visualized in Fig. 5.

Multiple Inputs (F2). Our extended syntax supports multiple
(alternative) inputs via Pins and DataFlows that refer to these
pins. For every node, we create one clause for every pin specified
in the BehaviorDefinition assigned to a node. We do not rep-
resent the BehaviorDefinition itself because its sole purpose
is to make assignments and pins reusable. In Fig. 5, input pins
are visualized by squares containing the letter i at the border of
the node. Output pins are visualized by squares containing the
letter o at the border of the node. The pin clauses describe that
there is an input or output pin with a given identifier on a node
with a given identifier. For every data flow, we create one clause
dataflowwith a unique identifier as the first argument. The next
two arguments describe the source node and the corresponding
output pin. The last two arguments describe the destination node
and the corresponding input pin.

Node Characteristics (F1). Before we can map node character-
istics, we first have to map the available types of characteris-
tics. Characteristic types are also mapped to clauses stating their
existence. As shown in Fig. 6, we create one clause charac-
teristicType for every characteristic type stating that there
is a characteristic type with a given identifier. We do not repre-
sent enumerations because they only provide means for reusing
labels while modeling. Instead, we create one clause charac-
teristicTypeValue for every label transitively referenced by a
characteristic type. The first argument specifies the characteristic
type, the second argument specifies the label and the last argu-
ment specifies the index of the label in the enumeration. Naming
the characteristic type and the label is necessary to establish a
relation, i.e. to state that a certain label is a valid label for a
certain characteristic type. A label is only unambiguous if it is
used together with a characteristic type because a label can be
reused in various characteristic types and can, therefore, have
different meanings: In our running example, the meaning of the
User level is different when used as classification or as clearance.
Representing the index is beneficial because label comparison
functions can refer to the order of the label via that index. Char-
acteristics applied to a node are also represented by one clause
for every label within a characteristic. In the example in Fig. 6,
the clearance level User is applied to the actor User. Thereto, we
create one clause nodeCharacteristic, which states that the
node User (given as first argument) has the label User (given
as third argument) of the characteristic type Clearance (given as
second argument) applied.

Node Behavior (F3). In the syntax, the node behavior is given
by a sequence of assignments of truth values to boolean variables.
The boolean variable on the left hand side defines whether one
particular label, i.e. the tuple of characteristic type and label, is

available at one particular output pin. The truth value on the right

10
hand side can refer to labels on input pins, logic operations and
constants. If no assignment specifies a truth value for a label, the
default is that it is not available (false). The sequence of assign-
ments represents the label propagation function. Representing
labels as boolean variables is beneficial because first-order logic
supports boolean variables and boolean expressions very well. In
the following, we explain how we represent boolean variables
and how we map assignments.

We create one characteristic clause holding six argu-
ments that represents a truth value for every label of a char-
acteristic type on an output pin. Particular examples of these
clauses are shown in Fig. 7. The first two arguments identify the
node and the output pin. The next two arguments identify the
characteristic type and the label. The following two arguments
are a flow tree S and a set of already visited flows VISITED.
oughly said, the flow tree contains the data flows connecting
ll transitive predecessors of a certain node. The leafs of the tree
re always data flows from nodes without incoming data flows.
here can be multiple trees for one node. If the characteristic
lause evaluates to true, the label is available at the output pin
or a particular flow tree and a particular set of visited flows. The
low tree is necessary to identify the data flows and nodes that
ead to a violation. Without knowing this information, identifying
he issue that lead to a violation would be hard. The set of visited
lows prevents evaluation cycles in DFDs containing cycles. We
xplain both concepts (flow tree and visited flows) in more detail
n Section 7.3.

Assignments describe when a label shall be available. The list
f assignments contained in a BehaviorDefinition is ordered
ecause an assignment that is defined later can override the effect
f an assignment defined previously. Terms, which specify the
ight hand side of an assignment, cannot refer to labels on the
utput pins, which means they cannot refer to the boolean vari-
bles that the assignments change. Therefore, there is always only
ne assignment that determines the final truth value for a label
n an output pin that does not depend on any previous assign-
ent in the list of assignments. To simplify the mapping, we only
onsider that particular single assignment for building the body
f the characteristic rule for the particular characteristic type
nd label. There is no point in representing other assignments
han the so-called last applicable one because they do not affect
he result of the label propagation. The mapping transforms the
erm on the right hand side of the assignment to clauses in the
ule body of the characteristic clause. Constants such as the
nes shown in Fig. 8 can be mapped to truth values. References to
nput labels are mapped to a characteristic clause referring
o a label on an input pin as the mapping of the forwarding
ehavior in Fig. 7 demonstrates: the label User shall be applied

to the output pin if it is available on the input pin, which can be
checked by the characteristic clause for the input pin (third

line). To ensure traceability of the results, it is necessary to keep
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Fig. 6. Mapping of characteristic types and characteristics to clauses in first-order logic.
Fig. 7. Mapping of forward behavior of process to clauses in first-order logic.
Fig. 8. Mapping of declassify behavior of process to clauses in first-order logic.
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rack of the data flows that have been considered while calcu-
ating the label, i.e. the flow tree. The inputFlow clause selects
data flow F0 that shall be considered when determining the

abel for the input pin. F0 will become the first flow in the flow
ree. For the sake of brevity, we omit the implementation details
f the inputFlow clause and the characteristic clause for
nput pins but refer to our data set (Seifermann et al., 2021a) for
he programs containing the full implementation.

.3. Semantics of logic program

The goal of the clauses resulting from the previously defined
apping is to formalize data transmission and data processing
y means of label propagation. Queries comparing propagated
abels with expected labels prescribed by confidentiality require-
ents can identify violations as we show in Section 8. In the

ollowing, we explain the meaning of the previously introduced
lauses in an informal way because a full formal discussion would
equire explaining all used helper clauses in detail, which is not
ossible within a reasonable amount of space. Instead, we just
xplain the effect of these helper clauses. The full specification
s available in the logic programs in the dataset (Seifermann
t al., 2021a). The underlying semantics for interpreting the logic
rograms are given by the SLD resolution algorithm (Nugues,
006, pp. 447) for first-order logic programs. Later, queries will
lso use the Prolog-specific all-solution predicates findall and

etof (Nugues, 2006, pp. 470). The algorithm and the all-solution i

11
redicates have well-known and established semantics for first-
rder logic programs.
The majority of clauses have quite simple semantics: they

tate that an element of a certain type exists with a certain iden-
ifier. Additionally, some of the clauses described in the following
stablish relations between elements. The only clauses having
omplex semantics are the clauses covering node behaviors. We
escribe all clauses in the following.
DFD Nodes. The semantics of the clauses representing nodes is

traight forward: the clauses for various node types simply mean
hat an element of the named type exists with a given identifier.
or instance, the meaning of process(N) is that there exists a
rocess with identifier N.
Actor Behavior (F4). The clauses representing actor processes

nly describe existence: The meaning of actorProcess(N, A) is
hat there exists an actor process with an identifier N that belongs
o an actor with identifier A.

Multiple Inputs (F2). The clauses representing and involving
ins only describe existence: The meaning of inputPin(N, PIN)
s that an input pin PIN exists at the node N. The meaning of
utputPin(N, PIN) is that an output pin PIN exists at the node
. The data flow clause states that a data flow from a source to
destination exists. dataflow(F, N_S, PIN_S, N_D, PIN_D)
eans that there exists a data flow F originating from pin PIN_S
f node N_S and going to pin PIN_D of node N_D.
Node Characteristics (F1). The clauses covering characteristic

ypes describe the existence of these types: The meaning of
haracteristicType(CT) is that a characteristic type CT ex-

sts. The meaning of characteristicTypeValue(CT, V, I)
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s that the characteristic type CT contains a label V at index I.
he clauses representing node characteristics introduce a relation
etween a node and a label. nodeCharacteristic(N, CT, V)

means that the label V belonging to a characteristic type CT
pplies to node N.
Node Behavior (F3). Node behaviors describe the label propa-

ation functions of nodes. The previously described clauses define
he structure of a DFD as directed graph of nodes and edges.
ogether, they build a label propagation network. The seman-
ics of the label propagation are given by the characteristic
lauses for input and output pins. We decided to realize the label
ropagation as label lookup to reduce the effort for considering
ultiple combinations of data flows. If we are only interested in

he labels of one particular node, it is more efficient to follow
ata flows in reverse order. We can stop following data flows
s soon as the label cannot be changed anymore. This is the
ase if an assignment only involves a constant because previous
abels would be overridden by that constant assignment any-
ay. Therefore, we only consider nodes that actually change the

abels. In contrast, a forward propagation would require us to
valuate all nodes and combinations of alternative data flows
ecause we do not know yet whether the labels propagated by
node will eventually influence the labels of interest. This is

ostly in presence of alternative data flows. Besides the label
ookup, we already identified further means for improving the
erformance of the analysis in a student’s thesis (Kunz, 2018).
hese optimizations, however, increase the complexity of the
apping to the logic program as well as the logic program itself
nd are, therefore, subject to future research. Because we did not
xperience a performance issue in non-synthetic systems and,
specially, not in the realistic systems of our evaluation, we did
ot include these optimization for the sake of comprehensibility.
The characteristic clause for input pins shown in Listing 2

s part of various helper clauses added as preamble to the map-
ing result of the previous section. The labels available at an input
in solely depend on the labels available at the output pin that
data flow connects to the input. Lines 2 and 3 find a data flow
that connects an output pin PIN_S to the input pin PIN. To

void evaluation cycles, only data flows not already visited are
onsidered in the next line. In the last line, the truth value of the
abel V of the output pin PIN_S is just copied. In the same step,
he set of visited flows VISITED is extended by the used data
low.

The major benefit of the SLD resolution algorithm used in
rolog is that it can find all possible variable bindings, i.e. all
ossible labels available via all possible data flow trees, by reeval-
ating the clause. This is important if there are multiple data
lows connected to the same input pin and it also addresses
he corresponding challenge Ch1 of systematically considering all
ossible data flow paths. A label is only available for a certain
ode and a certain data flow tree. In the running example, the
ook flight process has two alternative data flows providing credit
ard details. The reevaluation by Prolog automatically considers
oth data flows but only the direct flow of credit card details leads
o a violation. A data flow tree, as introduced in the section before,
an be seen as an acyclic subgraph of the DFD only representing
odes and data flows that potentially affect the labels available
t a certain node. There are no alternative data flows contained
n such a data flow tree but always exactly one choice for every
lternative flow. Therefore, all data flow trees for the book flight
rocess contain either the direct flow or the declassified flow but
ever both. This is important for identifying the underlying issue
f a reported violation.
The characteristic clause for output pins has the same

rguments as the clause for input pins but the body depends on
he particular assignments as motivated in Section 7.2. The mean-
ng of constant assignments is that the label is always available
12
Listing 2: Prolog rule for finding labels on input pins.
1 characteristic(N, PIN, CT, V, [F | S], VISITED) :-
2 inputPin(N, PIN),
3 dataflow(F, N_S, PIN_S, N, PIN),
4 intersection([F], VISITED, []),
5 characteristic(N_S, PIN_S, CT, V, S, [F | VISITED]).

(true) or is never available (false) independent of the particular
data flow tree or visited flows. The meaning of logical operators
is equivalent to their intuitive meaning, e.g. the And operator
translated to, means that both operands have to evaluate to
true in order to become true. The meaning of references to node
characteristics is that the particular label has to be available at
the node, i.e. there has to be a nodeCharacteristic clause
for the particular node and label. The meaning of references to
characteristics of incoming data is that the particular label has to
be available at the referenced input pin, i.e. the characteristic
clause for the particular input pin, label and data flow tree has
to evaluate to true. Again, Prolog considers all possible data flow
trees when looking for labels. The data flow tree S initially con-
sists of one particular data flow for every input pin. The resolution
of further clauses extends this data flow tree until it contains all
relevant data flows.

8. Definition and execution of label comparison function

Extended DFDs as described before can be analyzed for vio-
lations of access control and information flow requirements. To
do that, the automated model transformation described in the
section before translates the DFD into a logic program given in
Prolog. The label comparison function is a query to the Prolog
program. Queries compare labels of received data with labels
of other data or nodes. Prolog automatically considers all data
paths via backtracking (Ch1), which means that all possible sets of
labels that can be found via all possible data flow paths are con-
sidered in the comparison. The label comparison function is part
of the analysis definition introduced in the approach overview
in Section 5. We focus on the label comparison function in this
section because we already motivated and explained the other el-
ements of the analysis definition, namely the node properties, the
property types used for data and the behavior descriptions. In the
following, we recapture the Prolog clauses that security experts
can use to define label comparisons. Afterwards, we define the
query for our running example. For the complete logic program
of the running example, please refer to our data set (Seifermann
et al., 2021a). We create and discuss further queries as part of our
evaluation in Section 10.3.

Security experts define queries using the clauses in Listing 3.
Line 1 gives clauses to find identifier N representing actors, stores
or (actor) processes. Line 2 gives clauses for finding identifier PIN
of input or output pins. Line 3 gives a clause to find identifier
CT of a characteristic type. Line 4 gives a clause to find label
identifier CV of characteristic type CT with order number I. Line
5 gives a clause to find a flow tree S consisting of all data flows
that potentially contributed labels to pin PIN of node N. The
tree chooses exactly one data flow at any pin having multiple,
alternative data flows. Line 6 gives a clause to check whether
node N is visited when following flow tree S. Line 7 gives a clause
to find label CV of characteristic type CT that is active on node N.
ine 8 gives a clause to find label CV of characteristic type CT
that is present on pin PIN of node N when choosing flow tree
S. Please note that the clause given in line 8 is a shorthand for
the characteristic clause introduced in the previous section that

uses an initial empty list of already visited data flows. This is
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Listing 3: Prolog API to specify comparison functions.
1 actor(N), store(N), process(N), actorProcess(N,A),
2 inputPin(N,PIN), outputPin(N,PIN),
3 characteristicType(CT),
4 characteristicTypeValue(CT, CV, I),
5 flowTree(N, PIN, S),
6 traversedNode(S, N),
7 nodeCharacteristic(N, CT, CV),
8 characteristic(N, PIN, CT, CV, S).

Listing 4: Information flow analysis for totally ordered labels.
1 ?- nodeCharacteristic(P, ’clearance’, V_CLEAR),
2 characteristicTypeValue(’clearance’, V_CLEAR, N_CLEAR),
3 inputPin(P, PIN),
4 characteristic(P, PIN, ’class’, V_LEVEL, S),
5 characteristicTypeValue(’class’, V_LEVEL, N_LEVEL),
6 N_CLEAR < N_LEVEL.

Listing 5: Reported information flow violations for the running
example.

1 P = ’Booking Storage’, V_CLEAR = ’User,Airline’, N_CLEAR =
2, PIN = ’input’, V_LEVEL = ’User’, N_LEVEL = 3, S =
[’booking’, [’selectedFlight’], [’declassifiedCCD’,
’selectedFlight’], [’ccd direct’, [’ccd’, [’ccd’]]]]];

2 P = ’process booking’, V_CLEAR = ’User,Airline’, N_CLEAR =
2, PIN = ’input’, V_LEVEL = ’User’, N_LEVEL = 3, S =
[’declassifiedCCD’, [’selectedFlight’], [’ccd direct’,
[’ccd’, [’ccd’]]]] .

reasonable because no flows have been visited yet when a label
lookup starts at one particular node.

Queries are tailored to policy types such as RBAC policies
r non-interference policies. A policy is a set of confidentiality
equirements. A policy type prescribes the structure of confiden-
iality requirements that may be used in a policy. Therefore, the
irst step is to define a violation in the context of the policy type.
n information flow policy with totally ordered levels is violated
f someone with clearance lclear accesses data with classification
class bigger than the clearance lclear < lclass. In terms of our seman-
ics, we have to find and compare the clearance label of a node
ith the classification label of its input pins. In the second step,
e encode this detection rule by the query shown in Listing 4.

n line 1, we determine the clearance level V_CLEAR of a node
. Line 2 determines the position N_CLEAR of the clearance level
_CLEAR in the enumeration. We defined the levels in ascending
rder, so the level with a lower index is semantically lower than
level on a higher index. Line 3 finds an input pin PIN for node
. The classification level V_LEVEL is determined in line 4. The
rder number N_LEVEL of the classification level V_LEVEL is
etermined in line 5. Line 6 tests for lclear < lclass.
The DFD as modeled in Fig. 2 does not contain an information

low violation when not considering the dashed edge. Considering
he dashed edge, we detect the two violations shown in Listing 5.
he first result in line 1 detects that the Booking Storage receives
ata on its input that is classified higher than its clearance. The
ame violation is detected for the process booking process in
ine 2. In both cases, we can find the cause of the violation in
he data flow tree S, which contains ccd direct. This data flow
irectly transfers the credit card data without declassification,
hich causes the violation. Therefore, we can trace back both
iolations to the introduced issue given by the ccd direct data
low.

Specifying queries requires security expertise. However, de-
igners do not need this competence. They can reuse defined
13
ueries from an existing analysis definition that also contains
haracteristic types, characteristics of nodes and behavior defini-
ions. Security experts can create these reusable elements and put
hem in a catalog structured by the particular policy types. After
hat, designers can select the elements and make use of them
ithout the need for security expertise. For instance, the query
resented in this section does not depend on particular levels.
herefore, it is applicable to information flow policies consisting
f arbitrary totally ordered levels. How many elements of analysis
efinitions for such policy types are reusable depends on how
ailored they are to the use case. For instance, the clearance and
lassification levels defined for our running example are tailored
o the example, so they are reusable but require renaming to fit
nother system.

. Tool support

We realized the previously presented concepts to show that an
mplementation is feasible (Böhme and Reussner, 2008 call this
level 0 validation) and to support the evaluation described in
ection 10. This article is not meant to be a technical report, so
e only briefly report on our tooling. Our data set (Seifermann
t al., 2021a) gives more details about the tooling. The full imple-
entation is available in various projects on GitHub, which we
escribe in the following.
First of all, we realized all metamodels1 described in this

rticle in the Eclipse Modeling Framework (EMF) (Steinberg,
009) and defined appropriate invariants to specify the well-
ormedness of DFDs in more detail. For instance, invariants ensure
hat a data flow always originates from an output pin and leads
o an input pin, which both must not belong to the same node.
sing EMF automatically provides us with ready to use editors.
he metamodel projects on Github also contain an enhanced
raphical editor that adopts the classic DFD syntax. Designers can
euse elements defined for particular policy types by referencing
atalog models.
To automate the detection of violations, we realized the map-

ing to the Prolog program as model-to-model transformation in
tend (Bettini, 2016) and implemented an adaptor2 to run Prolog
nterpreters. The transformation has about 480 LLOC in total,
hich includes about 130 LLOC for adding the static preamble to
he logic program. LLOC covers all lines containing a statement.
e also created a metamodel3 for Prolog programs as well as
model printer to serialize the program and a model parser to
arse results based on Xtext (Bettini, 2016). The query is executed
n the commonly used SWI Prolog interpreter (Wielemaker, 2017)
hat we connected to our prototype via the implemented adaptor.
herefore, users do not have to interact with the interpreter
irectly.
We decided to specify the analysis directly in Prolog because

he resulting specification is self-contained and executable. It is
asy to find the concepts introduced as part of the semantics defi-
ition in Section 7 within the analysis program, so there is no gap
n abstraction. We could also have used existing model checking
pproaches (González and Cabot, 2014) but this would not free
s from a model transformation into a particular formalism or at
east a special encoding of the logic to discover multiple data flow
aths (Ch1).
To ease writing Prolog queries, we developed a Domain-

pecific Language (DSL) (Hahner et al., 2021) that is capable of
ormulating common queries without the need to adhere to the

1 https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramhttps:
/github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramConfidentiality
2 https://github.com/FluidTrust/Palladio-Supporting-Prolog4J
3 https://github.com/FluidTrust/Palladio-Supporting-Prolog

https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagram
https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramConfidentiality
https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramConfidentiality
https://github.com/FluidTrust/Palladio-Supporting-Prolog4J
https://github.com/FluidTrust/Palladio-Supporting-Prolog
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rolog syntax or even be aware of Prolog. When formulating the
uery with the DSL, it is also possible to process the interpreter
esult directly and report the detected violations in terms of the
FD, which is know to the designer. The prototype of the DSL is
till under development and not ready to use yet, so we did not
se or evaluate it as part of this article.

0. Evaluation

In this section, we evaluate our aforementioned contributions.
e present our evaluation goals and metrics in Section 10.1. The

valuation design is described in Section 10.2. In Section 10.3,
0.4 and 10.5, we discuss results. We discuss threats to validity
n Section 10.6 and limitations in Section 10.7. We report on the
vailability of evaluation data in Section Data Availability.

0.1. Evaluation goals and metrics

We structure our evaluation according to the Goal-Question-
etric methodology (Basili and Weiss, 1984; Basili et al., 1994).
e formulate three evaluation goals.

(G1) Evaluate the expressiveness of our syntax and semantics to
represent and analyze systems using information flow and
access control.

(G2) Evaluate the reusability of DFDs when switching confiden-
tiality mechanisms.

(G3) Evaluate the accuracy of confidentiality analyses realized
with our semantics.

We evaluate expressiveness, reusability and accuracy. Expres-
iveness describes what confidentiality mechanisms our approach
an express. We want to evaluate expressiveness to see whether
he approach supports information flow and access control (Ch2).
he evaluation of expressiveness also shows that we addressed
he challenge of enabling custom analyses (Ch3) because we
o not limit ourselves to predefined confidentiality mechanisms
nd analyses but use extensions to cover confidentiality mech-
nisms. We evaluate reusability of DFD parts when switching
onfidentiality mechanisms to show that our approach reduces
he amount of elements, which have to be recreated. This was
ne motivation for developing the extended DFD syntax for cov-
ring information flow and access control within one modeling
anguage (Ch2). We evaluate accuracy because expressiveness
nd reusability are only useful if resulting analyses have satis-
ying accuracy, which means designers can identify violations. To
rovide accurate analyses, it is necessary to systematically con-
ider all possible data flow paths, i.e. combinations of these data
lows. Otherwise, violations might not be discovered. Because
he evaluated system designs contain multiple data flow paths,
valuating the accuracy of the analyses is appropriate to show
hat we addressed the challenge of considering all data flow paths
Ch1).

To evaluate G1, we ask the following evaluation questions:

Q1.1) Is the proposed syntax capable of representing systems as
well as their properties and their behaviors relevant for
identifying access control violations?

(Q1.2) Is the proposed syntax capable of representing systems as
well as their properties and their behaviors relevant for
identifying information flow violations?

(Q1.3) Are the proposed semantics capable of defining analysis
queries for identifying access control violations?

(Q1.4) Are the proposed semantics capable of defining analysis
queries for identifying information flow violations?
14
To answer the questions for G1, we use the syntactic quality
metric s = |R∩E|/|R| as defined by Boyd et al. (2005) for rating
the quality of constrained natural languages. The metric is also
usable for rating a DSL (Munnelly and Clarke, 2008), which fits
to the DFD metamodel presented in this paper. In our context, a
language requirement r ∈ R is a DFD or analysis query that we
would like to express. The set of expressions E contains every
possible DFD or analysis query that can possibly be constructed
using our artifacts. The metric value ranges from zero (no DFD or
analysis query could be expressed) to one (all DFDs or analysis
queries could be expressed).

To evaluate G2, we ask the following evaluation questions:

(Q2.1) How much DFD elements can be reused when switching
between confidentiality mechanisms?

To answer Q2.1, we calculate the similarity coefficient accord-
ing to Jaccard j = |M∩N|/|M∪N| (Levandowsky and Winter, 1971)
between the models (M and N) of the cases that represent the
same system but use different confidentiality mechanisms. A
model is defined as set of model elements, i.e. instances of meta-
classes. A model element m ∈ M is equal to a model element
n ∈ N if the type and all properties of the model elements are
equal. We determine this equality of model elements by apply-
ing EMFCompare (Brun and Pierantonio, 2008): First, we match
model elements by their identifiers. Afterwards, we compare
their properties. A reference to another model element is such
a property. References are considered equal if they refer to equal
model elements. The coefficient is simple but is a good measure
of the amount of unchanged model elements and consequently
also on the amount of elements, which have to be changed when
switching the used confidentiality mechanism in a system design.
The metric value ranges from zero (every element is different and
has to be recreated) to one (the models are equal and nothing has
to be recreated). The coefficient of Jaccard is appropriate to rate
the similarity of software design models as we have shown in
previous work (Heinrich, 2020; Monschein et al., 2021).

To evaluate G3, we ask the following evaluation question:

(Q3.1) What is the accuracy of the analyses?

To answer Q3.1, we apply the commonly used metrics precision
p = tp/(tp+fp) and recall r = tp/(tp+fn) with the number of true
positives tp, false positives fp and false negatives fn. We describe
the classification of results as tp, fp or fn in the evaluation design.

We intentionally do not evaluate usability or correctness of
the modeling and analysis approach. Usability is usually eval-
uated in user studies that evaluate the tool support and the
concrete syntax used for modeling. We neither aim for evalu-
ating our implementation nor for a particular concrete syntax
because both are no contributions of this article. We do not verify
correctness because this would not provide insights into the
application of our approach and how well the approach addresses
the challenges (Ch1, Ch2, Ch3). Instead, a case study provides such
insights in the context of realistic systems, which is the objective
of this article.

10.2. Evaluation design

Evaluations based on case studies are the second most com-
mon evaluation approach for security notations after just illus-
trating how to use notations and analyses as van den Berghe
et al. (2017a) point out. Especially with respect to expressiveness
and reusability, a detailed discussion of established cases provides
more insight than a generic discussion about hypothetical sys-
tems. Therefore, we evaluate the proposed syntax and semantics
based on a case study. We select cases from related work (Tuma
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t al., 2019; Katkalov, 2017) and from one of our previous publi-
ations (Seifermann et al., 2019) or define new cases if there are
o appropriate cases available. A case is a pair of a system design
nd confidentiality requirements. In the following, we discuss the
valuation design per evaluation goal before we discuss cases and
heir selection.

Expressiveness. For evaluating expressiveness, we model the
ystem design as DFD and the corresponding analysis query using
ur semantics for each case. The procedure described in the
ollowing is the same for both access control and information flow
ontrol. (1) We identify relevant data and node properties, i.e. the
abels and the corresponding characteristic types. (2) We identify
elevant behavior descriptions including the label propagation
ules. (3) We model the system design as DFD by using the
ehaviors defined before. (4) We define the analysis query for
dentifying violations. After step 3, we finished modeling the
ystem design, so we can calculate the syntactic quality metric
nd answer Q1.1 and Q1.2. A requirement as specified by the
etric is a thing that shall be expressed by a modeling language.

n our evaluation, one case is one requirement, i.e. a thing to be
xpressed according to the definition of syntactic quality by Boyd
t al. (2005). This means, the DFD metamodel has to be capable of
epresenting the whole case or the whole case will be counted as
ot expressible. After step 4, we finished the analysis definition,
o we can calculate the syntactic quality metric and answer Q1.3
nd Q1.4.
We build weighted sums while calculating the syntactic qual-

ty metric. The weighted sums normalize the influence of cases
hat use different system designs but share the same analysis
ype. Without such a normalization, a single case using a not sup-
orted analysis type can be hidden by a group of cases sharing the
ame but well-supported analysis type. For instance, the infor-
ation flow cases TravelPlanner, DistanceTracker and ContactSMS

rom related work (Katkalov, 2017) share the same analysis def-
nition representing noninterference with declassification using
otally ordered security levels. If our approach supports this anal-
sis type well but does not support another analysis type, that is
nly used by one case, the value of the syntactic quality metric
ould be 3/4. However, we are, especially, interested in the sup-
ort of confidentiality mechanisms. Therefore, the metric value
sing a weighted sum 1+1+1

3 /1+1+1
3 +1 = 0.5 would be more ap-

ropriate. As illustrated, we group cases by their type of analysis
efinition. We sum up the amount of fully modeled cases and
ivide this sum by the amount of cases in the corresponding
roup. Eventually, we sum up all of these weighted sums and
ivide it by the number of different types of analysis definitions.
Reusability. To answer Q2.1, we identify cases that are about

he same systems but that use different confidentiality mecha-
isms. This applies to the cases using the previously mentioned
ystems TravelPlanner, DistanceTracker and ContactSMS: For each
ystem, there exists one case using RBAC and another case using
oninterference with totally ordered levels. For every such pair
f cases, we calculate the Jaccard Coefficient by comparing the
odel elements. We use EMFCompare (Brun and Pierantonio,
008) to compare the model elements in order to identify equal
nd unequal model elements. The comparison approach of EM-
Compare provides the necessary steps to decide whether two
odel elements are equal: In a first step, matching elements
re identified by comparing their identifiers. This is reasonable
ecause we copied and adjusted the models to switch the confi-
entiality mechanism. This is also the approach designers would
ost likely do. In a second step, differences are calculated, which
overs all properties of the model elements. As a result, we
eceive a list of differences. We walk through that list and add
ll model elements that have been matched and that have no
hanged property to the set of equal elements M ∩N . The metric
 i

15
indicates a benefit compared to the state of the art if the value is
above 0.

Accuracy. The accuracy evaluation reuses the previously cre-
ated DFDs and analysis queries. The procedure described in the
following is the same for access control and information flow. (1)
We identify a way to introduce an issue into the DFD that leads
to violations with respect to the defined analysis. We derive the
issue from related work or by defining a new issue if no issue is
reported in related work. We describe how we did that for every
case in the description of the case selection below. (2) We inject
the issue into the DFD of the case. The issue is usually introduced
by an additional data flow. Therefore, the analysis has to consider
multiple data flow paths. (3) We execute the analysis and classify
the results.

To calculate the accuracy metrics, we classify the violations,
which our analysis reports. A reported violation is valid if it traces
back to the injected issue. A reported violation is invalid if it does
not trace back to the injected issue. Because the DFD does not
contain an issue before we inject an issue, it is reasonable to
trace back violations to exactly the one known issue. A violation
traces back to an issue if the injected data flow is in the flow
tree of the violation. We classify the set of reported violations
per case to avoid that large cases with many reported violations
for one analysis type hide the violations of smaller cases for
another analysis type in the metric. If all reported violations are
valid, the case is counted as a true positive tp. If at least one
violation is invalid, the result is a false positive fp. Not reporting
any violations is a false negative fn.

The reason for classifying all violations together is that analy-
ses do not only report one but multiple violations. This is no flaw
in our analysis but the logical consequence of propagating data
through the system: if data must not be used in one node, the
chances are high that it must not be used in following nodes as
well. In our running example, the analysis reports two violations:
one violation at process booking and one violation at the store,
into which the process writes the data. Related work (Katkalov
et al., 2013; Tuma et al., 2019) often only discusses why a vi-
olation occurs, i.e. the root cause of a violation, but does not
discuss individual occurring violations. In contrast, our approach
reports violations but no root cause. Again, this is no limitation
of our approach because a root cause is a design decision that
has to be changed in order to meet confidentiality requirements.
Neither our nor other approaches can free software designers
from choosing a solution because this is a creative process. Doing
this automatically is barely possible. Therefore, we have to bridge
the gap between the set of individual violations that our approach
yields and the root causes that related approaches report in their
publications. We do this by ensuring that every reported violation
traces back to the issue we introduced. We already demonstrated
how to trace back issues in Section 8.

Case Selection for Information Flow. There are various secu-
ity models based on information flow but noninterference is
ne of the most commonly used models (Sabelfeld and Sands,
009), which can be extended by declassification to increase its
pplicability. Related approaches (Tuma et al., 2019; Katkalov,
017) also use this security model and provide cases includ-
ng points to insert issues. These cases support our evaluation
ecause they provide data-oriented system descriptions, define
nformation flow requirements based on data and provide ref-
rence results, issues or critical points to inject issues for rating
he accuracy of analysis results. All cases consider declassification
nd are based on real systems. We select all cases presented in
he mentioned publications. Katkalov (2017) provides five cases
ith flow requirements: TravelPlanner, DistanceTracker and Con-

actSMSManager cover noninterference with declassification us-

ng totally ordered security levels (OL). The information flow
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Table 3
Characteristics of information flow cases (top) and access control cases (bottom) realized in our DFD syntax.
Case Analysis Nodes Edges Behaviors Characteristic Types Labels

TravelPlanner OL 17 19 7 2 3
DistanceTracker OL 8 9 5 2 3
ContactSMS OL 9 12 7 2 2
PrivateTaxi LG 35 54 11 6 6
BankingApp – – – – – –
FriendMap 2L 17 18 7 3 4
Hospital 2L 14 14 7 3 4
JPMail 2L 15 17 9 3 4
WebRTC 2L 50 56 10 3 4

TravelPlanner RBAC 17 19 7 2 3
DistanceTracker RBAC 8 9 5 2 3
ContactSMS RBAC 9 12 7 2 3
DAC DAC 7 7 6 4 4
MAC MAC 15 22 7 2 3
ABAC ABAC 13 18 6 4 6
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analysis ensures that no data arrives at a node that has a clearance
level lower than the data classification. PrivateTaxi covers fine-
rained noninterference rules between nodes and selected data
ypes (LG). BankingApp covers noninterference between tenants
of a banking system. All aforementioned cases of Katkalov do not
provide reference results in form of a set of violations or cases
containing issues. However, they describe the critical point, i.e.
a declassification function, in the design that prevents violations.
Therefore, we introduce an issue by circumventing these declas-
sifications. Tuma et al. (2019) provide the four cases FriendMap,
ospital, JPmail and WebRTC that cover noninterference analyses

with two security levels (2L). The information flow analysis en-
sures that no data classified high arrives at a node observable
by an attacker. Tuma et al. provide a variant with and a variant
without issue for the cases FriendMap and Hospital. We use both
variants, so we do not have to introduce an issue by ourselves.
For the remaining cases, the critical points in the design, i.e.
the declassifications, are available. We introduce an issue into
every case by circumventing the declassification. The upper part
of Table 3 gives an overview of the size of the cases after realizing
them with our syntax. The publications describe the cases in more
detail than we can provide in this article, so we refer to the
respective publications and our data set (Seifermann et al., 2021a)
for detailed descriptions.

Case Selection for Access Control. Access control and corre-
sponding analyses are a wide field. Unfortunately, finding cases
that are neither about correctly implementing access control
systems nor designing appropriate requirements is challenging.
The related approach FlowUML (Alghathbar et al., 2006) does
not provide an evaluation and therefore no cases. In previous
work (Seifermann et al., 2019), we provide three RBAC cases
derived from the already known cases TravelPlanner, Distance-
Tracker and ContactSMS by mapping the security levels to roles.
The RBAC analysis ensures that every node holds at least one
role that a data item requires to grant access. The cases support
our evaluation by covering various system designs and providing
an analysis covering the core of RBAC. We introduce the same
issues in the access control cases that we already introduced in
the information flow cases for the same reasons. There are further
three common access control models (Furnell, 2008, pp. 61), for
which we could not identify appropriate cases in literature: DAC,
MAC, and ABAC. Therefore, we create one case for each access
control model on our own. We use a textbook (Furnell, 2008)
that describes the foundational concepts of these models. The
cases support our evaluation because they are designed to cover
the remaining, most common access control models, which we
have to consider to reason about expressiveness. The lower part
of Table 3 gives an overview of the size of the cases after realizing
them with our syntax. In the following, we describe the cases
16
created by us. Our data set (Seifermann et al., 2021a) contains
additional details about the cases.

DAC Case. Discretionary Access Control (DAC) (Furnell, 2008,
pp. 61) directly assigns access privileges on objects to the access-
ing subjects. The case covers these aspects: The DFD describes a
system consisting of a storage of family pictures and a system
function to read the pictures as illustrated by Fig. A.1. The DFD
reflects common usage scenarios of DAC in operating systems or
file sharing systems. There are four users: Mother, Dad, Aunt and
Indexing Bot. The mother is the owner of the pictures. She grants
read access to all but the bot. Consequently, the index bot must
not access the storage. The introduced issue is that the index bot
accesses the pictures.

MAC Case. Mandatory Access Control (MAC) (Furnell, 2008,
p. 64) defines mandatory, global rules that aim for avoiding
nwanted explicit information flows. The military access control
odel is one of the most prominent examples for MAC. There-

ore, we assume that this particular model is a representative
xample for MAC. Military information systems often use MAC
equirements prohibiting access to information classified higher
han the user’s clearance. The case is about such a system: The
FD describes a system for monitoring the airspace using the
ilitary access control model (Furnell, 2008, pp. 65) as illustrated
y Fig. A.2. There are three user types: Clerks have the clearance
nclassified. They create and store weather reports. Flight Con-
rollers have the clearance Classified. They register civil planes,
ook them up in a database and determine new routes for them
y considering weather reports.Military Flight Controllers have the

clearance Secret. They do the same as the civil flight controller but
for military planes by also considering positions of civil planes.
Information about weather is Unclassified, information about civil
planes is Classified and information about military planes is Se-
cret. The levels have the total order Unclassified, Classified and
Secret. The introduced issue is that the civil flight controller reads
military plane information.

ABAC Case. Attribute-based Access Control (ABAC) (Furnell,
008, pp. 74) describes subjects and objects by attribute descrip-
ors rather than roles or identity. Access control permissions are
efined between subject descriptors and object descriptors. The
ase covers these aspects: The DFD describes a system design for
anaging customers of a bank with branches in the USA and Asia
s illustrated by Fig. A.3. There are Clerks that register customers,
ook them up and determine credit lines for them. A clerk has
he attributes Role and Location. Managers have the same abilities
nd properties as a clerk but can also register celebrity customers
nd move customers between branches. Processed information
as the attributes Customer Status and Customer Location. The

access permissions are defined as follows. Users with a certain
location can access information about customers that are in the
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ame location and that are not celebrities. Users that have the role
anager can access all information. Any other access is forbidden.
he introduced issue is that a manager registers a celebrity as
egular customer.

0.3. Evaluation results and discussion of expressiveness

We could successfully model all system designs including
roperties and behaviors relevant for confidentiality for all cases
entioned in Table 3 except for the BankingApp case. We explain
hy we could not model the BankingApp case as part of the
iscussion below. The syntactical quality of the access control
ases (Q1.1) is s =

3
3 +1+1+1/3

3 +1+1+1 = 1.0. The syntactical quality
f the information flow cases (Q1.2) is s = ( 33 +1+0+ 4

4 )/( 33 +1+1+ 4
4 ) =

0.75. As explained as part of the evaluation design, we normalized
the influence of multiple cases using the same analysis type by
building a weighted sum. We could fully represent the analysis
definitions for access control (Q1.3), which implies a syntactical
quality s = ( 33 +1+1+1)/( 33 +1+1+1) = 1.0. We could fully represent
the analysis definitions for information flow (Q1.4) except for
the definition of the BankingApp case. We explain why we could
not represent the analysis definition of the BankingApp case as
part of the discussion below. The syntactical quality is s =
3
3 +1+0+ 4

4 )/( 33 +1+1+ 4
4 ) = 0.75. In the following, we discuss the

odeling results and examine the reason for reduced syntactical
uality. We do not present the resulting DFDs but focus on the
sed characteristic types, behavior descriptions and the analysis
ueries because they are the crucial parts that have potential to
imit expressiveness. As introduced in Section 5, we refer to the
ombination of these three things as analysis definition. The full
DFDs are available in our data set (Seifermann et al., 2021a).

The cases TravelPlanner, DistanceTracker and ContactSMS share
the same analysis: non-interference using a totally ordered lattice
(OL). The characteristic types are the classification of information
and the clearance of nodes. Both use totally ordered security lev-
els. The behavior descriptions are as follows. A Forwarder copies
the classifications from input to output. A Store acts like the
forwarding behavior. A Joiner merges two inputs into one and
classifies the output by the highest of all incoming levels. A Syncer
acts like the forwarding behavior but waits for an additional input
without considering its classification. A Declassifier explicitly sets
the classification of the output. The analysis query is the same as
already presented in Listing 4. We could successfully represent
all three cases, which includes the system designs and analyses.
The presented analysis definition is applicable to all noninterfer-
ence analyses including declassification that have totally ordered
security levels.

The cases FriendMap, Hospital, JPMail and WebRTC share the
same analysis: non-interference using high/low levels (2L). The
characteristic types are the classification of information, the clas-
sification of encrypted content and the zone of nodes. The clas-
sification characteristic type uses the values high and low. The
zone characteristic type uses the values attack and trusted. The
behavior descriptions are as follows: Store, Forwarder and Joiner
share the semantics already described for the previous cases. The
Encryptor always sets the classification of the output to low but
attaches the old classification in the classification of encrypted
content characteristic. The Decryptor sets the classification of the
output to the classification stored in the classification of encrypted
content characteristic. The analysis query shown in Listing 6
searches for data with a high classification that arrives on a
node P in the attack zone. We could successfully represent all
four cases, which includes the system designs and analyses. The
presented analysis definition is applicable to all noninterference

analyses including declassification by encryption that use two

17
Listing 6: Information flow analysis query equivalent to Tuma
et al. (2019).

1 ?- inputPin(P, PIN),
2 nodeCharacteristic(P, ’zone’, ’attack’),
3 characteristic(P, PIN, ’classification’, ’high’, S).

Listing 7: Information flow analysis query for PrivateTaxi case.
1 ?- (E = ’CalcDistanceService’, D = ’ContactData’;
2 E = ’PrivateTaxi’, D = ’Route’),
3 inputPin(N,PIN),
4 nodeCharacteristic(N, ’entity’, E),
5 characteristic(N, PIN, ’criticalData’, D, S).

classification levels and only distinguish regular and attacking
system nodes or users.

The PrivateTaxi case is complex and covers non-interference
using lattice groups (LG). It requires a decent amount of charac-
teristic types and behaviors. The characteristic type PublicKeyOf
and PrivateKeyOf describe that the information is a public key
or a private key of an entity. DecryptableBy describes the entities
that can decrypt the encrypted information. Entity describes that
a node belongs to an entity. All of these characteristic types use
a list of entities as values. The characteristic type CriticalData
describes that a data type requiring protection is contained in the
information. EncryptedContent describes the content of encrypted
information. Both characteristic types use a list of data types as
values. The Store, Forwarder and Syncer behavior are as explained
previously. The Joiner determines the output characteristics by
building the union of received labels for each characteristic type
except for the decryptable characteristic type, which requires the
intersection of labels. The Encryptor stores the critical data type in
the characteristic for encrypted content, removes the critical data
type characteristic, and sets the decryptable characteristic to the
owner of a received public key. The Decryptor inverts the effect of
the Encryptor if the decryptable characteristic matches the owner
of a received private key. There are two behaviors that declassify
data: The Proximity behavior acts like the forwarding behavior but
removes the critical data type label for routes because the route
cannot be reconstructed from a single valued metric. The Route-
Creator behavior creates routes from a location and a destination.
It acts like the joining behavior but explicitly sets the critical
data type characteristic to route. The analysis query shown in
Listing 7 tests whether either the service for calculating distances
has access to contact information or the private taxi service has
access to the route. We could successfully represent the case, i.e.
the system design and the corresponding analysis. The behaviors
to handle encryption are reusable but the characteristic types and
the analysis goal are tailored to the case. The reason for this is
the explicit reference to nodes in the analysis goal as defined by
Katkalov (Katkalov, 2017, p. 211).

As mentioned before, we could not fully express the
BankingApp case. The information flow requirements to be con-
sidered in this case are about ensuring that tenants/users of
a banking app including the banking backend system do not
interfere with each other. For instance, a user must not have
access to the balance of another user. While we could represent
the system structure consisting of processes, the actor and stores,
we could not represent the remaining system aspects such as
multiple users of the same type. Consequently, we could also
not represent the analysis query. We cannot represent multiple
users because the DFD model and the semantics operate on a
type-level. However, representing multiple users of the same type
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Listing 8: RBAC analysis query for iFlow cases.
1 ?- inputPin(P, PIN), flowTree(P, PIN, S),
2 setof(R, nodeCharacteristic(P, ’Roles’, R), ROLES),
3 setof(A, characteristic(P, PIN, ’AccessRights’, A, S),

REQ),
4 intersection(REQ, ROLES, []).

Listing 9: DAC analysis query.
1 ?- store(STORE), actor(A), inputPin(A,PIN),
2 flowTree(A, PIN, S), traversedNode(S, STORE),
3 nodeCharacteristic(A, ’Identity’, AID),
4 \+ nodeCharacteristic(STORE, ’ReadAccess’, AID).

Listing 10: Extension of analysis query for non-interference
using totally ordered labels.

1 ?- actor(A), (actorProcess(P, A); A=P), ...

requires models and semantics operating on instance-level. We
discuss this aspect as part of the limitations in Section 10.7.

The access control versions of the cases TravelPlanner, Dis-
anceTracker and ContactSMS share the same analysis: Core RBAC.
he characteristic types are AccessRights of data and Roles of

nodes. Both use three available roles as values. The behavior types
are the same as described for the corresponding information
flow cases. The Joiner applies the intersection of access rights of
incoming data to the output. The Declassifier copies the access
rights including a defined additional access right to the output.
The remaining behaviors remain the same. The analysis query
illustrated in Listing 8 collects all access rights REQ of a data
item, collects all roles ROLES of a processing node, and reports
a violation if the intersection between access rights and roles is
empty. We could successfully represent all cases, i.e. the system
design and the corresponding analysis. The analysis definition can
be reused to represent access control scenarios covering static
Core RBAC (Furnell, 2008, pp. 71).

The DAC case covers DAC without delegation of rights. The
used characteristic types are the Identity of actors as well as the
ReadAccess and Owner of stores. All characteristic types use a set
of identities as values. We reuse the Store and Forwarder behavior
descriptions that we described previously. The analysis query in
Listing 9 detects data received by actors, which comes from a
store that has not granted read access to that actor. It uses the
flow tree S, as well as the helper clause traversedNode that
tests whether the given store STORE is in the flow tree S. We
could successfully represent the system design and the corre-
sponding analysis. The involved characteristic types and behavior
descriptions are reusable for other DAC cases.

The MAC case covers MAC with the military access control
model. We use the characteristic types Classification of data and
the Clearance of nodes. Both characteristic types use an ordered
set of security levels. We reuse the previously described behavior
descriptions Store and Forwarder. A Joiner propagates the highest
classification value of all incoming data items. The analysis query
is the same query as already presented in Listing 4 but we restrict
the nodes to be checked to nodes directly associated to an actor
as shown in Listing 10. We could successfully represent the MAC
case, i.e. the system design and the analysis.

In the ABAC case, we use the characteristic types Customer-
Location and CustomerStatus to describe attributes of data as well
as EmployeeLocation and EmployeeRole to describe attributes of
actors. We reuse the previously defined behavior descriptions
18
Listing 11: Analysis query for ABAC case.
1 ?- actor(A), inputPin(A, PIN),
2 nodeCharacteristic(A, ’EmployeeLocation’, SUBJ_LOC),
3 nodeCharacteristic(A, ’EmployeeRole’, SUBJ_ROLE),
4 characteristic(A, PIN, ’CustomerLocation’, OBJ_LOC,S),
5 characteristic(A, PIN, ’CustomerStatus’, OBJ_STAT,S),
6 (SUBJ_LOC \= OBJ_LOC, SUBJ_ROLE \= ’Manager’;
7 OBJ_STAT = ’Celebrity’, SUBJ_ROLE \= ’Manager’).

Store and Forwarder. The Joiner applies the union of all incoming
data characteristics to the outgoing data. The LocationChanger
acts like the forwarding behavior but sets the location to Asia. The
analysis query in Lisitng 11 encodes the specific requirements of
the case. A violation is detected if (i) the location of the actor and
the data is not the same and the actor is not a manager (ii) the
data is about a celebrity and the actor is not a manager. We could
successfully represent the case, i.e. the system design and the
analysis. All behaviors except the location changing behavior are
reusable. The analysis query is specific for the ABAC rules and not
reusable. However, the flexibility of Prolog allows to represent
even complex attribute descriptors and relations.

As the values of the syntactic quality metric and the corre-
sponding discussion demonstrated, we can represent multiple
types of information flow and access control mechanism (Ch2)
in system designs. We integrated the confidentiality mechanisms
via extensions rather than predefined behavior descriptions or
characteristic types. Because further, custom analyses would be
integrated via the same extensions, the evaluation also demon-
strated that custom analysis definitions (Ch3) can be integrated
without invasive source code extensions.

10.4. Evaluation results and discussion of reusability

We calculated the Jaccard Coefficient for the cases covering the
TravelPlanner, DistanceTracker and ContactSMS to answer Q2.1.
For the TravelPlanner system design, the coefficient is j = 89/219 =

.41. For the DistanceTracker system design, the coefficient is j =

7/98 = 0.48. For the ContactSMS system design, the coefficient is
j = 66/123 = 0.54.

The Jaccard Coefficients that we calculated for the three cases
TravelPlanner, DistanceTracker and ContactSMS range between
0.41 and 0.54. The bigger the value is, the more similar the
DFDs are. A value of 0.5 means that the shared amount of
model elements is as big as the sum of the individual model
elements of both involved models. This is a significant improve-
ment compared to a value of 0, which would be the result of
using two dedicated modeling languages of the state of the art
for representing two versions of a system. An in-depth look at the
individual model elements, i.e. the model elements that are dif-
ferent when using different confidentiality mechanisms, confirms
that the structural elements, i.e. the nodes and data flows, are
not affected by the switch to another confidentiality mechanism.
This means, the DFD structure is equal, which is the expected
effect of separating the system structure from the confidentiality
mechanism in the metamodel. The good metric values show that
the chosen modeling approach supports considerable reuse of
existing models when switching confidentiality mechanisms.

To give an idea what these results mean, we would like to
explain how we switched the mechanism in the case study. Fig. 9
presents the Distance Tracker case. The upper part shows the
DFD extended by properties and behavior descriptions. The lower
part shows the particular properties and behaviors. In order to
switch the confidentiality mechanism from information flow to

RBAC, we adjusted the properties and behaviors of information
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Fig. 9. Differences in Distance Tracker cases for information flow (dark gray) and access control (light gray).
flow (shown in dark gray) in a way that they look like the RBAC
properties and behaviors shown in light gray. This means, we
neither had to adjust the DFD structure nor the annotations of
the DFD (shown as upper case letters). It is also possible to
first strip all annotated information, i.e. properties and behaviors,
from the DFD, import an existing analysis definition and add
new annotations to the DFD but this implies additional effort
for recreating the annotations. Either way, the DFD structure will
always remain the same, which means designers can save effort
by not recreating the model from scratch.

As the results and the previous discussions show, the proposed
extended DFD is capable of representing access control and in-
formation flow control mechanisms. Because we did not have to
change the modeling language to represent both mechanisms, we
successfully addressed challenge Ch2. As the Jaccard Coefficient
illustrated, we did not only achieve this by merging two distinct
modeling languages but by using a commonly shared modeling
core (the DFD core elements) and extending it by analysis-specific
modeling constructs. We represented all confidentiality mech-
anisms by extensions, which means that these extensions are
the foundation of confidentiality analyses that users can define.
Therefore, we addressed the modeling aspect of Ch3.

10.5. Evaluation results and discussion of accuracy

We executed the previously defined analyses for every case
that we could express and classified the results. We found vio-
lations in 14 cases and all reported violations trace back to the
specific issue. This means all results are classified as true positives
(tp = 14) and there are no false positives (fp = 0). Because all
cases contain an issue and violations have been reported for all
cases, there are no false negatives fn = 0. This brings us to a
precision of p = 14/(14+0) = 1 and a recall of r = 14/(14+0) = 1.
Thus, our analyses achieved perfect accuracy. We could reproduce
the analysis results of related publications that initially defined
the cases. We represented and analyzed information flow and
access control cases, while related approaches can only represent
subsets as discussed in Section 4.2.

As part of the result classification, we checked every reported
violation. Reporting on every violation as part of this article
would require a considerable amount of space and also knowl-
edge about the particular DFD. Therefore, we do not report on
the details of this classification in this article but refer to our data
set (Seifermann et al., 2021a), in which we give enough details on
the DFD to understand the classification for each violation that is
also part of the data set.
19
The values of the precision and recall metrics demonstrated
that we cannot only represent systems and confidentiality mech-
anisms as well as analyses but that we can also derive accurate
results via the defined analyses. We always introduced errors
by adding an additional, alternative data flow to a DFD without
an issue. If we did not systematically explore all possible data
flow paths, we could not have received such accurate results.
Therefore, we addressed the challenge about considering multiple
data flow paths (Ch1). The results also support our claim to
support information flow and access control analyses (Ch2) as
well as custom analysis definitions (Ch3) because we cannot only
model them (see Section 10.3) but also execute them.

10.6. Threats to validity

We structure the discussion of threats to validity by the four
categories of Runeson and Höst (2009) for evaluations based on
case studies.

Internal validity assures that no unknown factor influences
the investigated factor in order to draw valid causal relations.
The investigated factors in this evaluation are the expressive-
ness, reusability and accuracy of our syntax and semantics. The
expected influencing factors are our syntax and semantics. How-
ever, further factors can influence the expressiveness: Limited
experience with the modeling language can influence the ex-
pressiveness negatively. We can exclude this factor because the
authors of this article are the designers of the modeling language.
Too simple scenarios can make the expressiveness look more
positive than it actually is because they omit relevant aspects. We
selected all information flow cases and half of the access control
cases based on related publications (Tuma et al., 2019; Katkalov,
2017; Seifermann et al., 2019), so we do not expect them to
be tailored or too simple in this field of research. In addition,
we selected all cases from the mentioned, related publications
to avoid a tailored or bias selection. We used weighted sums to
avoid an increased influence of cases sharing the same analysis
definition. Without this, it would be possible to hide a lack of ex-
pressiveness regarding one type of analysis definition by adding
many cases using a well supported analysis definition. We created
three access control cases on our own but included fundamental
concepts mentioned in a corresponding textbook (Furnell, 2008).
We report on aspects of the particular access control mecha-
nisms that we did not cover in the limitations in Section 10.7
to not claim more expressiveness than the case study could
show. Overly simplifying analyses can positively influence the
expressiveness by hiding important details. We stick as closely as
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ossible to the analyses presented in related work (Tuma et al.,
019; Katkalov, 2017; Seifermann et al., 2019) or the correspond-
ng textbook (Furnell, 2008) to mitigate simplification. We report
n aspects of the particular information flow control mechanisms
hat we did not cover in the limitations in Section 10.7. There are
lso factors that can influence the accuracy: Even if we did not
nsert issues in initially created DFDs, there still might be issues
hat lead to a violation. We cannot rule this out but the evaluation
howed that we can successfully detect all injected violations and
race them back at least. Therefore, we can only claim that the
nalyses at least provide results as good as the results of related
pproaches. Incorrect analysis queries or DFDs can yield always
he same result, which might be a detected violation or not. We
ddressed this issue by always tracing back violations, which is
nlikely to be successful if the analysis query does not properly
escribe the violation to be expected. Overfitting analysis queries,
uch as by encoding the violation to be reported directly in the
uery, can make the accuracy look more positive than it actually
s. We evaluated three analysis types (OL, 2L, RBAC according to
able 3) with more than one DFD and achieved accurate results.
his is unlikely to succeed for analysis types, which use queries
hat are overfitted to a particular issue or DFD. In PrivateTaxi
LG), the query is system-specific as requested by the original
ase description. For the remaining access control queries (DAC,
AC, RBAC), we discussed their generalizability, which would
lso reveal overfitted queries.
External validity assures that researchers only generalize find-

ngs if it is valid to do so. According to Runeson and Höst (2009),
ase study research does not focus on representativeness but
n specific aspects of the case under study to get a better un-
erstanding of the phenomena. Therefore, insights cannot be
eneralized to arbitrary other cases unreservedly. However, gen-
ralizing insights to cases with comparable characteristics is pos-
ible. Therefore, we discussed the characteristics of the case and
ow it can be generalized for each analysis type in the discussion
f expressiveness in Section 10.3. We consider the cases derived
rom related work representative for the application area. In
ddition, we evaluated 15 cases, which we consider a reason-
ble amount, especially when comparing the amount to related
ork (Tuma et al., 2019; Katkalov, 2017; Seifermann et al., 2019),
hich usually only considers 5 cases with similar analysis defini-
ions at most. The remaining cases at least comply with common
efinitions.
Construct validity assures that the used metrics are capable

f answering the evaluation question. We chose the syntactical
uality metric to rate expressiveness. It is barely possible to sum-
arize expressiveness by metrics because variations and limita-

ions of the studied cases have to be discussed, so we extensively
iscussed the results and provided the metric values for the sake
f a quick overview. Syntactic quality is an appropriate metric for
his as it has already been used to rate the expressiveness of a
SL (Munnelly and Clarke, 2008). We use the Jaccard Coefficient
o reason about reusability when switching confidentiality mech-
nisms. The Jaccard Coefficient is an established metric for rating
imilarity of sets in various fields (Levandowsky and Winter,
971). The coefficient requires a definition of an element and a
efinition of equality between two elements in order to rate sim-
larity. We defined both in the evaluation design in Section 10.2.
he definitions cover models elements and their properties. Be-
ause the whole model only consists of model elements and
roperties, the definition covers the whole model. Therefore, the
oefficient is applicable to rate the similarity of our models. In
ddition, we demonstrated the applicability of the Jaccard Coef-
icient for comparing models in previous work (Heinrich, 2020;
onschein et al., 2021). Using the comparison approach of EMF-

ompare (Brun and Pierantonio, 2008) to determine equal model

20
elements is reasonable as we explained in the evaluation design.
We described the steps that EMFCompare takes in the evaluation
design in Section 10.2. The steps are intuitive, established and
could also be carried out manually. The precision and recall
metrics used to rate the accuracy of the analyses are commonly
applied metrics for rating the accuracy of various information
flow analyses (Arzt et al., 2014; Wei et al., 2014). The selection
of cases is appropriate for answering the evaluation questions as
discussed before.

Reliability assures that the conducted study, i.e. the data col-
lection and data analysis, does not depend on the particular
researcher but other researchers come to the same results. As dis-
cussed before, the model quality depends on the experience of the
modeler with the syntax and semantics. We cannot completely
mitigate this issue. However, we provide all material required
to replicate the evaluation starting from the models as stated in
Section Data Availability. Additionally, all metric values can be
calculated in an objective way: we provide clear instructions on
how to collect input data for calculating the metrics without the
need for subjective interpretations. Therefore, the process and
results are traceable and other researchers can decide whether
the study has been carried out correctly.

10.7. Limitations

We distinguish between limitations of the proposed syntax
and semantics on the one hand, as well as limitations of the
evaluation on the other hand.

One limitation of the syntax and semantics has been demon-
strated in the evaluation: there are no means to represent indi-
vidual data or users but only classes of data or users. A class of
data describes a group of data that is treated the same. A class of
users describes a group of users acting the same. This limitation
implies limited support for some specific aspects of confidential-
ity mechanisms: The RBAC extension providing means to specify
constraints on individual subjects, which hold roles, cannot be
represented. Therefore, we cannot represent that two clerks have
to approve something but they must not be the same person, for
instance. The delegation of rights in DAC cannot be represented,
so we cannot distinguish between valid and invalid access to data
that involves delegated access rights, for instance. Also, it is not
possible to ensure non-interference between users of the same
type, so we cannot ensure, for example, that a bank customer can-
not access the balance of another customer. All of these aspects
would require detailed information about individual users and
data as well as a mechanism to express time and dependencies
between system states in different times. We intentionally ex-
cluded this because such detailed information required to model
individuals might not be available during design time. Addition-
ally, the amount of elements to specify will certainly be increased
when more detailed models and even considering time are nec-
essary. We demonstrated that the proposed syntax and semantics
can provide valuable results and insights and suggest to cover
the remaining aspects in later development phases when more
detailed information or even source code is available. This lowers
the overhead for analyzing these aspects significantly. Other ap-
proaches building on DFDs such as SecDFD (Tuma et al., 2019) or
FlowUML (Alghathbar et al., 2006) share the same restrictions.

Our evaluation focused on the expressiveness and accuracy
of our syntax and semantics as well as on reusability. We did
not evaluate usability. As already said before, we intentionally
did not evaluate usability because this would only evaluate our
implementation of tool support rather than our concepts. We do
not see an open research question in whether usable tooling for
modeling and analyzing DFDs can be created because the users in
a recent study of Tuma et al. (2020) could successfully use their



S. Seifermann, R. Heinrich, D. Werle et al. The Journal of Systems & Software 184 (2022) 111138
Fig. A.1. Image sharing system used in the DAC evaluation (dashed data flow introduces a violation).
DFD modeling and analysis approach. We also did not verify the
correctness of the mapping and the resulting logic program. As
already motivated in the evaluation goals, verifying correctness
does not allow us to answer whether we sufficiently addressed
the challenges mentioned in the introduction. However, we plan
to report on the correctness in future publications on different
aspects of our approach.

11. Conclusions

In this article, we proposed an extended DFD syntax and
analysis semantics that allow expressing analyses to detect vi-
olations of access control and information flow requirements
with good accuracy. The DFD syntax is based on DFD elements
as introduced by DeMarco (1979) but extends these elements
with means for representing behavior relevant for confidentiality
analyses. The semantics describe this behavior in terms of label
propagation rules formulated in a logic program. An automated
mapping translates the extended DFD into an executable logic
program that yields detected violations. Thereby, we address
three open challenges of software design modeling and analy-
sis approaches aiming to find confidentiality violations. In our
evaluation, we demonstrated the expressiveness with respect to
information flow and access control, demonstrated effective reuse
of existing models when switching between information flow and
access control as well as evaluated the accuracy in a case study
considering fifteen cases.

Practitioners as well as researchers can benefit from our con-
tributions. Our syntax and semantics provide means for system-
atically considering confidentiality properties in an early design
stage. This allows identifying fundamental design issues early
and fixing them in a cost-efficient way. Because our syntax is
close to the commonly known concepts and syntax of DFDs, we
assume a flat learning curve for designers. Researchers can use
our provided analyses as a foundation for defining their own
confidentiality analyses based on data property propagation. This
allows focusing on the application area and analysis concepts
rather than on generic issues like data propagation or data de-
pendency resolution. Additionally, the cases published as part of
this article (Seifermann et al., 2021a) can serve as a benchmark
for existing analyses.

We see five major points as part of future work. First, we plan
to investigate how our DFD-based modeling language and anal-
yses can be integrated with existing early design modeling and
analysis approaches. Many modeling languages have counterparts
for the modeling elements we presented in this paper. It might be
possible to cover all aspects of our extended DFD modeling lan-
guage by some lightweight modifications and a mapping to our
modeling language. We already created a preliminary concept
for Architectural Description Language (ADL) integration (Seifer-
mann et al., 2021b) that needs to be refined and evaluated in
21
future. Second, we plan to investigate whether the presented
syntax and semantics are capable of supporting further security
objectives such as integrity. Evaluating the support for integrity
is reasonable because information flow requirements often en-
sure confidentiality and integrity. Third, we plan to investigate
how we can build catalogs of reusable model elements. Reusing
model elements has the potential to lower the modeling effort.
An important question to answer is how designers could use
these catalogs and how to design analysis definitions as reusable
as possible. Fourth, we would like to know whether parts of
our analyses could be executed in real-time while modeling to
guide designers and provide fast feedback. Challenges in doing so
include the handling of incomplete models, incomplete analysis
results and how to identify and present useful analysis results
while editing. Fifth, we plan a publication on the verification
of correctness with respect to the mapping and the logic pro-
gram. We plan to do the verification of the mapping based on
the properties to verify for correctness collected by Rahim and
Whittle (2015). The verification of the correctness of the logic
program will consider completeness and correctness as suggested
by Drabent (2016).
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Appendix. Data flow diagrams of selected evaluation cases

We used existing cases as well as self-defined cases in the
evaluation. This appendix contains the DFDs of the cases defined
by ourselves. Fig. A.1 illustrates the image sharing system used in
the DAC evaluation. Fig. A.2 illustrates the flight monitoring sys-
tem used in the MAC evaluation. Fig. A.3 illustrates the banking
system used in the ABAC evaluation.
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Fig. A.2. Flight monitoring system used in the MAC evaluation (dashed data flow introduces a violation).
Fig. A.3. Banking system used in the ABAC evaluation (dashed data flow introduces a violation).
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