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ABSTRACT 10 

Antifreeze proteins are able to influence the ice crystal growth and the recrystallization process 11 

due to the Gibbs-Thomson effect. The binding of the antifreeze protein leads to the formation of a 12 

curved ice surface and it is generally assumed that there is a critical radius between the proteins 13 

on the ice surface that determines the maximal thermal hysteresis. Up to now, this critical radius 14 

has not yet been proven beyond doubt or only in poor agreement with the Gibbs-Thomson 15 

equation. Using molecular dynamics (MD) simulations, the resulting three-dimensional surface 16 



 2 

structure is analyzed and the location of the critical radius is identified. Our results demonstrate 17 

that the correct analysis of the geometry of ice surface is extremely important and cannot be 18 

guessed upfront the simulation. In contrary to earlier expectations from literature, we could show 19 

that the critical radius is not located directly between the adsorbed proteins. In addition, we showed 20 

that the minimum temperature at which the system does not freeze is in very good agreement with 21 

the value calculated with Gibbs-Thomson equation at the critical radius as long as dynamic system 22 

conditions are taken into account. This proves on the one hand that the Gibbs-Thomson effect is 23 

the basis of thermal hysteresis and that MD simulations are suitable for the prediction of the 24 

melting point depression. 25 

INTRODUCTION 26 

Several microorganisms, animals and plants inhabiting cold climates produce specialized 27 

proteins called antifreeze proteins (AFP) or ice-binding proteins (IBP). These proteins protect body 28 

fluids from cold damage1–4. Under subzero temperature conditions ice crystals can form in body 29 

fluids like cytoplasm, blood or haemolymph, and in the apoplast of plants3. This leads to serious 30 

damage within the surrounding tissue. In addition to physical damage, the formation of 31 

intracellular ice results in an increase of osmotic pressure due to the removal of liquid water and 32 

concentration of the remaining solutes5, which causes plasmolysis and disruption of the cell 33 

integrity. For this reason, AFP are of special interest in industrial and medical applications for 34 

example as food additive in frozen meat, fish or ice cream or as cryoprotective agent during frozen 35 

storage of cells, tissues and organs6.  36 

AFP bind to specific planes of ice crystals and thus inhibit further ice growth during cooling to 37 

a certain extent. The resulting gap between the equilibrium melting temperature and the 38 

temperature of sudden ice growth is called thermal hysteresis (TH)7,8. Many authors term the 39 
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temperature of sudden ice growth the “freezing point” which is physically not correct, as ice 40 

crystals are already present when their growth is stopped by AFP. Moreover, bound AFPs are able 41 

to increase the equilibrium melting temperature of the ice crystal but in a smaller extent compared 42 

to TH9. 43 

Different characteristics of antifreeze proteins influence their ability to stop ice crystal growth 44 

and thereby the extent of the TH. One critical property is the ice plane bound by the AFP (Figure 45 

1). Two types of AFP can be distinguished, moderately active and hyperactive AFP. Hyperactive 46 

AFP are able to bind to the basal plane or to the basal in combination with other planes10,11 and are 47 

found in insects and some microorganisms12. Their activity is up to ten fold higher than the one of 48 

moderately active AFP, which are typically found in fish13. Moderately active AFP bind preferably 49 

to planes parallel to the c axis8. For example, winter flounder AFP binds to the pyramidal plane14. 50 

 51 

Figure 1. Possible ice binding planes for AFP. The specific plane is shown in turquoise with the 52 

corresponding miller index. Modified from 13. 53 

Besides being able to influence the freezing and melting behavior of an ice crystal, AFPs affect 54 

the ice recrystallization. During the process of ice recrystallization, the total mass of ice crystals is 55 

constant whilst the number of crystals decrease and the mean ice crystal sizes increase15,16 by 56 

thermodynamic reasons. The addition of AFP reduces recrystallization effects even when they are 57 

added in low concentrations17,18.  58 
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In general, it is postulated that, due to their ability to interact with the ice crystal surface, the 59 

presence of AFP leads to a pinned surface with characteristic curvature19 (Figure 2). 60 

 61 

Figure 2. Curved ice surface between three antifreeze proteins (yellow). Ice can grow between the 62 

proteins and forms a curved surface. The radius r of the curvature influences the vapor pressure of 63 

the solid phase, which leads to a limitation of the ice, although a decreasing temperature. 64 

Both effects, TH and ice recrystallization inhibition, involve the Gibbs-Thomson effect20 65 

(Equation 1), which describes the change of the melting temperature due to a curved surface at 66 

constant pressure. A decisive parameter here is the radius r or the diameter x = 2r of the curvature.  67 

Equation 1. Gibbs-Thomson equation for a spherical particle 68 

∆𝑇𝑚 =  𝑇𝑚
∞ − 𝑇𝑚(𝑥) =

4𝜎𝑠𝑙𝑇𝑚
∞

𝑥∆𝐻𝑓𝜌𝑠
 69 

For the calculation of the thermal hysteresis ∆𝑇𝑚 , which is the difference between the bulk 70 

melting temperature 𝑇𝑚
∞ and the melting temperature of the ice crystal 𝑇𝑚(𝑥) with a diameter of 71 

size x, the surface tension 𝜎𝑠𝑙 between the solid and liquid phase, the bulk enthalpy of fusion ∆𝐻𝑓 72 

and the density of the solid 𝜌𝑠 is needed. The factor of four, often referred to as geometry factor, 73 

originates from the Young-Laplace equation (Equation 2), which describes the pressure difference 74 

∆p across a curved interface. 75 

 76 

 77 

 78 

 79 
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Equation 2. Young-Laplace equation 80 

∆𝑝 = −𝜎 (
1

𝑟1
+

1

𝑟2
) 81 

If a spherical particle or surface is assumed, both principal radii r1 and r2 are of the same length 82 

and can be combined to 2/r or 4/x. This results in a geometrical factor of 4 as seen in Equation 1. 83 

In the case of a cylindrical shape, one of the radii becomes infinite and therefore only the radius 84 

perpendicular to the height of the cylinder has an influence. This results in 1/r or 2/x, and leads to 85 

a geometric factor of two for a cylindrical shape in Equation 1. It is obvious that the value of 𝑇𝑚(𝑥) 86 

depends not only on the radius but also on the given geometry. Unfortunately, less attention is paid 87 

to the latter in the literature. 88 

To prove the assumption that the Gibbs-Thomson Effect leads to TH of AFP many attempts 89 

have been discussed in literature. As it is impossible by direct observation to proof the existence 90 

of the curvature on an AFP studded ice crystal surface, to measure the curvatures or the surface 91 

allocation of the bound molecules, most studies are based on simulation results from molecular 92 

dynamics (MD) studies. 93 

Experimentally, the binding plane or multiple binding planes can be identified with fluorescence 94 

labeled AFP21,22 and the TH activity can be determined by differential scanning calorimetry, 95 

sonocrystallization or other methods23–25. In addition, the ice recrystallization inhibition can be 96 

quantified by several assays and optical methods18. An attempt to determine the surface 97 

distribution of bound AFP molecules experimentally in an indirect way was described by Drori et 98 

al.26. Fluorescence labeled Tenebrio molitor AFP (TmAFP) bind to a single ice crystal in a 99 

specialized microfluidic system. Due to the intensity of the emitted light, the number of bound 100 

molecules can be determined. From these investigations, Drori et al. calculated an average distance 101 

of 7 nm for a measured TH value of 0.73 K. 102 
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In contrast to experimental methods, MD simulations can deliver information about the details 103 

on a molecular level. During the last decade, MD simulations gained a lot of importance in the 104 

field of antifreeze and ice binding molecules. It is shown that the simulation results support the 105 

theory of a curved ice surface and the applicability of the Gibbs-Thomson effect27–29. A point that 106 

one has to keep in mind for MD simulations of AFP is that the simulations provide only 107 

information about the interaction of the AFP with one specific ice plane. Nevertheless, crystal 108 

growth is a three-dimensional process and AFP have different affinities for the different planes, 109 

which makes a direct comparison of TH between experiment and simulation unfeasible. 110 

Furthermore, it is necessary to run the simulation long enough to allow rare events to happen. 111 

These in turn can lead to overgrowth of the protein if the ice crystal surface has developed a 112 

distinctive curvature. The time period of the experiment is of course much longer than of the 113 

simulation.  114 

A good example is provided by Naullage et al.30. They compared the experimental findings of 115 

Drori et al. with a MD simulation of TmAFP with a distance of 7.4 nm between the centers of mass 116 

of the molecules resulting in a TH of 9 K after 100 ns of simulation time30. According to the large 117 

difference of TH of the experimental results Naullage et al. argued that the experimental distance 118 

is determined by averaging and statistical distribution of antifreeze molecules and that it is likely 119 

that there are also larger open spaces in between that lower the extent of TH in the experiment. In 120 

addition, the observation time in the experiment is much longer than in the simulation allowing for 121 

rare formation of ice bridges. Based on this and additional simulations, Naullage et al. suggest, 122 

“that the longest distances in the distribution control the thermal hysteresis” (Naullage et al. 2018, 123 

page 1716). This seems reasonable, because the ice radius between two bound AFP may increase 124 

with a greater distance between the bound molecules and because of this, 𝑇𝑚(𝑥) rises. We go along 125 
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with this argumentation and want to add that the three-dimensional aspects of ice growth and the 126 

dynamic equilibrium on the surface must be taken into account, too. Especially when it comes to 127 

the critical radius and the linkage of this radius to the Gibbs-Thomson. 128 

Although there are publications that analyze and address these aspects but do not combine them 129 

into a complex overall picture. Kuiper et al. simulated the binding of spruce budworm (sbw) AFP 130 

to an growing ice crystal and finds that the binding of the protein to the ice surface is facilitated 131 

by ordered water molecules28. Moreover, this ordering seems responsible for the ice plane 132 

specificity. In addition, they calculate the radius according to the Gibbs-Thomson equation with 133 

cylindrical geometry factor and create an overlay of the curvature and the circular segment 134 

obtained. Unfortunately, it is not clear from their publication why the cylindrical geometry factor 135 

is used and why the overlay is created at the location between the sbwAFP since no complete 136 

analysis of the three-dimensional ice surface structure is shown. 137 

Also Midya et al.31 calculated the expected length of the radius according the Gibbs-Thomson 138 

equation and compared it with their simulations at different temperatures. However, it is not clear 139 

what geometry factor is used and where and how they measured the radius. Furthermore, the 140 

expected and calculated radii differ by at least 1.8 nm from each other. Additionally, there are 141 

several other publications that show a curved ice surface but do not link the radius of curvature 142 

with the Gibbs-Thomson equation27,29,32. 143 

An interesting difference between the simulations of Kuiper et al. and Midya et al. is the overall 144 

structure of the ice surface. While Midya et al. visualize a spherical or ellipsoidal curvature with 145 

the center at the intersection of the diagonals, Kuiper et al. assumes a cylindrical surface. As shown 146 

above the geometrical factor used in the Gibbs-Thomson equation is critical for the calculation of 147 

TH. As many different radii of curvature can be formed during the process of ice growth, from our 148 



 8 

point of view, the critical location where ice starts to overgrow the AFP needs first to be identified. 149 

Second, the surface geometry at this point needs to be evaluated to identify the correct Gibbs 150 

Thomson Eq. for the calculation of TH. This illustrates the importance of knowing the structure of 151 

the ice surface and where different radii can be located. 152 

Another important aspect is the dynamic behavior of the ice surface close to the equilibrium. 153 

Water molecules are able to join or desorb the ice lattice, which leads to a fluctuation of the surface 154 

curvature and thus its radius making a static evaluation unfavorable28.  155 

To accomplish these aspects in this study, radii in all directions inside the simulation box will 156 

be analyzed (Figure 5 A)) to identify the critical radius, which is decisive for the overgrowing ice 157 

front. Due to the rectangular arrangement of the AFP in the simulation (Figure 3 B)), we expect a 158 

spherical elevation in the center similar to Midya et al. to arise. As stated by Naullage et al. the 159 

longest distance should yield the critical radius, which is the diagonal direction between two AFP 160 

in our simulation setup. To our knowledge, this is the first time that the diagonal is explicitly taken 161 

in consideration and that radii in all directions within the systems are observed to identify the 162 

critical radius. Moreover, the temperature 𝑇𝑀𝑖𝑛 at which the system remains unfrozen is 163 

determined by simulating different temperatures. The ice surface in the system at 𝑇𝑀𝑖𝑛 is then 164 

analyzed in static and dynamic way and 𝑇𝑚(𝑥) is calculated with the Gibbs-Thomson equation. 165 

This should yield the observed 𝑇𝑀𝑖𝑛, verifying that MD simulations can predict accurately the 166 

melting point depression in accordance with the Gibbs-Thomson equation for a given geometry. 167 

 168 

EXPERIMENTAL 169 

Software and simulation parameters 170 
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The MD simulations done with GROMACS33 version 2019.3 are visualized and analyzed using 171 

the Visual Molecular Dynamics34 (VMD) viewer. In order to achieve realistic properties of ice and 172 

the freezing process, the TIP4P/Ice water model35 in combination with the OPLS-AA36 force field 173 

is used. This water model is based on the four-site TIP4P model but the parameters are adapted to 174 

yield a better phase transition behavior. With a melting point of 269.8 ± 0.1 K 37 compared to 229 175 

K of TIP4P38 it is appropriate for the simulated system. To control the pressure inside the 176 

simulation box during the production run to 1 bar, an anisotropic Parrinello-Rahman barostat with 177 

a coupling constant of 2 fs is applied. After energy minimization, the temperature is set to the 178 

desired value using a V-rescale thermostat in the canonical ensemble. Subsequently, the pressure 179 

in the isobaric-isothermal ensemble is controlled with a Berendsen barostat. All bonds including 180 

hydrogen atoms are constraint with the LINCS39 algorithm enabling an integration time step of 2 181 

fs during the production run. 182 

Furthermore, periodic boundary conditions (PBC) are used during the simulation to eliminate 183 

boundary effects and to create a defined geometry of regularly distributed AFP molecules. 184 

Therefore, the unit cell, which is the simulated system, is duplicated in all three dimensions and 185 

placed around the simulation box (Figure 3). In Figure 3 A) the principle of PBC is exemplarily 186 

shown in two dimensions for the yellow molecule. Due to the periodic boundary the yellow atom, 187 

which leaves the simulation box at the right side, re-enters from the left.  188 

 189 

 190 

 191 
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 192 

Figure 3. A) Simplified, two dimensional drawing of periodic boundary conditions in MD 193 

simulations. The original simulation box is shown in darker blue in the center and contains three 194 

example atoms (yellow, orange and dark blue). The simulation box is duplicated and placed around 195 

the original simulation box, depicted in light blue. Due to the periodic boundary an atom that leaves 196 

the box (yellow at the right side), re-enters from the other side (left). In our case, leaving and 197 

entering “atoms” are water molecules. B) Geometry created by connecting four simulation boxes 198 

with one adsorbed sbwAFP in each box. The size of the original simulation-box is shown by the 199 

blue box. Logically, the distance between the centers of mass of the proteins (red dotted lines) is 200 

equal to the corresponding box length in x- and z-direction respectively. The longest distance 201 

between AFP in this arrangement is the diagonal with 12.36 nm. 202 

Simulation system 203 

The simulation box with a size of 9.95 nm x 9.98 nm x 7.35 nm in x-, y- and z-direction contains 204 

93560 atoms in total, whereof 1760 water molecules are restraint as a single ice layer (Figure 4 205 

A)). Since it is highly unlikely that water will start crystallizing under the simulation conditions, 206 

this ice layer functions as a seed crystal to promote ice crystal growth. To ensure binding of the 207 

insect AFP, the ice layer is able to grow freely in direction of the secondary prism plane and the 208 

AFP is oriented with its ice-binding site towards the ice front. A slab of 919 restraint water 209 
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molecules prevents the growth of ice to the lower direction, which has to be avoided since three-210 

dimensional periodic boundary conditions are applied. The simulated sbwAFP (Figure 4 B)) 211 

(RCSB: 1M8N) is a hyperactive insect AFP which is able to bind to the secondary prism plane and 212 

the basal plane22,40. Kuiper et al. already demonstrated that this specific AFP is able to bind to the 213 

secondary prism plane of a growing ice crystal in a MD simulation28. 214 

 215 

Figure 4. A) Starting configuration of the system. The spruce budworm AFP is placed in the center 216 

and the ice-binding site is oriented towards the fixed ice layer (light blue). In addition, a fixed layer 217 

of water molecules (blue dots) is introduced to prevent ice growth in the down direction. Finally, 218 

the box is filled with water molecules (turquoise). B) Spruce budworm AFP visualized as a cartoon 219 

drawing (yellow). For a better representation of the ice-binding site, the corresponding amino acids 220 

are shown as licorice representation and in different colors. Threonine residues are depicted in red, 221 

valine in blue and isoleucine in green. To get an impression of the dimension, the surface is 222 

indicated as grey shadow. 223 

Determination of 𝑻𝑴𝒊𝒏after binding of sbwAFP 224 

The temperature 𝑇𝑀𝑖𝑛 is defined here as the lowest temperature at which the system does not 225 

freeze completely. To determine 𝑇𝑀𝑖𝑛, the box is simulated at different temperatures below the 226 
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melting point and the state of the system is observed. In addition to the visual assessment if the 227 

system is freezing or not, the progression of the density is examined to see density changes due to 228 

the ice growing. Moreover, the simulation with the lowest temperature, which remains in a liquid 229 

state, was repeated three times in total and extended to 300 ns. The results are shown in Table 2. 230 

These simulations will be abbreviated in the further course of this paper as Sim 1, Sim 2 and Sim 231 

3. 232 

 233 

Visualization of the ice surface and determination of the curvatures radius 234 

For the visualization of the ice surface and for the examination of the radius of curvature of the 235 

ice crystal in between the bound molecules slabs are cut out the simulation box in several 236 

directions. The advantage of using slabs is that the desired plane is visualized without 237 

superimposition of water molecules in the planes behind and in front. An easy and fast method to 238 

create those slabs is the use of the clipping plane tool in VMD. This tool allows cutting the three-239 

dimensional box along a plane which is defined by its vector and slabs with a thickness of 0.7 – 1 240 

nm are created. Hence, the cuts can be set freely within the simulation box, it is possible to obtain 241 

horizontal (xz plane) and vertical (yz plane) slabs. The horizontal slabs provide an overview of the 242 

ice surface and allow the identification of the geometry of the ice surface landscape. To visualize 243 

the curvature of the ice surface the vertical slabs are used. All vertical slabs, which are analyzed, 244 

are shown in Figure 5 A) and alphabetically numbered. In order to calculate the radius based on 245 

the vertical slabs, the chord length s and the height of a circular segment h (Equation 3, Figure 5 246 

B)) are used. 247 
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 248 

Figure 5. A) Slabs that are generated and observed during the simulation. The slab of the xz plane 249 

is shown from the top. B) Exemplary image of slab d (xy plane) viewed from the front of the box. 250 

The radius r can be obtained by measuring the length s of the chord and the corresponding height 251 

h. 252 

Equation 3. Calculation of the radius of a circular segment 253 

𝑟 =  
4ℎ2 + 𝑠2

8ℎ
 254 

The precision of this method is estimated by calculating the radius three times at different heights 255 

and chord lengths. Those radii result in three melting temperatures 𝑇𝑚(𝑥) according to the Gibbs-256 

Thomson equation. The greatest deviations occur when a clear phase boundary cannot be 257 

identified. Taking this into account, the largest measured standard deviation is 0.574 K of 96 slabs 258 

in total. To get a better overview over the deviation of this method, the smallest deviation and the 259 

third quartile are determined which states that 75 % of all deviations are less than or equal to this 260 

value. They are 0.007 K and 0.234 K, respectively. Moreover, the deviation of the individual 261 

temperature ranges is far greater than the standard deviation caused by the determination   method. 262 

In conclusion, we can state that the performed determination method is a simple and quick analysis 263 

with adequate accuracy. An alternative would be the calculation and usage of an order parameter 264 

to create an artificial cutoff for the separation between ice and water. However, the selection of 265 
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the cutoff value itself can influence the structure of ice surface, especially since it is a highly 266 

dynamic interface and the computational time increases drastically for the analysis. 267 

Depending on the ice surface geometry, the Gibbs-Thomson equation is adapted resulting in 268 

Equation 4 for a cylindrical and Equation 5 for an arbitrary elliptical geometry. Subsequently, the 269 

mean value and the corresponding standard deviation are calculated. When using two different 270 

radii in the Gibbs-Thomson equation (Equation 5), the average value of the radii is used. 271 

The radii depend on the dynamic and the geometry of the ice surface. Since the simulation at 272 

𝑇𝑀𝑖𝑛 is repeated three times, a static evaluation at fixed times is performed to analyze differences 273 

between identical starting setups. In addition to the static analysis, a dynamic analysis of the radii 274 

is carried out. Here, the radii are measured over the course of the simulation whenever the 275 

curvature is at its maximum. 276 

 277 

Calculation of the expected TH with the Gibbs-Thomson equation  278 

With the calculated radii of curvature, the expected depression of the melting temperature 𝑇𝑚(𝑥) 279 

is calculated with the Gibbs-Thomson equation (Equation 1). The parameters used are shown in 280 

Table 1. They depend on the used water model and are specific for the pyramidal plane bound by 281 

the AFP in the simulation. Depending on the geometry of the ice surface, the geometry factor of 282 

the Gibbs-Thomson equation is adapted. The depressed melting temperature 𝑇𝑚(𝑥) of a cylindrical 283 

surface with radius r can be calculated according to Equation 4. 284 

 285 

 286 

 287 

 288 
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Table 1. TIP4P/Ice parameters 289 

Property Value 

Bulk melting temperature 𝑇𝑚
∞  37 269.8 K 

Surface tension of the secondary prism plane 𝜎 41 0.0316 
𝐽

𝑚2  

Enthalpy of fusion ∆𝐻𝑓 41 1.29 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙
 or 5397.36 

𝐽

𝑚𝑜𝑙
  

Density of TIP4P/Ice ice 37 906 
𝑘𝑔

𝑚3  

Molecular weight of water and ice 𝑀 0.018 
𝑘𝑔

𝑚𝑜𝑙
 

 290 

Equation 4. Gibbs-Thomson equation for a cylindrical surface geometry 291 

𝑇𝑚(𝑥) =  𝑇𝑚
∞ −

𝑀 ∗ 𝜎 ∗ 𝑇𝑚
∞

𝜌 ∗ ∆𝐻𝑓 ∗ 𝑟
 292 

Whereas 𝑇𝑚(𝑥) of an arbitrary elliptical geometry can be calculated with Equation 5. This 293 

applies also for a spherical structure since this is a special case of an ellipse where both radii are 294 

of the same length. 295 

Equation 5. Gibbs-Thomson equation for an elliptical surface geometry with principal radii r1 and 296 

r2 297 

𝑇𝑚(𝑥) =  𝑇𝑚
∞ −

𝑀 ∗ 𝜎 ∗ 𝑇𝑚
∞

𝜌 ∗ ∆𝐻𝑓
∗ (

1

𝑟1
+

1

𝑟2
) 298 

Since many different slabs were evaluated, the ice crystal surface is analyzed in detail and the 299 

critical radius determining the extent of the melting point depression can be identified. 300 

 301 

 302 

 303 

 304 

 305 
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RESULTS 306 

Determination of 𝑻𝑴𝒊𝒏 after binding of sbwAFP 307 

For the determination of 𝑇𝑚𝑖𝑛 different temperatures were simulated for at least 200 ns. The 308 

simulation results were analyzed at first visually and the state of the system was observed. 309 

Secondly, a detailed analysis of the density curve was carried out. 310 

The starting configuration is identical for each simulation (Figure 6 A)), the protein is oriented 311 

with its ice-binding site towards the ice surface and is able to move freely within the box. At the 312 

beginning, the ice grows in the y-direction and the distance to the protein becomes smaller. During 313 

the first 50 ns, the protein is able to bind to the growing ice crystal. Directly after the binding 314 

process, no curvature is visible (Figure 6 B)). Remarkably, the protein binds in each of the eight 315 

simulations performed but the binding orientation is slightly different which may influence the ice 316 

formation. In some cases, the protein binds parallel to the x-axis and in other cases it is shifted. 317 

This can exemplarily be seen in Figure 6 B) and D) where the proteins are shifted on one side in 318 

the direction of the y-axis. In contrast, in Figure 6 C) it is bound to the ice surface parallel to the 319 

x-axis. An important aspect regarding the binding behavior is the interaction strength between the 320 

protein and the ice surface. “AFPs that adsorb strongly will have higher surface concentrations and 321 

a larger thermal hysteresis gap” (Kumari et al. 2020, page 2444)42. The simulative determination 322 

of this interaction strength proves to be difficult, since the dynamic of the ice surface has a non-323 

negligible influence on the adsorption of the protein. This in turn depends on the force field and 324 

the water model used. Therefore, a comparison and an estimation of which combination of force 325 

field and water model provides the most accurate results or whether the influence of the force 326 

fields is not decisive at all should be included in future studies . 327 
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After the protein has bound to the ice surface, the ice crystal continues to grow and a curvature 328 

is formed. With increasing curvature the radius and thus the melting temperature decreases and the 329 

growing ice front is stopped if the set simulation temperature equals with the melting temperature 330 

(Figure 6 C)). If the simulation temperature is lower and larger radii of curvature can be formed, 331 

the AFP is overgrown and trapped inside the ice crystal (Figure 6 D)). 332 

 333 

Figure 6. Basic course of the simulation and possible system states. A) Starting configuration, 334 

which is the same for all simulations. B) The AFP is able to bind to the growing ice surface. The 335 

picture is taken at a temperature of 262.5 K (Sim 3). C) After the binding process, ice continues to 336 

grow and a curvature is formed. (262.5 K, Sim 1). D) If the temperature is too low, the protein is 337 

overgrown and trapped in the ice (262.2 K). Depending on the actual degree of super cooling the 338 

endpoint of the simulation is either C) or D). 339 

According to the visual analysis of the simulation box, the temperature at which the system does 340 

not freeze completely is at 262.5 K (Table 2). 341 

 342 

 343 

 344 

 345 

 346 
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Table 2. System state after visual observation at different simulation temperatures 347 

Temperature / K System state 

260 Frozen 

261.5 Frozen 

262.0 Frozen 

262.2 Frozen 

262.5 Unfrozen 

265 Unfrozen 

 348 

Besides the visual observation, the density and the height of the ice layers were examined to 349 

identify whether the system at the given temperature freezes or not. The development of the density 350 

with and without AFP is shown in Figure 7. We assume that the ice growth rate is proportional to 351 

the decrease of density. Without AFP, the system freezes within 100 ns at a temperature of 265 K. 352 

Due to the inserted ice grid, the density at the start of the simulation is already somewhat lower 353 

than for pure water. In the further course of the simulation, the density decreases almost linearly 354 

until the box is frozen in the y-direction. In case no AFP is present, a lowest density of 925 kg/m3 355 

is reached (Figure 7 A)). In contrast, the presence of sbwAFP increases this value to about 935 356 

kg/m3, assuming that the temperature is low enough for the ice to overgrow the protein (Figure 7 357 

B)). Three phases can be identified that always occur in our simulations when the system with 358 

AFP freezes completely. Figure 7 B) shows the density progression of a system at 262.2 K that 359 

freezes in the course of the simulation. The three phases are alphabetically numbered from a to c. 360 

During phase a, the density decreases linearly due to the ice formation. After binding of the protein, 361 

ice growth is impaired and the ice cannot longer grow with a straight surface. The pinning of the 362 

ice surface results in a curvature and a reduced ice formation velocity (phase b). This means that 363 



 19 

the ice still continues to grow with a curved surface. As long as this curvature is not strong enough 364 

to stop the ice growth, the ice is able to grow over the protein and a continuous layer can form. In 365 

this case, the growth rate of the ice can increase again as can be seen in phase c. The system then 366 

freezes up to a density value of approximately 930 kg/m3. This relation holds true for all 367 

simulations below 262.5 K. 368 

 369 

Figure 7. A) Progression of the density at 265 K without AFP. At the beginning, the density is 370 

around 975 kg/m3 and decreases linearly during the simulation. At 95 ns the box is frozen and the 371 

density reaches a threshold of 925 kg/m3. B) System with AFP at a temperature of 262.2 K. The 372 

density progression can be divided into three phases a-c. In the first phase (a) from 0 to 45 ns the 373 

ice crystal grows and the protein binds to the ice surface. Afterwards, in the second phase (b), the 374 

curvature develops but cannot stop the formation of ice. The velocity of the ice formation is 375 

reduced. When the protein is engulfed and the first ice layer above the protein is formed, the 376 

hindrance of ice formation is lower and thus the ice formation rate increases again. This can be 377 

seen in the third phase (c). 378 

At moderate supercooling, the resulting curvature prevents freezing and the course of the density 379 

approaches a threshold value. The threshold value depends on temperature, since at higher 380 
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temperatures the critical radius of curvature is larger and is therefore reached earlier. This limits 381 

the maximum amount of ice in the system. For example, at a temperature of 262.5 K a lowest 382 

density of approx. 960 kg/m3 is reached (Figure 8), whereas at 265 K the density does not decrease 383 

below 970 kg/m3. 384 

The simulation at 262.5 K was  repeated three times in total. Hereinafter referred to as Sim 1, 385 

Sim 2 and Sim 3. This was done to see differences between individual simulations at the same 386 

temperature, to evaluate the impact on the resulting curvature and to make sure that 262.5 K is the 387 

critical temperature 𝑇𝑚𝑖𝑛. Figure 8 shows the progression of the density of the three simulations at 388 

262.5 K. Although all simulations have the same initial conditions, the ice formation and therefore 389 

the density progression is not identical. One influence that may play a role here is the previously 390 

mentioned slightly different binding configuration of the protein. For Sim 1 and Sim 2 the course 391 

of the density is quite similar. It reaches apparently a constant value around 150 ns but afterwards 392 

it decreases again. Even though a longer simulation might have led to an overgrowth of the protein, 393 

this could not be observed in the simulations presented here. In contrast, Sim 3 approaches the 394 

threshold slightly above 960 kg/m3 and stays constant for the rest of the 450 ns of the simulation. 395 

To ensure that the density reached a constant value, the simulation was extended from 300 ns to 396 

450 ns. The initial ice formation seems to be the same for all three simulations, since the density 397 

converges to a value of 960 kg/m3 during the first 150 ns. In this context, the simulation time 398 

needed to produce reliable information is important. As seen in the density progressions of Sim 1 399 

and Sim 2, the system would have been stable at around 150 ns without further simulation. This 400 

may lead to wrong assumptions when systems with antifreeze molecules are simulated in a too 401 

short range. This shows the principal need of relatively long simulation times for well-founded 402 

statements. 403 
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 404 
Figure 8. Density progression of the three simulations at 262.5 K. The first two simulations, Sim 405 

1 (left) and Sim 2, (middle) seem to reach a threshold around 150 ns, but the density continues to 406 

decrease in the further course of the simulation. Sim 3 (right), is stable at a density around 960 407 

kg/m3 for a simulation period of 450 ns. 408 

We can conclude from the detailed simulation analyses that the lowest temperature at which the 409 

system does not freeze completely is close to 𝑇𝑚𝑖𝑛 ≈ 262.5 𝐾. Hence, Sim 1 and Sim 2 tend to 410 

freeze for longer simulation times; the temperature 𝑇𝑚𝑖𝑛 may be slightly higher. These three 411 

simulations are analyzed in more detail below for the surface geometry and the different radii. 412 

 413 

Pre-analysis of the three dimensional ice surface at 𝑻𝒎𝒊𝒏 414 

Before the critical radius can be determined, the general structure of the ice surface needs to be 415 

examined. A good way to get an overview over the geometry of the ice surface is to analyze 416 

horizontal (xz plane) slabs through the simulation box (Figure 9). Because of its regular structure, 417 

ice can easily be distinguished from the disordered water molecules. All three simulations at 262.5 418 

K show the same cylindrical ice pattern at the surface. 419 

 420 
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 421 

Figure 9. Top view of a horizontal slice to visualize the geometry of the ice surface. The water 422 

molecules are roughly divided into ice (red) and water (cyan). To spatially classify the slice, the 423 

front view of the box is depicted on the right. 424 

To make the cylindrical shape obvious, the length axis of the cylinder is analyzed with the help 425 

of slab a (Figure 5 A)). No curvature can be identified in the z-direction of slab a during all 426 

simulations and at different simulation times (Figure 10). 427 

 428 

 429 
Figure 10. Slab a of two different simulations at different time points. Both slices show a straight 430 

ice surface. This is also true for Sim 2 and other times. It is worth mentioning, that no curvature is 431 

formed despite the fact that the ice layer grows. 432 
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Due to the shape of the surface, the critical radius, which determines the depression of the 433 

melting temperature, has to be on the cylinder and perpendicular to the longitudinal axis (z -434 

direction). In addition, it can be seen from Figure 9 that the cylinder is not exactly uniformly 435 

shaped and different curvature radii are present in the x-direction. The shortest radius is directly 436 

between the two AFP molecules and corresponds to slab d, whereas slab b is located at the widest 437 

point of the cylinder (Figure 5 A)). Again, this is the same for all three simulations. 438 

 439 

Analysis of the radii of curvature and calculation of 𝑻𝒎(𝒙) with Gibbs-Thomson equation 440 

Now the different radii are determined and inserted into the Gibbs-Thomson equation. In this 441 

way, the expected melting temperature 𝑇𝑚(𝑥) at this location is determined. In the case of the 442 

critical radius, this should correspond to the temperature 𝑇𝑚𝑖𝑛 already determined. The geometry 443 

of the ice surface plays a critical role in the calculation of 𝑇𝑚(𝑥) with the Gibbs-Thomson equation. 444 

As already shown, a cylindrical surface between the proteins with a longitudinal axis in z-direction 445 

can be seen and one may assume that the critical radius is to be found on the cylinder perpendicular 446 

to the longitudinal axis. We investigated this aspect in more detail for the three simulations Sim 1, 447 

Sim 2 and Sim 3 at 𝑇𝑚𝑖𝑛 = 262.5 K. Therefore, all reasonable radii in the system are examined, 448 

not only those on the cylinder. First, the static analysis at specific time points provides information 449 

about the temporal behavior of the various radii in the system. For example, radii which are 450 

permanently very short can be neglected, since the resulting melting temperature 𝑇𝑚(𝑥) at this 451 

point is always below the ambient temperature. Second, the radii that cannot be excluded are 452 

subjected to a dynamic analysis in which they are measured at maximum curvature. 453 

 454 

 455 
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Static analysis 456 

At first, the slabs c and d directly between the proteins are examined (Figure 11). For slab d 457 

located between the proteins in x-direction (Figure 11 A)), the cylindrical version of the Gibbs-458 

Thomson equation (Equation 4) can be used. The resulting radii of curvature (Table S1) are 459 

comparably short and the melting temperature is below the ambient temperature (Table 3). 460 

 461 
Figure 11. A) Slab d of Sim 2 at 200 ns. The ice surface between the proteins is strongly curved 462 

and the top of the ice surface is slightly above the protein. B) Slab c of Sim 1 at 175 ns. The height 463 

of the curvature is lower and below the height of the protein. 464 

In contrast, slab c between the proteins in z-direction (Figure 11 B)) is not part of the cylindrical 465 

surface geometry and therefore the cylindrical geometry factor cannot be used. For the calculation 466 

of the melting temperature with Equation 5 we need the radius of curvature perpendicular to slab 467 

c in x-direction. This is delivered by the surface analysis of slab b (Figure 12). 468 

 469 
Figure 12. Slab b of Sim 3 at 200 ns. In the center the curvature has formed, which leads to 470 

negative curvatures flanking the elevation in the center. The minima of these negative curvatures 471 

are between the proteins in z-direction. 472 
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It turns out that a minimum height of the ice surface with a negative radius of slab b is directly 473 

between the proteins. For the calculation of the corresponding melting temperature, Equation 5 474 

was used with the two perpendicular radii at the crossing section (c and b). As the radius in x-475 

direction is negative, the calculation of melting temperatures leads to comparably high melting 476 

temperatures (Table 3). Due to the negative radius there is a high tendency for water molecules to 477 

adsorb to the surface at this point. Nevertheless, by filling this area the radius increases to zero 478 

(flat surface) and the radius in z-direction dominates the melting temperature. Yet the radius in z-479 

direction is too small to be the critical radius. One can see this by elaboration of the measured radii 480 

for different simulation times (Table S2). For these reasons we assume that the critical radius 481 

cannot be located at this position. 482 

Table 3. Melting temperatures according to the Gibbs-Thomson equation at slab c and d at 200 483 

ns. Ambient temperature is 262.5 K 484 

Simulation Time / ns Slab Temperature 𝑇𝑚(𝑥) / K 

1 200 d 261.47 ± 0.36 

2 200 d 261.15 ± 0.49 

3 200 d 262.10 ± 0.17 

1 200 b+c 262.63 

2 200 b+c 270.79 

3 200 b+c 266.87 

 485 

A similar problem arises for the diagonals, slab e and f. They are located at the cylinder but to 486 

use the cylindrical Gibbs-Thomson equation, they need to be perpendicular to the length axis of 487 

the cylinder. If Equation 4 is used erroneously, the radii will be incorrectly prolonged leading to 488 

an unfeasible high melting temperature as show in Table 4. On the other hand, one can state that 489 
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slab e and f are approximately perpendicular and calculate the melting temperature with these two 490 

radii and Equation 5. This results in comparably low values for the melting temperature (Table 5) 491 

and thus provides evidence that in this system the longest distance between the proteins is not 492 

decisive for the melting point depression. 493 

Table 4. Melting temperature of slab e and f, calculated with the cylindrical Gibbs-Thomson 494 

equation (Equation 4) 495 

Simulation Time / ns Slab Temperature 𝑇𝑚(𝑥) / K 

1 200 e 264.64 ± 0.16 

2 200 e 263.42 ± 0.31 

3 200 e 264.58 ± 0.19 

1 200 f 264.22 ± 0.24 

2 200 f 263.70 ± 0.09 

3 200 f 264.37 ± 0.13 

 496 

Table 5. Corresponding melting temperatures of slab e and f, calculated with the elliptical Gibbs-497 

Thomson equation (Equation 5) 498 

Simulation Time / ns Slab Temperature 𝑇𝑚(𝑥) / K 

1 200 e+f 259.07 

2 200 e+f 257.33 

3 200 e+f 259.16 

 499 

The last slab to be analyzed is the most promising, which is slab b. It is perpendicular to the 500 

longitudinal axis and at the same time the widest point of the cylinder along slab a. In addition, the 501 

usage of the cylindrical Gibbs-Thomson equation is perfectly applicable in that case. 502 
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As seen in Table 6 most of the calculated melting temperatures are above 𝑇𝑚𝑖𝑛 =262.5 K. This 503 

means that the curvature would still be able to grow and the maximum melting point depression is 504 

not reached yet. 505 

Table 6. Resulting temperature range for the melting point at the position of slice b at fixed times 506 

Simulation Time / ns Slice Temperature 𝑇𝑚(𝑥) / K 

1 175 b 262.97 ± 0.18 

1 200 b 265.52 ± 0.12 

2 175 b 264.18 ± 0.17 

2 200 b 265.50 ± 0.32 

3 175 b 265.63 ± 0.08 

3 200 b 264.98 ± 0.01 

 507 

Only the melting temperature 𝑇𝑚(𝑥) at 175 ns in Sim1 seems to be in the right order of 508 

magnitude. In addition, these values suggest that there are large differences between the 509 

simulations. However, keeping in mind that the ice surface is in a dynamic equilibrium it is not 510 

surprising that the radii of curvature are changing over time and cannot be expected to be the same 511 

between different simulations at fixed times. It can be concluded from the static analysis that the 512 

individual simulations show differences and therefore fixed time points cannot be directly 513 

compared with each other. Although the overall ice formation seems to be similar based on the 514 

density curves, the formation and variation of the curvature develops is different in each 515 

simulation. The curvature may be formed the same way with a similar radius, but this is 516 

coincidence for a fixed time point. Another reason for the deviations of the three simulations at 517 

262.5 K may be the slightly different binding orientations of the AFP since this could have an 518 
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impact on the ice formation and the surface topology. Therefore, a dynamic analysis of the most 519 

promising surface area of slab b is shown in the next chapter. 520 

 521 

Dynamic analysis 522 

In the dynamic analysis, the development of slab b was examined throughout the simulation. 523 

During the simulation time, the ice curvature at slab b builds up until a certain extent but then starts 524 

to melt again (Figure 13). This happens repetitively throughout all simulations and during the 525 

whole simulation time showing impressively the dynamic equilibrium. In contrast, the curvature 526 

of all other slabs is formed without the curvature melting away completely and may be 527 

approximated as continuously growing until the maximum curvature is reached. This does not 528 

mean that the ice surface here is rigid and that there is no dynamic equilibrium between melting 529 

and freezing. Nevertheless, it stands out that the ice formation and the ice surface in slab b is far 530 

more dynamic than in the other slabs.  531 

The ice formation at the position of slice b was recorded and the radius of curvature was 532 

determined whenever it reaches a maximum. This should yield a melting temperature in the range 533 

of the previously determined 𝑇𝑚𝑖𝑛. 534 

 535 

 536 
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 537 
Figure 13. Formation of the curvature between 263 and 292 ns at slab b (yz plane) of Sim 3. At 538 

263 ns, no curvature is visible. In the further course of the simulation, the curvature starts to form 539 

and is stable for around 20 ns. During this time, minor fluctuations happen, but no significant 540 

growth or melting is observed. After 30 ns, the curvature is completely melted and the ice 541 

formations starts again to form a new curvature. 542 

The resulting melting temperatures 𝑇𝑚(𝑥) shown in Table 7 were calculated with the cylindrical 543 

Gibbs-Thomson equation (Equation 4). They are very close to the observed 𝑇𝑚𝑖𝑛 of 262.5 K. 544 

However, the values tend to be somewhat higher which would be in agreement with the previous 545 

observation that Sim 1 and Sim 2 could freeze during longer simulations. 546 

Table 7. Melting point at position b determined at maximum curvature 547 

Simulation Time / ns  Slice Temperature 𝑇𝑚(𝑥) / K 

1 172.7 b 263.21 ± 0.29 

2 122.9 b 262.75 ± 0.09 

2 178.9 b 262.46 ± 0.22 

3 217.2 b 262.94 ± 0.08 

 548 



 30 

Because of these findings, we assume that the critical radius is located at the position of slab b. 549 

To summarize the results of the dynamic analysis, it can be said that the length of the radii and the 550 

resulting melting temperatures at slab b are in very good agreement with 𝑇𝑚𝑖𝑛. It is noteworthy 551 

that the critical radius is not found between the proteins and is located on the free, unoccupied ice 552 

crystal surface. Contrary to Naullage et al., the critical radius in our simulation is not located at the 553 

widest distance in the distribution since this would be the diagonal between the proteins. Instead, 554 

one could say that the critical radius is located at the largest distance of the formed geometric 555 

structure on the ice surface.  556 

In addition, it is important for us to emphasize once again that the simulations reproduce the 557 

Gibbs-Thomson effect well, but a comparison of the simulation with experimentally measured 558 

thermal hysteresis is not possible. Reasons for this have already been given, such as the unknown 559 

surface occupancy of the AFP on the ice crystal and the distribution of the distances between the 560 

proteins, or the fact that the ice growth is only investigated at one specific ice crystal plane. As 561 

already mentioned before, the determination of the affinity of the protein to the single crystal 562 

surface is of great importance. Due to the specification of the box size, this interaction is not 563 

correctly reproduced in the simulation. It is obvious by repeated simulation whether a protein binds 564 

better or not, but in the case that it binds, the surface occupancy is predetermined by the box. 565 

Therefore, it would be desirable to be able to determine this binding strength unambiguously. 566 

Kumari et al. also proposed a new method to compare the adsorption behavior of different AFP or 567 

towards different ice crystal planes. This method should be evaluated in more detail. In 568 

combination with other MD simulations, this could provide further insights into the functioning of 569 

AFP and molecules with similar properties. Furthermore, the current incompatibility of 570 

experiments and simulations could be improved in the future. 571 
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CONCLUSION 572 

As a general result of our investigation, we can state that the geometry of ice surface is extremely 573 

important and may not be guessed upfront the simulation. Due to the rectangular arrangement of 574 

the protein and its images, an ellipsoidal curvature was expected but a cylindrical ice surface has 575 

been observed in all simulations on the surface. For this reason, it is not purposeful to estimate a 576 

maximum radius just from the distances between the proteins. We showed that the critical radius 577 

is on a slab where no protein is adsorbed. By simulating different temperatures, the minimum 578 

temperature at which the resulting curvature prevents ice growth was determined and is at 𝑇𝑚𝑖𝑛  = 579 

262.5 K. This is in good agreement with the value calculated with the Gibbs-Thomson equation at 580 

the critical radius. For the identification of the critical radius is important that the simulation time 581 

is sufficient and that the dynamics auf the ice front is taken into account. We showed that in our 582 

case the critical radius was the most dynamic one and not located at the longest distance between 583 

the adsorbed molecules. Therefore, it is necessary to determine this radius over the course of the 584 

simulation. 585 

Over all, our results show on the one hand that the Gibbs-Thomson effect can be taken as the 586 

basis of thermal hysteresis and that MD simulations are suitable for the prediction of the melting 587 

point depression. The simulations could provide the possibility to compare different AFP or 588 

mutants based on their thermal hysteresis in an identical system with same distances between the 589 

proteins. The force field used could also have an influence on the adsorption of the water molecules 590 

to the ice structure in the simulation. This should be evaluated in future studies. However, it is still 591 

not possible to compare an experimentally determined thermal hysteresis with a value obtained by 592 

simulation. 593 

  594 
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SUPPORTING INFORMATION 595 

Table S1. Radii and corresponding melting temperatures of the static analysis calculated with the 596 

cylindrical Gibbs-Thomson equation 597 

Simulation Slab Time / ns Radius / nm Temperature 𝑇𝑚(𝑥) / K 

1 b 150 7.63 265.69 

1 b 150 7.29 265.50 

1 b 150 7.40 265.56 

1 b 175 4.51 262.84 

1 b 175 4.54 262.89 

1 b 175 4.73 263.17 

1 b 200 7.10 265.38 

1 b 200 7.45 265.59 

1 b 200 7.44 265.58 

1 c 150 3.75 261.43 

1 c 150 3.62 261.12 

1 c 150 3.80 261.55 

1 c 175 3.24 260.12 

1 c 175 3.19 259.97 

1 c 175 3.35 260.44 

1 c 200 2.62 257.80 

1 c 200 2.68 258.08 

1 c 200 2.63 257.86 

1 d 150 3.65 261.19 

1 d 150 3.76 261.45 

1 d 150 3.60 261.09 
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1 d 175 3.14 259.79 

1 d 175 3.08 259.61 

1 d 175 3.25 260.13 

1 d 200 3.64 261.18 

1 d 200 3.96 261.87 

1 d 200 3.72 261.36 

1 e 150 6.87 265.23 

1 e 150 6.84 265.22 

1 e 150 6.97 265.30 

1 e 175 5.53 264.12 

1 e 175 5.54 264.14 

1 e 175 5.40 263.99 

1 e 200 5.94 264.51 

1 e 200 6.03 264.60 

1 e 200 6.31 264.82 

1 f 150 6.18 264.72 

1 f 150 5.99 264.56 

1 f 150 6.11 264.67 

1 f 175 4.89 263.38 

1 f 175 5.20 263.76 

1 f 175 5.08 263.62 

1 f 200 5.51 264.10 

1 f 200 5.47 264.06 

1 f 200 5.91 264.49 

2 b 150 6.87 265.23 

2 b 150 7.12 265.39 
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2 b 150 7.26 265.48 

2 b 175 5.78 264.37 

2 b 175 5.47 264.06 

2 b 175 5.53 264.12 

2 b 200 6.74 265.14 

2 b 200 7.52 265.63 

2 b 200 7.73 265.74 

2 c 150 2.99 259.29 

2 c 150 3.12 259.73 

2 c 150 3.24 260.11 

2 c 175 3.18 259.95 

2 c 175 3.35 260.43 

2 c 175 3.42 260.61 

2 c 200 3.72 261.36 

2 c 200 3.74 261.40 

2 c 200 3.89 261.74 

2 d 150 2.63 257.85 

2 d 150 2.63 257.86 

2 d 150 2.66 258.00 

2 d 175 4.24 262.39 

2 d 175 4.36 262.60 

2 d 175 4.48 262.80 

2 d 200 3.49 260.80 

2 d 200 3.54 260.93 

2 d 200 3.88 261.71 

2 e 150 4.53 262.87 
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2 e 150 4.59 262.96 

2 e 150 4.52 262.86 

2 e 175 4.56 262.91 

2 e 175 4.55 262.91 

2 e 175 4.59 262.96 

2 e 200 4.71 263.13 

2 e 200 4.89 263.38 

2 e 200 5.19 263.75 

2 f 150 5.02 263.55 

2 f 150 4.86 263.35 

2 f 150 5.01 263.54 

2 f 175 6.12 264.67 

2 f 175 6.48 264.96 

2 f 175 5.91 264.49 

2 f 200 5.06 263.59 

2 f 200 5.21 263.78 

2 f 200 5.16 263.71 

3 b 150 6.05 264.61 

3 b 150 6.23 264.76 

3 b 150 6.37 264.88 

3 b 175 7.42 265.57 

3 b 175 7.49 265.61 

3 b 175 7.69 265.72 

3 b 200 6.52 264.98 

3 b 200 6.52 264.99 

3 b 200 6.50 264.97 
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3 c 150 3.28 260.22 

3 c 150 3.71 261.34 

3 c 150 3.57 261.00 

3 c 175 2.79 258.57 

3 c 175 2.95 259.16 

3 c 175 2.86 258.83 

3 c 200 3.15 259.83 

3 c 200 3.39 260.54 

3 c 200 3.14 259.82 

3 d 150 3.15 259.84 

3 d 150 3.27 260.21 

3 d 150 3.45 260.70 

3 d 175 3.19 259.96 

3 d 175 3.31 260.31 

3 d 175 3.40 260.56 

3 d 200 4.01 261.98 

3 d 200 4.04 262.04 

3 d 200 4.18 262.29 

3 e 150 6.43 264.92 

3 e 150 6.40 264.89 

3 e 150 6.48 264.95 

3 e 175 5.85 264.43 

3 e 175 6.08 264.63 

3 e 175 5.90 264.48 

3 e 200 5.82 264.40 

3 e 200 6.00 264.57 
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3 e 200 6.25 264.78 

3 f 150 5.71 264.31 

3 f 150 5.75 264.34 

3 f 150 5.72 264.31 

3 f 175 5.89 264.47 

3 f 175 6.16 264.70 

3 f 175 6.32 264.84 

3 f 200 5.71 264.31 

3 f 200 5.94 264.52 

3 f 200 5.69 264.28 

 598 

Table S2. Radii and melting temperatures when slab c and b are combined. For the calculation, 599 

the elliptical Gibbs-Thomson equation is used. 600 

Simulation Time / ns Average radius 

for slab b / nm 

Average radius 

for slab c / nm 

Temperature 

𝑇𝑚(𝑥) / K 

1 150 -3.09 3.72 271.51 

1 175 -4.05 3.26 267.94 

1 200 -6.65 2.64 262.63 

2 150 -4.70 3.11 266.40 

2 175 -4.68 3.32 267.05 

2 200 -3.38 3.78 270.79 

3 150 -4.67 3.52 267.59 

3 175 -4.65 2.87 265.61 

3 200 -4.61 3.23 266.87 

 601 

 602 
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Table S3. Radii and melting temperatures when slab e and f are combined. For the calculation, the 603 

elliptical Gibbs-Thomson equation is used. 604 

Simulation Time / ns Average radius 

for slab e / nm 

Average radius 

for slab f / nm 

Temperature 

𝑇𝑚(𝑥) / K 

1 150 6.89 6.09 260.10 

1 175 5.49 5.06 257.88 

1 200 6.09 5.63 259.07 

2 150 4.55 4.96 256.58 

2 175 4.57 6.17 257.84 

2 200 4.93 5.14 257.33 

3 150 6.43 5.73 259.44 

3 175 5.94 6.12 259.39 

3 200 6.02 5.78 259.16 

 605 

Table S4. Radii and corresponding melting temperatures at the position of slab b during the 606 

dynamic analysis. The melting temperatures are calculated with the cylindrical version of the 607 

Gibbs-Thomson equation 608 

Simulation Slab Time / ns Radius / nm Temperature 𝑇𝑚(𝑥) / K 

1 b 93 4.86 263.34 

1 b 93 4.65 263.05 

1 b 93 4.79 263.25 

1 b 117.1 6.00 264.57 

1 b 117.1 5.68 264.28 

1 b 117.1 5.69 264.28 

1 b 172.7 4.82 263.29 
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1 b 172.7 4.54 262.89 

1 b 172.7 4.93 263.44 

1 b 218.6 5.08 263.62 

1 b 218.6 5.17 263.73 

1 b 218.6 5.05 263.59 

1 b 262.1 6.73 265.13 

1 b 262.1 7.19 265.44 

1 b 262.1 6.93 265.27 

2 b 91.9 7.42 265.57 

2 b 91.9 7.32 265.51 

2 b 91.9 7.12 265.39 

2 b 93.7 5.19 263.76 

2 b 93.7 4.99 263.51 

2 b 93.7 4.96 263.48 

2 b 111.6 6.94 265.28 

2 b 111.6 6.83 265.21 

2 b 111.6 6.84 265.21 

2 b 122.9 4.47 262.78 

2 b 122.9 4.39 262.65 

2 b 122.9 4.49 262.82 

2 b 178.9 4.42 262.71 

2 b 178.9 4.16 262.26 

2 b 178.9 4.25 262.42 

2 b 238.2 5.60 264.19 

2 b 238.2 5.54 264.13 

2 b 238.2 5.65 264.25 
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2 b 263.9 6.17 264.71 

2 b 263.9 5.89 264.47 

2 b 263.9 6.11 264.66 

3 b 81.8 4.11 262.17 

3 b 81.8 4.14 262.23 

3 b 81.8 4.13 262.21 

3 b 96.4 5.76 264.36 

3 b 96.4 5.55 264.14 

3 b 96.4 5.82 264.40 

3 b 131.0 4.92 263.42 

3 b 131.0 5.03 263.56 

3 b 131.0 4.91 263.41 

3 b 191.1 5.21 263.78 

3 b 191.1 5.50 264.09 

3 b 191.1 5.03 263.55 

3 b 217.2 4.52 262.86 

3 b 217.2 4.58 262.94 

3 b 217.2 4.64 263.03 

3 b 236.2 6.12 264.67 

3 b 236.2 6.24 264.77 

3 b 236.2 6.57 265.02 

3 b 348.8 4.96 263.47 

3 b 348.8 4.77 263.22 

3 b 348.8 4.73 263.16 

3 b 365.7 5.56 264.15 

3 b 365.7 5.51 264.10 
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3 b 365.7 5.53 264.13 

3 b 382.5 5.97 264.54 

3 b 382.5 5.92 264.50 

3 b 382.5 6.12 264.67 

3 b 401.7 6.87 265.23 

3 b 401.7 6.51 264.98 

3 b 401.7 6.70 265.12 

 609 

  610 
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