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Abstract. The biocompatibility of medical sensors is of great importance. In order

to prevent harm of the patient during measurement, this aspect must be considered

throughout the entire design process. Biocompatibility can be achieved by various

methods. For example, the sensor can be encapsulated, only biocompatible materials

can be used for the sensor, or anti-inflammatory agents can be applied to the surface

of the sensor. In this paper the focus is on sensors fully fabricated from biocompatible

materials. Two exemplary inkjet-printed amperometric and impedimetric sensors are

systematically assessed regarding their biocompatibility. Both sensors can be used

for the measurement of dissolved ozone during oxygen-ozone injection therapy. For

the sensors each material is evaluated with respect to the international standard

ISO 10993. Overall, many amperometric and impedimetric sensors are fabricated

from a small set of materials. The assessment reveals that for this specific application

an amperometric sensor consisting of gold and silver nanoparticle inks, inkjet-printed

on a polydimethylsiloxane membrane, and passivated with SU-8 ink offers the highest

biocompatibility and reaches a good compliance with other important requirements.

In addition, biological characterization tests are required for the specific medical

application to validate the biocompatibility. From this study, it can be concluded

that the findings on biocompatibility can also be transferred to other sensors that

are made of the same set of materials but are for other applications. This applies to

oxygen, glucose, pH, hydrogen peroxide, sweat lactate, and acetone sensors.

Keywords: Inkjet-printing, biocompatibility, nanoparticle ink, ozone sensors,

amperometric measurement, impedimetric measurement, medical applications
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Biocompatibility for inkjet-printed ozone sensors 2

1. Introduction

Various amperometric and impedimetric sensors, such as ozone, glucose, sweat lactate,

and acetone sensors, utilize the same or an overlapping material set for their fabrication.

These sensors are conventionally manufactured with metal evaporation, chemical gold

plating [1], or screen printing [2]. In general, organic and printed electronic (OPE)

technologies can be used to fabricate such sensors in additive process steps. An

alternative to conventional manufacturing is inkjet-printing (IJP). It offers the broad

flexibility of a digital manufacturing process. Layouts can be easily adapted and IJP is

an emerging and leading technology for low-waste and low-cost production [3]. In case

the sensor is inkjet-printed, the measuring element as well as substrate, passivation,

membrane and, if applicable, light or heating element can be manufactured by means of

controlled dispensing of small droplets of the particular ink followed by post-processing

steps. If applied in the medical field, all these sensors have in common that the

investigation of the biocompatibility has a very high priority because the sensors are

in direct contact with human body liquids and tissues. Biocompatible means that the

body does not exhibit a negative response to the sensor, such as allergic or toxic. The

sensor has to be produced under sterile conditions or sterilized after the production to

be free of infectious germs [4].

Previous work investigated applications of ozone sensors for different medical

applications and the current approaches of inkjet-printed ozone sensors and developed

an experimental setup for novel ozone sensors [5, 6]. In order to further expand this

research, we examined the biocompatibility of the materials, utilized for two exemplary

amperometric and impedimetric ozone sensor approaches. Thereby, the findings can be

transferred to the other sensors mentioned above.

1.1. Requirements for medical sensors

Depending on the specific application, medical sensors need to meet requirements, such

as sensitivity, selectivity, short response and recovery time, long-term stability, aqueous

or gaseous measurement environment, measuring at room temperature (RT), and the

requirement or absence of a light activation element. Here, amperometric, impedimetric

metal oxide semiconductors (MOS), impedimetric carbon nanotube (CNT), absorption,

and photoluminescence sensors are focused. In previous work [5], the measurement

principles and specific requirements for the ozone measurement during the oxygen-

ozone therapy are explained in more detail. The measurement principles and their

corresponding properties are listed in Table 1 [7]. For medical applications, where it

is currently not possible to measure the in-vivo concentration, an average sensitivity

is mostly sufficient. Very small changes of the concentration, e.g. in the tip of the

needle of an injection syringe during oxygen-ozone therapy, do not lead to severe

health problems. The selectivity of sensors can be increased with a semi-permeable

membrane. Furthermore, a membrane enables the application of a gas sensor in aqueous

environment. The membrane has to be permeable to the analyte and less or preferably
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Biocompatibility for inkjet-printed ozone sensors 3

Table 1: Qualitative summary of the most important properties of dissolved ozone

sensors [7].

Properties Ampero- Impedi- Impedi- Absorp- Photolumi-

metric metric metric tion nescence

(MOS) (CNT)

sensitivity high high high high high

selectivity poor poor medium high high

response time medium short long very short long

recovery time short long long short long

long-term stability low high high high high

environment aqueous gaseous gaseous aqueous aqueous

temperature RT high RT RT RT

light activation no yes no yes yes

not permeable to interfering substances [8]. For most of the investigated medical

applications the long-term stability is a secondary property because many devices, such

as the injection syringe, are single-use products. A low measurement temperature and

the avoidance of an ultra violet (UV) light source as light activation element for the

sensing material are crucial for sensors with body liquid and tissue contact because

high temperatures (higher than body core temperature) and UV light can damage

biomolecules.

In the following, the oxygen-ozone injection and the biocompatibility of materials used

in inkjet-printed ampererometric and impedimetric ozone sensors are considered. In

addition, the transferability is considered in more detail.

1.2. Oxygen-ozone injection for the treatment of a disk herniation

In industrialized countries, both, the live expectancy and the daily sitting time have

grown during the last century [9]. This involves the risk of physical health problems,

such as strokes, heart diseases, diabetes mellitus, cancer, and back pain [10, 11]. Back

pain, which is a major health problem, can be caused by muscle strain, arthritis, or

disk herniation [12]. In case of a herniated disk the nucleus pulposus of a spinal disk

is pushed out of the annulus fibrosus and may cause pressure on the spinal nerve [13].

The comparison of a herniated disk and a normal disk is shown in Figure 1. Disk

herniation can be healed by surgery, physiotherapy, heat treatment, or oxygen-ozone

therapy [14, 15]. Surgery always bears risks and physiotherapy and heat treatment

only work for mild forms of disk herniation. Therefore, the oxygen-ozone therapy is a

promising minimally invasive therapy. The oxygen-ozone mixture is injected into the

disk [16] or surrounding tissue [15]. Ozone leads to the reduction of the water amount

in the disk and thereby shrinks the volume. Thus, the pressure on the pinched nerve is

reduced and the pain of the patient is relieved. Additional benefits of ozone therapy are

that the immune system is enhanced and oxidative stress is reduced. Oxidative stress
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Biocompatibility for inkjet-printed ozone sensors 4

(a) Normal disk (b) Disk herniation

Figure 1: Comparison of a normal and herniated disk. In case of a disk herniation the

inner part of the disk, the nucleus pulposus, causes pressure on the nerve.

indicates a disproportion between producing, accumulating, and detoxifying reactive

oxygen species [17]. The ozone concentration has to be monitored in-vivo because ozone

decays quickly and the amount of ozone after production in the injection syringe differs

from the amount during the treatment. It is highly important to ensure that the applied

concentration does not harm the patient but still treats the disk herniation effectively.

For the measurement of the dissolved ozone concentration, the following measurement

principles are suitable: amperometric, impedimetric with MOS or CNTs, absorption

based, and photoluminescence. With regard to the concentration, a measurement has

to be possible for dissolved ozone concentrations up to 70 µg ml−1 [6]. According to

Table 1 most of the sensors can be operated at RT.

2. Materials and methods

In this paper, an application is focused in which ozone can be measured using two

measuring methods. The respective sensors for these two measurement methods can

be produced using IJP. Subsequently, a literature research is carried out, which is used

to provide findings on the biocompatibility of the selected exemplary sensors. These

statements are transferable to other sensors, such as oxygen, glucose, pH, hydrogen

peroxide, sweat lactate, and acetone sensors because the same set of materials is used.

2.1. Assessment of the biocompatibility for medical sensors

According to the European Commission of Health and Consumers for the European

Union, the Health Risk Assessments of the Food and Drug Administration (FDA) for

the United States of America, and the National Medical Product Administration for

China, medical devices can be subdivided into three groups depending on their health

risk. The groups reach from low risk devices (group I), such as bandages and wheelchairs
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Biocompatibility for inkjet-printed ozone sensors 5

to devices with a high health risk (group III), such as hip prostheses, heart catheters,

and pacemakers [18]. Ozone sensors for oxygen-ozone injection are in between these two

groups (group IIb according to the European Commission of Health and Consumers),

which includes the contact with body fluids for a short duration.

There are different approaches to achieve biocompatibility, such as encapsulation of the

sensor, utilization of only biocompatible materials, and application of anti-inflammatory

agents to the surface of the medical device. For the encapsulation, membranes (porous

or non-porous) can be employed, whereby hydrogels are most widely utilized for the

application in medical devices [19]. The application of anti-inflammatory agents to

the surface of the medical device reduces the inflammation in the body, whereby

nonsteroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid (e.g. aspirin),

or glucocorticoids, such as dexamethasone, can be injected into the encapsulation [20,21].

Figure 2 shows the properties for functionality and biocompatibility, which have to be

assessed for the sensor and production process according to ISO 10993 [22].

Figure 2: Properties of materials according to the international standard ISO 10993 [22],

whereby the properties are ordered in descending order of importance for the

biocompatibility. The main factors for biocompatibility are marked by a yellow

frame. Criteria that are displayed without a yellow frame have only minor impact

on biocompatibility.

In the following, the important properties for biocompatibility are explained. For

biological characterization, the behaviour of the material in a living biological

environment is investigated [23]. Therefore, biological characterization tests have to

be conducted, whereby the tests depend on the type of contact with the body tissue

and the contact time. For our application, the single-use sensor has contact with the

intervertebral disk tissue for a short amount of time and has no contact with blood of the

circulatory system [16]. This leads according to ISO 10993 [22] to the group assignment

2A and from this the required tests are derived. If there was additional contact of the

sensor with blood of the circulatory system, an additional test of hemocompatibility

would be required. According to ISO 10993 [22], the subsequent tests are necessary
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Biocompatibility for inkjet-printed ozone sensors 6

to ensure the biocompatibility of the final sensor for our application: Cytotoxicity,

sensitization, irritation and intracutaneous reactivity, pyrogenicity, and acute systemic

toxicity. Cytotoxicity tests are used to investigate the influence of the material on

surrounding cells [22]. They can be performed in-vitro and represent the first step

to investigate the biocompatibility of a material. Sensitization tests are applied to

determine the risk of allergic reactions [22]. These tests have to be conducted in-

vivo. Irritation and intracutaneous reactivity tests are necessary to evaluate the local

reaction of tissue [24]. For this test, the application route and the contact duration are

needed [22]. In-vitro tests are only available to test pure chemicals and not the final

sensor. The irritation and intracutaneous reactivity of a medical device is tested in-vivo

for the final senors [22]. Pyrogenicity tests evaluate if materials lead to inflammatory

reactions in the body [22]. Therefore, in-vitro and in-vivo tests for the materials are

necessary. Furthermore, the acute systemic toxicity has to be investigated. Systemic

toxicity tests examine the distribution of a toxic substance from its point of entry

to various parts of the body where it can damage cells. The systemic toxicity of

materials can only be studied using in-vivo tests because this requires a living organism

to represent the system. All tests must be performed for all materials used.

The appropriate bioactivity investigates the response of the material to the host and

can be classified into toxic, biotolerable, bioinert, bioactive, and degradable [23,25]. For

our application the sensor has to be non-toxic and bioinert. In addition, the sensor is a

disposable product and should therefore be biodegradable or at least recyclable due to

the impact on the environment.

Characterization of chemical properties can complement biological testing and is

important for determining biocompatibility. In addition, the characterization of the

chemical properties can be applied to identify differences between established and newly

evolved devices, which can reduce the amount of in-vivo tests further [26]. For the

characterization, each manufacturing substance, the material composition and physical

structure, and the interactions between the material and body liquids or tissues need to

be determined.

Furthermore, the surface properties need to be investigated for the determination

of the biocompatibility because surface modifications (surface oxidation or coating)

influence the interactions between material and biological system and thus the

biocompatibility [25, 27]. This includes the characterization of the surface tension,

wettability, and surface roughness of a material [23].

In addition, the sterilizability and processability are essential for a medical device. The

sterilization process can alter the biocompatibility because the material’s surface and

characteristic may be modified [28]. Preferably, the sensor is manufactured under sterile

conditions, thereby minimizing any pathogenic contact.
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Biocompatibility for inkjet-printed ozone sensors 7

2.2. Amperometric and impedimetric sensors for ozone measurement

Summarising Section 1.1 and Table 1, for the application requirements of a dissolved

ozone sensor during oxygen-ozone therapy, amperometric and impedimetric sensors are

further investigated. Amperometric sensors are most promising because of the best

fulfilment of the requirements and the simplicity of the design. The main advantages

of amperometric sensors compared to the other measuring principles are the absence

of a heating or light activation element and the possibility to realize the measuring

principle in a very small assembly space. Impedimetric sensors based on MOS are also

further assessed because of the shorter response time. In order to achieve short response

times, MOS usually require a heating or light activation element, which may affect

the health of the patient. Although a light activation or heating element is normally

required, impedimetric sensors are considered here further due to their low response

time and very small space requirements. Optical ozone sensors that are manufactured

with current technology yield very good measurement results. The major challenge of

miniaturizing optical sensors is that they require relatively large optical path lengths

in the centimetre range. This is one of the reasons why a miniaturized optical ozone

sensor is not yet available. In addition, optical absorption sensors also need UV light

for ozone measurement, which is critical in combination with body liquids and tissues.

Photoluminescence and impedimetric CNT sensors have too high response times for our

application.

Therefore, sensors that are built up by layer systems, in particular by printable layer

systems, are considered in this paper, such as amperometric and impedimetric sensors.

The schematic illustrations of the amperometric and impedimetric sensor principles are

shown in Figure 3 and are explained in detail in previous work [5]. An amperometric

sensor consists of three electrodes, working electrode (WE), counter electrode (CE),

and reference electrode (RE), and detects changes in electric current caused by a

chemical reaction [29]. The applied constant voltage between WE and RE needs to

be high enough to ensure a complete reaction of the ozone at the WE but lower than

the voltage that leads to decomposition of the electrodes. The electrolyte solution is

between the electrodes and the membrane and the reduction reaction of ozone at the

WE results in a current flow that can be measured [30]. Impedimetric sensors measure

the concentration by determining changes of the conductivity. They consist of a sensing

material, electrodes, and a substrate. In addition, a heating or light activation element

improves the sensor’s response time.
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Biocompatibility for inkjet-printed ozone sensors 8

(a) Three-electrode amperometric sensor,

whereby changes of the current due to

a chemical reaction are measured at the

WE.

(b) Impedimetric sensor, changes of the conductivity

of the sensing material are determined in order to

obtain the concentration.

Figure 3: Schematic of an amperometric and impedimetric sensor.

Examples of commercially available impedimetric and amperometric ozone sensors are

shown in Figure 4. These commercial sensors cannot be used for ozone measurement

during oxygen-ozone injection for the treatment of a herniated disk because they have

too large dimensions, insufficient long-term stability and too high cross-sensitivity to

other chemical substances. For this reason, it is important that ozone sensors are further

developed.

20 mm

Figure 4: Commercial impedimetric ozone sensor MIKROE-2767 (MikroElektronika,

Belgrade, Serbia) on the left and commercial amperometric ozone sensors SDK-O3

(SPEC Sensors, California, USA) on the middle and right.

2.3. Structure and materials of ozone sensors

For amperometric dissolved ozone sensors, appropriate materials are necessary for the

electrodes, substrate, membrane, passivation, and electrolyte. Mostly, the electrodes
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Biocompatibility for inkjet-printed ozone sensors 9

consist of precious metals, such as gold (Au), silver (Ag), and platinum (Pt), or are

combined with non-metal materials, such as silver chloride (AgCl) for the RE or boron-

doped diamond (BDD) for the WE [31–35]. For the substrate aluminium (Al), alumina

(Al2O3) [36, 37], glass [38–40], quartz [41, 42], silicon dioxide (SiO2)/silicon (Si) [43],

fused silica [44], Si [45], or borosilicate wafers [44] can be applied. Polymers, such as

polyimide (PI) [46], polyethylene terephthalate (PET) [31], poly(methylmethacrylate)

(PMMA) [47], polytetrafluoroethylene (PTFE) [48], polyvinyl alcohol (PVA) [49],

polyvinyl chloride (PVC) [31], and polydimethylsiloxane (PDMS) [50–52] can also

be utilized as substrate. Here, the specific application requires a flexible substrate,

which enables the integration of the sensor on the needle of an injection syringe.

For amperometric sensors, a membrane is necessary to ensure selective measurement.

Therefore, a material that acts as both substrate and membrane is preferred. The

membrane needs to be non-porous to reduce the permeation of oxidizing substances that

interfere with the measurement, such as oxygen. For the membrane various materials,

such as Al2O3 [36,37], zirconium dioxide (ZrO2) [36], PDMS [53], PTFE [36,48,54], and

polyvinylidene difluoride (PVDF) [54], can be applied. For this particular application,

PDMS is superior because it has four times the gas permeability for ozone than for

oxygen [53] and can be processed with IJP [50]. For the passivation SU-8 is a commonly

applied passivation ink [48, 55]. In addition, potassium nitrate (KNO3), potassium

sulfate (K2SO4), and sodium chloride (NaCl) are frequently utilized as an electrolyte

for amperometric sensors.

Impedimetric sensors consist of two electrodes, a sensing material, a substrate, a

membrane, and a heating or light activation element. The electrodes are based on

noble metals [56, 57], copper (Cu) [58], titanium (Ti) [59], and tin-doped indium oxide

(ITO) [42]. As sensing material zinc oxide (ZnO) [43], tungsten trioxide (WO3) [60],

indium oxide (In2O3) [61], stannic oxide (SnO2) [62], and CNTs [63–65] can be employed.

Materials for the substrate and membrane can be chosen analogous to amperometric

sensor materials. The material of the heating element needs good thermal conductivity

and the same materials can be utilized as for the electrodes. For the light activation

element indium gallium nitride (InGaN)/gallium nitride (GaN) [66], InGaN [67], or

aluminium gallium nitride (AlGaN) [68] can be applied. For the light source and light

activation elements of impedimetric sensors, the same materials can be used as for optical

ozone sensors. The latter commonly consist of a light source and a photodetector with a

sensing material. The photodetector with sensing material is based on a glass or quartz

substrate, which is covered by a sensing material. The sensing material can be made

of ZnO [69], methylene blue [70], or poly(3,4-ethylenedioxythiophene) (PEDOT) doped

with polystyrene-sulfonate (PSS) forming PEDOT:PSS [71,72].

Table 2 shows an overview of currently utilized materials for the main components of

amperometric, impedimetric, and optical sensors, as well as substrates and membranes.

For the application of a sensor during oxygen-ozone therapy, the amperometric

measurement principle followed by the impedimetric measurement principle is most

promising.
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Biocompatibility for inkjet-printed ozone sensors 10

Table 2: Overview of currently utilized materials for the main components of dissolved

ozone sensors, consisting of sensing material, electrodes, light activation or heating

element, substrate, and membrane.

Amperometric Impedimetric Optical Substrates Membranes

Au, Ag [31,32] Au [56,57] ZnO [69] Al [40] Al2O3 [36, 37]

Pt [31,32] Ag [56,57] PEDOT: Al2O3 [36, 37] ZrO2 [36]

Ag/AgCl [33] Pt [56,57] PSS [71,72] glass [38–40] PDMS [50,52]

BDD [34,35] Cu [58] quartz [41,42] PTFE [48]

Ti [59] SiO2/Si [43] PVDF [54]

ITO [42] Si [45], PI [46]

ZnO [43] PET [31]

WO3 [60] PMMA [47]

In2O3 [61] PTFE [48]

SnO2 [62] PVA [49]

InGaN [67] PVC [31]

CNT [63–65] PDMS [50,52]

Table 3 provides a toxicity rating for single oral doses tested for rats according to

Mumford et al. [73] using the values for the lethal dose (LD).

Table 3: Toxicity rating for single oral doses tested for rats. Modified according to [73].

Rating Description LD50[mg kg−1]

1 extremly toxic ≤ 1

2 highly toxic 1-50

3 moderately toxic 50-500

4 slightly toxic 500-5000

5 practically non-toxic 5000-15000

6 relatively harmless >15000

Furthermore, Table 4 shows an overview of the material toxicity for the materials of

Table 2. The quantity of a consumed chemical that kills 50% of a sample set is defined

as LD50. There are different methods (oral, inhalation, or skin contact (dermal)) to

determine toxicity in different animals (mice, rats, or rabbits). For the table, oral

was focused for rats, as these were the only values available for almost all materials.

Nanoparticle (NP) toxicity is also affected by the NP size, shape, surface charge, and

alterations [74].
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Biocompatibility for inkjet-printed ozone sensors 11

Table 4: Overview of material toxicity for the materials of Table 2.

Material LD50 Conditions Toxicity Ref.

[mg kg−1]a Rating

Ag
280 rats, oral 3

[76]
800 rabbits, oral 4

AgCl > 5000 rats, oral 5 [77]

Al 1000 oral 4 [78]

Al2O3 > 2000 rats, oral 4 [79]

Au > 2000 rats, single dose, 10-50 nm NPs 4 [80]

BDD NR NR NR

CNT > 5000 single-wall CNT 5 [81]

Cu
LD100 = 30 mg kg−1 rats, copper sulphate

-
[82]

LD = 10-20 g humans, copper sulphate [83]

glass NR NR NR

InGaN NR NR NR

In2O3 396 mice, oral 3 [84]

ITO > 10000 rats, oral 5 [85]

PDMS > 4800 rats, oral 4 [86]

PEDOT 650 oral 4 [87]

PSS > 8000 rats, oral 5 [88]

PET > 8000 rats, oral 5 [89]

PI NR NR NR

PMMA > 8400 - 9400 rats, oral 5 [90]

Pt > 5000 rats, oral 5 [91]

PTFE > 11280 rats, oral 5 [92]

PVA 5000 rats, oral 5 [93]

PVC > 10000 rats, oral 5 [94]

PVDF 6000 rats, oral 5 [95]

quartz > 2000 rats, oral 4 [96]

Si 3160 rats, oral 4 [97]

SiO2 10000 rats, oral 5 [98]

SnO2 > 20000 rats, oral 6 [99]

TiO2 > 5000
no systemic toxicity, mice

[100]
and rabbits, oral, 129.4 nm NP

5

WO3 > 5000 rats, oral 5 [101]

ZnO > 5000 single dose, oral 5 [102]

ZrO2 > 5000 rats, oral 5 [103]

NR: not reported; a unless otherwise stated; Ref.: Reference
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Biocompatibility for inkjet-printed ozone sensors 12

2.4. Inkjet-printing as manufacturing method

For ozone sensors the following conventional fabrication methods are mostly applied:

spin-coating, dip-coating, screen-printing, UV photolithography, and spray-coating [5].

Compared to the fabrication methods stated above, IJP is a digital printing technique,

whereby compared to screen-printing or UV photolithography neither masks nor tem-

plates are needed, which decreases set-up time and costs. Another advantage of IJP

compared to spin-coating, dip-coating, and spray-coating is the easy adaptability of the

printing patterns and the possibility of printing on flexible substrates. Moreover, by

mounting the print head or substrate respectively on a four-axis handling system, IJP

has the potential to print ozone sensors directly onto syringe needles used in ozone ther-

apy for herniated disks. One additional advantage compared to the above-mentioned

processes is that IJP is a non-contact process. This means less mechanical stress on the

substrate and fewer sources of contamination, such as mask residue. Inkjet-printing

methods are distinguished into two methods: continuous IJP and drop-on-demand

IJP [75]. Whereas in continuous IJP, droplets are delivered continuously at a preset

frequency, in drop-on-demand IJP, the actuation electronics dispense a droplet only at

the desired target position [75]. Thus, drop-on-demand IJP, which is considered in this

paper, allows individual adjustment of the drop size as well as the number of drops sent

per trigger to control the total amount of material delivered to the target [75]. Nev-

ertheless, initial costs for the ink and printer are expensive [104]. Inks contain NPs as

functional elements and solvents for printability. The solvent is subsequently removed

by drying and curing and the NPs agglomerate on the substrate surface. Compared to

photolithography and gravure printing, the resolution of IJP is only average at 10 µm

to 50 µm. Furthermore, it is possible to change the drop size by the waveforms during

IJP [105]. When higher resolutions of 1 µm are needed, specialized inkjet-printers, such

as electrohydrodynamic inkjet-printers or micro-plotters, are necessary [106–109]. For

the IJP process, the utilized inks and substrates have to be compatible and need to

be adjusted. A parameter that needs to be adjusted between the substrate and ink is

the sintering temperature. High sintering temperatures to form a coherent porous NP

layer, which may be required for selected inks, can exceed the substrate’s glass transition

or melting temperature and thereby impair the substrate’s functionality, stability, and

biocompatibility. For economic manufacturing of these sensors, piezoelectric drop-on-

demand IJP, as shown in Figure 5, is a promising opportunity because for this additive

manufacturing process no mask or template is needed and the process can be controlled

digitally. Furthermore, printing on flexible substrates is possible and the ink can be

applied contactless and at low temperatures [110, 111]. Sterilization processes can also

be integrated into manufacturing process chains based on IJP. In general, sterilization

of the sensor can be realized by heat, ionized radiation, disinfection with aqueous solu-

tions, or the low-temperature-gas-method [112]. Ideally, the medical device is produced

directly under sterile conditions [112]. This can minimize any pathogenic contact [112].

Page 12 of 36AUTHOR SUBMITTED MANUSCRIPT - FPE-100511.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Biocompatibility for inkjet-printed ozone sensors 13

Figure 5: Nozzle for drop-on-demand IJP, whereby ink is applied with a piezoelectric

actuator on a substrate and the actuator does not get into contact with the substrate.

Figure 6 shows the IJP system MIBBS2 [111]. A substrate, here a PET film, is currently

on the vacuum-chuck in the middle of the image, whereby the substrate can be printed.

The axes can be moved with the game controller. There is also an emergency stop next

to the game controller. Hidden behind is the actual piezo controller with which the

waveform can be set.

Figure 6: Inkjet-printing system MIBBS2 reported by Gengenbach et al. [111]. The left

screen shows the user interface of the printer where the parameters are set and the right

screen shows the detail view of the inspection camera. In the centre of the image is

the vacuum chuck on which a substrate is printed. Above it is the print head and the

printer reservoir. At the top left is the controller for the vacuum pressure of the printing

head.

2.5. Assessment of an exemplary amperometric and impedimetric sensor

The materials in Table 5 are investigated in the following in terms of their individual

biocompatibility. They are applied for amperometric and impedimetric ozone sensors.
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Biocompatibility for inkjet-printed ozone sensors 14

Table 5: Component materials of assessed amperometric and impedimetric dissolved

ozone sensors.

Component Amperometric Sensor Impedimetric Sensor

electrodes Au and Ag NP inks Pt

sensing material NA In2O3

substrate PDMS Al2O3

membrane PDMS PDMS

passivation SU-8 NA

electrolyte KNO3, K2SO4, and NaCl NA

heating element NA Pt

light activation NA InGaN

NA: not applicable.

Amperometric sensor The investigated sensor is based on a previously published

oxygen sensor [113] and can be manufactured with IJP. The sensor reported by previous

research [113] and the sensor which is here examined are both amperometric sensors,

which react in general to all oxidizing substances. Selective measurement for ozone can

be enabled by a suitable membrane. A PTFE membrane can be utilized for an oxygen

sensor [113] and a PDMS membrane for an ozone sensor. For the WE and CE a gold

nanoparticle (AuNP) ink (Au-LT-20 by Fraunhofer IKTS, Germany) is chosen, for the

RE a silver nanoparticle (AgNP) ink (DGP 40LT-15C by ANP, Korea) is evaluated, and

for the passivation of the electrodes a SU-8 ink (XP PriElex SU-8 1.0 by MicroChem,

USA) is selected. For the membrane and substrate PDMS (Sylgard 184 Elastomer Kit

by Dow Corning, USA) is applied. The most important properties for processing the

inks with an inkjet-printer are shown in Table 6. Solvents, solid fraction, and NPs sizes

influence the properties of the printed layers such as homogeneity, conductivity, porosity,

and coffee ring effect [114]. Depending on the viscosity different printing heads have to

be chosen or solvents have to be added. Furthermore, the viscosity and surface tension

have an effect on the drop formation and thereby on the IJP process [114]. The curing

temperature is especially important for the selection of the substrate. In addition, the

post-processing can lead to cracks or coffee ring effects and thereby has an influence on

the conductivity of the final printed structure [114]. For the electrolyte KNO3, K2SO4,

and NaCl are investigated.

Impedimetric sensor Here, an exemplary impedimetric dissolved ozone sensor is

assessed, which can be manufactured with IJP and is based on a conventionally

manufactured ozone sensor by Takada et al. [115]. As well as the conventionally

manufactured sensor, the IJP sensor consists of an Al2O3 substrate, an In2O3 sensing

material, and Pt for the electrodes and the heating element. The sensor, which

is assessed in the following sections, consists in addition of a PDMS membrane.

Furthermore, InGaN is studied as light activation element, which can be employed
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Biocompatibility for inkjet-printed ozone sensors 15

Table 6: Overview of material properties of Au and Ag NP inks, SU-8 ink, and PDMS

ink used for an exemplary amperometric sensor.

Properties Au-LT-20 DGP 40- XP PriElex Sylgard

LT-15C SU-8 1.0 184 PDMS

(Au) (Ag) (SU-8) (PDMS)

solid fraction [wt.-%] 19.6 30 - 35 32 NA

NP size [nm] 30 50 NA NA

viscosity [mPa·s] 7.3 10 - 17 9.68 10 - 20

surface tension [mN m−1] 35.1 35 - 38 30 20 - 35

curing temperature [°C] 150 - 200 120 - 150 135 25 - 200

post-processing thermal thermal UV & thermal thermal

NA: not applicable.

alternatively to the heating element. Here, a platinum nanoparticle (PtNP) ink (PT-

LT-20 by Fraunhofer IKTS, Germany) is investigated, which is water-based and has a

solid fraction of 20 wt.-%, a NP size of max. 200 nm, a sintering temperature of 200 °C,

a surface tension of 38 mNm, and a viscosity of 12 mPa·s.

2.6. Approach for the biocompatibility assessment

First, literature references to bulk materials, inkjet-printed sensors, and the respective

inks are evaluated. Then, the influence of the manufacturing process on the

biocompatibility of the materials is considered. Finally, references on the transferability

of the assessments are evaluated.

3. Results

3.1. Biocompatibility of nanoparticle inks

Inks containing metallic NPs are commonly employed, for example, for the electrodes

or heating element. The NPs are sintered, connect with the substrate surface, and form

a coherent porous layer. There are two risk factors for the biocompatibility assessment.

Firstly, non-connected NPs can remain on the printed structure if not all NPs are

sintered during the production process and thus detach. Secondly, in case of a flexible

sensor, it is possible for NPs to detach when the sensor is used. In particular, NPs that

are not completely or well bound can detach. The sintering process only works when the

solvent and the coating of the NPs are removed. If there is still a substantial amount

of residue, the layer does not sinter completely and the highest possible conductivity is

not reached. However, in some cases post-processing i.e. solvent expulsion, stabilizer

removal, and the actual sintering is done in a single oven process step. It is not certain

Page 15 of 36 AUTHOR SUBMITTED MANUSCRIPT - FPE-100511.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Biocompatibility for inkjet-printed ozone sensors 16

that all the solvent is removed. Stabilizers and other organic components are even more

difficult to remove. Furthermore, the insertion of the sensor into the spinal disk is an

additional risk, as shear forces occur. For this reason, in techniques based on NPs, the

NPs must be considered separately in terms of risk. The majority of the NPs must

be bound, otherwise there is no conductive layer. It can be ensured by conductivity

measurements of the printed structure that the layer has not completely dissolved into

individual NPs. In terms of measurement, the target conductivity can be used for quality

control to test whether there are cracks in the layer. This means that several printed

structures are first produced, which are subjected to inspection with a microscope. The

conductivity of these printed structures is then determined, which corresponds to the

target conductivity. For further tests, the value for the target conductivity can be used

to perform a quality control with a single measurement. However, minimal amounts of

NPs can still detach, which does not affect the conductivity but has an influence on the

biocompatibility. For this reason, consideration and subsequent testing are necessary.

The biocompatibility of NP inks depends on the NP’s size, shape, surface chemistry, and

surface charge [116]. An increased particle size leads to a higher surface reactivity, mass

diffusivity, sedimentation velocity, and attachment efficiency, while a decreased particle

size results in a higher surface-to-volume ratio and thus a higher risk of cytotoxicity [117].

Furthermore, the particle size has an influence on the system toxicity, although it is still

unknown whether larger or smaller particles are more toxic [118, 119]. Moreover, the

NP’s agglomeration highly affects the biocompatibility of the ink [120]. For example

larger titanium dioxide (TiO2) aggregates have a higher effect on the cell viability

than smaller ones [121]. In addition, a different shape of the NPs may alter the

penetration into a cell, such as spherical NPs are less toxic and reactive than fibre-

shaped NPs [120,122,123]. A larger contact area leads to a lower penetration efficiency

into a cell but also bears a higher risk of cytotoxicity [124, 125]. Additionally, the

cytotoxicity is also affected by the molecular structure and bonding types at the surface

of the NPs because these properties change the recognition of the NPs at biomolecules,

such as cells or proteins [126]. If particles are recognized as foreign to the body, an

immunological reaction can occur. Furthermore, the surface charge, depending on the

density and polarity, may affect the biocompatibility. Overall, a higher surface charge

density results in a higher toxicity, in contrast to neutral or slightly charged surface

charge densities [127]. For example, positively charged NPs have a more toxic effect

on non-phagocytic cells [128–130] and negatively charged NPs have a negative effect

on phagocytic cells [120]. Overall, size, morphological features, surface structure, and

surface charge can have a significant influence on the biocompatibility of a medical

device. There are also additional influences on the biocompatibility, depending on the

specific material, which are assessed in the following for the exemplary sensors.
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Biocompatibility for inkjet-printed ozone sensors 17

3.2. Exemplary amperometric sensor

In the following, an exemplary amperometric sensor is assessed for its biocompatibility.

Previous research has already examined the cytotoxicity of the Au, Ag, and SU-8 ink

by culturing hepatocytes onto a membrane, which was on top of printed patterns [48].

The authors reported a maintained viability of the cells, which indicates the non-

cytotoxicity of these materials for the given setup [48]. The biocompatibility of the

processed ink is crucial here. Thus, the properties of NPs that already adhere to a

surface must be considered. Figure 7 shows a computer-aided design (CAD) version of

an amperometric sensor according to 3a, whereby this design is currently being realised

using IJP technology and will subsequently be published separately.

(a) Section view of the CAD model of an amperometric sensor. (b) Full view of the

CAD model of an

amperometric sensor.

Figure 7: CAD drawing of an amperometric sensor, including counter electrode, working

electrode, reference electrode, electrolyte, membrane, substrate, and passivation.

3.2.1. Gold nanoparticle ink as working and counter electrode material AuNPs are

applied for biomedical applications, such as medical imaging, drug delivery systems,

and cancer treatment because of their optical properties and potential biocompatibility,

depending on the NP shape, NP size, surface chemistry, and surface charge [116]. For

the exemplary amperometric sensor, the Au ink according to Table 5 is analyzed in

terms of the ink’s biological and printing properties. Thereby, the AuNP ink is applied

for the WE and CE of the amperometric sensor, which is depicted in Figure 7. The

NPs are dissolved in water and ethylene glycol and according to the manufacturer the
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Biocompatibility for inkjet-printed ozone sensors 18

material is non-toxic and biocompatible. Hepatocytes cultured on a membrane on top

of the printed ink show non-toxicity as the cells retain viability [48]. Furthermore, the

solvent ethylene glycol has to be considered, as it is toxic for humans [131]. Ethylene

glycol has a boiling point of 196 °C [132] and some residues may remain after curing or

sintering below this temperature.

3.2.2. Silver nanoparticle ink as reference electrode material AgNPs are employed in

medicine, such as in wound dressing and catheters [133], due to their antimicrobial

properties [18, 134]. Here, AgNP ink is employed for the RE of the amperometric

sensor, shown in Figure 7. A higher concentration, as applied for a medical ozone

sensor, may have toxic effects on human cells [134]. The nucleus pulposus of a herniated

disk can be approximated as aqueous environment. In an aqueous environment AgNPs

release Ag ions that can bind to sulphur groups in biomolecules [134]. This can

result in cytoxicity, genotoxicity, or immunological responses. In addition, AgNPs

have the ability to pass through the blood brain barrier, thus they are classified as

neurotoxin [135]. The morphology of AgNPs in various inks differs and affects the

biological properties. For the exemplary amperometric sensor, the Ag ink according

to Table 6 is analyzed in terms of the ink’s biological and printing properties. The

AgNPs are solved in triethylene glycol monoethyl ether (TGME) and the ink has a

good adhesion to polymer and glass substrates. The encapsulation of the AgNPs is

made of polyvinylpyrrolidone (PVP) [136]. Lee et al. [136] state that at the specified

curing temperature the PVP becomes liquid and remains in the structure or on the

substrate, i.e. is not completely expelled. The ink is not classified as a hazardous

substance according to the regulation (EG) No. 1272/2008 [137] and does not include

carcinogenic components in concentrations of more than 0.1% [137, 138]. Previous

research reported a good biocompatibility of this ink using cultured hepatocytes onto

a membrane on top of the printed material [48]. The solvent TGME does not contain

any components classified as toxic [139]. The boiling temperature of 256 °C for TGME

is higher than the curing temperature of the ink, thus residuals of TGME remain in the

final sensor. Before drying, the printed ink may be rinsed with polar solvents, such as

ethyl alcohol or isopropyl alcohol (IPA), and treated with a vacuum treatment for the

complete evaporation of the solvent. For great amounts of ethyl alcohol, taken in orally

or through the blood stream, occurs hepatotoxicity, which can cause liver injuries [140].

The rinsing of the printed structure is supposed to be non-hazardous as ethyl alcohol

and IPA are main disinfectants in the medical sector. However, the utilized amount has

to be minimized to ensure the biocompatibility of the product.

3.2.3. Polydimethylsiloxane as substrate and membrane material Polydimethylsiloxane

is used for the substrate and membrane illustrated in Figure 7. Thereby, the substrate

consists of highly cross-linked PDMS and the membrane of PDMS with controlled

permeation properties. This enables membrane properties that are necessary for the

respective application, for example high permeability for ozone and low permeability for
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Biocompatibility for inkjet-printed ozone sensors 19

oxygen for an amperometric ozone sensor. Due to the PDMS substrate, it is necessary

that the curing of the gold and silver ink is done with photonic sintering. Photonic

sintering is less destructive to the substrate as it does not heat up. For the amperometric

sensor, a membrane is necessary to ensure selective ozone measurement. Non-porous

PDMS is assessed as promising membrane material for the specific application. The

functionality of the membrane depends for example on the porosity and the type and

amount of functional groups on the surface. Polydimethylsiloxane is characterized

as hydrophobic, non-flammable, non-toxic, and bioinert [141]. It is employed in

medicine, such as for contact lenses or as a shell of breast implants [142]. Furthermore,

PDMS is printable, for example Sylgard 184 ink can be applied to print an elastomer

matrix [50, 51]. The viscosity of Sylgard 184 is 3500 mPa·s and has to be reduced

prior to the printing process by additional solvents, such as octyl acetate (OA) [50,51].

Afterwards, the ink has the viscosity and surface tension as stated in Table 6 [50].

Mikkonen et al. [50] and Sturgess et al. [51] did not detect residues of OA after

printing and curing of the PDMS layer. The biocompatibility of PDMS is reported,

however, the authors also stated a dependence of the biocompatibility on the production

and post-processing methods [143]. For an ensured biocompatibility of PDMS, a full

polymerization of the PDMS’s oligomers and the removal of all short-chained molecules

need to be ensured. Lee et al. [144] also reported the in-vitro biocompatibility of a

PDMS (Sylgard 184) coated device.

3.2.4. SU-8 ink as passivation material For the passivation of the electrodes, which is

displayed in Figure 7, SU-8 is utilized. Parts of the electrodes, which are not supposed to

be exposed to the measurement substance, have to be passivated to avoid short-circuits.

Furthermore, in case of a porous substrate, the pores need to be sealed with a passivation

material [48]. There are various types of SU-8 available, such as SU-8 2002 and XP

PriElex SU-8 1.0. SU-8 2002 was primarily developed for the spin coating process but

can also be applied for IJP, whilst XP PriElex SU-8 1.0 is an ink that was specifically

developed for IJP. Previous research investigated SU-8 2002, whereby the solvent is

cyclopentanone [48]. This ink was already tested with regard to its biocompatibility [48].

The jettable ink XP PriElex SU-8 1.0 is an epoxy-based photoresist that consists of resin,

solvent, and a photosensitive component containing antimony. After curing, the printed

layers form stable isolation and dielectric layers, which are also applied as passivation

layers for sensors [55]. The cross-linked polymer network, which is induced by UV light

and heat, provides a high chemical resistance, thermal stability (up to 315 °C) [145],

and high mechanical strength. However, publications diverge on the subject of the

biocompatibility of SU-8. Multiple biological characterization tests consistent with

ISO 10993 [22] were conducted and most of them [145–147] agreed that SU-8 is non-

toxic and non-irritant. Nevertheless, some studies show a certain degree of cytotoxiciy

for SU-8 [148]. The toxicity of antimony depends on its valency [145]. The detachable

amount of antimony may be reduced by additional UV and heat exposure. There are

several surface treatments, such as chemical treatment with acid and base, grafting
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Biocompatibility for inkjet-printed ozone sensors 20

of the surface with polyethylene glycol, and oxygen plasma treatment, to improve the

biocompatibility of SU-8 [48,145]. The oxygen plasma treatment leads to an increase in

the oxygen and carboxyl groups on the surface and thus the wettability as well as the

surface energy increases [48]. When processing SU-8, it is important that the solvents

can be removed as much as possible after the ink has been applied. Finally, in-vivo tests

are necessary to confirm or reject the biocompatibility.

3.2.5. Potassium nitrate, potassium sulfate, and sodium chloride as electrolyte material

For an amperometric sensor, an electrolyte covering the electrodes is necessary to ensure

proper conductivity between the electrodes and thus the sensor’s functionality. The

electrolyte may become obsolete if the sensor is applied to measure in body liquids

and tissues, such as the nucleus pulposus, because they naturally contain ions, which

may act as electrolyte. Hereafter, the electrolytes KNO3, K2SO4, and NaCl, shown in

Figure 7, are assessed with regard to their biocompatibility. Potassium and sodium occur

naturally inside the human body. Potassium regulates the blood pressure, water balance,

and acidity levels and controls enzyme reactions. Potassium and sodium are responsible

for the transmission of signals, such as neurotransmission and muscle contradiction in

the body [149, 150]. Nitrates, taken in by food, get inside the body transformed into

nitrites, which prevents haemoglobin from transporting oxygen and thus can lead to

an oxygen deficiency in the cells [151]. In addition, nitrate is transformed into nitric

oxide, which positively influences the blood flow rates and metabolism [152]. Previous

studies were very controversial about nitrate and a correlating cancer risk, but current

research indicates that usual occurring amounts of nitrate do not increase the risk of

tumors [153]. Sulfates are essential inside the human body and in medicine, such as

for cell growth processes and before a colonoscopy [154, 155]. However, sulfates can

also lead to an irritation of the eye or skin [150]. Potassium nitrate is utilized in tooth

paste and in the food industry to increase the product durability [156]. In the European

Union K2SO4 is added as food additive E515 [157] and there are no maximum addition

limits. Sodium chloride is a main mineral for humans and can be highly diluted injected

intravenously as an isotonic saline solution [149].

The most promising electrolyte with regard to the biocompatibility is NaCl because it

can be injected as isotonic saline solution without causing harm. Most critical in terms

of biocompatibility is the electrolyte KNO3.

3.3. Exemplary impedimetric sensor

In the following an exemplary impedimetric sensor is assessed for its biocompatibility.

3.3.1. Platinum as electrode material For electrode materials, mostly noble metals

with a high electrical conductivity are employed [5]. Here, Pt is assessed because it has

a high biocompatibility, is inert to body liquids, and has a low corrosivity and good

mechanical strength [158, 159]. Therefore, Pt is often utilized for medical devices, such
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as pacemakers, catheters, or stents [160]. Inks consisting of Pt are made of PtNPs

or a Pt solution, such as chloroplatinic acid hydrate [161]. Platinum NPs are more

promising with regard to the biocompatibility, because Pt solutions commonly include

toxic substances. Schubert et al. [162] reported a nearly 100% cell viability and the

formation of a highly biocompatible surface for the PT-LT-20 NP ink. They conducted

in-vitro experiments with the NP ink with regard to their cytotoxicity according to

ISO 10993 [163].

3.3.2. Indium oxide as sensing material Commonly, In2O3, ZnO, SnO2, and WO3 are

applied as sensing material for MOS sensors [61]. Here, In2O3 is chosen because of

the high sensitivity, low cross-sensitivity, and short response and recovery time [164].

As sensing material for an impedimetric sensor, In2O3 is employed in a crystalline

water-insoluble form [165], which works optimally at temperatures between 200 °C and

400 °C [164]. Inks made of In2O3 can not be obtained commercially but they can be

produced from oxide precursors based on sol-gel [166] or NPs [167]. Compared to NPs,

oxide precursors based on sol-gel need higher temperature treatments. Previous research

by Hassan et al. [110] performed a lactate dehydrogenase (LDH) cytotoxicity assay for

a combination of a printed sodium alginate insulator layer on top of a printed In2O3

layer. The assay yields a non-cytotoxic result. The applied In2O3 NP ink consists of

deionized water and sodium polyacrylate. The diameter of the NPs is between 20 nm to

70 nm and the NP ink has to be thermally treated after the IJP process at 150 °C. The

biocompatibility of In2O3 in combination with body liquids and tissues is not sufficiently

investigated. Several studies investigated the inhalation of In2O3, which yield toxic

effects on the lungs [168,169]. Indium (III) ions injected into the blood stream are toxic

to the kidney. In addition, hydrated In2O3 is by a factor of 40 more toxic than the

corresponding ions [170]. Overall, there is not enough literature available to adequately

determine the biocompatibility of In2O3. Especially with regard to IJP In2O3 based

inks, further research has to be conducted.

3.3.3. Alumina as substrate material As shown in Figure 3b, the electrodes and the

heat or light activation element are separated by a substrate. The substrate needs to

be compatible with the utilized ink for the electrodes and heating or light activation

element and has to be heat conductive and heat stable. In the case of the exemplary

sensor, Al2O3 is applied as substrate, which is a good heat conductor and insulator

because of phonon resonance [171]. Alumina can be employed via IJP if Al2O3 NPs

are dispersed into water or ethylene glycol [172]. Denes et al. [173] reported sufficient

biocompatibility for Al2O3 based on the biological characterization tests provided by the

international standard ISO 10993 [22]. In contrast, Mestres et al. [174] have identified

that after an exposure to high concentration of small (20 nm) Al2O3 NPs, there is an

increased release of reactive oxygen species (ROS) by macrophages. This results in

oxidative stress, which may yield cell death. Moreover, additional chemicals required

by the manufacturing method, such as solvents to make the material printable, may
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further influence the sensor’s biocompatibility.

3.3.4. Polydimethylsiloxane as membrane material The biocompatibility of PDMS has

been already examined in Section 3.2.3 for the amperometric measurement principle.

3.3.5. Platinum as heating or indium gallium nitride as light activation element The

biocompatibility of Pt has been already discussed in Section 3.3.1. For InGaN light

emitting diodes (LEDs) in-vitro and in-vivo cytotoxicity tests, histology studies, and

in-vivo immunological response analysis were conducted [175]. For the tested LEDs no

cytotoxicity or immunological effects were reported [175]. In general, gallium nitrate can

limit local inflammation due to its immunosuppressive effect [176,177]. The material of

the LEDs shows a high biocompatibility. Instead, the use of UV light may be a bigger

issue, because the exposure of UV light leads to a growth of the generation of ROS,

which may damage biomolecules [178]. In addition, the UV light may damage directly or

indirectly the deoxyribonucleic acid (DNA), depending on the UV light wavelength [179].

3.4. Potential alternatives with a higher biocompatibility

The utilization of biocompatible materials increases the probability of a finally

biocompatible sensor, although the final sensor needs to be tested itself. Overall, the

highest potential for biocompatibility of the materials in Section 2.5 show PDMS for

the membrane and substrate and Pt and AuNP inks for the electrodes. In contrast,

the lowest potential is present for AgNP inks for the reference electrode and In2O3 as

sensing material. These materials may be substituted with Ti for the reference electrode

and TiO2 or ZnO as sensing material. Nevertheless, it is important to consider that the

toxicity of TiO2 and ZnO depends on the size and shape of the NP [180].

3.4.1. Titanium as reference electrode material and titanium dioxide as sensing

material Titanium is often applied for medical applications, such as for prostheses

and dental implants [25,28,181]. This is possible due to the good mechanical strength,

excellent corrosion resistance, and extraordinary biocompatibility of Ti [182]. However,

the main reason for the high biocompatibility is that the surface of Ti oxidizes to

TiO2, which shows a non-toxic behaviour [182]. Despite the high biocompatibility

compared to Ag, the electrical conductance of Ti is more than ten times smaller [183].

Nevertheless, it is possible to improve the electrical conductance by employing other

noble metals, such as Pt, in combination with Ti [59]. Previous research has shown

the applicability of TiO2 as sensing material for impedimetric sensors [184] with a

heating element for oxygen [185, 186] and ozone [187] measurement. The resistance

of TiO2 is highly dependent on the temperature, therefore the wide application is

limited by the high temperatures needed for the sensing material‘s functionality. Further

research is necessary to increase the electrical conductance of Ti, decrease the needed
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temperature for TiO2 sensing material, and investigate the effects of the IJP process on

the biocompatibility of the material.

3.4.2. Zinc oxide as sensing material In medicine ZnO is frequently applied, such as

for drug delivery systems, bioimaging, and biosensors, for example glucose sensors [188].

Furthermore, it is a common sensing material for impedimetric sensors [59, 189].

Previous research reported the feasibility of gas measurement at RT with visible light

enhancement [190,191]. Further research is necessary to investigate the dissolved ozone

measurement with these conditions. ZnO NP ink, whereby the NPs are dissolved in

n-butanol, can be obtained commercially (Helios’Ink H-SZ01034 by GenesInk, France).

The contact of n-butanol with eyes or skin leads to irritations [192]. In contrast, ZnO

NPs have anti-inflammatory, anti-bacterial, and biodegradable properties. In addition,

ZnO NPs are classified by the FDA as a safe substance [193].

3.5. Transfer of the assessment to other sensors

There are also several other sensors, such as hydrogen peroxide, glucose, pH, sweat

lactate, oxygen, and acetone sensors, fabricated from the same material set (Au, Ag,

PDMS, SU-8, KNO3, K2SO4, NaCl, Pt, In2O3, Al2O3, and InGaN) as the previously

described amperometric and impedimetric dissolved ozone sensors. The findings on the

biocompatibility in this paper can be transferred to hydrogen peroxide sensors, e.g.

reported by Wu et al. [1], which consist of a PDMS substrate, Au for the WE and CE,

and Ag for the RE. Transfer is also possible for inkjet-printed electrochemical pH and

glucose sensors, e.g. presented by Määttänen et al. [194]. Thereby, the WE and CE are

made of Au, the RE consists of Ag, and PDMS is utilized for passivation [194]. For the

pH sensor a polyaniline film is applied on the WE and for the glucose sensor a poly(3,4-

ethylenedioxythiophene) layer is employed on the WE [194]. In addition, a transfer is

possible for sweat lactate measurement with sensors that consists of an Ag electrode

coated by Nafion with lactate oxidase as an enzyme [195]. There are also various

similarities to a dissolved oxygen sensor made of AuNP ink for the WE and CE, AgNP

ink for the RE, SU-8 ink for the passivation, and a polyethylene naphthalate (PEN)

substrate [113]. An oxygen sensor, which operates at RT and is similar to the evaluated

impedimetric sensor, can be also manufactured with Pt-doped In2O3 [196]. Furthermore,

KNO3, K2SO4, and NaCl are commonly applied electrolytes for amperometric sensors.

Moreover, acetone sensors for biomedical applications, e.g. reported by Karmaoui et

al. [2], contain Pt-decorated In2O3 NPs. Besides ozone measurement, In2O3 is often

utilized for the IJP of transistors [110, 197, 198]. For medical applications, transistors

can be applied for skin and health surveillance [199]. Additionally, InGaN-based chips

are employed in laboratory medicine for refractometers to determine the total plasma

protein in samples of blood and urine [200]. Overall, there are numerous applications in

medicine that use the same set of materials as those employed for measuring dissolved

ozone. For this reason, the assessments carried out here can be transferred easily.
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4. Discussion

Biocompatible sensor materials increase the probability of an ultimately biocompatible

sensor system. The use of non-toxic solvents and chemicals further increases the

potential of an ultimately biocompatible sensor. However, the IJP process and post-

processing steps can additionally influence the biocompatibility of the sensor by changing

the material properties. Biocompatibility tests for the final sensor after all production

steps have to be conducted. The biocompatibility of sensors in medical technology can

be improved by a final heating step. This allows bound water to be removed, which

can prevent corrosion of the electronics. It also removes volatile components of solvents.

In the following, limitations of the current state of research and further research are

discussed.

4.1. Limitations of the current state of research

The focus in this research lies upon amperometric and impedimetric sensors because

these are currently most promising for an inkjet-printed sensor for the oxygen-ozone

treatment of a disk herniation. Other materials for impedimetric sensors, such as a

combination of MOS materials and CNTs or polymers, may be superior in the long-term

after further research is conducted to improve the measurement with these materials.

Polymers are commonly applied as sensing material for sensors but further research is

necessary for application of polymers in ozone measurement [201]. Here, the sensor’s

miniaturization and stability are not considered. Especially the electrical potential

of the RE has to be constant for different concentrations. In this research mostly

the biocompatibility of the material in general instead of the specific IJP material is

assessed, limited by the available literature. The IJP process and additional additives

in the ink may affect the biocompatibility of the material. Various cytotoxicity tests

were reported to indicate the cytotoxicity or non-cytotoxicity of a material. These tests

have to be repeated for the cells present during the specific application, in this case in the

intervertebral disk tissue, as the test results depend on both the cells and the material

used. In addition, the biocompatibility of the sensor has to be in accordance with

regulations, depending on the country in which the medical device is commercialized

and manufactured. In the European Union the manufacturers have to comply to the

Medical Device Regulation and in the United States of America to the FDA. Here,

the international standard ISO 10993 [22] is considered because this is a standard for

verifying that a product is biocompatible, which is very important for the technical

documentation of a medical device.

4.2. Further research

Overall, the functionality and biocompatibility of an amperometric sensor for the

oxygen-ozone therapy are most promising because of the measurement at RT, absence

of UV light, and sufficient response time. It is still necessary to increase the
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sensor’s selectivity and a further decrease of the response time may be beneficial.

Additional research is needed to test the final sensor produced via IJP through

biological characterization tests. Nevertheless, in order to widely apply ozone sensors

for various medical therapies, further measurement principles need to be investigated.

The application of impedimetric and optical absorption sensors is mainly limited during

medical therapy because of the high temperatures and UV light and may thereby be

toxic for body liquids and tissues. Previous research [70, 202] has already reported

the optical absorption ozone measurement in the visible spectral light range, but the

requirement of long optical path lengths limits the application. Moreover, Wu et

al. [203] also investigated the visible spectral light range. The authors reported the

feasibility of light activation with blue light of Au/TiO2–WO3 as sensing material, but

the response time above 200 s has to be improved. Further research is necessary to

decrease the path length of optical absorption sensors or response time for the light

activation with visible light for the application during medical therapies. In addition,

a hybrid combination, reported by Wei et al. [204], of impedimetric MOS and CNT

sensors is an opportunity to overcome the drawbacks of both sensor types, such as high

measurement temperatures for MOS sensors and long response times for CNT sensors.

Wei et al. [204] reported positive results at RT, but subsequent studies are necessary

to further reduce the response time. Furthermore, the utilization of polymers needs

to be further investigated. The main challenge for the measurement of the dissolved

ozone during oxygen-ozone treatment is the approximation of body liquids inside the

herniated disk as water. The interaction with body liquids and tissues may impair the

functionality of the sensor. The body liquid may act as an electrolyte because of its

ion concentration and therefore the additional sensor’s electrolyte may become obsolete.

Without an additional electrolyte, the manufacturing process of the sensor is simplified

and the probability of the sensor’s biocompatibility is increased because less substances

are in contact with the human body.

5. Conclusion

Amperometric and impedimetric sensors are widely applied in medicine and often the

same set of materials is utilized. Here, the application of a dissolved ozone sensor

during the oxygen-ozone treatment of a disk herniation is focused. During this therapy

and in general during therapies related to ozone it is crucial to monitor the ozone

concentration [205]. The biocompatibility of sensors in medicine needs to be considered

during the complete design and manufacturing process. In this research, an exemplary

amperometric and impedimetric sensor are evaluated in compliance to the international

standard ISO 10993 [22]. For the exemplary amperometric sensor, the following

materials are selected: AuNP ink for the WE and CE, AgNP ink for the RE, SU-8 as

passivation of the electrodes, PDMS as substrate and membrane, and KNO3, K2SO4, or

NaCl as electrolyte. The assessment of the exemplary amperometric sensor is the priority

in this research because no heat or UV light activation is needed, which may negatively
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affect body liquids and tissues. Thereby, the biocompatibility investigation already

indicates a high potential for the exemplary amperometric sensor. For the exemplary

impedimetric senor, the following materials are chosen: Al2O3 for the substrate, Pt for

the electrodes, In2O3 as sensing material, PDMS as membrane, and Pt for the heating

element or InGaN as light activation element. The biocompatibility of the impedimetric

sensor may be improved by using ZnO as sensing material, allowing measurements at

RT with visible light. However, the feasibility of the measurement of ozone with these

conditions still needs to be investigated. The materials for the exemplary sensors are

also utilized for the measurement of oxygen, glucose, pH, hydrogen peroxide, sweat

lactate, and acetone in medicine. Thus, the biocompatibility assessments can be

transferred to these sensors. All of the investigated materials show potential for the

application in a biocompatible sensor. Further examinations are important to test

the biological and chemical characterization, bioactivity, cytotoxicity, sterilization, and

packaging process for the sensors because these cannot be fully replaced by a literature

review. In addition, research is necessary to investigate the possibility of eliminating

the electrolyte by utilizing the ions inside the nucleus pulposus for the functionality

of the sensor. The biodegradability and recycling process of the final sensor has to

be considered to minimize the environmental impact of the single-use product. The

potential of reaching a biocompatible device is increased by utilizing biocompatible or

non-toxic materials. However, it still has to be considered that the properties and

thereby the biocompatibility may be altered in the production process. For example,

the surface properties are changed by combining several materials or by the sintering

process. Through the sintering process, the porosity of printed NPs is decreased, which

changes the electrical and surface properties. This may lead to a different reaction

between the device and body liquids and tissues, which get into contact with the device.

In addition, substances that are only necessary for the production process, may also

affect the biocompatibility of the device. In order to get in contact with body liquids and

tissues, the sensors need to be sterile, which can be reached by implementing a sterile IJP

production process or by a final sterilization step. However, this reduction of the germ

contamination may also affect the biocompatibility. Nevertheless, sterilization steps may

not be necessary due to high sintering and curing temperatures, which may deactivate

pathogens sufficiently. Overall, the biocompatibility depends on the applied materials,

production method, surface properties, and contamination degree of the device with

pathogens.
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[161] Özkan M, Hashmi S G, Halme J, Karakoç A, Sarikka T, Paltakari J and Lund P D 2017 Inkjet-

printed platinum counter electrodes for dye-sensitized solar cells. Org. Electron., 44, 159–167.

[162] Schubert M, Rebohle L, Wang Y, Fritsch M, Bock K, Vinnichenko M and Schumann T Evaluation

of nanoparticle inks on flexible and stretchable substrates for biocompatible application. Proc.

of the 7th Electronic System-Integration Technology Conf. (ESTC), 18-21 September 2018,

Dresden, Germany., 2018.

[163] Int. Standard ISO 10993-5. Biological evaluation of medical devices - Part 5: Tests for in vitro

cytotoxicity, June 2009.

[164] Korotcenkov G 2007 Metal oxides for solid-state gas sensors: What determines our choice?

Mater. Sci. Eng., B, 139, 1–23.

[165] Marezio M 1966 Refinement of the crystal structure of In2O3 at two wavelengths. Acta

Crystallogr., 20, 723–728.

[166] Garlapati S K, Mishra N, Dehm S, Hahn R, Kruk R, Hahn H and Dasgupta S 2013 Electrolyte-

gated, high mobility inorganic oxide transistors from printed metal halides. ACS Appl. Mater.

Interfaces, 5, 11498–11502.

[167] Dasgupta S, Kruk R, Mechau N and Hahn H 2011 Inkjet printed, high mobility inorganic-oxide

field effect transistors processed at room temperature. ACS Nano, 5, 9628–9638.

Page 34 of 36AUTHOR SUBMITTED MANUSCRIPT - FPE-100511.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-sulfate#section=Absorption-Distribution-and-Excretion
https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-sulfate#section=Absorption-Distribution-and-Excretion
https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-sulfate#section=Absorption-Distribution-and-Excretion
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1333
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1333


Biocompatibility for inkjet-printed ozone sensors 35

[168] Bomhard E M 2018 The toxicology of indium oxide. Environ. Toxicol. Pharmacol., 58, 250–258.

[169] Kim S H, Jeon S, Lee D K, Lee S, Jeong J, Kim J S and Cho W S 2020 The early onset

and persistent worsening pulmonary alveolar proteinosis in rats by indium oxide nanoparticles.

Nanotoxicology, 14, 468–478.

[170] Castronovo F P and Wagner H N 1971 Factors affecting the toxicity of the element indium. Br.

J. Exp. Pathol., 52, 543–559.

[171] Guo S, Zheng R, Jiang J, Yu J, Dai K and Yan C 2019 Enhanced thermal conductivity and

retained electrical insulation of heat spreader by incorporating alumina-deposited graphene

filler in nano-fibrillated cellulose. Composites, Part B, 178, 107489.

[172] Timofeeva E V, Gavrilov A N, McCloskey J M, Tolmachev Y V, Sprunt S, Lopatina L M and

Selinger J V 2007 Thermal conductivity and particle agglomeration in alumina nanofluids:

Experiment and theory. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 76, 061203.
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