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Abstract
We propose a novel multi-view camera model for line-scan cameras with telecentric lenses. The camera model supports an
arbitrary number of cameras and assumes a linear relative motion with constant velocity between the cameras and the object.
We distinguish two motion configurations. In the first configuration, all cameras move with independent motion vectors. In
the second configuration, the cameras are mounted rigidly with respect to each other and therefore share a common motion
vector. The camera model can model arbitrary lens distortions by supporting arbitrary positions of the line sensor with respect
to the optical axis. We propose an algorithm to calibrate a multi-view telecentric line-scan camera setup. To facilitate a 3D
reconstruction, we prove that an image pair acquired with two telecentric line-scan cameras can always be rectified to the
epipolar standard configuration, in contrast to line-scan cameras with entocentric lenses, for which this is possible only under
very restricted conditions. The rectification allows an arbitrary stereo algorithm to be used to calculate disparity images. We
propose an efficient algorithm to compute 3D coordinates from these disparities. Experiments on real images show the validity
of the proposed multi-view telecentric line-scan camera model.

Keywords Line-scan cameras · Telecentric lenses · Camera models · Camera calibration · 3D reconstruction

1 Introduction

Line-scan cameras play an important role in machine vision
applications. The main reason is the lower cost per resolu-
tion in comparison to area-scan cameras. Since the image
height only depends on the number of acquired lines, it is
essentially unlimited. Because line-scan cameras with lines
of up to 16384 pixels are currently available [43, Chap-
ter 2.3.4], images with several hundred megapixels can be
easily acquired. Line-scan cameras are therefore used, for
example, in applications in which small objects must be
inspected over a large field of view or very high accuracy
is required.
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A 2D image is obtained from a line-scan camera by mov-
ing the sensor with respect to the object. Each line of the 2D
image is acquired separately during the relativemotion of the
sensor. The acquired lines are stored in the 2D image from
top to bottom as they are acquired, i.e., the row coordinate is
directly related to the time at which a line was acquired.

In machine vision applications, the relative motion is real-
ized either by mounting the camera above the moving object
or by moving the camera across the stationary object [43,
Chapter 2.3.1.1]. In most applications, the motion is carried
out by a conveyor belt, a linear motion slide, or other linear
actuators. As these examples show, in almost all machine
vision applications, a linear motion is applied. Hence, the
camera moves with constant velocity along a straight line
relative to the object while the orientation of the camera is
constant with respect to the object [14]. In practice, a lin-
ear motion can be realized by using appropriate encoders
that ensure a constant speed [43, Chapter 2.3.1.1], [1, Chap-
ter 6.8]. We will assume a linear motion of the camera in this
paper.

For stereo reconstruction, the rectification of the stereo
image pair into the epipolar standard configuration is essen-
tial for an efficient search for corresponding points. Unfor-
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tunately, for line-scan cameras with entocentric (i.e., per-
spective) lenses, no such rectification exists in general (see
below).Machine vision applications generally are performed
online. Therefore, an efficient epipolar rectification is essen-
tial.

A camera model for setups with a single line-scan camera
with a telecentric lens has been recently proposed in [42]. In
contrast to entocentric lenses, which perform a perspective
projection, telecentric lenses perform a parallel projection of
the world into the image.

In this paper, we extend the single-view telecentric line-
scan camera model proposed in [42] to the multi-view case
with an arbitrary number of cameras. Since there currently are
no multi-view camera models for telecentric line-scan cam-
eras that we are aware of, we discuss the most closely related
work on two-view camera models for entocentric line-scan
cameras in Sect. 2. We then propose our novel multi-view
camera model for telecentric line-scan cameras in Sect. 3. In
Sect. 4, we propose an algorithm to calibrate a multi-view
setup. In Sect. 5.1, we describe a novel geometric algorithm
that can be used to rectify a telecentric line-scan stereo image
pair to the epipolar standard configuration. In Sect. 5.2, we
describe how distances can be computed efficiently from a
rectified telecentric line-scan stereo image pair. The experi-
ments in Sect. 6 show the validity of the proposedmulti-view
telecentric line-scan camera on real-world images. Finally,
Sect. 7 concludes the paper.

2 RelatedWork

We have been unable to find any publications that describe
a multi-view camera model for line-scan cameras with tele-
centric lenses and for a corresponding 3D reconstruction.
The closest approaches we have found are publications
that describe a two-view stereo reconstruction with line-
scan cameras with entocentric lenses. We will discuss these
approaches in this section.

Gupta and Hartley [14] considered the uncalibrated two-
view case and showed that for two entocentric line-scan
cameras without lens distortions, the epipolar lines are actu-
ally not straight lines but hyperbolic arcs. Kim [21] examined
the epipolar geometry for calibrated cameras in a remote-
sensing context in more detail and also showed that the
epipolar lines are hyperbolic arcs. Furthermore, he showed
that the epipolar arcs are not even conjugate, i.e., if the epipo-
lar arc in the second image of one point in the first image is
computed and then the epipolar arcs in the first image for
different points on the epipolar arc in the second image are
computed, in general, they will be different. This shows that
entocentric stereo images generally cannot be rectified rig-
orously. Rectification in this context means that the stereo
image pair is transformed in such away that the epipolar lines

are straight and horizontal and that corresponding epipolar
lines are located at the same row coordinate in both rectified
images. This epipolar standard configuration is extremely
important to achieve a high computation speed in stereo
reconstruction algorithms.

Because of the importance of the epipolar standard con-
figuration, Habib et al. [15,16] examined under which
conditions entocentric line-scan stereo images without lens
distortions can be rectified to this configuration. They derived
that there are exactly two configurations forwhich this is pos-
sible:

– The ideal across-track configuration, for which there
must be a certain time at which the base (the vector
between the projection centers of the two cameras) and
the line sensor of the second camera are coplanar with the
line sensor of the first camera at a particular (potentially
different) instance of time. In simplified terms, thismeans
that the base and the two line sensors must be coplanar
(modulo the fact that one camera may be ahead or behind
in time). In this configuration, the epipolar lines are given
by corresponding rows in both images.

– The ideal along-track configuration, for which the base
and the motion vector must be parallel. In this config-
uration, one camera is ahead and looks backward onto
the scene, while the other camera is behind and looks
forward onto the scene. The base refers to the separation
on the track of the two projection centers at a particular
instance of time. In this configuration, the epipolar lines
are given by corresponding columns in both images.

Habib et al. [15,16] also conclude that for all other configu-
rations, a rigorous rectification requires that a 3D reconstruc-
tion of the scene is already available. We would like to add
to this analysis that this is also the case if lens distortions are
allowed and if the principal point does not lie exactly on the
sensor line. Requiring a 3D reconstruction to be available for
the purpose of epipolar rectification, of course, defeats the
entire purpose of the rectification. Finally,Habib et al. [15,16]
derive that an epipolar rectification would always be possi-
ble if the cameras performed a parallel projection because
the epipolar lines would be straight in this case. This idea is
picked up byMorgan et al. [32], who approximate the epipo-
lar geometry of two entocentric line-scan cameras by that of
two virtual cameras that perform a parallel projection. Since
the actual cameras are entocentric, this causes a geometric
error in the rectified images. Another approach to approxi-
mate the epipolar arcs of entocentric line-scan cameras by
straight line segments is described by Wang et al. [48,49].
Finally, an approximate epipolar rectification approach that
uses a local approximation by a parallel projection in image
tiles is described by de Franchis et al. [7]. All of these
approximate rectification approaches make use of the fact
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that the lenses of spaceborne line-scan cameras have large
focal lengths and, therefore, a narrow field of view. These
approximations no longer work for line-scan cameras with
short focal lengths, i.e., a wide field of view, which are used
in close-range applications.

A few entocentric line-scan stereo systems for industrial
applications have been described in the literature, both for the
across-track as well as the along-track configuration. The
system by Calow et al. [6] and Ilchev et al. [19] uses two
line-scan cameras that are aligned manually using a suitable
mechanical device so that the sensor lines are approximately
coplanar. The papers do not disclose in detail how this align-
ment is achieved, i.e., how it is determined that the sensor
lines are coplanar, and howmuch effortmust be spent to align
the sensor lines. The system by Lilienblum and Al-Hamadi
[27] also uses coplanar sensor lines. The authors describe that
they constructed an adjustment device with which they could
align the sensor lines to be coplanar within 10% of a pixel
using differential micrometer screws that have an adjustment
accuracy of 0.5 µm. Unfortunately, they neither disclose the
costs of the adjustment device nor how the alignment was
actually performed and how much time it took them to align
the sensor lines. The system by Sun et al. [44,45] also uses
the across-track configuration. The authorsmention that their
sensor lines must be aligned to within a few arc seconds in
order to have a misalignment between the epipolar lines that
is small enough for the stereo matching to succeed. Like in
the other papers, the authors unfortunately do not disclose
how the alignment is achieved and how much time is neces-
sary to align the sensors. Finally, the system by Godber et al.
[12] uses the along-track configuration. The authors state that
the epipolar lines are vertical in their configuration without
explicitly deriving that this only is true for the ideal along-
track case. They also do not describe how their cameras are
aligned to achieve this configuration.

As can be seen from the above discussion, stereo recon-
struction with entocentric line-scan cameras is complex. To
be able to perform an epipolar rectification, we need to bring
the cameras into one of the two ideal configurations and we
need to ensure that the sensor line is mounted exactly behind
the principal point. This requires expensive precision equip-
ment and cumbersome manual labor. In contrast, we will
show in this paper that stereo reconstruction is much simpler
and, therefore, cheaper and more user-friendly if line-scan
cameras with telecentric lenses are used.

3 Multi-view CameraModel

3.1 Exterior and Relative Orientation

To define amulti-view cameramodel for telecentric line-scan
cameras, we use the same approach as [40, Section 6.1] to

define the exterior and relative orientations, which we sum-
marize here briefly.

We assume that there are nc telecentric line-scan cam-
eras in the multi-view setup. Furthermore, we use no images
of a calibration object in different poses acquired by the nc
cameras for calibration. We enumerate the calibration object
poses with the variable l (l = 1, . . . , no) and the cameras
with the variable k (k = 1, . . . , nc).

The exterior orientation of the calibration object with
respect to a reference camera coordinate system is spec-
ified by a rigid 3D transformation. It transforms a point
po = (xo, yo, zo)� in the calibration object coordinate sys-
tem into a point pl in the reference camera coordinate system
as follows:

pl = Rlpo + tl . (1)

Here, tl = (tl,x , tl,y, tl,z)� is a translation vector and Rl is a
rotation matrix that is parameterized by Euler angles: Rl =
Rx (αl)Ry(βl)Rz(γl). Without loss of generality, we assume
that the camera coordinate systemof camera 1 is the reference
camera coordinate system.

The point pl is then transformed into the camera coordi-
nate system of camera k using

pk = Rkpl + tk , (2)

where Rk = Rx (αk)Ry(βk)Rz(γk) and tk = (tk,x , tk,y, tk,z)�
describe the relative orientation of camera k with respect to
the reference camera. With the above convention that cam-
era 1 is the reference camera, for k = 1 we have Rk = I and
tk = 0.

Figure 1 visualizes the exterior orientation for the single-
camera case. As discussed immediately above, in this case,
the relative orientation is trivial and therefore not visualized.
The calibration object, placed on a conveyor belt in Fig. 1,
defines the calibration object coordinate system (xo, yo, zo),
as described in detail in Fig. 5. The reference coordinate
system coincides with the camera coordinate system of the
camera for the single-camera case. The next section describes
the conventions that are used to define the camera coordi-
nate system (xk, yk, zk). The notation po ≡ pk in the figure
indicates that the point po, specified in the calibration object
coordinate system, is transformed to the point pk , specified
in the camera coordinate system by (1) and (2). Thus, po and
pk represent the same point on the object (hence, po ≡ pk)
and are merely expressed in different coordinate systems.

The visualization of the relative orientation in Fig. 3
requires us to describe the interior orientation first and is
therefore deferred to the end of Sect. 3.2.
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Fig. 1 Visualization of the exterior and interior orientation of the cam-
eramodel for telecentric line-scan cameras. For simplicity, only a single
camera is shown. Refer to the text for details

3.2 Interior Orientation

Our model of the interior orientation of telecentric line-scan
cameras is derived in [42, Section 4.1]. In this section, we
will give a concise description of the model.

The camera coordinate system of any camera and there-
fore, in particular, a telecentric camera, is defined by the
center of its entrance pupil [40, Section 6.1], [47, Section 3].
Since for telecentric lenses the center of the entrance pupil
lies at infinity [40, Section 4], we move it to some arbitrary
finite location on the optical axis of the lens. This is possible
and correct since this relocation does not change the projec-
tion geometry because all optical rays are parallel. The z axis
of the camera coordinate system is identical to the optical axis
and is oriented such that points in front of the camera have
positive z coordinates. The x axis is parallel to the sensor line
and perpendicular to the z axis. The y axis is perpendicular
to the sensor line and to the z axis and is oriented such that a
right-hand coordinate system results. Figure 1 visualizes the
camera coordinate system of a single telecentric line-scan
camera in the top part of the figure.

The exterior orientation of the camera refers to the first
line of the line-scan image. We will index the lines that are
acquired by the line-scan camera by a parameter t , starting
at 0 for the first line of the image. The units of t are scan lines.
Consequently, the row coordinates in the aggregate line-scan
image are given by t . Since the cameras move relative to
the object, the exterior orientation is different for each line
of each camera. Furthermore, since the cameras may move
with respect to each other, the relative orientation may be
different for each line. However, because we assume a linear
motion, a single relative and exterior orientation per camera
or calibration image, respectively, is sufficient to model the
exterior and relative camera geometries.

The constant linear velocity of the cameras can be ensured
in practice using encoders to trigger the line-scan camera [42,
Section 1], [43, Chapter 2.3.1.1], [1, Chapter 6.8]. Because of
the linear camera motion, a point pk = (xk, yk, zk)�, spec-
ified in the camera coordinate system of camera k, moves
along the straight line pk−tvk , where vk = (vk,x , vk,y, vk,z)

�
is themotion vector of camera k. The vector vk is described in
units of meters per scan line in the camera coordinate system
(i.e., its units are mPixel−1).

Note that vk describes the motion of the camera with
respect to the objects. If the objects are moved with respect
to a stationary camera by a linear motion system with a cer-
tain motion vector wk , the camera motion vector is given
by vk = −wk . This situation is visualized in Fig. 1. Here,
objects are moved in front of the camera by a linear motion
system. Thus, the motion vector of the linear motion system
is displayed as −vk in the lower left corner of the figure.

One of the goals of our camera model is the ability to
model arbitrary lens distortions. In particular, the model does
not assume that the sensor line is aligned with the center of
the lens distortions.We achieve this goal as follows. Concep-
tually, wemodel the sensor line as a particular line of a virtual
area-scan camera. This allows us to model the misalignment
of the line sensor with the center of the lens distortions by
using the principal point of the virtual area-scan camera. This,
in turn, allows us to use well-established lens distortionmod-
els for area-scan cameras that have proven their capability to
model arbitrary lens distortions. In our model, we define the
principal point as the intersection of the optical axis with
the virtual image plane.1 Furthermore, we assume that radial
lens distortions are centered with respect to the optical axis,
i.e., the principal point [40, Sections 6 and 7].

1 Note that for telecentric lenses, all optical rays are parallel and are
perpendicular to the image plane. Therefore, there is no finite perspec-
tive center and hence the definition of the principal point as the foot
of the perpendicular from the perspective center to the image plane
that is used for entocentric lenses (pinhole cameras) is meaningless for
telecentric cameras. Our definition of the principal point as the inter-
section of the optical axis with the image plane sometimes is called the
autocollimation point in photogrammetry [29, Chapter 3.3.2.2].
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Fig. 2 Visualization of the
line-scan lens distortion model.
a An image of a square grid that
is perpendicular to the optical
axis, imaged by a lens without
any distortions. b An image of a
square grid that is perpendicular
to the optical axis, imaged by a
lens with barrel distortions. c A
line sensor, visualized by the
gray line, has been placed
behind the lens of b. The gray
cross visualizes the location of
the optical axis. Note that the
sensor line reprojects to a
curved surface in the world, as
can be seen by its position
relative to the square grid. d The
resulting distortion of the square
grid in a line-sensor image, i.e.,
in an image that results from
moving the sensor line in c in
the direction of the vertical grid
axis

Figure 2 visualizes this model for lens distortions. In
Fig. 2a, an image of a square grid that is perpendicular to
the optical axis, as imaged by a lens without any distortions,
is shown.2 The squares of the grid are imaged as squares by
the distortion-free lens. In contrast, Fig. 2b shows the same
square grid, this time imaged by a lenswith barrel distortions.
The images of the squares are no longer squares. Now, we
place a line sensor behind the lens of Fig. 2b. This is shown in
Fig. 2c, in which the sensor line is visualized by the gray line
and the optical axis is visualized by the gray cross. Since the
sensor line is not aligned with the optical axis, it appears bent
with respect to the square grid in the world, i.e., the sensor
line reprojects to a curved surface in the world. Hence, we
can see that it is essential tomodel the offset of the sensor line
to the optical axis to be able tomodel the apparent bend of the
sensor line. From Fig. 2c, it is clear that the sensor line can be
regarded as one particular line of a virtual area-scan sensor.3

This allows us to model the offset between the optical axis
and the sensor line by the same mechanism as in area-scan
cameras, i.e., by the principal point. This, in turn, allows us
to model the distortion of the sensor line, i.e., the bend of
the sensor line and the lateral distortion within the sensor

2 Note that we are referring to the physical image that the lens produces,
independent of whether any sensor is mounted behind the lens.
3 Just imagine more sensor lines that are parallel to the sensor line in
Fig. 2c.

line, by well established 2D distortion models, as described
in detail below. Hence, the 2D distortion models provide the
means to model the distortions of the sensor line, and, thus,
the distortion in line-scan images: If we move the sensor line
of Fig. 2c in the direction of the vertical axis of the square
grid and assemble a line-scan image, we obtain the image in
Fig. 2d, in which all lines are bent in the same direction.

We now turn to the detailed description of our interior
orientation model. Its geometric basis is the fact that if a
point pk projects to some point ps on the sensor line, the
optical ray of ps and the line pk − tvk on which pk moves
must intersect. Figure 1 displays the points pk and ps as filled
circles. Furthermore, the optical ray that connects them is
displayed as a solid line. The line shows two refraction-like
bends in the lens to visualize the optical magnification that
occurs within the lens. The line is parallel to the optical axis
in its upper and lower parts to visualize the parallel projection
that is effected by the telecentric lens. The line pk − tvk on
which the point pk is moving is also displayed as an arrow in
the figure.

In the following, we will discuss how the optical ray of ps
can be computed.

First, we model that the sensor line may not be perfectly
aligned with the optical axis by using the principal point
(cx , cy)� to model the offset between the optical axis and
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the sensor line.4 In the sensor line coordinate system, the
pixels have coordinates ps = (xs, 0)�. Therefore, the x coor-
dinate cx specifies the horizontal coordinate of the principal
point with respect to the left edge of the sensor line (which
is also the left edge of the image) in units of pixels. This
is identical to the usual convention for area-scan cameras.
The y coordinate cy has a slightly different interpretation:
it measures the distance of the principal point to the optical
axis in the vertical direction in units of pixels. Consequently,
a value of cy = 0 indicates that the line sensor is perfectly
alignedwith the optical axis in the vertical direction. Figure 1
displays the sensor line along with its sensor line coordinate
system and the principal point (cx , cy)� as the offset to the
optical axis in units of pixels in the upper part of the figure.

To convert pixel coordinates into metric coordinates, we
use two scaling factors: sx and sy . The value of sx specifies
the pixel pitch on the line sensor in meters. The value of sy
has no physical meaning on the sensor. It is merely used as
a convenience to be able to specify both coordinates of the
principal point in units of pixels. Typically, sy = sx is used.
Figure 1 displays the pixel pitches sy and sx at the left edge
of the sensor line.

With the principal point and the scaling factors, we can
transform the pixel coordinates ps = (xs, 0)� to intermediate
coordinates in a virtual image plane as follows:

(
xd
yd

)
=

(
sx (xs − cx )

−sycy

)
. (3)

The transformed point pd = (xd, yd)� is visualized by
pd ≡ ps in Fig. 1 to indicate that both points refer to the
same point in two different coordinate systems (the virtual
image plane coordinate system and the sensor line coordi-
nate system, respectively). Note that pd is specified in units
of meters.

The coordinates (xd, yd)� in (3) are affected by lens
distortions. Therefore, in the next step, we rectify these dis-
tortions. We support two distortion models [42, Section 4.1],
[40, Section 6.1], [47, Section 3], [43, Chapter 3.9.1.3]: the
division model [2,10,22–26,39] and the polynomial model
[3,4].

In the division model, which only supports radial distor-
tions, the undistorted point (xu, yu)� is computed from the
distorted point by:

(
xu
yu

)
= 1

1 + κr2d

(
xd
yd

)
, (4)

where r2d = x2d + y2d .

4 Since the interior orientation can be different for each camera, the cor-
rect notation would be (ck,x , ck,y)�. However, to improve readability,
wewill omit the subscript k for the parameters of the interior orientation
in the rest of this section.

In the polynomial model, which supports radial as well
as decentering distortions, the undistorted point is computed
by:

(
xu
yu

)
=

⎛
⎜⎜⎜⎝

xd(1 + K1r2d + K2r4d + K3r6d )
+(P1(r2d + 2x2d ) + 2P2xdyd)

yd(1 + K1r2d + K2r4d + K3r6d )
+(2P1xdyd + P2(r2d + 2y2d ))

⎞
⎟⎟⎟⎠ . (5)

In Fig. 1, the undistorted point pu = (xu, yu)� is visual-
ized by an unfilled circle. Furthermore, it is visualized by a
dashed line that represents the optical ray that would connect
pu and ps if the lens didn’t have any distortions. Like pd, pu
is specified in units of meters. Note that, as is visualized in
Fig. 1, our camera model can handle lateral distortions along
the sensor line as well as longitudinal distortions perpendic-
ular to the sensor line. This is the reason why it can handle
arbitrary distortions. This also means that the reprojection of
the sensor line into 3D, i.e., the set of all optical rays ema-
nating from the sensor line, will not be a plane but a curved
surface if cy �= 0.

Finally, we undo the magnification that is effected by the
telecentric lens:

(
xc
yc

)
= 1

m

(
xu
yu

)
. (6)

Here, (xc, yc)� are the metric coordinates of the point in
the camera coordinate system and m is the magnification
of the telecentric lens. As was already noted previously, the
magnification of the lens is visualized in Fig. 1 by the line that
connects pk and ps. The point pc = (xc, yc)� is not explicitly
visualized. It can be visualized by the projection of the lower
part of the line that connects pk and ps into the xy plane of
the camera coordinate system.

Based on the above discussion, the optical ray correspond-
ing to the point ps on the sensor line is given by

(xc, yc, 0)
�+λ(0, 0, 1)� = (xu/m, yu/m, 0)�+λ(0, 0, 1)�.

(7)

We now have determined the optical ray of ps and the
line along which a point pk moves. As described previ-
ously, these two lines must intersect if pk projects to ps. To
compute the intersection, let us assume that we have trans-
formed the point ps to a distorted image point pd by (3).
Furthermore, let us call the undistortion function in (4) or (5)
u(p) = (ux (xd, yd), uy(xd, yd))�. Then, the intersection of
the moving point pk − tvk and the optical ray (7) results in
the following equation system:
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ux (xd, yd)/m = xk − tvk,x (8)

uy(xd, yd)/m = yk − tvk,y (9)

λ = zk − tvk,z . (10)

It can be seen that λ does not occur in (8) and (9). Therefore,
neither zk nor vk,z influence the projection and we can omit
(10). The remaining equations (8) and (9) must be solved for
t and xd. For the polynomial model, they define a polynomial
equation system of degree 7 in the unknowns xd and t . There-
fore, the equations cannot be solved analytically. Hence, a
numerical root finding algorithmmust be used to solve them.
For the division model, an analytical solution is possible, as
described in [42, Section 4.1].

Once t and xd have been determined, the point is trans-
formed into the image coordinate system of the aggregate
line-scan image by:

(
xi
yi

)
=

(
xd/sx + cx

t

)
. (11)

Having described the interior orientation of the telecentric
line-scan camera model, we conclude this section with the
discussion of the visualization of the relative orientations
that we had deferred at the end of Sect. 3.1. Figure 3 shows a
setup with three telecentric line-scan cameras. The cameras
are moving along the motion vectors vk (k ∈ {1, 2, 3}). As
was described above, the camera coordinate systems, and
therefore, the exterior and relative orientations, refer to the
first line of each camera image, i.e., to the position of the
sensor line at t = 0. The camera coordinate systems of all
three cameras are shown in Fig. 3. It also displays the exterior
orientation Rl , tl of a particular observation of the calibration
object shown at the bottom of the figure. Furthermore, the
figure displays the relative orientations Rk , tk for cameras 2
and 3 (i.e., k ∈ {2, 3}) with respect to the reference camera
(camera 1). In addition, Fig. 3 shows the position of the sensor
line for different values of t as the cameras move along their
linear motion trajectories. Note that for illustration purposes,
the images are only seven pixels high. Finally, Fig. 3 displays
the footprint of the sensor line in theworld for camera 1 as the
cameramoves. To avoid cluttering up the figure, the footprint
is only hinted at by the arrows that emanate from the sensor
lines for cameras 2 and 3.

3.3 Model Degeneracies

The telecentric line-scan cameramodel thatwehavedescribed
has a few important degeneracies, which have been investi-
gated in detail for the single-view case in [42, Section 4.4].
Almost all of them also apply to the multi-view case. Fur-
thermore, some of the degeneracies that occur for multi-view
telecentric area-scan camera setups that were described in

Fig. 3 Visualization of the relative and exterior orientations of the cam-
era model for telecentric line-scan cameras. Refer to the text for details

[40, Section 6.2] also apply to multi-view telecentric line-
scan setups. In this section,we list the degeneracies that affect
the discussion in the remainder of the paper.

Remark 1 The model is overparameterized. The values of m
and sx cannot be determined simultaneously. This can be
solved by fixing sx at the initial value that was specified by
the user. The value of sx is known from the specification of
the sensor. Furthermore, sy is only used to specify the prin-
cipal point in pixels and is therefore kept fixed at the initial
value specified by the user [42, Remark 19]. The next remark
discusses the reasons for our choice of this overparameteri-
zation.

Remark 2 The parameterization of the camera model is very
intuitive for machine vision users [40, Section 6.1]. All
parameters have a physical meaning that is easy to under-
stand. Approximate initial values for the interior orientation
parameters simply can be read off the data sheets of the cam-
era (sx and sy) and the lens (m) or can be obtained easily
otherwise (the initial values for the principal point can be set
to the center of the image horizontally and 0 vertically and the
distortion coefficients can typically be set to 0). Furthermore,
the calibration results are easy to check for validity.

Remark 3 The principal point (cx , cy)� is solely defined by
the lens distortions. Therefore, the smaller the lens distortions
are, the lesswell defined the principal point is. In the extreme,
i.e., if there are no lens distortions, (cx , cy)� and (tl,x , tl,y)�
have the same effect. Therefore, in this case (cx , cy)� should
remain fixed at the initial value specified by the user (typi-
cally, cx is set to the horizontal image center and cy is set to
0) [42, Remark 20].
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Remark 4 The relative orientationparameters (tk,x , tk,y, tk,z)�
cannot be determined uniquely since all cameras can be
moved arbitrarily along their optical axes without chang-
ing the image geometry because of the parallel projection
that telecentric lenses effect [40, Section 4]. To provide a
well-defined relative orientation, we move the origins of the
camera coordinate systems along the respective optical axes
to a sphere with radius 1m when we compute the initial rela-
tive orientations. The center of the sphere is given by a point
that lies at a distance of 1m on the optical axis in front of
the reference camera. The translation parameters (tk,x , tk,y)�
are optimized in the calibration. Therefore, their final values
may differ slightly from the sphere with radius 1m. In this
respect, multi-view telecentric line-scan setups behave in an
identical manner as multi-view telecentric area-scan setups
[40, Remark 4].

Remark 5 For planar calibration objects, the rotation part
of the exterior orientation can only be determined up to a
twofold ambiguity from a single camera. For example, a
plane rotated by αl = 20◦ looks identical to a plane rotated
by αl = −20◦. This is a special case of a Necker rever-
sal when the object is planar [36, Section 4.1], [17, Chapter
14.6]. In amulti-view setup, these individual exterior orienta-
tion ambiguities can be resolved, albeit only up to an overall
Necker reversal, which also affects the relative orientations.
This ambiguitymust be resolvedmanually by the user. In this
respect, multi-view telecentric line-scan setups behave in an
identical manner as multi-view telecentric area-scan setups
[40, Remark 5].

3.4 Motion Configurations

The telecentric line-scan cameramodel we have discussed so
far has assumed an individual motion vector vk per camera.
This corresponds to the situation shown in Fig. 4a, in which
the cameras move independently from each other across the
object to acquire the images.While this setup is possible, and
we therefore support it in our camera model, the much more
common configuration is displayed in Fig. 4b, c. In Fig. 4b,
the cameras aremounted rigidly above a linearmotion system
that moves the object in front of the cameras, while in Fig. 4c,
the cameras are mounted rigidly on a linear motion system
that moves the cameras across the object. In both cases, the
motion vectors of the two cameras are coupled and thus not
independent from each other.

In Fig. 4b, c, we can see that there is only a single common
motion vector. Without loss of generality, we can assume the
common motion vector is given in the coordinate system
of the reference camera. As described in Sect. 3.1, we can
assume that camera 1 is the reference camera. Let us call the
commonmotion vector of the reference camera v. Then, it can
be seen that the motion vectors vk of the remaining cameras

(a)

(b)

(c)

Fig. 4 Different motion configurations for telecentric line-scan cam-
eras. The figures show two line-scan cameras, each of which acquires an
image of a calibration object. The cameras’motion vectors are indicated
by arrows. a Two cameras that acquire the images independently with
independent motion vectors. b, c Two cameras with common motion
vectors. b The cameras are mounted rigidly above a linear motion sys-
tem that moves the object in front of the cameras. c The cameras are
mounted rigidly on a linear motion system that moves the cameras
across the object

can be obtained via the rotation of the relative orientations
(2) as follows:

vk = Rkv . (12)

Remark 6 Remark 22 in [42] and (10) show that vk,z has no
effect on the projection of a point into the image of camera
k. Therefore, for cameras with independent motion vectors,
vk,z cannot be determined. In this configuration, we leave
vk,z at the initial value specified by the user. The situation is
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different for cameras with a common motion vector, as the
following proposition shows.

Proposition 1 In a setup with at least two telecentric line-
scan cameras that have a commonmotion vector, the common
motion vector v can be determined uniquely if and only if
there are at least two cameras that have a rotation in their
relative orientation that is not purely around the z axis (of
either camera).

Proof Without loss of generality, let us denote the two cam-
eras that have a rotation in their relative orientation that is not
purely around the z axis by 1 and 2. As before, we assume
that camera 1 is the reference camera, i.e., the rotation part of
its relative orientation is given by the identity matrixI. Then,
we can denote the rotation part of the relative orientation of
camera 2 by R. According to (12), we have

v1 = Iv (13)

v2 = Rv (14)

Because of Remark 6, we can only infer the x and y compo-
nents of the motion vector in each camera coordinate system.
Hence, we have

(
v1,x
v1,y

)
=

(
vx
vy

)
(15)

(
v2,x
v2,y

)
=

(
r11vx + r12vy + r13vz
r21vx + r22vy + r23vz

)
. (16)

Since v1,x , v1,y , v2,x , v2,y , and R can be determined in princi-
ple (in practice, through calibration with independent motion
vectors; see Sect. 4) and therefore can be considered as
known, (15) and (16) constitute an equation system for v
that can be written as follows:
⎛
⎜⎜⎝

1 0 0
0 1 0
r11 r12 r13
r21 r22 r23

⎞
⎟⎟⎠

⎛
⎝ vx

vy
vz

⎞
⎠ =

⎛
⎜⎜⎝

v1,x
v1,y
v2,x
v2,y

⎞
⎟⎟⎠ . (17)

Thus, we have four equations for the three unknowns of v.
This system is non-degenerate if the matrix on the left-hand
side has rank 3. This is the case if and only if the rotation R
is not purely around the z axis, i.e., if r13 �= 0 or r23 �= 0. ��
Remark 7 The equation system in (17) is actually overde-
termined. Therefore, in practice, we can solve for v in a
least-squares fashion using the singular value decomposi-
tion (SVD) [34, Chapter 2.6]. In fact, this approach extends
to a setupwith an arbitrary number of cameras. The reference
camera results in an equation set of the form (15), while each
additional camera results in an equation set of the form (16).
Therefore, with nc cameras, we obtain a 2nc × 3 matrix that
we can use to solve for v using the SVD.

Remark 8 The case in which all relative orientations solely
contain rotations around the z axis is irrelevant in practice. If
this were the case, all optical rays would be in the direction
of the common z axis. Hence, they would all be parallel and
there would be no parallaxes fromwhich a 3D reconstruction
could be obtained.

Remark 9 For the two-view case, the equation system (17)
canbe solved analytically for the pure along-track and across-
track cases.

In the pure along-track case, the rotation part of the relative
orientation is a rotation around the x axis by an angle α.
Therefore, the design matrix D of the left-hand side of (17)
has the following form:

D =

⎛
⎜⎜⎝
1 0 0
0 1 0
1 0 0
0 cosα − sin α

⎞
⎟⎟⎠ . (18)

Let us denote the vector on the right-hand side of (17) by w.
The solution of (17) can be computed based on the normal
equations as

v =
(
D�D

)−1
D�w . (19)

Hence, for the pure along-track case, we have

v =
⎛
⎝ (v1,x + v2,x )/2

v1,y
(v1,y cosα − v2,y)/ sin α

⎞
⎠ . (20)

Consequently, it can be seen that the value of vz only depends
on the vy components of the individual cameras. Since v2,y
linearly depends on v1,y via the relative orientation, we can
see that vz depends on v1,y = vy . Therefore, we can expect
vz to be highly correlatedwith vy in the two-view along-track
case.

For the pure across-track case, the rotation part of the
relative orientation is a rotation around the y axis by an angle
β. Using the same approach, it can be shown that

v =
⎛
⎝ v1,x

(v1,y + v2,y)/2
(−v1,x cosβ + v2,x )/ sin β

⎞
⎠ . (21)

Hence, vz only depends on the vx components of the indi-
vidual cameras. Therefore, we can expect vz to be highly
correlated with vx in the two-view across-track case.
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3.5 Summary

Summarizing, the camera model for a multi-view setup
with telecentric line-scan cameras consists of the following
parameters:

– The six parameters of the exterior orientation (modeling
the pose of the calibration objects in the no images): αl ,
βl , γl , tl,x , tl,y , and tl,z .

– The six parameters of the relative orientation of the nc
cameras with respect to camera 1: αk , βk , γk , tk,x , tk,y ,
and tk,z .

– The interior orientation of each camera: mk ; κk or Kk,1,
Kk,2, Kk,3, Pk,1, Pk,2; sk,x , sk,y , ck,x , and ck,y .

– For setups with independent motion vectors: the inde-
pendent motion vectors given by vk,x , vk,y , and vk,z .

– For setups with a common motion vector: the common
motion vector vx , vy , and vz .

4 Calibration

To calibrate the cameras, we use an extension of the calibra-
tion algorithms thatwe have used previously for other camera
models [40,42,47]. We will describe this extended algorithm
in the following.

We use the planar calibration object with circular control
points in a hexagonal layout that is described in [40, Sec-
tion 9]. Figure 5 shows an image of this type of calibration
object. Planar calibration objects have the advantage that they
can be manufactured very accurately and that they can be
handled more easily by the users than 3D calibration objects.
Another distinctive advantage of planar calibration objects is
that they can be used conveniently in backlight applications
if the calibration object is opaque and the control points are
transparent [43, Chapter 4.7]. Further advantages of this kind
of calibration object are discussed in [40, Section 9].

The calibration object is manufactured with micrometer
accuracy. Therefore, the 3D coordinates of the centers of the
control points are known very accurately.We denote them by
p j ( j = 1, . . . , nm), where nm denotes the number of control
points on the calibration object.

To calibrate the camera setup, the user acquires no images
of the calibration object with each of the nc cameras (cf.
Sect. 3.1). It is not necessary that the calibration object is
visible in all images simultaneously. Furthermore, it is not
necessary that all control points are visible in any particu-
lar image. We will model this below by a variable v jkl that
is 1 if the control point j of the observation l of the cal-
ibration object is visible with camera k, and 0 otherwise.
Overall, however, there must be a chain of observations of
the calibration object in multiple cameras that connects all
the cameras.

Fig. 5 An image of the planar calibration object. The calibration object
coordinate system is defined by the five fiducial patterns that are defined
by the circles that contain small black dots. Each fiducial pattern can be
regarded as a hexagon with certain filled and dotted circles. The fiducial
pattern in the center that contains six adjacent circles with black dots
defines the origin of the calibration object coordinate system and its
orientation. The origin is defined by the right circle in the middle row
(i.e., by the center of the hexagon). The x axis points horizontally to the
right from the origin in the image, i.e., toward the adjacent filled circle.
The y axis points vertically downward, i.e., toward themiddle of the two
dotted circles below. The z axis forms a right-handed coordinate system
with the x and y axes, i.e., it points away from the viewer through the
calibration object

As described in Sect. 3.1, we denote the exterior orien-
tation of the calibration object in the reference camera by
Rl and tl (l = 1, . . . , no) and the relative orientation of the
cameras with respect to the reference camera by Rk and tk
(k = 1, . . . , nc). We denote the corresponding parameters
by the vectors el and rk .

Moreover, we denote the interior orientation of camera
k by the vector ik and the motion vector of camera k by
vk . For setups with independent motion vectors, this is the
motion vector of camera k, while for cameras with a common
motion vector, vk = Rkv (cf. (12)). Hence, for cameras with
a common motion, there is only one global motion vector v.

Furthermore, we denote the projection from world coor-
dinates to pixel coordinates by π(p j , el , rk, ik, vk).

5 Finally,
we denote the image coordinates of the centers of the control
points that have been extracted from the calibration images
by p jkl .

Then, to calibrate the multi-view camera setup, the fol-
lowing function is minimized:

ε2 =
no∑
l=1

nc∑
k=1

nm∑
j=1

v jkl‖π(p j , el , rk, ik, vk) − p jkl‖22 . (22)

For setups with independent motion vectors, (22) can be
minimized using the standard sparse Levenberg–Marquardt
algorithm with a bipartite parameter set (Algorithm A6.4)
that is described in [17,AppendixA6]. For setupswith a com-
monmotion vector, however, we obtain a tripartite parameter

5 π(p j , el , rk , ik , vk) is given by (1), (2), solving (8) and (9) for t and xd
[42, Section 4.1], and (11); in addition, (12) is used for setups with
common motion vectors; cf. Sects. 3.1, 3.2, and 3.4 .
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set because the common motion vector v creates a global
parameter set that is influenced by all observations. This
changes the structure of the Jacobians in a material way and
requires an extension of the sparse Levenberg–Marquardt
algorithm that we describe in Appendix A. From the results
of the optimization, we can calculate the covariances of the
optimized parameters in the usual manner [17, Chapter 5],
[11, Chapter 4]. In particular, we use (Algorithm A6.4) of
[17, Appendix A6] and, for setups with a common motion
vector, the extension we propose in Appendix A.

The control point locations in the images p jkl are extracted
by fitting ellipses [9] to edges extracted with a subpixel-
accurate edge extractor [37, Chapter 3.3], [38]. As discussed
in [40, Section 5.2] and [30], this causes a bias in the
point positions. Since telecentric line-scan cameras per-
form an affine projection, there is no perspective bias, i.e.,
the bias consists solely of distortion bias. The bias can be
removed with the approach for entocentric line-scan cam-
eras described in [40, Section 10].

Minimizing (22) requires initial values for the unknown
parameters. Initial values for the interior orientation param-
eters ik can be obtained from the specification of the camera
and the lens (see Remarks 1 and 2 and [42, Section 4.2]). An
approximate value for vk,y usually will be known from the
considerations that led to the line-scan camera setup.6 The
initial value of vk,x typically can be set to 0. The initial value
of vk,z usually can also be set to 0. With known initial val-
ues for the interior orientation, the control point coordinates
p j and their corresponding image point coordinates p jkl can
be used as input for the OnP algorithm described in [41] to
obtain estimates for the exterior orientations el of the cali-
bration object. These, in turn, can be used to compute initial
estimates for the relative orientations rk .7

For setups with a common motion vector, the user-
specified initial estimates of vk are typically not accurate
enough to be able to reconstruct initial estimates for v and Rk

that are accurate enough to ensure convergence of the mini-
mization. Therefore, we first calibrate the setup as if it were

6 Machine vision users typically will make the pixels in the line-scan
image square (at least approximately). Therefore, theywill already have
calculated the speed of the linear actuator and the line acquisition rate
that achieve this goal. From this, the value of vk,y can be calculated in
a straightforward manner.
7 It is obvious that a simultaneous observation of the calibration object
by two different cameras defines an estimate of the relative pose of
the two cameras. We average all relative orientations that are obtained
in this manner between a particular pair of cameras to obtain a more
accurate estimate of the relative orientation of this camera pair. All
pairs of cameras that receive a relative orientation in this manner (i.e.,
by means of at least one simultaneous observation of the calibration
object) form a graph. As noted above in this section, this graph must
be connected for the calibration to be possible. A relative orientation
between the reference camera and any other camera can be computed
by a graph traversal from the reference camera to the other camera and
accumulating the relative orientations along the path.

a setup with independent motion vectors. We can then use
the algorithm described in Remark 7 to compute the initial
estimate for v and subsequently use this estimate to calibrate
the setup as a setup with a common motion vector.

5 Stereo Rectification and Reconstruction

5.1 Stereo Rectification

As discussed in Sect. 2, stereo rectification for line-scan cam-
eras with entocentric lenses is only possible in very restricted
circumstances. In contrast, for line-scan cameras with tele-
centric lenses, stereo rectification can always be performed,
as we will discuss in this section.

Proposition 2 In contrast to line-scan cameras with ento-
centric lenses, for line-scan cameras with telecentric lenses,
lens distortions can be removed without knowledge of the 3D
geometry of the scene.

Proof Thiswas shown in [42,Remarks 13 and 14].Webriefly
describe the proof here.

As discussed previously, (8) and (9) do not depend on zc.
Therefore, given an image point (xi, yi)�, the corresponding
point (xc, yc, 0)� in the camera coordinate system can be
computed as follows. First, (11) is inverted:

(
xd
t

)
=

(
sx (xi − cx )

yi

)
. (23)

Next, (8) and (9) are solved for (xc, yc)�:

xc = ux (xd, yd)/m + tvx (24)

yc = uy(xd, yd)/m + tvy , (25)

where yd = −sycy [42, Remark 13].
The point (xc, yc, 0)� can then be projected into a rectified

camera forwhich all distortion coefficients have been set to 0.
Moreover, any skew in the pixels can be removed by setting
vx to 0 in the rectified camera. Finally, square pixels can be
enforced by setting sx to min(sx ,mvy) and then setting vy to
sx/m [42, Remark 14]. ��

Figure 6 visualizes the image distortion rectification of
Proposition 2. The gray lines represent the back transfor-
mation of the distorted image into camera coordinates, i.e.,
the result of applying (23)– (25) to the original, unrectified
image. The vector vu represents the motion vector of the
unrectified image. It has a motion component vx �= 0, result-
ing in skewed pixels. Furthermore, the value of vy is not
commensurate with sx , i.e., the image has non-square pixels.
The rectified image is represented by the black lines. The
vector vr represents the motion vector in the rectified image.
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Fig. 6 Visualization of the image distortion rectification of Proposi-
tion 2. Refer to the text for details

It has vx = 0 and vy is commensurate with sx , i.e., the image
has square pixels.

It is shown in [42, Remark 18] that telecentric line-scan
cameras without lens distortions are equivalent to tele-
centric area-scan cameras. A telecentric line-scan camera
that has been rectified with the approach described in the
proof of Proposition 2 has no distortions. Since telecentric
area-scan cameras can always be stereo-rectified with lens
distortions [33, operator reference of gen_binocular_
rectification_map] or without lens distortions [18,
28], this shows that stereo rectification of telecentric line-
scan cameras is always possible without knowing the 3D
geometry of the scene, in contrast to entocentric line-scan
cameras, where this is impossible in general. In the follow-
ing, wewill describe an explicit stereo rectification algorithm
for telecentric line-scan cameras.

As shown in [42, Theorem 1], telecentric line-scan cam-
eras without lens distortions are affine cameras. Therefore,
once we have removed the lens distortions, the epipolar lines
and planes are already parallel to each other in each image
[17, Chapter 14.1]. This situation is depicted in Fig. 7, which
shows unrectified images of two telecentric line-scan cam-
eras. We have used two cameras with independent motion
vectors in a relative orientation that includes a large rotation
around the z axes tomake the visualization of the rectification
algorithm clearer. The figure assumes that any lens distor-
tions have been removed by the algorithm of Proposition 2.
Therefore, the motion vectors of the unrectified images are in
the same direction as the y axes of the two camera coordinate
systems and thus are not shown explicitly. Figure 7 visualizes
the camera coordinate systems of the two unrectified cam-
eras as well as the optical axes of the two cameras, which
coincide with the z directions of the two camera coordinate
systems. Note that the optical axes of the two cameras do not
intersect but are skew. Figure 7 also shows two homologous
points in each image, their corresponding optical rays, the
corresponding 3D points, and the epipolar lines correspond-
ing to the two points in the other image. Since the optical

rays are parallel, since the epipolar lines are the projections
of the optical rays into the other images, and since the tele-
centric line-scan cameras perform a parallel projection, the
epipolar lines are parallel to each other. However, they are
not aligned with the rows of the images, i.e., with the x axes.
Consequently, the only steps that we need to perform geo-
metrically to rectify the images are to rotate them around
their z axes to make the epipolar lines horizontal, to scale the
images appropriately to make the epipolar lines equidistant,
and to translate the images to make corresponding epipolar
lines have the same row coordinate. We will discuss in the
following how this can be achieved by a suitable modifica-
tion of the interior and relative orientation parameters of the
cameras.

First of all, we note that the direction of the z axes of
the two cameras must remain invariant since they define the
direction of the optical rays in the two cameras. Let us denote
the two z axes of the unrectified cameras by z1;u and z2;u
(or z1,2;u for short). They are given by the third column of
the respective rotation matrices R1 and R2 of the relative
orientation of the two cameras with respect to the reference
camera. Therefore, the z axes of the rectified cameras are
given by

z1,2;r = z1,2;u . (26)

To make the epipolar lines horizontal, we can define a
common y axis for the two cameras as the vector product of
the two z axes:

y1,2;r = z1;r × z2;r
‖z1;r × z2;r‖2

. (27)

Note that the vector product never vanishes in practice
because z1;r and z2;r cannot be parallel for there to be paral-
laxes.

Finally, the rotated x axes are given by

x1,2;r = y1,2;r × z1,2;r
‖y1,2;r × z1,2;r‖2

. (28)

Figure 7 displays the result of computing the camera coor-
dinate systems of the rectified images as well as the rectified
image planes, which lie in the xy plane of the rectified cam-
era coordinate systems. The rectified images are larger than
the original images because they include the entire projection
of the unrectified images. They are displayed at a relatively
large distance behind the unrectified images to avoid clut-
tering up the figure. Note that, according to Remark 4, we
can move the cameras arbitrarily along their optical axes.
Therefore, the figure displays the geometry of the rectified
images correctly. Furthermore, note that the rectified camera
coordinate system axes have completely different directions
than the unrectified camera coordinate system axes. Since
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Fig. 7 Visualization of the
epipolar rectification of two
telecentric line-scan images.
Refer to the text for details

the motion vector of the rectified images is in the y direction
of the rectified camera coordinate system, it is not shown.
Note that the rectified images thus have a completely differ-
ent (virtual) scanning direction than the unrectified images.

As was noted above, in general the optical axes of the
two cameras do not intersect. Therefore, we determine the
distance dy in the y direction of the two optical axes of the
rotated cameras (see Fig. 7). We then shift the lower camera
upward and the upper camera downward by±dy/2,where the
sign is chosen appropriately for each camera. We then must
compensate this shift of the camera in 3D by an appropriate
offset of the principal point in the y direction to obtain the
original 3D ray geometry. The shifts in the principal points
are given by

o1,2;y = ±(dy/2)(m1,2/s1,2;y) , (29)

with the sign chosen appropriately for each camera, depend-
ing on which direction the camera was shifted in the relative
orientation. This ensures that c1;y = c2;y . Figure 7 displays
the shifted optical axes of the rectified images. Note that they
intersect at the center of the line segment that connects the
two unrectified optical axes with the shortest distance, i.e.,
the line segment that corresponds to dy. Furthermore, Fig. 7
displays the vertical offsets o1,2;y of the principal points.
Finally, Fig. 7 displays the rectified points that correspond
to the two points in each unrectified image as well as their
corresponding epipolar lines. Note that the epipolar lines are
horizontal in the rectified images.

After performing the above steps, we have ensured that the
epipolar lines have the same y coordinates in both rectified
cameras. We now must ensure that that the epipolar lines
have the same row coordinates in both rectified images. To

achieve this, we set the magnification of both cameras to
their mean value (m1 + m2)/2. Furthermore, we make the
pixels of both cameras the same size by setting them to their
mean values (s1;x + s2;x )/2 and (s1;y + s2;y)/2 and adapt
v1,2;y accordingly to preserve the squareness of the pixels that
was achieved by the approach in the proof of Proposition 2.
Moreover, we set v1,2;z to 0.8 Finally, we shift both rectified
cameras along their z axes such that their distance is 1m.
These last steps are not visualized in Fig. 7 because they
would clutter up the figure too much.

Both rectification transformations, the removal of the lens
distortions and the stereo rectification can be combined into
a single overall transformation that can be computed offline
and stored in a 2D transformation lookup table to facilitate
a rapid image rectification. This is useful because especially
the removal of lens distortions is computationally expensive.

5.2 Stereo Reconstruction

With the rectified images, we can use any two-view stereo
algorithm to compute the disparities in a stereo image pair.
Reviews of dense stereo reconstruction algorithms are given,
for example, in [5,35,46]. What is still required, however, is
an efficient algorithm to convert the disparities to 3D coor-
dinates.

To construct an efficient algorithm, we assume that the
two-view camera geometry is described with the first cam-
era as the reference camera and that the relative orientation
of the second camera is specified with respect to the first

8 This destroys the relation (12) for setups with a common motion
vector.However, this is immaterial for the purposes of 3D reconstruction
since vz does not influence the optical ray geometry.
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camera. The relative orientations of any two cameras in a
multi-view setup can be transformed into this convention in
a straightforward manner. In addition, we make use of the
fact that for rectified telecentric line-scan cameras, the rela-
tive orientation only consists of a rotation around the y axis
(i.e., the relative orientation angles α and γ are 0) and a trans-
lation of the form (tx , 0, tz)� (i.e., the translation ty of the
relative orientation is 0). Furthermore, we make use of the
fact that both magnifications are identical (m1 = m2 = m),
that cy is identical for both cameras (c1;y = c2;y = cy), that
sx is identical for both cameras (s1;x = s2;x = sx ), and that
s1,2;x = mv1,2;y .

Let us suppose that we have a point correspondence
c1 ↔ c2 = c1 + d in row 0 of the image, where c1,2 are
the column coordinates of the corresponding points and d is
the disparity of the points. A point correspondence in any
other row obviously will only influence the y coordinate and
not the x and z coordinates of the reconstructed point.

Then, the optical ray in the first camera is given by

⎛
⎝ x1

0
0

⎞
⎠ + λ

⎛
⎝0
0
1

⎞
⎠ , (30)

where x1 = (c1 − c1;x )sx/m. The direction of the x axis of
the second camera is given by (r11, r21, r31)� in the coor-
dinate system of the first camera, where (r11, r21, r31)� =
(cosβ, 0,− sin β)� is the first column of the relative orienta-
tion matrix. The direction of the z axis of the second camera
is given by (r13, r23, r33)� in the coordinate system of the
first camera, where (r13, r23, r33)� = (sin β, 0, cosβ)� is
the third column of the relative orientation matrix. Conse-
quently, the optical ray in the second camera is given in the
coordinate system of the first camera by

⎛
⎝ tx + x2 cosβ

0
tz − x2 sin β

⎞
⎠ + μ

⎛
⎝ sin β

0
cosβ

⎞
⎠ , (31)

where x2 = (c2 − c2;x )sx/m = (c1 + d − c2;x )sx/m.
We can now equate (30) and (31) and solve for μ and λ.

Note that λ is the z coordinate of the reconstructed point in
the camera coordinate system of camera 1. This results in

z = tz − tx
tan β

+ (c1 − c1;x )sx
m tan β

− (c1 + d − c2;x )sx
m sin β

.(32)

The x coordinate of the reconstructed point is given by

x = x1 = (c1 − c1;x )sx
m

. (33)

x1

z1

c1;x

x2z2

c2;x

c2 x2≡

c1 x1

x1

⎝
⎜
⎛

⎟
⎞

⎠

⎛
⎜
⎝

⎞
⎟
⎠

+ λ
0
0

0
0
1

tx tz,)0,β,0( ),0,(

z= λ
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⎝

sinβ

cosβ
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⎜
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⎟
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Fig. 8 The geometry of the stereo reconstruction from rectified images.
Refer to the text for details

Finally, the y coordinate of a point correspondence in an
arbitrary row r is given by:

y = y1 = (r − cy)sy
m

. (34)

The only variables in (32)–(34) are c1, d, and r . The
remaining terms are constant for all points in a disparity
image. Consequently, they can be factored out as constant
factors or summands. Therefore, the 3D coordinates can be
reconstructed very efficiently.

The geometry of the stereo reconstruction from rectified
images is shown in Fig. 8. It displays a top view of the two
cameras.Hence, the image planes are visualized by lines. The
figure shows the two camera coordinate systems and their
relative orientation. The y axes are not shown since the view
is along the common y direction of both cameras.9 Figure 8
also shows the x coordinates c1,2;x of the principal points and
the homologous points c1,2. As before, c1,2 ≡ x1,2 indicates
that these points are the same points represented in different
coordinate systems. Finally, the figure shows the optical rays
(30) and (31).

9 Note that the angle β is visualized in the correct orientation. It turns
counterclockwise when viewed from the positive y axis back to the
origin, i.e., when viewed in the negative y direction. In the figure, we
are looking in the positive y direction. Therefore, β turns clockwise in
this view.
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6 Experiments

In this section, we will perform experiments for a two-view
telecentric line-scan camera setup. The setup is depicted in
Fig. 9. It consists of two Basler raL2048-48gm line-scan
cameras (14.3mm sensor size, CMOS, 7.0µm pixel pitch,
2048×1) in an along-track configuration.10 The back camera
looks forward and was equipped with an Opto Engineer-
ing TC2MHR058-F telecentric lens (nominal magnification:
0.228, working distance: 158mm), while the front camera
looks backward and was equipped with an Opto Engineer-
ing TC2MHR048-F telecentric lens (nominal magnification:
0.268, working distance: 133mm). The back camera was
selected as the reference camera. A line-shaped light source
was used to illuminate the footprint of both sensor lines. A
linear stage was used to move the objects in front of the two
rigidly mounted cameras. An encoder triggered the image
acquisition to ensure a constant speed and a simultaneous
acquisition with both cameras.

6.1 Camera Calibration

The cameras were calibrated by acquiring 16 image pairs of
an 8×6cm2 planar calibration object (i.e., 32 images in total,
16 per camera). Care was taken to use all degrees of freedom
of the exterior orientation as well as possible. In particular,
the calibration object was rotated around the z axis to make
full use of the 360◦ angle range. Furthermore, the calibration
object was tilted with respect to the z axis to cover the depth
of field of the cameras as well as possible. Since the cameras
were mounted rigidly with respect to each other, a common
motion vector was assumed in the calibration. The results of
calibrating the setup using the division distortion model are
shown in Table 1. The polynomial distortion model resulted
in root mean square (RMS) errors that were insignificantly
smaller and are therefore not shown. It can be seen that the
calibration returns magnification values that are relatively
close to their nominal values. Furthermore, the results show
that both lenses have relatively small distortions. Because of
the small distortions, the principal points have relative large
standard deviations, which is to be expected according to
Remark 3. Nevertheless, the principal point is significantly
different from the center of the sensor line for both cameras.
A significance test based on the approach in [13] like the
one performed in [42, Section 5.2] showed that all distortion
parameters (cx , cy , and κ) are highly significant and, there-
fore, no over-fitting occurs, even for these small distortions.

10 Adding further cameras adds no additional complexity to the model.
Therefore, we have not performed any test on real images with more
than two cameras. In our software engineering environment, we test
the model also with more than two cameras in all supported motion
configurations based on synthetic calibration images.

(a)

(b)

Fig. 9 Stereo setup with two telecentric line-scan cameras. a Image
of the setup. b Drawing of the setup. The cameras were mounted in
an along-track configuration. A line-shaped light source was used to
cover the footprint of both sensor lines. An encoder triggered the image
acquisition to ensure a constant speed and a simultaneous acquisition
with both cameras

In addition to examining the standard deviations of the
interior orientation parameters in Table 1, we also examine
their correlations. These can be computed from (62) as

ci j = σi j

σiσ j
(35)

where σi j denotes the corresponding element of�k and σl =√
σll for l ∈ {i, j}.
The correlations for the back camera are shown in Table 2,

while those of the front camera are shown in Table 3. It can
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Table 1 Calibration results for a stereo setup with two Basler raL2048-48gm line-scan cameras in an along-track configuration with a common
motion vector

RMS error (Pixel) 0.5418

Camera Back Std. Dev. Front Std. Dev.

m (Scalar) 0.22804 3.3505 × 10−6 0.26718 4.1350 × 10−6

κ (m−2) −16.9515 0.5089 12.9459 0.5394

sx (µmPixel−1)∗ 7.0 0 7.0 0

sy (µmPixel−1)∗ 7.0 0 7.0 0

cx (Pixel) 1185.599 7.025 840.746 10.183

cy (Pixel) 70.533 11.772 −76.291 20.316

vx (µmPixel−1) 0.5749 5.8499 × 10−4 0.3929 5.8592 × 10−4

vy (µmPixel−1) 23.0154 1.2625 × 10−3 24.7329 1.1129 × 10−3

vz (µmPixel−1) 15.4843 1.9721 × 10−3 −12.5671 2.0600 × 10−3

tx (mm) 0 – 9.193 –

ty (mm) 0 – −848.842 –

tz (mm) 0 – 545.569 –

α (◦) 0 – −60.865 –

β (◦) 0 – -0.107 –

γ (◦) 0 – 0.381 –

The back camera is the reference camera and was equipped with an Opto Engineering TC2MHR058-F telecentric lens. The front camera was
equipped with an Opto Engineering TC2MHR048-F telecentric lens. The calibration was performed with the division distortion model. The
polynomial distortion model resulted in RMS errors that were insignificantly smaller. The table shows the RMS error, the interior orientation
parameters and their standard deviations, the motion vectors and their standard deviations, and the relative orientation (the covariances and standard
deviations of the relative orientation are currently not computed by our software). The common motion vector is the motion vector of the back
camera. The motion vector of the front camera is the common motion vector transformed by the rotation of the relative orientation. Parameters
indicated by ∗ are excluded from the calibration (cf. Remark 1). Regarding the seemingly large values of the translation vector (tx , ty, tz)�, see
Remark 4

Table 2 Correlations of the optimized interior orientation parameters of the back camera of Table 1 rounded to three significant figures

m κ cx cy vx vy vz

m 1.000 − 0.832 − 0.369 − 0.053 0.040 0.095 − 0.095

κ − 0.832 1.000 0.686 0.180 − 0.015 − 0.018 0.018

cx − 0.369 0.686 1.000 0.136 − 0.042 − 0.017 0.018

cy − 0.053 0.180 0.136 1.000 − 0.132 0.003 0.000

vx 0.040 − 0.015 − 0.042 − 0.132 1.000 − 0.190 0.180

vy 0.095 − 0.018 − 0.017 0.003 − 0.190 1.000 − 0.995

vz − 0.095 0.018 0.018 0.000 0.180 − 0.995 1.000

Table 3 Correlations of the optimized interior orientation parameters of the front camera of Table 1 rounded to three significant figures

m κ cx cy vx vy vz

m 1.000 − 0.820 − 0.380 0.001 0.019 − 0.093 − 0.094

κ − 0.820 1.000 0.720 0.156 0.004 0.014 0.014

cx − 0.380 0.720 1.000 0.123 − 0.004 0.005 0.005

cy 0.001 0.156 0.123 1.000 0.000 0.004 0.003

vx 0.019 0.004 − 0.004 0.000 1.000 0.184 0.192

vy − 0.093 0.014 0.005 0.004 0.184 1.000 0.995

vz − 0.094 0.014 0.005 0.003 0.192 0.995 1.000
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Fig. 10 One pair of images of
the planar calibration object that
were used to calibrate the
line-scan cameras. Residuals are
overlaid for each circular
calibration mark as white lines.
The residuals were scaled by a
factor of 70 for better visibility.
The predominant part of the
residuals is a systematic
periodic error in the direction of
the movement, i.e., in vertical
direction in the images. It is
very similar for corresponding
control points

be seen that there are only very small correlations between
almost all interior orientation parameters, with the following
exceptions:

– There is a high correlation between m and κ . This is not
surprising since the distortions in both cameras are quite
small and a small change in m can be exchanged for a
small change in κ in this case.

– There is a high correlation between cx and κ . This is
not surprising in light of Remark 3. What is surprising,
however, is the relatively small correlation between cy
and κ . We believe this is caused by the systematic errors
that we will discuss immediately below.

– There is a very high correlation between vz and vy . This
is not surprising in light of Remark 9.

The results in Table 1 show that there is a relatively large
RMS error of 0.5418. To examine the reason for these errors,
it is instructive to investigate the individual residuals. The
residuals are the differences between the extracted centers
of the calibration marks in the image and the projections of
the corresponding points on the calibration object into the
image. The projection is performed by using the calibrated
camera parameters of the interior and exterior orientation.
The residuals are shown for one of the image pairs that were
used for calibration in Fig. 10. The residuals were scaled by

a factor of 70 for better visibility. It can be seen that the pre-
dominant part of the residuals is a systematic periodic error
in the direction of the movement, i.e., in vertical direction
in the images. The errors are very similar in magnitude and
direction for corresponding control points in both images.
Similar results were obtained in the experiments performed
in [42, Section 5.2] for the single-view case, in which the
camera was mounted perpendicularly above the linear stage.
The encoder we used reacts to the angle position of the elec-
tric motor of the linear stage. Therefore, we assume that the
major part of the residuals is caused by the circular actu-
ator that is not perfectly centered. Another reason for this
assumption is the fact that the periodicity of the error corre-
sponds to one full revolution of the actuator. Therefore, we
assume that the calibration error could be further reduced by
using a higher-quality actuator that better realizes a constant
speed. In comparison, the residuals in horizontal direction
are very small, which shows that the proposed camera model
represents the true projection very well.

6.2 Stereo Reconstruction

In this section, we test the validity of the proposed approach
by discussing two examples of stereo reconstructions of
printed circuit boards (PCBs). Our goal in this section is
to validate the camera model only with respect to its ability
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Fig. 11 a, b Stereo image pair of a PCB acquired with two telecentric line-scan cameras. c, d Stereo image pair of a, b rectified to the epipolar
standard configuration. e Disparity image of a cropped part of c. f Final textured 3D reconstruction of the PCB in e

to obtain qualitatively correct results. This indirectly tests
the validity of the calibration and the stereo rectification in
the sense that no qualitatively correct reconstruction would
result if the calibrated camera parameters were incorrect or
the stereo rectification would work incorrectly. Conversely,
our goal is not to test the metric accuracy of the reconstruc-

tion for two reasons. First, the accuracy of the reconstruction
to a large extent depends on the accuracy of the disparity
calculations in the stereo algorithm. Second, testing quanti-
tative results would require us to use a standardmeasurand or
measurement system with a superior accuracy to obtain the
ground truth [20, Chapter 2.2.1]. Unfortunately, we currently
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do not have such a measurand or measurement system at our
disposal.

Figure 11a, b shows a stereo image pair of a PCB that was
obtained with the two-view telecentric line-scan setup. Both
images have a size of 2048× 3584 pixels. The back image is
the image in Fig. 11a, while the front image is the image in
Fig. 11b. Because the magnifications of the two lenses were
slightly different, the overlap between the fields of viewof the
two images is not perfect. We will take this into account dur-
ing the reconstruction and perform the reconstruction only
in the overlapping parts of the fields of view.

Table 4 displays the interior orientation parameters, the
motion vectors, and the relative orientation that were com-
puted with the stereo rectification algorithm of Sect. 5.1. It
can be seen that the magnifications of both rectified cameras
as well as their pixel sizes are identical and that both cam-
eras have square pixels (since vy = sx/m). Furthermore, as
should be the case, the relative orientation solely consists of
a rotation around the y axis and a translation in the x and z
directions. Table 4 also shows the parameters of the rectifying
camera pose transformations. These are transformations that
transform points from the original camera coordinate sys-
tems to the rectified camera coordinate systems. As can be
seen, both cameras have been rotated by approximately -90◦
around their z axes. This corresponds to a counterclockwise
rotation of the rectified images with respect to the original
images. This is the behavior that is to be expected for an
along-track configuration. Finally, it can be seen that both
cameras have been shifted by the same amount in opposite
directions along their y axes, as described in Sect. 5.1.

The rectified images corresponding to the images in
Fig. 11a, b are shown in Fig. 11c, d. The rectified image of
the back camera has a size of 3460 × 2307 pixels, while the
rectified image of the front camera has a size of 3709× 2307
pixels. Note that there are severe occlusions in some parts
of the images owing to the 60◦ angle between the viewing
directions of both cameras.

Figure 11e displays the disparities that were computed
using the variational stereo algorithm proposed in [8], while
Fig. 11f displays a 3D view of a part of the reconstructed
PCB. It can be seen that the large integrated circuits (ICs)
have been reconstructed correctly in the places where there
is texture on the ICs. For the parts in the image where there is
no texture and for which, consequently, no valid disparities
can be determined, the approach in [8] smoothly interpo-
lates the reconstruction. This is especially noticeable on the
large AMCC IC and between the two ICs to the right of
the AMCC IC. In addition to the ICs, the large resistor RE3
in the lower right-hand corner has been reconstructed very
well. Furthermore, many of the small surface mount devices
(SMDs) are visible in the disparities. On the other hand, the
large capacitor C13 has not been reconstructed well. The rea-
son for this is its specular top, which has reflected the light of

Table 4 Camera parameters of the rectified cameras that were com-
puted from the calibrated camera parameters in Table 1

Camera Back Front

m (Scalar) 0.24761 0.24761

κ (m−2) 0 0

sx (µmPixel−1) 5.9252 5.9252

sy (µmPixel−1) 5.9252 5.9252

cx (Pixel) 97.417 −80.609

cy (Pixel) 1232.330 1232.330

vx (µmPixel−1) 0 0

vy (µmPixel−1) 23.9297 23.9297

vz (µmPixel−1) 0 0

tx (mm) 0 −862.226

ty (mm) 0 0

tz (mm) 0 553.549

α (◦) 0 0

β (◦) 0 60.865

γ (◦) 0 0

tr,x (mm) 0 0

tr,y (mm) −3.688 3.688

tr,z (mm) 15.302 15.302

αr (◦) 0 0

βr (◦) 0 0

γr (◦) −89.679 -90.123

The table shows the interior orientation parameters, the motion vectors,
the relative orientation, and the parameters of the rectifying camera pose
transformations

the illumination to the camera in the back image but not the
front image. It might be worthwhile to investigate whether
this problem could be alleviated through the use of a more
diffuse illumination or through the use of polarizing filters
[43, Chapter 2.1]. Furthermore, it can be seen that the ICs at
the bottom right of the scene are reconstructed erroneously
because they have a relatively weak and dark texture, which
causes the algorithm in [8] to interpolate from neighboring
areas, in particular, from the areas to the right of the rec-
tified images, for which, unfortunately, there is no overlap.
Therefore, the reconstruction results in the lower right corner
basically are an artifact of the stereo algorithm.

Figure 12a, b shows a stereo image pair of a PCB with
different characteristics. It contains fewer ICs but manymore
SMD components. The corresponding rectified images are
depicted in Fig. 12c, d.

The disparities obtained from the rectified images are
shown in Fig. 12e, while a 3D view of a part of the recon-
struction is displayed in Fig. 12f. It can be seen that the large
Altera IC has been reconstructed well in the area in which
there is sufficient texture. Furthermore, it can be seen that all
of the resistors and capacitors on the PCB have been recon-
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Fig. 12 a, b Stereo image pair of a PCB acquired with two telecentric line-scan cameras. c, d Stereo image pair of a, b rectified to the epipolar
standard configuration. e Disparity image of a cropped part of c. f Final textured 3D reconstruction of the PCB in e
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structed well and can be clearly seen in the disparities and
the 3D reconstruction. It is also interesting to note that there
are erroneous reconstructions at the places on the PCBwhere
there is bare solder onwhich no SMDhas beenmounted, e.g.,
R96, R105, or R123.Again, the culprit is the fact that the bare
solder specularly reflects the light of the illumination (to the
left in the rectified back image and to the right in the recti-
fied front image). Since these reflections create an erroneous
pseudo-texture that the algorithm in [8] can match very well,
an erroneous indentation is reconstructed. Again, it might
be worthwhile to investigate whether this problem could be
alleviated through the use of a more diffuse illumination or
through the use of polarizing filters.

In summary, these examples show that the proposed 3D
reconstruction algorithm using line-scan cameras with tele-
centric lenses works robustly in the areas in which there
is sufficient diffuse texture to enable valid point correspon-
dences to be determined. They also show that the multi-view
camera model and the corresponding calibration algorithm
return valid results.

Like all stereo algorithms, the algorithm in [8] may return
erroneous results if the surface is not cooperative (i.e., where
it has specular reflections or has no texture). As a topic for
future research, it might be interesting to investigate whether
these problems can be circumvented by an appropriate illu-
mination. As mentioned previously, the specular reflections
might be avoided through the use of a diffuse illumination
or through polarizing filters. To circumvent the problems
caused by a lack of texture, it might be interesting to investi-
gate whether some kind of texture can be projected onto the
objects that should be reconstructed, similar to the approach
in [27].

7 Conclusions

We have proposed a multi-view camera model for line-scan
cameras with telecentric lenses that can model an arbitrary
number of cameras. The model assumes a linear relative
motion with constant velocity between the cameras and the
object. We have identified two different motion configura-
tions. The first configuration allows each camera to move
along a linear trajectory that is independent of all the other
camera trajectories. The second, more common, configura-
tion models cameras that are rigidly mounted with respect to
each other and therefore possess a common motion vector.
For the common motion configuration, we also have proved
that the full 3D motion vector can be reconstructed uniquely,
in contrast to the independent motion case, where the z com-
ponents of the motion vectors cannot be reconstructed. By
allowing the principal point to have an arbitrary 2D loca-
tion with respect to the sensor line and by supporting two

distortion models (the division and polynomial models), the
camera model can model arbitrary lens distortions.

Moreover, we have proposed a calibration algorithm that
can calibrate an arbitrary multi-view telecentric line-scan
camera setup.

We additionally have proved that an image pair that is
acquired with two telecentric line-scan cameras can always
be rectified to the epipolar standard configuration. This is in
stark contrast to images that are acquired with line-scan cam-
eras with entocentric (perspective) lenses, for which such a
rectification is possible only under extremely restricted cir-
cumstances that are difficult, cumbersome, and expensive
to achieve in practice. The fact that epipolar rectification is
always possible makes a telecentric line-scan stereo system
much easier to use in practice than an entocentric line-scan
stereo system.

Furthermore, we have proposed an efficient algorithm to
compute 3D coordinates from the disparities that can be
obtained using an arbitrary stereo algorithm on the rectified
images.

Finally, we have performed experiments on real images
that have shown the validity of the proposed multi-view tele-
centric line-scan camera model.

An idea for future research is based on the following
characteristics of line-scan applications. Line-scan cameras
have readout rates in the range of 10–200kHz [43, Chap-
ter 2.3.1.1]. Therefore, the exposure time of each linemust be
very short. Hence, line-scan applications often require a very
bright illumination. Furthermore, often an open diaphragm,
i.e., a large aperture, is used to maximize the amount of light
that passes through the lens. Large apertures, in turn, can
severely limit the depth of field. Thismight cause problems in
across-track configurations, where a common depth of field
might be hard to achieve because the telecentric line-scan
camerasmust look onto the scene at an angle. As discussed in
[40, Section 3], an overlapping depth of field can be achieved
more easily by using tilt lenses (Scheimpflug optics). There-
fore, a topic for future research might be to investigate
whether the tilt lens camera model that was proposed in [40,
Section 7] for area-scan cameras can be extended to telecen-
tric line-scan cameras.
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A Sparse Levenberg–Marquardt Algorithm
with Common Parameters

As mentioned in Sect. 4, minimizing (22) for setups with
a common motion vector results in a sparse Levenberg–
Marquardt algorithm with a tripartite parameter set. Specif-
ically, the third part of the parameter set constitutes global
parameters that are affected by all observations. In this sec-
tion, we will describe how Algorithm A6.4 in [17] can be
extended to handle this case.

For common motion vectors, we have parameters ak that
depend solely on the camera, parametersbl that depend solely
on the calibration object pose, and global parameters c. The
parameters ak are given by the interior orientation ik and the
relative orientation rk of camera k. The parameters bl are
given by the exterior orientation el of the calibration object
with respect to the reference camera. Finally, the global
parameters c are given by the commonmotion vector v. In the
Levenberg–Marquardt algorithm,wemust compute the Jaco-
bian J of π(p j , el , rk, ik, v) with respect to its parameters.
To improve the readability of the equations in the following,
we will avoid double subscripts and use the abbreviations
m = nc and n = no. For m cameras and n poses of the cali-
bration object, the Jacobian J has the following structure:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 A11 B11
C21 A21 B21
...

. . .
...

Cm1 Am1 Bm1

C12 A12 B12
C22 A22 B22
...

. . .
...

Cm2 Am2 Bm2
...

...
. . .

C1n A1n B1n
C2n A2n B2n
...

. . .
...

Cmn Amn Bmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Here, Akl denotes the Jacobians of π with respect to ak , Bkl
the Jacobians of π with respect to bl , and Ckl the Jacobians
of π with respect to c, all for a particular camera k and a
particular calibration pose l for all j for which v jkl = 1.11

Hence, in our implementation, the height of these individual
matrices depends on the number of control points that are
visible in each respective calibration image. The heights hkl
of the matrices are given by

hkl = 2
nm∑
j=1

v jkl , (37)

i.e., each control point visible in a particular image for a
particular pose of the calibration object leads to twomeasure-
ments. Note that hkl may be 0, in which case, we simply omit
the corresponding matrices. Furthermore, the width of the
individual matrices may also vary arbitrarily, depending on
which parameters are optimized.We allow the user complete
control over which parameters are optimized globally and for
each individual camera. For example, by default, the width
of the matrices A1l will be 6 elements smaller than that of the
remaining matrices Akl (k ≥ 2) since we do not optimize the
relative orientation for the reference camera (camera 1).

The corresponding error vector ε has an analogous struc-
ture:

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11
ε21
...

εm1

ε12
ε22
...

εm2
...

ε1n
ε2n
...

εmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Here, εkl denotes the error vector for a particular camera k
and a particular calibration pose l, i.e., the vector containing

11 It also would have been possible to define these matrices based on
individual observations of the control points. In this case, each of them
would have a height of 2. However, this would lead to an algorithm
that is computationally significantly less efficient because many com-
putations are the same for all control points of a particular pose of the
calibration object, whichwould lead tomany redundant computations if
they were performed per control point instead of per calibration object
pose. Furthermore, large matrices can be multiplied more efficiently
than multiplying and adding many small matrices (see (42)– (50)).
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all errors ε jkl = π(p j , el , rk, ik, v)−p jkl for all j for which
v jkl = 1.

During the optimization in the Levenberg–Marquardt
algorithm, we solve the following equation set for the param-
eter increments δ:12

N∗δ = (J�J)∗δ = −J�ε . (39)

Here, the∗denotes the augmentationof the normal equations,
i.e., the multiplication of the diagonal elements of N by 1+λ

[34, Chapter 15.5.2].13

Because of the sparsity of J, the matrix N = J�J has the
following structure:

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M P1 P2 · · · Pm Q1 Q2 · · · Qn
P�
1 U1 W11 W12 · · · W1n

P�
2 U2 W21 W22 · · · W2n
...

. . .
...

...
...

...

P�
m Um Wm1 Wm2 · · · Wmn

Q�
1 W�

11 W�
21 · · · W�

m1 V1
Q�
2 W�

12 W�
22 · · · W�

m2 V2
...

...
...

...
...

. . .

Q�
n W�

1n W�
2n · · · W�

mn Vn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

Analogously, the error vector J�ε has the following struc-
ture:

J�ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εc

εa1
εa2
...

εam
εb1
εb2
...

εbn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

We have:

M =
m∑
i=1

n∑
j=1

C�
i jCi j (42)

Pk =
n∑
j=1

C�
k jAk j (43)

12 For simplicity, we omit the covariances of the control point measure-
ments in the images in our formulation. These could be introduced in a
straightforward manner if required.
13 We use the multiplicative augmentation described in [34, Chap-
ter 15.5.2] rather than the additive augmentation that is used in [17,
Appendix A6] because we have found empirically in numerous tests
that this leads to faster convergence.

Ql =
m∑
i=1

C�
ilBil (44)

Uk =
n∑
j=1

A�
k jAk j (45)

Vl =
m∑
i=1

B�
ilBil (46)

Wkl = A�
klBkl (47)

εc =
m∑
i=1

n∑
j=1

C�
i jεi j (48)

εak =
n∑
j=1

A�
k jεk j (49)

εbl =
m∑
i=1

B�
il εil , (50)

where k = 1, . . . ,m and l = 1, . . . , n. To increase the
numerical stability of the equation system, we addition-
ally use the normalization and denormalization procedure
described in [31, Section “Scale of measurement”].

Let us call the upper left matrix in N that consists of the
matrices M, Pk , and Uk by U, the lower right matrix consisting
of the matrices Vl by V, and the upper right block consisting
of the matrices Ql and Wkl by W (and, therefore, the lower
left block by W�). Furthermore, let us call the upper part
of J�ε consisting of the vectors εc and εak by εU and the
lower part consisting of the vectors εbl by εV. As is usual in
sparse Levenberg–Marquardt algorithms, we will compute
the Schur complement S = U∗ − WV∗−1W� and εS = εU −
WV∗−1εV. In our case, S has the following structure:

S =

⎛
⎜⎜⎜⎜⎜⎝

S00 S01 S02 · · · S0m
S10 S11 S12 · · · S1m

S20 S21 S22 · · · S2m
...

...
...

. . .
...

Sm0 Sm1 Sm2 · · · Smm

⎞
⎟⎟⎟⎟⎟⎠

. (51)

Furthermore, εS has the following structure:

εS =

⎛
⎜⎜⎜⎜⎜⎝

εS0
εS1
εS2
...

εSm

⎞
⎟⎟⎟⎟⎟⎠

. (52)

We have:

S00 = M∗ −
n∑
j=1

Q jV
∗
j
−1Q�

j (53)
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S0k = Pk −
n∑
j=1

Q jV
∗
j
−1W�

k j (54)

Sk0 = S�
0k (55)

Skk = U∗
k −

n∑
j=1

Wk jV
∗
j
−1W�

k j (56)

Skl = −
n∑
j=1

Wk jV
∗
j
−1W�

l j (57)

εS0 = εc −
n∑
j=1

Q jV
∗
j
−1

εb j (58)

εSk = εak −
n∑
j=1

Wk jV
∗
j
−1

εb j . (59)

where k = 1, . . . ,m and l = 1, . . . ,m.
We then solve

S δS = εS (60)

for δS using the Cholesky decomposition.14 This gives us the
parameter increments δc and δak (k = 1, . . . ,m), which we
can back-substitute to obtain the parameter increments for
δbl (l = 1, . . . , n):

δbl = V∗
l
−1

(
εbl − Ql δc −

m∑
i=1

Wil δai

)
. (61)

The only thing that remains to be described is the com-
putation of the covariances of the camera parameters. As
described in [42, Section 3.2], we subsume the motion vec-
tor under the interior orientation of the respective camera. In
particular, we use the convention that the motion vector is
given by the last three elements of the interior orientation.
We store the transformed common motion vector vk = Rkv
with the interior orientation of camera k. To compute the
covariances of the interior orientation of camera k, we com-
pute the inverse of the matrix S without the augmentation of
the matrices M, Uk and Vl . This gives us (scaled) covariance
block matrices �00, �k0, �0k , and �kk . We must reorder
these blocks appropriately. Furthermore, since vk = Rkv, we
must propagate the covariances of v to the covariances of vk
appropriately [17, Result 5.3]. With this, the covariances �k

of the interior orientation parameters of camera k are given
by:

�k = σ 2
0

(
I 0
0 R

) (
�kk �k0

�0k �00

) (
I 0
0 R�

)
, (62)

14 In our case, S is seldom sparse enough for sparse matrix techniques
to provide any benefits in terms of runtime.

where σ 2
0 = εo/r is the variance of unit weight, εo = ε�ε

is the optimized error obtained by the Levenberg–Marquardt
algorithm, r = lε − lc − la − lb is the redundancy of the
system, lε denotes the length of the error vector ε, lc denotes
the length of the common parameter vector c (in our case, the
common motion vector v), la denotes the length of the vector
that contains all the a parameters (in our case, the vector that
contains all interior orientation parameters ik and all relative
orientation parameters rk), and lb denotes the length of the
vector that contains all the b parameters (in our case, the
vector that contains all exterior orientation parameters el ).
The lengths lc, la, and lb only take into account the parameters
that are actually optimized.

We close this section by remarking that the sparse
Levenberg–Marquardt algorithm we have described in this
section can be used whenever the parameters can be split into
the three classes of parameters c (common parameters), ak
(e.g., per-camera parameters), and bl (e.g., per-observation
parameters). In particular, the proposed algorithm can be
used as to implement a sparse bundle adjustment algorithm
that reconstructs the 3D positions of tie points extracted
from a set of images. In this case, the common parameters
c would remain identical (i.e., the common motion vector).
Furthermore, the per-camera parameters ak would remain
identical (i.e., the interior and relative orientations of the
cameras). However, the per-observation parameters bl now
would contain the reconstructed 3D points corresponding to
the matched tie points (instead of the exterior orientations
of the calibration object, as in our camera calibration algo-
rithm).
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