
Coupling Smart Contracts:
A Comparative Case Study

Sebastian Friebe, Oliver Stengele, Hannes Hartenstein and Martina Zitterbart
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
friebe@kit.edu, oliver.stengele@kit.edu, hannes.hartenstein@kit.edu, zitterbart@kit.edu

Abstract—When software systems become more complex, it can
be advantageous to partition their code into multiple, separate
components. In this work, we examine how multiple smart
contracts can be coupled to work together. When coupling smart
contracts, different design approaches are possible with their
own advantages and disadvantages. As an example, we couple
two smart contract applications on the Ethereum blockchain:
Palinodia and DecentID. Palinodia can be used to ensure the
integrity of downloaded executable binaries by checking their
hashes against the hashes stored in the blockchain. To make sure
that not everyone can modify the data stored on the blockchain,
an identity management system is required. This task is fulfilled
by DecentID, which provides decentralized identities stored as
smart contracts on the blockchain. We evaluate approaches of
coupling these two applications and discuss their benefits and
drawbacks for this use case.

Index Terms—smart contract, Ethereum, coupling, blockchain

I. INTRODUCTION

Over the past years, smart contracts have found applications
in many different fields.The currently most popular platform
by market cap for such applications is Ethereum1. Similar
to conventional software engineering, it has since become
clear that not every application can or should be entirely self-
contained and independent. A reason for this that is particular
to platforms like Ethereum is the fact that storage for both
contract logic and data incurs immediate costs. Consequently,
patterns such as library smart contracts or defined interfaces
have been established. However, due to the speed at which
this development environment evolves, consensus over such
interoperability measures can lag behind the need for them.

One such opportunity for interoperability concerns iden-
tity management in access control applications. It would be
rather costly and cumbersome for every application to deploy
and maintain their own identity management. Additionally, it
seems plausible that externally vetted, reusable and modular
identity management solutions will emerge, not only to save
costs but also to provide some resilience against Sybil attacks.
However, a standardized contract interface for identity man-
agement systems has not been defined yet.

This work was supported by funding of the Helmholtz Association (HGF)
through the Competence Center for Applied Security Technology (KASTEL).

1https://coinmarketcap.com/historical/20210704/

In this paper, we examine the case of two independently
developed smart contract applications that originated from
research projects: Palinodia [1], a role-based access control ap-
plication to manage the publication and revocation of integrity-
protecting information for software binaries; and DecentID [2],
a modular, self-sovereign identity management system. We
assume that both applications are deployed by the same user2,
and should be modified to interact with each other. In the
absence of a standardized interface, we explore how these
smart contract applications can be coupled and examine how
these solutions compare on various evaluation criteria.

In Section II, we present the projects Palinodia and De-
centID, which our case study is based on. Afterwards, we
examine how these two smart contract applications can be
coupled in Section III. The advantages and disadvantages of
the coupling approaches are evaluated in Section IV. After
going over related work in Section V, we discuss our findings
in Section VI and conclude in Section VII.

II. PALINODIA AND DECENTID

Palinodia [1] is a blockchain-based system to verify the
integrity of downloaded binaries. Developers publish hashes
of their binaries on Ethereum, ensuring that users can access
and verify them before running the binaries. The identities
of developers are currently maintained in a rudimentary iden-
tity management system internal to Palinodia. Consequently,
these identities can only be used with Palinodia instances.
To improve upon this state, the identity management system
DecentID [2] should be coupled with Palinodia. It manages
its identities on the blockchain, allowing Palinodia as well as
other blockchain-based systems to use and rely on them.

A. Palinodia

The integrity of binaries is of paramount importance to
the integrity and safety of systems that execute them. While
centralized solutions for binary integrity protection exist, they
require trust into and availability of a service provider. To
avoid this single point of failure, Palinodia uses the Ethereum
blockchain to allow software developers to store hashes of
their published binaries in a self-sovereign way.

2Within our use case, the term “users” refers to software developers and
maintainers using DecentID as their identity representation and Palinodia to
establish and manage identities for their software. For the purposes of this
work, end users are out of scope.978-1-6654-3924-4/21/$31.00 ©2021 IEEE

Software
Contract

Binary Hash
Storage
Contract

Identity
Management
Contract

Software
Developer

Software
Maintainer

controls controls

represents represents

registers1 *

uses
*

1uses
*

1

Fig. 1. Overview of Palinodia smart contracts and their mutual relations.

1) Design: Palinodia consists of three kinds of smart con-
tract as depicted in Figure 1: The Software contract establishes
a software identity, a number of BinaryHashStorage contracts
that store hashes of a particular subset of binaries of said
software, and a rudimentary identity management system using
IdentityManagement contracts. Together, these contracts cod-
ify role-based access control on a per-software hierarchy from
a root software identity, through one or more intermediary
identities, down to individual binaries.

For the sake of completeness, it should be noted that all
Palinodia contracts employ the concept of a special root owner
as a recovery mechanism of last resort. The associated private
keys are meant to be stored offline for emergency cases only.
This work mainly focuses on the identity management for
normal day-to-day use.

From the use case, it should be clear that the usefulness
of the information stored on the Ethereum blockchain is
inherently tied to the corresponding access control. A binary
hash representing an endorsement is only useful if the rightful
party authored it. Consequently, identity management as a
basis for access control is indispensable.

a) Software contract: For every software using Palin-
odia, one Software contract serves to establish its root identity.
It is the central management for the software on the blockchain
and stores references to BinaryHashStorage contracts. Ad-
ditionally, developers for this software are registered in a
linked IdentityManagement contract. Developers registered in
this way can add and remove BinaryHashStorage contracts
to convey or revoke the ability to distribute binaries of the
software to the corresponding maintainers.

b) BinaryHashStorage contract: Multiple BinaryHash-
Storage contracts can be used for each software project to
represent different software versions for different device types
or operating systems, for example. Similar to the developers
in the Software contract, a number of maintainers are regis-
tered in the respectively linked IdentityManagement contracts.
Maintainers are able to add new binary hashes to the list
stored in the BinaryHashStorage contract. When they do so,
users of the software can verify the hash of the downloaded
binary and ensure that the binary has not been modified by
the distributing server. If a particular binary is no longer safe
to use, e.g., because critical security bugs were found, its hash
can be revoked, ensuring that future validations of the binary
by the software user will fail.

c) IdentityManagement contract: Basically, the Identity-
Management contracts each store a list of Ethereum public
keys. Each public key represents an authorized user in Palin-
odia. Depending on which contract the IdentityManagement
contract is linked from, the users are authorized either as
software developers or maintainers. In this paper, we present
and evaluate two approaches to obviate IdentityManagement
contracts in Palinodia and replace them with DecentID.

B. DecentID

For many services on the Internet, digital identities are
needed. Management of these identities on the Internet is
normally done by identity providers. These store all data linked
to the identity of the user and can allow them to use the identity
in different contexts. DecentID [2] is a decentralized iden-
tity management system based on Ethereum smart contracts.
It leverages security guarantees provided by the underlying
blockchain to create a trustworthy system, without relying on
a centralized service provider. In the following, only the parts
of DecentID relevant for this paper are described.

DecentID allows its users to create so-called shared identi-
ties by themselves. These identities are stored on Ethereum and
consist of a smart contract, representing the identity itself, and
a number of attributes augmenting the identity with additional
information. For example, in combination with Palinodia, such
an attribute could describe the identity as belonging to a
developer of a certain software. Initially, the created identity
and its attributes are only accessible to the user itself. However,
the user is able to share the identity with other users, allowing
them to read the attached attributes and attach further attributes
as well.

Shared Identity Contract

Creator
- Public key
- List of Attributes

User Service
Service
- Public key
- List of Attributes

Fig. 2. Shared Identity Contract of DecentID

Within DecentID, a user is represented by its Shared Identity
Contract, a simplification of which is presented in Figure 2.
Inside of the contract, the public key of an asymmetric key
pair representing the user is stored. With this key pair the
user can digitally sign data. In combination with the shared
identity contract, this allows other users or services with access
to the shared identity contract to verify the signature and
make sure that it was actually signed by the creator of the
shared identity contract. To make the identity useful, a list of
arbitrary attributes can be attached to it. Since storing data
within Ethereum is expensive, these attributes can also be
stored externally and referenced by the smart contract. If a
service is allowed to access a shared identity contract, the
service can add further attributes to the shared identity as well.
This way, the service can, e.g., grant the user permissions to
use certain features of it.

Palinodia

In development Deployed
D

ec
en

tI
D

In development Proxy (B)
Adapting Palinoda (C)
Adapting DecentID (D)

Proxy (B)
Adapting DecentID (D)

Deployed Proxy (B)
Adapting Palinoda (C)

No Coupling (A)
Proxy (B)

Fig. 3. Possible approaches for coupling Palinodia and DecentID based on
their deployment status.

III. COUPLING PALINODIA & DECENTID

When coupling two smart contracts, using a standardized
interface is the preferable approach. However, such a contract
interface has not yet been defined for identity management
on the Ethereum blockchain. Until such an interface is de-
fined, contract developers have to define their own interfaces
while taking advantages and disadvantages of the possible
approaches into consideration.

Our use case includes an access-control application and an
identity management system, both of which are employed by
the same user. As such, we are not concerned about users
exploiting their own applications through a coupled contract.
In our case, users have a vested interest in their application
and their identity representation working together properly. We
expand on this aspect further in the discussion.

Generally speaking, the property of smart contracts being
immutable once deployed leads to a strong concept of prece-
dence when it comes to coupling them together. The contract
that is deployed first basically defines the interface to be used,
and the contract application being deployed afterwards will
either have to adhere to it or do without it. In the case that two
contract applications are already deployed, the coupling has
to be achieved through a newly deployed proxy contract that
mediates between incompatible interfaces. In our case, since
neither Palinodia nor DecentID are deployed in a practical
environment, we can therefore examine these scenarios on
equal ground.

In this case study, we exemplarily investigate four coupling
approaches for Palinodia, as seen in Figure 3: Using the
existing identity management integrated into Palinodia (i.e.,
no coupling); using a proxy to communicate with DecentID
indirectly; modifying Palinodia contracts to work directly with
DecentID; or modifying the contracts of DecentID to offer
the functionality required by Palinodia. The second and third
approaches are depicted in Figure 4 and are evaluated in the
next section and compared to the first approach. As reasoned
below, modifying DecentID is not evaluated. The code used
for authorizing users in the evaluated approaches can be found
in the appendix.

When DecentID is used to manage the identities, the per-
mission to use Palinodia is stored as an attribute within a
SharedIdentityContract. Which users are granted authorization
and how to ensure that a pseudonymous blockchain identity
really is controlled by a trustworthy user, is out of scope for
this paper.

Palinodia

SW BHS

DecentIDProxy SC

Palinodia

SW BHS

DecentID

Shared ID
- Attribute 1
- Attribute 2

Shared ID
- Attribute 1
- Attribute 2

Fig. 4. Coupling per proxy (top) or by modifying Palinodia (bottom) when
coupling Palinodia and DecentID. Modified parts are depicted with dashed
orange lines.

A. No Coupling

In its original design, Palinodia contains a rudimentary
integrated identity management system. Its functionality is
rather limited, since its sole functionality is to store a list
of permitted public keys. No further data can be assigned
to the registered public keys, and using the “identities” in
other contexts is not a design goal. As such, it presents the
most efficient option to provide the identity service required
for Palinodia, but the identities are not available to be used
for other purposes, making it inefficient in a multi-application
context.

B. Using a Proxy Contract

If both contracts are already deployed or are not supposed
to be modified, a proxy contract can be used. The interface of
the proxy contract offers the same functions as the integrated
identity management of Palinodia, but instead of implementing
the functionality itself, it calls the functions of an external
identity management system to achieve the necessary func-
tionality. If required, multiple function calls can be executed
by the proxy contract to fulfill a request, and manipulating the
format of the data before passing them on is possible as well.
As such, a proxy contract could be used as a solution if the
other contracts cannot be modified. Through different proxy
contracts, Palinodia could be coupled with different identity
management systems, as long as they support the desired
functionality in some way.

It is worthwhile to note an unfortunate naming collision
between the Ethereum smart contract community and con-
ventional software engineers: What we call a proxy contract
corresponds to the adapter pattern as described by the gang of
four [3] whereas their proxy pattern would not be useful in a
smart contract environment due to cost constraints. In a sense,
established knowledge in software engineering comes into
conflict with the new constraints and challenges of blockchains
and smart contracts. As the capabilities of blockchains and the
complexity of smart contracts grow over time, more and more
conventional software engineering patterns will likely become
relevant or applicable.

C. Modifying Palinodia

To use another identity management system, e.g. DecentID,
with Palinodia directly, modifications are required. In most
cases, the function calls Palinodia needs to execute as part of
an access control decision are not the same as the function
calls the identity management system supports. For example,
Palinodia expects from its identity management system to sup-
port the function checkIdentity(address addr) returns (bool).
Without the additional domain knowledge that the identity
management system only maintains identities of permitted
software developers, the expected functionality of this function
is unclear. Thus, it is not a useful function interface for a
general purpose identity management system, where identities
for multiple purposes are maintained. Especially when the
identity management system has already been deployed, its
interface can no longer be modified. Consequently, Palinodia
has to be modified to call the more generalized functions
offered by the identity management system.

D. Modifying DecentID

Another approach would be to modify the identity manage-
ment system instead of modifying Palinodia. One use case of
this approach would be if Palinodia would have already been
deployed and the identity management system could still be
tailored to match. However, this would result in application-
specific code to be integrated into the identity management
system. In our case, specific functions that check whether a
user is a developer or a maintainer would have to be added.
These functions would not be useful for other applications but
would clutter its function interface and increase the deploy-
ment costs for these contracts. Additionally, this approach is
not possible when coupling Palinodia and DecentID: DecentID
uses one shared identity contract per user, while Palinodia’s
contracts store the contract address of a single contract that
manages all permitted identities. Consequently, this approach
is not evaluated in this case study.

IV. EVALUATION

In the following, the design approaches described in Sec-
tion III are evaluated. We implemented two design approaches
for coupling Palinodia and DecentID, and are evaluating
the respective influence of these approaches as well as of
the integrated identity management system on the following
criteria:

• Security dependency Calling functions on other con-
tracts can introduce new vulnerabilities, even when the
calling contract itself can be considered secure.

• Cost Induced financial costs, which can be divided into
deployment and operational costs of additional code.

• Implementation While reducing the implementation ef-
fort by using existing contracts, coupling them also
requires additional code to be written.

• Interoperability When coupling contracts, an interface
should be designed that can be used with other contracts
as well.

A. Security dependency

In general, the properties of the blockchain ensure that a
smart contract is executed as written. Therefore it is crucial to
ensure that contracts are correct and secure before deploying
them to the blockchain. However, every increase in complexity
bears the risk of introducing vulnerabilities. As with con-
ventional software engineering, simpler solutions for coupling
smart contract applications are desirable.

To call another contract, its address has to be known. One
variant is that the address of the called contract is stored in
the calling contract itself, either already added in the source
code, at deployment, or later on by a specific setter method.
The other variant is that the address is given to the contract
as a function parameter specifically for that execution of
the function. This corresponds to the dependency injection
pattern in conventional software engineering: external code
is provided to a function as a requirement to execute its
functionality. Where and by whom the address is provided
has a significant influence on the security of the system.

The manner in which the address of the identity man-
agement system is stored in our case study depends on the
design approach. When Palinodia uses its integrated identity
management system, the address of the used contract is set
when deploying Palinodia but can also be reset by authorized
users at a later time. Since the integrated identity management
system is only a list of permitted public keys, this is sufficient.
Consequently, no security vulnerabilities can be introduced by
a user provided contract address.

When coupling with DecentID directly, i.e., modifying
Palinodia, the address of the used shared identity contract is
provided on calling a function of Palinodia, since each user
is expected to use their own contract. The Solidity language
offers the ability to retrieve the hash value of the smart contract
code residing at an address. This way, it can be checked that
a valid shared identity contract resides at the called address.
Afterwards, it is checked that the owner of the shared identity
contract is the caller of the function. This way, the DecentID
identities created by different users can be used to access
Palinodia while it is still ensured that the contract at the given
address behaves as expected and the data returned by it can
be trusted.

When using a proxy contract, the address of the shared
identity contract is looked up by using the address of the
function caller, based on a previously registered mapping in
the proxy contract. Palinodia was not supposed to be modified
when using a proxy contract, so the address of the shared
identity contract could not be passed along to the proxy
contract as a function parameter. Still, the hash value of the
provided contract address can be checked the same as with
direct coupling.

B. Costs

“Cost” in this section refers to the gas costs of deploy-
ing and executing contracts on the Ethereum blockchain. A
simple scenario has been selected for the evaluation: The
necessary contracts of Palinodia are deployed, two users are

created and authorized (one developer and one maintainer),
and their authorization is verified. The last step, verifying their
authorization, can happen several times over the lifetime of
a Palinodia instance, while the other steps are comparatively
rare. Whenever a new software version is published, the
maintainer needs to publish new hashes, and possibly revoke
old hashes, stored within the smart contracts of Palinodia.
Before they are permitted to do so, the authorization of the
users is checked by the smart contracts. Contrary to that, the
creation of the smart contracts for Palinodia is only done once
per software identity that should be managed with Palinodia.
Similarly, each developer or maintainer using Palinodia only
has to create a single DecentID identity for using the system.
However, deploying smart contracts to the blockchain incurs
much higher gas costs than executing code.

Set
up

 Id
en

tity
 M

an
ag

em
en

t

Set
up

 P
ali

no
dia

Cre
at

e
us

er
 id

en
tity

Aut
ho

riz
e

us
er

Suc
ce

ss
fu

l id
en

tity
 ch

ec
k

Fail
ed

 id
en

tity
 ch

ec
k

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000
No coupling Proxy Modifying PalinodiaGas Cost

Per Instance Per User Per Execution

Fig. 5. Measured costs of different actions performed within the system

Figure 5 shows the measured costs of different actions
performed within the system. The two measurements for setup
operations represent costs that only occur once per instance of
Palinodia.

• Setup Identity Management The cost to setup the iden-
tity management, either the integrated system of Palinodia
or the proxy to use DecentID. Most of the costs are
the smart contracts being deployed to the blockchain.
DecentID itself does not incur any costs at this time, since
there are no central management smart contracts. Smart
contracts representing user identities are created when a
user representation is required.

• Setup Palinodia The costs of deploying the smart con-
tracts of Palinodia, i.e., one instance of the Software
contract and the BinaryHashStorage contract each. The
costs are slightly higher for direct coupling between the
systems, since additional code is required to adapt to
DecentIDs interface.

Authorizing users to modify the state of Palinodia can be
divided into two steps: Creating the digital identities and
authorizing them. As such, both have to be done each time
a new user should be authorized to use Palinodia.

• Create user identity Creating a dedicated user identity
only needs to be done when DecentID is used. In that
case, a new smart contract representing a shared identity

between the user and Palinodia is deployed. If there
already exists a shared identity that should be used for
Palinodia, these costs do not apply. When instead of
DecentID the integrated identity management system of
Palinodia is used, no explicit identities are used for
unauthorized users, resulting in no costs.

• Authorize user Users need to be authorized to modify the
state of Palinodia. For the integrated identity management
system, this means that the public key of the user is
added to a list of permitted users. When DecentID is used
the authorization is represented by an attribute attached
to the shared identity, which could also be used in
other contexts. The approach using a proxy is slightly
more expensive, since for technical reasons the mapping
between the user’s public key and its shared identity has
to be stored in the proxy.

Checking the authorization of users happens each time a
user wants to manipulate the state of Palinodia, e.g., to add a
new binary hash. As such, these costs appear many times per
participating user and should therefore be reduced as much as
possible.

• Successful identity check A successful identity check
is a requirement for manipulating the state of Palinodia.
For the integrated identity management system, the check
only requires determining whether the public key in
question is registered in a list in the smart contract.
When DecentID is used, a shared identity controlled by
this public key is required which must have an attribute
confirming the authorization.

• Failed identity check These costs occur when the au-
thorization fails, e.g., due to providing wrong parameters
or not being authorized. When trying to authorize a new
user an identity check is executed first, which has to fail
for the user to become authorized (to avoid duplicated
authorization). In our case, this is slightly cheaper when
using the proxy compared to the direct coupling, since the
previous registration of users in the proxy allows faster
negative authorization decisions.

Complete setups: The previous measurements regard the
costs for each action separately. Based on these measurements,
the deployment costs of complete Palinodia setups have been
calculated. Included is the deployment of two contracts for
Palinodia (one software and one binary hash storage contract),
the contracts for the identity management system (either the
integrated one or the proxy) and the contracts for the DecentID
identities.

As can be seen in Figure 6, the costs for the integrated
system are only slowly growing since authorizing another user
only requires adding them to a list. When DecentID is used,
the costs are mostly linked to the creation of the identities if
they need to be created for the users. As seen in the columns
regarding “existing users”, if the shared identity contracts
already exist and the authorization is added to them, the costs
are drastically reduced. When modifying Palinodia, the costs
are even lower than those of the integrated system.

M
ini

m
al

sy
ste

m
 (1

 u
se

r)

Te
ste

d
sy

ste
m

 (2
 u

se
rs

)

La
rg

e
sy

ste
m

 (5
0

us
er

s)

La
rg

e
sy

ste
m

 (5
0

ex
ist

ing
 u

se
rs

)

La
rg

e
sy

ste
m

 (5
00

 e
xis

tin
g

us
er

s)
1.000.000

10.000.000

100.000.000

1.000.000.000
No coupling Proxy Modifying PalinodiaGas Cost

Fig. 6. Costs of using the systems with different amounts of users

C. Implementation

Depending on how many contracts have to be modified,
the implementation effort varies. If only the source or the
destination contract has to be modified, less work is required
than if both contracts have to be modified. On first glance,
creating a proxy contract requires more work than modifying
existing contracts. However, the additional work required is
relatively small since the largest part, the modification between
the non-fitting interfaces, has to be done for all approaches.

When modifying Palinodia to work with DecentID, part of
the functionality of the integrated identity management system
had to be moved to Palinodia itself. Specifically, the mapping
between roles in Palinodia and the generic attribute storage
in DecentID has to be implemented. Additionally, the code
had to be extended to interact with the more complicated data
storage provided by DecentID. When implementing the proxy
contract in our use case, more work had to be done instead of
simply moving the adapting code from Palinodia to the proxy
contract. Since the code of Palinodia was not supposed to be
modified, state had to be held within the proxy contract to
link the caller addresses forwarded by Palinodia to the shared
identity contracts used by DecentID.

D. Interoperability

Considering the aforementioned costs for deploying ad-
ditional contracts, it is desirable for a coupling solution to
be reusable and flexible. Similarly, any changes to contracts
should serve to increase options for users and not sacrifice one
option for another.

In the original design of Palinodia, the identity manage-
ment contract contains a specific function that checks the
authorization for a given address. This is the minimal inter-
face required for Palinodia’s authorization check, but requires
support of the identity management system for the specifics
of Palinodia. Contrary to that, DecentID only offers generic
access to stored attributes. In the design approaches of our
case study Palinodia, respective the proxy contract, had to be
modified to support this generic interface. While this requires a
modification of the smart contract, it results in a more generic
interface between the contracts that could also be used for
interacting with other identity management systems.

E. Summary

The results of the evaluation are depicted in Figure 7.
As can be seen, an ideal approach for coupling does not
exist, each approach comes with its own advantages and
disadvantages with regard to our evaluation criteria. However,
we also observed that the outcome of our evaluation strongly
depends on the specific use case and the implementation used.
As such, the same evaluation criteria applied to other contracts
would most likely lead to a different assessment.

V. RELATED WORK

Similar to traditional software engineering, design patterns
have been developed for smart contracts. Those are supposed
to address frequent design problems or security vulnerabilities
by using established approaches. Also, patterns for interacting
with external data sources are considered. Some design pat-
terns for Ethereum smart contract are listed, categorized and
described in [4], [5]. However, these patterns only deal with
designing single smart contracts.

Only few design patters deal with the interactions between
multiple contracts. One such design pattern mentioned in
[6] is the Contract Mediator, which, similar to the proxy
contract used in our evaluation, is used to avoid tight coupling
between interacting contracts. Since the interactions are mostly
application specific, most patterns for coupling only deal with
certain problems, e.g., the secure transfer of Ether between
contracts or accounts.

A standardized smart contract interface designed for a
specific use case is described in EIP-20 [7]. There, an interface
is specified that can be used to implement a standard compliant
token on the Ethereum blockchain. To the best of our knowl-
edge, a similar EIP for identity management does not exist
yet. A number of drafts exist [8]–[10], which are proposing
different interfaces for identity management systems, each
with different goals and shortcomings. It remains to be seen
whether one of these or another approach becomes a standard.

Unrelated to blockchains, decentralized identifiers (DIDs)
are an emerging standard to allow users to maintain self-
sovereign identities [11]. Basically, a user creates a DID doc-
ument which collects attributes describing them, e.g., public
keys to authenticate the user. The idea is that the user keeps
control of their identity and can prove ownership of it without
relying on third parties. For identities on Ethereum, the public
key of a key pair can be used for both identification and
authentication, and can be augmented further with additional
data stored in smart contracts. As such, DecentID identities
are similar to DID documents.

VI. DISCUSSION

While smart contract capable blockchains like Ethereum
present a unique environment for designing and deploying
applications due to their inherent cost structure, our case study
shows that some conventional software engineering paradigms
regarding modular designs and reusable components still hold.
In our case study, identity management neatly demonstrates
that individual, custom built solutions to common problems

Criteria

Security dependency Cost Implementation Interoperability

A
p
p
ro

a
c
h
e
s

No Coupling

Proxy Contract Adaption needed

Modifying Palinodia Adaption needed

No malicious
addresses possible

Low deployment cost,
low execution costs

Implementing own
identity management
system required

Coupling only with
own system

Hash of contract at
target address can
be checked

Low to high
deployment cost,
low execution costs

Coupling with any
system possible

Hash of contract at
target address can
be checked

Low to high
deployment cost,
low execution costs

Coupling with other
identity management
systems possible

Fig. 7. Evaluation results

may be efficient in a per application sense, but extending one’s
view to include multiple applications that could reuse these
solutions shows their downsides. Since neither Palinodia nor
DecentID are currently in practical use, modifying the former
to best work with the latter is the preferable option in our
case. Ideally, if a common interface for identity management
on Ethereum would exist, both applications should be adjusted
to adhere to it in order to provide the greatest amount of
convenience and flexibility to users while keeping operational
costs minimal.

In the meantime, proxy contracts appear to be a viable
stopgap solution with certain advantages and drawbacks to
consider. Their biggest strength is that they can be used to
couple two already deployed applications. The downsides to
this broad applicability are their additional deployment and
execution costs as well as their lack of flexibility. In our
case, the proxy contract between Palinodia and DecentID has
to keep a mapping from the calling address to the target
shared identity contract. As such, multiple instances of the
same proxy contract would have to be deployed for different
Palinodia instances. This mapping is a critical component in
the access control mechanism of the application in question.
For that reason, developers or maintainers of distinct Palinodia
instances are not likely to trust each other with the manage-
ment of multi-tenant proxy contracts.

With proxy contracts in mind, smart contract application
developers could adapt their designs such that stateless proxy
contracts could be used. In this case, one proxy contract
could serve to couple multiple instances of applications and
identity management systems together, thus greatly amortizing
deployment costs. This could be a very cost efficient and
flexible approach in case no dominant identity management
interface emerges.

As mentioned previously, our case study presents a rather
simple case where both the application and identity manage-
ment are under the control of the same user, who consequently
has a vested interest in the coupling working correctly. This
basic assumption simplifies the coupling in certain ways.
For example, on the side of Palinodia, the smart contract
does not have to check whether or not a compatible identity
management contract is actually deployed at the supplied
address, since the user should have already taken care of that
beforehand. However, if the application is autonomous, like

the notoriously attacked DAO contract, or under the control
of a separate party, security becomes paramount. A malicious
user could attempt to attack the application through a coupling
with a deliberately crafted identity management contract to
steal funds or gain control of the application.

Ultimately, we can only echo the competing advances in the
Ethereum ecosystem [8]–[10] to agree on a well-defined inter-
face that both applications and identity management solutions
can support. Such an interface would offer the greatest amount
of efficiency, flexibility, and user convenience in addition to
long-term stability.

While we focus on a very particular coupling issue with
smart contracts, the problem generalizes in at least two ways:
Coupling two or more smart contract applications will likely
become relevant in contexts other than identity management
and access control. Similarly, other challenges that have
already been tackled and solved in conventional software
engineering [3] will have to be solved again in the environment
of blockchain systems with their cost structures and other
limitations.

VII. CONCLUSION

In this paper, we examined the problem of coupling a
smart contract application with an appropriate identity man-
agement system in a case study. This is a problem that is
most likely going to become increasingly relevant as smart
contract applications grow in number and complexity and the
demand for more versatile, robust, and convenient identity
management solutions increases. From our case study, one
can draw insights for designing both future applications and
identity management systems with coupling as a priority rather
than an afterthought. We showed that proxy contracts can serve
as a stopgap solution until a common interface is defined and
broadly adopted. It will be interesting to see how the tendency
to define comprehensive and broad common interfaces clashes
with the cost structure of Ethereum, where unnecessary code
to satisfy an interface causes higher deployment costs.

Acknowledgments: We would like to thank the anonymous
reviewers for their very helpful feedback.

REFERENCES

[1] O. Stengele, A. Baumeister, P. Birnstill, and H. Hartenstein, “Access
control for binary integrity protection using ethereum,” in Proc. of the
24th ACM SACMAT. New York, NY, USA: ACM, 2019, p. 3–12.
[Online]. Available: https://doi.org/10.1145/3322431.3325108

https://doi.org/10.1145/3322431.3325108

[2] S. Friebe, I. Sobik, and M. Zitterbart, “DecentID: Decentralized and
Privacy-Preserving Identity Storage System Using Smart Contracts,” in
2018 17th IEEE Int. Conf. On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE Int. Conf. On Big Data Science And
Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 37–42.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[4] M. Wöhrer and U. Zdun, “Design patterns for smart contracts in the
ethereum ecosystem,” in 2018 IEEE Int. Conf. on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 2018, pp. 1513–1520.

[5] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern
collection for blockchain-based applications,” in Proc. of the 23rd
European Conf on Pattern Languages of Programs, ser. EuroPLoP
’18. New York, NY, USA: ACM, 2018. [Online]. Available:
https://doi.org/10.1145/3282308.3282312

[6] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying design patterns in
smart contracts,” in Blockchain – ICBC 2018, S. Chen, H. Wang, and
L.-J. Zhang, Eds. Cham: Springer International Publishing, 2018, pp.
92–106.

[7] V. B. Fabian Vogelsteller. (2015-11-19) Eip-20: Erc-20 token standard.
Ethereum Improvement Proposals, no. 20. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-20

[8] T. Y. Fabian Vogelsteller. (2017-10-02) Erc-725: Smart contract based
account. [Online]. Available: https://github.com/ethereum/EIPs/issues/
725

[9] J. T. Pelle Braendgaard. (2018-05-03) Erc-1056: Lightweight identity.
[Online]. Available: https://github.com/ethereum/EIPs/issues/1056

[10] P. Braendgaard. (2019-03-03) Erc-1812: Ethereum verifiable
claims. [Online]. Available: https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-1812.md

[11] W3C. (2021-06-16) Decentralized Identifiers (DIDs) v1.0. [Online].
Available: https://www.w3.org/TR/did-core/Overview.html

APPENDIX

In the following, code segments relevant for authorization
checks are displayed for the three approaches evaluated in this
paper. Reasoning why these approaches have been selected can
be found in Section III.

A. No coupling

f u n c t i o n c h e c k I d e n t i t y (a d d r e s s addr)
p u b l i c view r e t u r n s (boo l) {

r e t u r n (a r r i d e n t s [m a p i d e n t s [addr] . a r r a y i n d e x]
== addr) ;

}

Fig. 8. Code in Palinodia’s IdentityManagement contract used to check the
authorization of users.

In the original implementation of Palinodia, as displayed in
Figure 8, a special IdentityManagement contract was used for
maintaining a list of authorized users. The array arr idents
contains a list of all authorized public keys, while the map
map idents maps the public keys to an array index as well as
potentially to other small attributes. During an authorization
check, the given public key is looked up in the map to retrieve
the array index. If the array contains the given key at the
retrieved index, the user is authorized to perform actions
within Palinodia. If the index stored in the map does not point
to a matching array entry, e.g., because the entry in the array
was removed, the authorization fails.

f u n c t i o n c h e c k I d e n t i t y (a d d r e s s addr)
p u b l i c view r e t u r n s (boo l) {

S h a r e d I d e n t i t y C o n t r a c t s i c = m a p i d e n t s [addr] ;
i f (s i c == S h a r e d I d e n t i t y C o n t r a c t (a d d r e s s (0))) {

r e t u r n f a l s e ;
}
i f (s i c . g e t C r e a t o r () != addr) {

r e t u r n f a l s e ;
}
b y t e s memory a t t r = s i c . g e t A t t r i b u t e (admin ,

a d d r e s s T o H e x S t r i n g (msg . s e n d e r)) ;
r e t u r n a t t r . l e n g t h == 1 && a t t r [0] == r o l e ;

}

Fig. 9. Code in the proxy contract for checking authorization with DecentID.

B. Proxy Contract

The code used within the proxy contract is displayed in
Figure 9. Since Palinodia was not supposed to be modified
for usage of the proxy, the first action is to retrieve the
address of the SharedIdentityContract that has been linked to
the public key beforehand. Afterwards, it is checked whether
the creator of the SharedIdentityContract is the given public
key. This protects against attacks where a random public key
is registered with an authorized identity contract to gain access
to Palinodia. For a successful authorization, the administrator
of the proxy contract and Palinodia (stored in admin) needs
to grant an attribute to the user, which uses the address of
the calling Palinodia contract (available in msg.sender) as a
key. If such an attribute exists and contains the right value
(configurable depending on whether developer or maintainer
access is required, stored in role), the authorization succeeds.

C. Modifying Palinodia

f u n c t i o n c h e c k I d e n t i t y (S h a r e d I d e n t i t y C o n t r a c t s i c ,
a d d r e s s s e n d e r) i n t e r n a l view r e t u r n s (boo l) {

i f (g e t C o n t r a c t H a s h (a d d r e s s (s i c r o o t)) !=
g e t C o n t r a c t H a s h (a d d r e s s (s i c))

| | s i c . g e t C r e a t o r () != s e n d e r) {
r e t u r n f a l s e ;

}
b y t e s memory a t t r = s i c . g e t A t t r i b u t e (

s i c r o o t . ownerAddrs (0) ,
a d d r e s s T o H e x S t r i n g (a d d r e s s (t h i s))) ;

r e t u r n a t t r . l e n g t h == 1 && a t t r [0] == b y t e (0 x02) ;
}

Fig. 10. Added code in Palinodia (BinaryHashStorage and Software contracts)
for checking authorization with DecentID.

When modifying Palinodia to work with DecentID (as dis-
played in Figure 10), the address of the SharedIdentityContract
is passed as an additional parameter. At first, the hash of
the contract code stored at the passed address is retrieved.
This hash is compared to the known hash of a SharedIden-
tityContract registered within Palinodia by its administrator.
If the hashes match, the passed address really belongs to
a SharedIdentityContract and the required behavior can be
expected from the contract. The following authorization check
is equivalent to using the proxy.

https://doi.org/10.1145/3282308.3282312
https://eips.ethereum.org/EIPS/eip-20
https://github.com/ethereum/EIPs/issues/725
https://github.com/ethereum/EIPs/issues/725
https://github.com/ethereum/EIPs/issues/1056
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1812.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1812.md
https://www.w3.org/TR/did-core/Overview.html

