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Abstract

In the early stages of developing a software architecture, many properties of the final system

are yet unknown, or difficult to determine. There may be multiple viable architectures,

but uncertainty about which architecture performs the best. Software architects can use

Design Space Exploration to evaluate quality properties of architecture candidates to find

the optimal solution.

Design Space Exploration can be a resource intensive process. An architecture candi-

date may feature certain properties which disqualify it from consideration as an optimal

candidate, regardless of its quality metrics. An example for this would be confidentiality

violations in data flows introduced by certain components or combinations of components

in the architecture. If these properties can be identified early, quality evaluation can be

skipped and the candidate discarded, saving resources.

Currently, analyses for identifying such properties are performed disjunct from the

design space exploration process. Optimal candidates are determined first, and analyses are

then applied to singular architecture candidates. Our approach augments the PerOpteryx

design space exploration pipeline with an additional architecture candidate filter stage,

which allows existing generic candidate analyses to be integrated into the DSE process.

This enables automatic execution of analyses on architecture candidates during DSE, and

early discarding of unwanted candidates before quality evaluation takes place.

We use our filter stage to perform data flow confidentiality analyses on architecture

candidates, and further provide a set of example analyses that can be used with the filter.

We evaluate our approach by running PerOpteryx on case studies with our filter enabled.

Our results indicate that the filter stage works as expected, able to analyze architecture

candidates and skip quality evaluation for unwanted candidates.
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Zusammenfassung

In den frühen Phasen der Entwicklung einer Softwarearchitektur sind viele Eigenschaften

des finalen Systems noch unbekannt und schwer zu ermitteln. Es kann mehrere mögliche

Softwarearchitekturen geben, aber es ist ungewiss, welche Architektur die beste Ent-

scheidung ist. Softwarearchitekten können Entwurfsraumerkundung (engl. Design Space
Exploration) nutzen, um Qualitätsmetriken einzelner Architekturkandidaten zu ermitteln

und den optimalen Kandidaten zu wählen.

Entwurfsraumerkundung ist ein ressourcenintensiver Prozess. Ein Architekturkandidat

kann bestimmte Eigenschaften aufweisen, die es direkt von weiterer Erwägung als optima-

len Kandidaten ausschließt, unabhängig von seinen Qualitätsmetriken. Ein Beispiel solcher

Eigenschaften sind Vertraulichkeitsverletzungen, die durch die Nutzung bestimmter Kom-

ponenten oder Kombinationen von Komponenten in einer Architektur eingeführt werden.

Sollten diese Eigenschaften frühzeitig identifiziert werden können, kann die Ermittlung

der Qualitätsmetriken des Architekturkandidaten übersprungen werden und der Kandidat

verworfen werden. Dies kann wertvolle Ressourcen einsparen.

Zurzeit können solche Analysen wie die Vertraulichkeitsanalyse nur getrennt von

dem Entwurfsraumerkundungsprozess durchgeführt werden. Zunächst werden optimale

Kandidaten ermittelt, und später erst einzeln analysiert. Unser Ansatz erweitert PerO-

pteryx um einen zusätzlichen Filter, der es erlaubt existierende generische Analysen auf

Architekturkandidaten im Entwurfsraumerkundungsprozess durchzuführen. Dadurch

wird das frühzeitige Verwerfen von ungeeigneten Kandidaten vor der Ermittlung von

Qualitätsmetriken ermöglicht.

Wir nutzen diesen Filter um eine Vertraulichkeitsanalyse in den Entwurfsraumerkun-

dungsprozess zu integrieren, und stellen weitere Beispielanalysen bereit, die in dem Filter

genutzt werden können. Wir evaluieren unseren Ansatz indem wir PerOpteryx mit unse-

rem Filter auf Fallstudien ausführen. Unsere Ergebnisse deuten an, dass unser Filter wie

erwartet funktioniert und Architekturkandidaten analysieren und verwerfen kann, und

die Ermittlung von Qualitätseigenschaften für ungeeignete Kandidaten überspringt.
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1 Introduction

In the early stages of developing a software architecture, many properties of the final

system are unknown, or difficult to determine. The impact of certain architectural de-

cisions during the design phase may have severe impacts on the performance or other

qualitative aspects of the system at run time. This missing knowledge leads to uncertainty

in regard to the software architecture, or architectural uncertainty in short [28, p. 4]. With

architectural uncertainty, multiple software architectures may seem equally viable, or the

cost-benefit trade-off of choosing one component over the other may not be clear until the

system is deployed. At that point however, changing architectural decisions may be costly

and time-consuming and therefor infeasible. Component-based software architectures

enable software architects to model software systems through the use of components and

the definition of their relations to one another. Different software architectures can be

modeled early in the development process, such as during the architecture design phase.

Through the explicit definition of quality properties of various components, such as their

performance and reliability, early insights into the run time properties of architectures

can be gained through model simulation. By comparing the metrics of the architectures,

software developers can identify the optimal candidate, reducing the uncertainty about

the software architecture.

The primary focus of this thesis is to add the property of confidentiality into this

model evaluation process. While performance and cost-effectiveness are amongst the

traditional aspects of software architectures that are evaluated during the design phase

to determine the best possible architecture candidate, confidentiality is often neglected

[27]. If confidentiality is not considered when determining the optimal architecture, the

systemmay not perform ideally when retrospectively modified by replacing confidentiality-

violating components, compared to if confidentiality was explicitly modeled and analyzed

during the design phase.

PerOpteryx [5] is a framework to enable the optimization of system architectures in

regard to quality metrics like performance, reliability and cost. In this thesis, we extend

the functionality of PerOpteryx with a filter stage in which architecture candidates can be

analyzed and discarded. This can be used to remove candidates with certain unwanted

properties early in the optimization process. Using this filter, we can analyze architecture

candidates for confidentiality violations and discard violating ones. We provide a generic

interface to allow the implementation of other arbitrary analyses on architecture candidates

and provide examples for further such analyses.

We evaluate our approach by running PerOpteryx on case studies with our filter enabled.

By applying candidate model analyses such as the confidentiality analysis with our filter,

we determine whether such analyses can be successfully performed. Furthermore, we

analyze whether our filter can accurately discard candidates, based on the results of

candidate model analyses. Our results indicate that the filter stage works as intended, able

1



1 Introduction

to perform architecture candidate model analyses and appropriately discard unwanted

candidates.

This thesis is structured into 8 chapters. In this chapter, we have introduced the topic

and motivated the problem. In Chapter 2 we explain the foundations for our work in

detail. This includes the Palladio Component Model and the Design Space Exploration

process. The current state of the art for design space exploration, confidentiality analyses

and uncertainty in software architectures is discussed in Chapter 3. We present a running

example in Chapter 4, based on which we will illustrate the functionality of our work in

subsequent chapters. In Chapter 5 we expand on the concept and implementation details

of our filter stage. Furthermore, we illustrate the problem of traditional approaches which

append candidate analyses after the DSE process, and justify our decision regarding the

location of the entry point for the filter stage. Additionally, we present some possible

alternatives for accomplishing the filter function, and our justifications against using them.

We evaluate our work in Chapter 6, and describe valuable lessons learned throughout

this thesis in Chapter 7, which may be important for future works in this area. Chapter 8

wraps up this thesis with a conclusion and a discussion regarding possible future work.

2



2 Foundations

In this chapter, we introduce the foundations required for this thesis. In Section 2.1 we

present the Palladio Component Model and component-based software architectures.

Section 2.2 explains the Design Space Exploration process.

2.1 Palladio Component Model

Components are the building blocks of a component-based software system [24, p. 47].

Taylor et al [29, p. 69] define a software component as "an architectural entity that encap-

sulates a subset of the system’s functionality and/or data". Each component has their own

functionality, and can provide this functionality for other components to use via explic-

itly defined interfaces. With component-based software architectures, the development

process for a software system is split into component development and the design of the

software architecture by assembling components.

The main parts of a component-based software architecture (CBSA) model are shown

in Figure 2.1. The repository is system independent and contains data types, interfaces

and components [24, p. 45]. The component assembly specifies the inner structure of a

specific system, i.e. how components are used and connected to each other [24, p. 49, 12,

p. 15]. The resource environment defines resource containers (such as servers) on which

components can be deployed. The allocation maps components to a resource container.

The Palladio approach allows for the definition of component-based software architec-

tures "with a special focus on performance properties" [24, p. 38]. The Palladio Component

Model (PCM) is a meta model for component-based software architectures [26] and is used

to document software architectural knowledge for the Palladio approach [24, p. 11]. Using

PCM, components can be annotated with performance properties, allowing developers

the ability of specifying run-time characteristics of components at design-time. Using

this information, Palladio can simulate a modeled system, deriving quality metrics for the

Resource
EnvironmentAllocationComponent

AssemblyRepository

CBSA Model

Figure 2.1: Main parts of a CBSA model. Adapted from [12, p. 16]
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2 Foundations

given architecture [24, p. 9]. This gives developers insights into the performance of the

system through metrics such as response time and throughput.

The Palladio approach explicitly distinguishes between a component developer and a

software architect role in the development process [24, p. 12]. This means that a software

architect does not need to concern themselves about the inner workings of components,

and can regard a component as a black-box [16, p. 80, 29, p. 69]. This abstraction enables

software developers to apply changes to the software architecture, e.g. by substitution of

components for alternatives with the same set of interfaces.

2.2 Design Space Exploration

For a software architecture, a location in the model where a change of a design choice

can be made to form a new valid architecture configuration is called a degree of freedom.

We adopt this terminology from Koziolek et al. [12] and will use it throughout this thesis.

An example for a degree of freedom is the substitution of a component, or the allocation

of a component to a different resource environment. Multiple degrees of freedom span a

design space [26]. In other words, the design space is the set of all possible architecture

models, each defined by selecting one specific design choice for every degree of freedom.

Each valid architecture model is also called a candidate model [12, p. 104].

CPU2

CPU1 Server2Server1

Processor
configuration
of Server1

Allocation of
ComponentA

ComponentB

ComponentA

Component
to implement
InterfaceA

Figure 2.2: Visualization of a three-dimensional design space. Adapted from [12, p. 105]

The Design Space Exploration (DSE) process is used to assess each candidate model in

the design space on certain properties of interest, such as their performance. PerOpteryx

is a tool to perform Design Space Exploration on Palladio models [5, 24, p. 162], optimizing

architecture candidates for their quality properties, like performance, reliability and cost

[5]. It leverages the feature of Palladio models which allows developers to specify quality

4



2.2 Design Space Exploration

attributes for software components. PerOpteryx is able to generate new software architec-

ture candidates from an initial PCM model and evaluate their quality properties to find the

architecture with the optimal metrics. Specifically, PerOpteryx identifies the Pareto front,

i.e. the set of all Pareto optimal candidate models. An architecture candidate is called

Pareto optimal if it is not worse than a different candidate [24, p. 159]. For the architecture

candidate generation, we will utilize certain terminology synonymously throughout this

thesis. The algorithm that PerOpteryx uses for the generation distinguishes between so-

called genotypes and phenotypes. A genotype is a vector of design choices for each degree

of freedom, i.e. an architecture candidate. A phenotype is the corresponding architecture

candidate model [5, 12, p. 177].
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3 State of the Art

In this chapter, we discuss the current state of the art for research areas related to our thesis.

We give an overview of different approaches to design space exploration in Section 3.1. In

Section 3.2, we examine approaches for confidentiality analyses of software architectures.

Finally, we discuss uncertainty in software development in Section 3.3.

3.1 Design Space Exploration

There are numerous approaches for performing design space exploration for software

architectures. The similarity of all approaches is to evaluate metrics of alternative ar-

chitecture candidates so that these can be put in comparison with each other to identify

the best candidate. Sobhy et al. [28] present a literature review that gives an overview

of various approaches to perform design space exploration on software architectures

under uncertainty. In it, the continuous evaluation of the system architecture is addressed.

Continuous evaluation is the repeated application of software architecture evaluations

throughout the development phases of a software system. We focus on the design time

architecture evaluation approaches, but the review also elaborates on run time architecture

evaluation and the linkage between both.

The study distinguishes the different architecture evaluation approaches mainly by their

quality evaluation method, i.e. what technique the approach uses to evaluate architecture

design decisions. PerOpteryx [5] is categorized in this work as a search-based approach for

design-time architecture evaluation. Search-based approaches use metaheuristic search

techniques such as genetic algorithms to find the optimal architecture candidate.

ArcheOpterix [1] is an example for another approach using this technique. ArcheOpterix

also performs multi-criteria optimization and uses Pareto optimality to identify the

best candidates, making the approach very similar to PerOpteryx [12, p. 76]. However,

ArcheOpterix provides a less flexible way of defining new degrees of freedom or optimiza-

tion problems, requiring more effort and deep knowledge from the software architect [12,

p. 75].

GuideArch [7] is an architecture frameworkwhich uses fuzzymathematics in the ranking

of candidates. Rather than specifying exact properties of a software component, they are

given as a range of values or as an enumeration in comparison with other alternatives

(i.e. low / high). Impacts of architecture decisions on quality properties can be roughly

estimated early on, but are fairly imprecise. As more information becomes available, these

estimations can be made more precise. The optimal candidate is determined by comparing

the fuzzy quality metrics and selecting the best candidate. GuideArch is classified as a

utility-based approach [28], since it uses fuzzy math as a utility function tool for measuring

quality attributes. However, confidentiality is not considered in this approach.

7



3 State of the Art

3.2 Confidentiality Analysis

Seifermann et al. [27] coin the term Data-Driven Software Architecture to describe data

and data processing on an architectural level. They introduce data flows to the Palladio

architectural description language [24], so that data processing can be modeled in the archi-

tecture during the design phase. Using this, software developers can define confidentiality

constraints. By transforming the software architecture to a Prolog logic program, viola-

tions of the confidentiality constraints can be found through queries to the program. For

the confidentiality analysis, the software architecture can, for example, be annotated with

access rights for data and roles for data processing operations. Confidentiality constraints

specify which data are available to which roles. Data processing operations may modify

the access rights of data, leading to possible constraint violations. This confidentiality

analysis can however only be performed on singular software architectures, and is not

available for design space exploration processes.

Berger et al. [3] present an approach to detect security threats in software architectures

by analyzing data flow diagrams for architectural flaws. They extend regular data flow

diagrams with additional semantics to enable automated analyses of security threats. A

catalog of common security flaws is provided, together with a tool to analyze the data flow

diagrams for the existence of such flaws. This approach is similar to the confidentiality

analysis of Seifermann et al. [27] in that it also uses data flow diagrams in the flaw analysis,

however it provides a general approach for analyzing the security of software architectures,

and does not focus on confidentiality.

3.3 Uncertainty

Uncertainty during software development can manifest itself in different ways and in

different locations. Perez-Palacin and Mirandola [20] introduce a taxonomy of uncertainty

in software architecture models to enable classification of various types of uncertainty.

Uncertainty is classified based on the three dimensions of location, level and nature of the
uncertainty.

The location of uncertainty describes where the uncertainty manifests itself in the model.

There are three possible locations described, namely context uncertainty, model structural

uncertainty and input parameter uncertainty. Context uncertainty concerns uncertainty

about which information of a system should be modeled and which abstracted. Model

structural uncertainty describes uncertainty about the accuracy of the model structure

compared to the real world system. Input parameter uncertainty is uncertainty about the

values and data given as input to the model.

The second dimension of uncertainty regards the level of uncertainty. This is classified
in five orders. Order 0 represents a lack of uncertainty, meaning no uncertainty is present.

The first order of uncertainty describes known uncertainty, meaning a lack of knowledge,

but awareness of said lack. The second order is a lack of knowledge and a lack of aware-

ness. However, it is possible to become aware of the existence of uncertainty. Order 3

lacks knowledge, awareness, and the possibility of becoming aware of uncertainty. The

8



3.3 Uncertainty

fourth order of uncertainty describes meta uncertainty, i.e. uncertainty about the order of

uncertainty.

The nature of uncertainty is categorized into epistemic and aleatory uncertainty. Epis-

temic uncertainty is caused by a lack of sufficient data or knowledge, while aleatory

uncertainty is caused by randomness of events.

Bures et al. [4] examine the impact of uncertainty on the security of access control

systems. An approach for adaptation strategies for access control systems is given, which

take the uncertainty of new and not fully foreseen situations into account. The system

optimizes the access control rules for the minimization of security risk and financial loss.

Bures et al. adapt the uncertainty taxonomy of Perez-Palacin and Mirandola [20], replacing

the dimension of the location of uncertainty with the source of uncertainty. Uncertainty
may be found in the system structure, system behavior and system environment. While

the approach of Bures et al. also tackles uncertainty that may occur in a software system,

it focuses on run time uncertainty and not design time uncertainty. Additionally, the

uncertainty in their approach is of aleatory nature, i.e. caused by random events, while

architectural uncertainty emerges due to the lack of information, i.e. epistemic uncertainty.

9





4 Running Example

DatabaseWebserver

Figure 4.1: Simplified system architecture of the online shop.

To more illustratively convey our contributions throughout this thesis, we introduce

a simple example software system that will serve as a basis for explanations in later

sections. Figure 4.1 illustrates the simplified system architecture of an Online Shop serving

customers in the European Union. It consists of two parts: on the left is the Webserver
component that handles interactions with the customer, and on the right is a Database
that saves information about the customers, the products and the warehouse inventory.

The Webserver component may receive personalized data from the customer, such as

their delivery address or credit card information. This data is transmitted to the Database

component to be stored. A user of the Online Shop may also request information about a

certain product that the shop offers, such as the current warehouse stock. In that case,

non-personalized data would be requested from the database and sent to the Webserver

component.

?

FastDatabase

SlowDatabase

DatabaseWebserver
component
selection
DoF

Figure 4.2: System architecture of the online shop with the component selection DoF.

Since we have a component-based software architecture, we can define alternative

database components, provided they implement the same interface. Furthermore, we

assume that our system architecture is modeled with Palladio, meaning that we can

define component properties like performance and cost. Based on these facts, we add

11



4 Running Example

two alternative components for the database component to the system model, shown in

Figure 4.2. These are FastDatabase and SlowDatabase, and they respectively feature

higher and lower performance compared to the default database component.

With these two additional alternative components, we define the component selection for
the Database component as a possible degree of freedom (DoF) for this system architecture,

as indicated by the arrow in Figure 4.2. The question mark signifies architectural uncer-

tainty about the component choice for the database. With only this DoF, our software

system would have three possible architecture candidate models, also called phenotypes
[12, p. 177]. Each phenotype would use a different database component.

?

Non-EU ServerEU Server

DatabaseWebserver

«deploy»
                                  «deploy»

«deploy»

component
allocation

DoF

Figure 4.3: System architecture of the online shop with the component allocation DoF.

We can formulate an additional degree of freedom in this system. Figure 4.3 shows the

component allocation degree of freedom. The database component can be allocated to a

certain server, which may be a server located in the EU, or one located outside of the EU.

Since the online shop is made available for EU citizens, it must conform to data privacy laws

set forth in the General Data Protection Regulation (GDPR). Sending personalized and/or

confidential data such as the aforementioned delivery address to a server outside the EU

may violate articles 44-46 of the GDPR [8]. This circumstance is shown in Figure 4.4. The

transmission of non-personalized data between the webserver and the database is allowed

regardless of the location of the database server, as is the transmission of personalized

data to a server located inside the EU. However, the combination of the database server

being located outside the EU together with the transmission of personalized data would be

considered a violation of data privacy and therefor forbidden. However, using a European

server may for example cost more, or have lower performance. This illustrates uncertainty

about the deployment location for the database component, which is denoted by the

question mark in Figure 4.3. In addition, this shows the multi-objective optimization

problem with the online shop architecture: finding the optimal architecture candidate

with best cost-performance ratio, while still upholding data confidentiality.

12



forbidden

allowedallowed

allowedpersonalized

not personalized

outside EUinside EU
Location of
Database

Type of
transmitted
data

Figure 4.4: Allowed and forbidden configurations for the database considering confiden-

tiality.
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5 Concept of the Candidate Filter

In this chapter, we will go over the concept of the candidate filter, and discuss details on

why, where and how this filter is implemented. In Section 5.1 we give an overview of

the concept behind the filter. Section 5.2 illustrates a problem with traditional analyses

of candidate models and details how our approach with a candidate filter remedies this

problem. Since we extend the traditional PerOpteryx process pipeline with our filter stage,

we justify our decision on the exact location of this extension in Section 5.3. In Section 5.4

we illustrate the structure of the candidate filter, and then discuss the implementation

details in Section 5.5. In Section 5.6, we explain how we integrate analyses with the filter

into PerOpteryx. Finally, we present alternative approaches for realizing a candidate filter

that we’ve explored in Section 5.7, and explain our reasoning for not choosing these for

our actual implementation.

5.1 Overview

During the normal process of the PerOpteryx design space exploration (DSE), new archi-

tecture candidates are generated using an evolutionary algorithm [15]. These candidate

models are subsequently evaluated for their quality properties. This model evaluation is

the most resource- and time-intensive part of the DSE process. A candidate may exhibit

certain undesired features that can be identifiable early in the DSE process. We could save

valuable resources by discarding such candidates prior to the model evaluation. To accom-

plish this, an additional filter stage could be added to the DSE process, which analyses the

properties of a candidate model and discards unwanted candidates early.

Traditionally, our running example of the confidentiality analysis introduced in Chap-

ter 4 would be applied on the architecture candidates returned after a completed DSE

run. This means that all such architecture candidates that violate confidentiality would

be unnecessarily evaluated, since a confidentiality violation automatically disqualifies

the candidate from further consideration by the software architect. We could apply the

confidentiality analysis on architecture candidates before the model evaluation phase,

however this is not supported in the traditional PerOpteryx process. Our proposed filter

stage would facilitate analyses like the confidentiality analysis before model evaluation.

This early filtering would eliminate the overhead resulting from unnecessary evaluations

of undesired candidates.

5.2 Problem Statement

To describe the problem that may occur with a traditional workflow, which first determines

optimal candidates with PerOpteryx and performs analyses on these candidates afterwards,
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5 Concept of the Candidate Filter

we illustrate the steps that are taken in such a workflow. As a prerequisite, the developer

has created an analysis class which receives an architecture candidate as an input and

verifies whether it conforms to certain requirements. An example of a requirement would

be that the candidate does not violate data confidentiality, like addressed in Chapter 4.

The workflow would look as follows:

1. Start a PerOpteryx run with a system architecture and its Degrees of Freedom as

input.

2. Receive a set of optimal architecture candidates as a result of the PerOpteryx run.

3. Analyze all optimal architecture candidates for requirements set in the analysis class.

4. Receive a set of architecture candidates which are optimal and also conform to

requirements.

The result of Step 4 may seem intuitive and correct at first sight, however on closer

inspection, this is not the case. Determining the optimal candidates in Step 2 before
the analysis is performed will discard such candidates that are optimal only with the

precondition of conforming to the requirements set in the analysis class. This means that

potential candidates that are only optimal in combination with the analysis in Step 3 are

lost during the PerOpteryx run.

To better illustrate this circumstance, we present the following scenario using our

running example from Chapter 4 and the confidentiality analysis as the analysis class in

the filter stage. Our online shop for this explanation features only the component selection
DoF shown in Figure 4.2.

Architecture Candidate A B C
Component used for database FastDatabase Database SlowDatabase

Performance of candidate high medium low

Contains confidentiality violations yes no no

Symbol in Figure 5.1 × ^ ⃝

Table 5.1: Component selection for candidates A, B and C with their performance and

confidentiality metrics.

With this component selection DoF, we have three possible architecture candidates A,
B and C. Each candidate uses a different component for the database. Table 5.1 shows

the component choice of each candidate. While candidate A has the highest performance

due to using the FastDatabase component, the component introduces a confidentiality

violation into the system. Candidate B features a slower database component compared to

A, but does not violate confidentiality. Candidate C also does not feature confidentiality

violations, but uses the SlowDatabase component which causes system performance to be

even worse than candidate B.
Figure 5.1 illustrates the properties of the candidates in a diagram. The circle repre-

sents the set of all possible architecture candidates. The left, red half is the subset of

all candidates that violate confidentiality. The right, green half represents all candidates
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all possible
candidates

performance

high

low

violating
confidentiality

not violating
confidentiality

Figure 5.1: Mapping of candidates to subsets of all possible candidates

without confidentiality violations. The vertical position of the candidate corresponds to

their performance.

Figure 5.2 shows the difference between the traditional approach to filtering compared

to our approach with a filter stage before optimization. The traditional workflow with the

steps stated at the beginning of this section is shown in Figure 5.2a. A PerOpteryx run

which optimizes system performance and produces one optimal candidate will evaluate the

set of all candidates, i.e. the entire circle in Figure 5.1. In this case, the architecture candidate

A (×) will be selected, since it is the best performing one from all possible candidates.

A subsequent confidentiality analysis on this candidate will result in a confidentiality

violation detected, leaving the software architect with no usable optimal models. In

contrast, adding a candidate filter which runs the confidentiality analysis on the candidates

before the DSE evaluation would discard all candidates that violate confidentiality early.

filter by
analysis

Traditional approach

determine
optimal

candidates

(a) Traditional approach with filtering after optimization.

filter by
analysis

Our approach

determine
optimal

candidates

(b) Our approach with filtering before optimization.

Figure 5.2: Comparison of approaches to combining optimization with filtering.
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This is shown by the different candidate set used for the optimization in Figure 5.2b. This

means that the optimization will only be performed on the subset of all candidates that do

not violate confidentiality, which is the green, right half of the circle. With this reduced

set of architecture candidates, the DSE run will correctly produce candidate B (^) as the
correct optimal architecture candidate, since it is the best performing one out of those that

do not have confidentiality violations.

In general, this way of filtering candidates before the DSE optimization is performed

will guarantee that the complex and resource-intensive evaluation process is only run on

such candidates that fulfill the criteria set in the analysis classes. This in turn means that

the final architecture candidates are optimal in regard to both the criteria defined in the

regular DSE optimization (e.g. performance and cost) and those defined in the analysis

classes (e.g. confidentiality).

5.3 Identification of Suitable Entry Points for Filtering

An important aspect to consider for a successful implementation of the filter is a suitable

entry point for the analysis. We identified in Section 5.2 that the filtering must take place

before the evaluation of the architecture candidate is performed. In the current state of

development of the PerOpteryx Design Space Exploration plugin, we did not find any

official documented entry point or interface for accessing candidate models before the

evaluation of a candidate. We have therefor set out to manually examine the PerOpteryx

pipeline in detail in order to find an entry point that is suitable for our needs. To do this,

we have identified a set of requirements that an ideal entry point should fulfill:

R1: The candidate models are accessible

R2: The candidate models are in a valid state for an analysis

R3: The evaluation of a candidate model must not have been performed yet

R4: Unsuitable candidate models can be marked as such or discarded, so that their

evaluation will not be performed

R5: Unsuitable candidate models can be marked as such or discarded, so that they are

not included in the final optimal candidate set

We justify our choice of requirements for this entry point as follows: R1 andR2 are basic,
fairly self-evident requirements, since to be able to perform an analysis on a candidate

model, these models need to be both accessible and in a valid state. Requirement R3 is

derived from two factors. For one, as discussed in Section 5.2, an incorrect set of optimal

candidates may be produced if the filter were located after the candidate evaluation step.

Second, the filter should prevent unnecessary evaluations on unsuitable candidates from

being performed, since the evaluation can be very time-consuming and resource intensive,

and the result of the evaluation is not required for our filter stage. In relation to this,

requirement R4 specifies that if an analysis declares that a candidate should be discarded,

it must be possible to skip the evaluation. Requirement R5 further states that candidates
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5.3 Identification of Suitable Entry Points for Filtering

determined to be unsuitable must be able to be removed from the final optimal candidate

set that PerOpteryx produces.

Figure 5.3: Steps and program flow of the PerOpteryx pipeline. From [13, Fig. 2]

Figure 5.3 shows an overview of the PerOpteryx optimization process pipeline, taken

from Koziolek et al. [13]. Step 2a in the diagram is the evaluation step mentioned in

requirements R3 and R4. We can observe from the diagram that the steps in the Evolu-

tionary Optimization can be repeated in multiple iterations, as illustrated by the striped

arrow leading from step 2c back to step 2a. This iterative behavior narrows down our

search area to one main location of interest: the start of the evaluation step 2a. Placing the

filter at this location means it is run both in the initial iteration and every subsequent one.

To decide on the exact location to place the filter at in this step, we need to inspect

how the pipeline from Figure 5.3 is implemented in the source code. Figure 5.4 shows

some of the classes and methods used in step 2 of the PerOpteryx pipeline. The evaluate-

method of the class DSEEvaluator represents the step 2a depicted in Figure 5.3. The input

parameter for the method is the phenotype, i.e. the candidate model, that is supposed to

be evaluated, and the output is an object containing the measured quality metrics of the

phenotype. Due to the current phenotype being passed as a method parameter, we are

able to access the candidate model, fulfilling requirement R1. As seen in Figure 5.4 the

evaluate method of the DSEEvaluator class is called after the DSEDecoder class decodes

the genotype into a phenotype, meaning that the candidate model is in a valid state to

be analyzed, satisfying the requirement R2. Indeed, the regular quality metric analyses

performed by the standard PerOpteryx workflow also depend on this requirement. Later

in the same evaluate method, these quality evaluations are performed using the passed

phenotype, further confirming that requirement R2 is fulfilled at this location.
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2. Evolutionary Optimisation
EvolutionaryAlgorithm

a. Evaluation of each candidate
IndividualCompleter

i. Decoding to Phenotype
DSEDecoder

decode()

ii. Evaluating Metrics
DSEEvaluator

evaluate()

b. Selection of best candidates
Selector

getLames()

c. Generation of new candidates
IndividualFactory

Mating
etc.

Figure 5.4: Actual classes and methods used in PerOpteryx pipeline.

return quality
metrics

evaluate
candidate

quality metrics

DSEEvaluator#evaluate

(a) Activity Diagram for the original evaluate process.

b

a

return quality
metrics

evaluate
candidate

quality metrics

set candidate
quality metrics
to infeasible

without evaluation

execute
Workflow

add instance(s)
to Workflow

create
FilteringJob
instance(s)

DSEEvaluator#evaluate

keep

 workflow
 completed
 successfully

discard

 workflow
 throws
 exception

(b) Activity Diagram for the evaluate process with our filter stage.

Figure 5.5: Activity Diagrams for the evaluate method of the DSEEvaluator class where

our entry point is located.

We specifically insert the code for our filter into the beginning of the method, im-

mediately before the candidate evaluation is performed. This circumstance is shown

in Figure 5.5: the additional program logic for the filter is added before the candidate

evaluation for quality metrics takes place. This ensures that the analyses in our filter are

run before the evaluation, meeting the requirement R3. Once our filter stage has been
completed and a keep or discard decision for the current phenotype has been made, we de-

20



5.4 Defining the Filter Interface

termine further action based on the result. On a keep decision (branch a in Figure 5.5b), we

would continue the normal program flow of the evaluatemethod, meaning that the quality

properties of the candidate would be evaluated next. With a discard decision however

(branch b in Figure 5.5b), we use the built-in methods fillObjectivesWithInfeasible and

fillConstraintsWithInfeasible of the DSEEvaluator class to set the current candidate’s

quality metrics to the worst possible values. These values are either +∞ or −∞, depending

on which is worse for the respective quality property. We return these values without

actually performing the quality evaluation, as is shown in Figure 5.5b. This fulfills the

requirement R4.
With the candidates marked as infeasible, the program flow continues with step 2b

shown in Figure 5.3. This step removes unsuitable candidates from the final optimal

candidate set. We set the candidates to be discarded to have the worst possible quality

metrics. This means that their metrics are worse than any successfully evaluated candidate

with a valid value determined for their quality properties. Due to this, these infeasible

candidates will be the first to be discarded in this step. In general, this behavior meets the

requirement R5. However, if at the end of an iteration there is a low number of feasible
candidates (i.e. those without ±∞ as their quality metrics), infeasible candidates may be

included in the final optimal candidate set. These are however still clearly marked with

their infeasible quality metrics, allowing developers to identify and ignore these candidates.

We cover this topic in further detail in Section 6.5, and explain why it is not a cause for

concern.

We therefor conclude that the location that we have chosen for our entry point is

suitable for the placement of a filter, since it meets all five requirements we have identified

in the beginning of this section.

5.4 Defining the Filter Interface

Workflow

IJob

Palladio Workflow
Engine

OnlyKeepFilteringAnalysisByIDFilteringAnalysis

RandomFilteringAnalysisPCMConfidentialityAnalysis

T extends FilteringAnalysis

FilteringJob

-analysisInstance: T

+execute()

«interface»
FilteringAnalysis

+init() : void
+runAnalysis() : boolean

«instantiates»
«calls»

Figure 5.6: Simplified class diagram of the filter plugin.

In this section, we describe the structure of the Filter Plugin in detail. The class diagram

shown in Figure 5.6 gives an overview of the structure of the plugin, which is split into

two main parts. The class FilteringJob on the left side of the diagram handles the

launching of analyses and the passing of analysis results upwards in the call chain. It
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implements the IJob interface of the existing Palladio Workflow engine [17], shown to

the left of the dotted line. Illustrated on the right side is the interface FilteringAnalysis,

which specifies the methods that specific candidate model analyses must implement. We

created several classes which implement this interface, which are shown in the diagram.

These implementations are specific analysis classes, which perform certain analyses on a

candidate model. PCMConfidentialityAnalysis analyzes the confidentiality of candidates,

and is the main focus of this thesis. The other classes are used to demonstrate the abilities

of the filter plugin, or are used later on for the evaluation. FilteringJob instantiates and

calls these classes.

FilteringJob implements the IJob interface of the Palladio Workflow Engine. IJobs

can be added to a Workflow and executed. A Workflow is a collection of one or more IJobs,

and running a Workflow executes the contained IJobs in a certain order. The reason behind

and the benefit of using a Workflow is that multiple different analyses can be easily added

to the filter stage, with all included analyses performed on the current candidate model. For

example, let there be another analysis class named PCMSecurityAnalysis which detects

security violations in a candidate model. Adding both PCMConfidentialityAnalysis and

PCMSecurityAnalysis to a workflow allows both analyses to be executed for the same

iteration. The result will be interpreted as a keep decision if and only if the candidate

violates neither confidentiality nor security.

The FilteringAnalysis interface features two abstract methods. The runAnalysis

method should implement the actual analysis of the candidate model and return a boolean

decision on whether or not to discard the candidate. The init method should serve

to ensure that the analysis classes are properly initialized, and that subsequent calls to

runAnalysis do not result in errors.

Initially, the filter plugin was not intended to be generic. The goal was to integrate only

the confidentiality analysis of Seifermann et al. [27] into the PerOpteryx Design Space

Exploration process. This would have been accomplished with only the class FilteringJob,

with the functionality of PCMConfidentialityAnalysis included in this class. During

the integration of this analysis however, we have recognized that our approach can be

made generic to allow arbitrary analyses on the candidate models. Following this, we

decided to create the FilteringAnalysis interface and make the confidentiality analysis

an implementation of it. This change allowed us to use Generics in the FilteringJob class

to instantiate any analysis class that implements the FilteringAnalysis interface, and

run the contained analysis on a candidate model.

5.5 Implementing the Filter Interface

In this section, we discuss the implementation details of the filter interface. We first describe

the FilteringJob class, followed by the FilteringAnalysis interface, the confidentiality

analysis class PCMConfidentialityAnalysis and finally other analysis classes that we have

implemented.

The FilteringJob contains the logic for instantiating and calling analysis classes us-

ing Java Generics. The class is typed T extends FilteringAnalysis, with T being the

generic type of the analysis to be performed. The class contains a private final T
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analysisInstance, which represents an instance of the analysis class, e.g. an instance

of PCMConfidentialityAnalysis shown in Figure 5.6. This object is either passed to the

FilteringJob constructor already instantiated, or is instantiated in the constructor via

reflection. Should there occur any exceptions during the construction, the normal evalua-

tion process is not supposed to be interrupted. The exception will be logged in the console

and the filter stage skipped.

«interface»
FilteringAnalysis

+init() : void
+runAnalysis(PCMInstance pcmInstance, String genotypeId, long numericId) : boolean

Figure 5.7: The FilteringAnalysis interface.

Since T is guaranteed to be an implementation of the FilteringAnalysis interface,

runAnalysis can be called on the analysisInstance object. The method’s parameters

are the contents of the current phenotype (i.e. the candidate model) in the PerOpteryx

pipeline and are specified in the interface, shown in Figure 5.7. The parameters are the

current PCMInstance, a String describing the genotype of the phenotype and the numeric

ID of the genotype. runAnalysis should return a boolean depending on whether or not to

discard the analyzed candidate: false if the candidate should be discarded, true if it should
be kept. The interface additionally has an init function which ensures that the analysis

class is in a correct state (e.g. required objects initialized) before a call to runAnalysis.

Developers can decide between reinitializing and reusing objects on repeated calls to init.

PCMConfidentialityAnalysis is an implementation of FilteringAnalysis. It adapts

the confidentiality analysis of Seifermann et al. [27] to be usable as a filter. The analysis

uses a software architecture model annotated with data flow information to create a Prolog

logic program and uses a set of analysis goals to analyze the confidentiality of the software

architecture by querying the logic program. For more specific implementation details on

the analysis itself, refer to the paper on the matter [27].

run confidentiality
analysis

return false

return true

check model for
confidentiality
annotations

extract Usage Model
and Allocation Model
from PCMInstance

PCMConfidentialityAnalysis#runAnalysis

[violation found]

[no violation found]

[found]

[none found]

Figure 5.8: Activity Diagram for the confidentiality analysis implementation of the

FilteringAnalysis interface.

Figure 5.8 shows the activity diagram for a call to the runAnalysismethod of PCMConfi-

dentialityAnalysis. The confidentiality analysis requires the usage model and the allo-

cation model of the candidate. These are extracted from the passed PCMInstance object.
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Before the confidentiality analysis is performed, the candidate model is first checked for

the presence of confidentiality annotations. While running the confidentiality analysis on

a model without the proper annotations will not cause any errors or exceptions and will

simply result in no violations being detected, it will unnecessarily waste resources and time

on the internal transformation processes of the analysis. We prevent this by immediately

returning true (a keep-decision) if confidentiality annotations are not detected in the

model.

If confidentiality annotations are detected, the program proceeds to the actual con-

fidentiality analysis. Here, the usage and allocation models previously obtained from

the PCMInstance object are passed to the analysis. The analysis itself will return any

detected violations. If confidentiality violations are returned, runAnalysis returns false

(i.e. discard) and if not, we return true (i.e. keep).
The other analysis classes shown in Figure 5.6 return keep/discard decisions as fol-

lows: RandomFilteringAnalysis uses a random number generator to randomly return

true or false. ByIDFilteringAnalysis filters based on the numeric ID of the candi-

date. Candidates with an odd ID are discarded, while those with even IDs are kept.

OnlyKeepFilteringAnalysis only returns keep decisions, meaning no candidates should

be discarded with this filter.

5.6 Running PerOpteryx with the Filter

In this section, we explain how the filter is integrated into the PerOpteryx pipeline, based

on the running example presented in Chapter 4.

We want to analyze the online shop scenario for confidentiality violations and determine

which architecture configuration gives us the best quality metrics while not violating

confidentiality. Therefor, we use the PCMConfidentialityAnalysis analysis with our filter.

1 try {

2 FilteringJob<PCMConfidentialityAnalysis> filteringJob =

3 new FilteringJob<>(PCMConfidentialityAnalysis.class,

4 pcmInstance, genotypeID, numericID);

5 Workflow wf = new Workflow(filteringJob);

6 wf.run();

7 } catch (Exception e) {

8 this.fillObjectivesWithInfeasible(obj);

9 this.fillConstraintsWithInfeasible(obj);

10 return obj;

11 }

Listing 1: Simplified code used for the filter at the entry point in the evaluate method of

the DSEEvaluator class.

In Section 5.3, we have identified the evaluate method of the DSEEvaluator class to be

the entry point for our filter. Here, we perform a number of actions. These are shown
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with simplified code in Listing 1. For better readability, the code shown has some details

removed, such as comments and further exception handling. The unabridged version can

be found at [14].

First, we instantiate a new FilteringJob with PCMConfidentialityAnalysis as our

analysis class in lines 2-4. We pass the information about our phenotype as parameters

to FilteringJob. These parameters in line 4 are extracted from the phenotype via their

respective getter methods. Next, we create a new Workflow with this FilteringJob in

line 5 and execute the workflow in line 6. If PCMConfidentialityAnalysis detects a confi-

dentiality violation and returns a discard decision, FilteringJob will throw an exception

to stop the current Workflow. In this case, we enter the catch block at line 7 and set the

quality metrics of this candidate to infeasible (i.e. ±∞) in lines 8-9. The obj object contains

the quality metrics of the current phenotype. We then return the infeasible quality metrics

and exit out of the evaluate method, skipping the quality evaluation which would follow

after line 11. If the workflow finishes successfully, no exception is thrown, meaning that

this candidate should be kept. We do not enter the catch block and continue with the

quality evaluation of the candidate after line 11.

Should multiple analyses need to be run in the filter, we would need to create new

FilteringJobs with their analysis classes and add them to the workflow via wf.add()

before running the workflow in line 6.

5.7 Alternatives

During the planning and concept phase of this thesis, alternative ways of accomplishing

the candidate filter were considered. One idea was to implement the confidentiality

analysis as a new non-binary model quality metric, akin to already existing metrics like

performance and cost. This approach would likely have been less invasive, since it would

have made use of officially documented interfaces and extension points and would not have

required modification of the PerOpteryx pipeline. Furthermore, the existing quality metrics

would have been a good example to infer implementation details from. However, using

this approach the analysis would be performed during the evaluation phase of the DSE

process in combination with the evaluation of other quality metrics. While the detection of

confidentiality violations could be accomplished in this stage, any discarding of candidates

is only possible after this stage, in the selection step. This means that unnecessary overhead

resulting from quality evaluations on unwanted candidates is not reduced. This approach

would violate requirements R3 and R4 that we have set in Section 5.3.

This alternative approach also led to further consideration regarding the value returned

as the confidentiality quality metric. While the analysis of Seifermann et al. [27] can

determine an exact amount of confidentiality violations in a system model, it does not

rank them in any way, for example in severity or ease of mitigation. Furthermore, even a

single violation would disqualify the candidate in a realistic usage scenario. Therefor, the

quality metric should only assume one of two possible values, which represent either that

a confidentiality violation exists, or that it does not. This eventually contributed to the

decision to implement the filter with a binary, boolean decision value.
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We have also considered an alternative way of performing the discarding of architecture

candidates at our entry point. Instead of manually marking candidates as infeasible

with the methods fillObjectivesWithInfeasible and fillConstraintsWithInfeasible,

as shown in lines 8-9 of the code in Section 5.6, our initial approach was to throw an

exception at this location to interrupt and return out of the evaluate method. This

approach would also skip quality evaluation and mark a candidate as infeasible, fulfilling

requirements R4 and R5 from Section 5.3. However, PerOpteryx would interpret this

action as an exception in the quality evaluation of the candidate. It then proceeds to perform
exception handling for quality evaluation exceptions and may throw RuntimeExceptions,

leading to the DSE process being canceled. This behavior is unwanted and may be

confusing to developers. We investigated the program flow during exception handling and

have identified the fillObjectivesWithInfeasible and fillConstraintsWithInfeasible

methods as responsible for marking candidates as infeasible. Therefor, we have decided

to change our approach for discarding architecture candidates by explicitly calling these

methods and returning from the evaluate method without throwing an exception.
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In this chapter, we discuss the evaluation of our filtering approach. To do this, we apply the

Goal-Question-Metric approach as presented by Basili et al. [2] to our work. In Section 6.1

we present the evaluation goals and the questions we pose to assess these goals. We detail

our evaluation design, based on which we answer the evaluation questions in Section 6.2.

In Section 6.3 we present the results of our evaluation. Section 6.4 addresses possible

threats to the validity of our evaluation. Finally, in Section 6.5 we discuss the limitations

of our approach.

6.1 Goals

In this section, we present the goals used to evaluate our work. We have defined the

following two goals:

G1: The complexity of running additional analyses in combination with Design Space

Exploration is reduced.

G2: The filtering decisions are accurate.

Goal G1 evaluates whether our approach decreases the complexity of running analyses in

combination with the Design Space Exploration process. A reduction in complexity will

increase productivity for software architects since time and labor spent on integrating

analyses into the DSE process and starting new analyses is saved. We examine the amount

of steps required to analyze candidate models in our approach and compare the results

with the traditional approach, which we described in Section 5.2 (Q1.1). Furthermore, we

discuss whether our approach reduces the amount of knowledge about the inner workings

of PerOpteryx required to implement new analyses for filtering architecture candidates

(Q1.2). The following questions are used to evaluate goal G1:

Q1.1: Are the steps to perform an analysis on a system model reduced?

Q1.2: Does the filter reduce the knowledge required about PerOpteryx to implement new

analyses?

With goal G2, we evaluate the accuracy of our approach. Filtering decisions need to be

accurate, otherwise optimal candidates may be discarded, resulting in the best possible

architecture candidate given all requirements not being correctly identified. One way we

will discuss the correctness of the filter is to consider whether the filter applies analyses

accurately, and whether it correctly deduces a keep/discard decisions from the analysis re-

sult (Q2.1). Additionally, the filter should not disrupt the regular Design Space Exploration
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process if no candidates are to be discarded, i.e. if the analyses decides for all candidates

to be kept (Q2.2). For goal G2, we use these questions for the evaluation:

Q2.1: Does the filter apply analyses accurately on the given data and return appropriate

keep/discard decisions?

Q2.2: Does the filter stage remain transparent to the regular Design Space Exploration

process if no candidates are to be discarded?

6.2 Design

In this section, we discuss how we designed our evaluations of the goals specified in

Section 6.1 and how we plan to answer the validation questions.

For the evaluation of the first goal G1 we examine whether our approach reduces the

amount of work required to perform an analysis on candidate models. For our approach,

we have already investigated the PerOpteryx pipeline for the ideal entry point of candidate

model analyses in Section 5.3. With this knowledge, we have created an interface which

allows software developers to create new analyses by simply implementing the required

methods.

For question Q1.1 we argue that by integrating the analysis into the DSE process, we

reduce the amount of effort required to perform an analysis on candidate models. To

evaluate the reduction of manual labor, we measure the number of actions needed to

perform a confidentiality analysis on a software architecture. Additionally, to compare

the time expenditure for the analysis of our approach with a traditional workflow, we

argumentatively assess the total runtime of the system.

For question Q1.2, we argue that the abstraction that the interface of the filter stage

provides reduces the amount of background knowledge that a software developer needs

to acquire before being able to implement a new analysis of a candidate model.

Our second goal G2 evaluates the accuracy of the filter stage. We use two different case

studies in our evaluation of this goal:

Travel Planner The Travel Planner case study from Katkalov [11] describes a software

system which enables a user to find and book flights on their mobile phone via a travel

agency. Confidentiality violations may occur when unauthorized users get access to

declassified credit card information in the booking process. This case study is used in

Seifermann et al.’s paper on Data-Driven Software Architectures [27] and Hahner et al.’s

paper on Data Flow Modeling for Confidentiality Analyses [9]. The PCM models of

this scenario are available as test models from the implementation of the confidentiality

analysis [18]. These models contain the required annotations to model confidentiality

violations in the data flows.

Media Store The Media Store scenario is a case study which describes a file-hosting

system for audio files [24, p. 17]. It is used in the Palladio documentation as well as

throughout the book on the Palladio Approach itself [24]. It features a well refined PCM

model with predefined component alternatives. We added additional models necessary
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to perform DSE on this scenario, based on [21, 23]. The base models can be found in the

Palladio Example Models repository [19].

For questionQ2.1we use the Travel Planner scenario, together with the PCMConfidenti-
alityAnalysis implementation of our FilteringAnalysis interface as our analysis class.

We discuss whether the filter applies the confidentiality analysis on the correct candidate

model. Additionally, we evaluate whether the filter accurately keeps or discards candidates

based on the results of the confidentiality analysis.

Case Study Media Store Travel Planner

Maximum number of iterations 8 1

Number of individuals per generation 5 1

Table 6.1: DSE launch configurations for the case studies

To show that the filter can indeed extract a candidate model from the currently active

DSE run and analyze said model, we initiate two DSE processes via the built-in standard

launch dialog for a PerOpteryx Design Space Exploration. We start one DSE run where

the Travel Planner scenario does not contain confidentiality violations, and the other

where violations are introduced into the data flows of the scenario. To do this, we specify

two different usage models, with and without confidentiality violations, in the launch

configuration. As shown in Table 6.1, each run will only perform one iteration and produce

one candidate, due to the confidentiality analysis causing side effects in the PerOpteryx

system for subsequent iterations. We will discuss the implications of this decision later in

Section 6.4. We assume that the confidentiality analysis by Seifermann et al. [27] performs

as expected, since the accuracy of their approach has already been evaluated in their work.

We therefor only need to evaluate whether our approach correctly derives keep and discard
decisions from the results of their analysis.

To further evaluate whether the candidates are properly discarded, we analyze the

result set using the Media Store case study together with the ByIDFilteringAnalysis.

This filter class discards candidates based on their numeric ID. Candidates with an odd ID

will be discarded, while candidates with an even ID will be kept. We evaluate whether

discarded candidates are correctly marked as infeasible, and whether they are excluded

from the result set. We use the metrics of precision and recall [22] to rate the accuracy

of our approach. We use the terms True Positive (TP, candidate that should be discarded

is marked as infeasible), False Positive (FP, candidate that should be kept is marked as

infeasible) and False Negative (FN, candidate that should be discarded is not marked as

infeasible) in our calculations for the metric. The formulas are:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

For question Q2.2 we will use the Media Store scenario. The filter should act in such a

way that if an analysis is used that decides to keep all candidates, the DSE run with the

filter should be indistinguishable from a DSE run without it. To evaluate this, we created

an implementation of the FilteringAnalysis interface which only returns keep-decisions.
This is the class OnlyKeepFilteringAnalysis seen in Figure 5.6. We expect two DSE runs,
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one with the filter and the OnlyKeepFilteringAnalysis analysis and one without a filter,

to not falsely discard any candidates, not introduce any additional errors, and produce

the same number of candidates and optimal candidates. The launch configuration for this

question is shown in Table 6.1.

6.3 Results

In this section, we discuss the results of our evaluation.

6.3.1 Goal G1 - Reduction of Complexity

Q1.1: Traditionally, analyzing optimal candidates for their confidentiality properties is

a two-step process. First, a PerOpteryx DSE run is performed which identifies a set of

optimal candidates. Second, each optimal candidate is evaluated for their confidentiality

by being input into the confidentiality analysis. In addition to the problem that this

workflow may not result in the best possible optimal candidate being found, as described

in Section 5.2, this requires manual selection of candidates to analyze, together with the

manual initiation of an analysis run for each separate candidate in the optimal candidate

set.

In contrast, with our approach, the analysis is integrated into the DSE process. While the

analysis needs to be adapted for the filter interface, this only needs to be done once. The

analysis is then specified to be used in the filter as described in Section 5.6 with minimal

effort by creating a new FilteringJob and adding it to the workflow. With the integrated

analysis, both PerOpteryx and the analyses are run within one singular launch. Due to

this, a software developer only has to initiate the process once, instead of 1 +𝑛 times, with

𝑛 being the number of optimal candidates produced by PerOpteryx. This reduces the time

required for selecting candidates and initiating new analyses manually.

Q1.2: The runAnalysis method of our FilteringAnalysis interface defines what the

developer receives as input parameters, as well as what the implementation of the method

must return. This is specified by the method signature as well as the documentation.

The developer for a new analysis class does not need to identify where to access a can-

didate model, or implement the actual discarding of candidates. This is handled by the

FilteringJob class and our program logic at the entry point. runAnalysis provides the

developer with the current candidate model, meaning that a software developer only needs

to know how to extract the required information for their analysis from the candidate.

The analysis itself only has to return a boolean keep/discard decision. For integrating the

analysis to be used in the filter, the developer currently needs to know the location of the

entry point, and how to specify the analysis class to be used in the filter. This does not

require low-level PerOpteryx knowledge however, as demonstrated in Section 5.6.

6.3.2 Goal G2 - Accuracy of Approach

Q2.1: We initiate the DSE runs as described in Section 6.2. For the modelwithout confiden-
tiality violations, we receive zero detected confidentiality issues from the confidentiality
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analysis. Our runAnalysis implementation returns true, i.e. a keep-decision. Our filter
does not discard the candidate and correctly proceeds with the candidate evaluation. The

confidentiality analysis detects five confidentiality issues in the model with violations.

This is interpreted as a discard decision in runAnalysis, and the method returns false.

Our filter then labels the candidate as infeasible and skips the candidate evaluation.

We interpret these results twofold. For one, our filter stage is able to extract the correct

candidate model from the DSE pipeline, and the analysis class can access this model and

perform analyses on it. This is evident due to the confidentiality analysis being able to

detect the correct amount of confidentiality issues for the model specified at launch of the

DSE process. Second, our FilteringAnalysis implementation correctly produces a keep
or discard decision based on the output of the confidentiality analysis.

Next, we investigate the result set that PerOpteryx produces with the Media Store case

study. PerOpteryx creates multiple output files per iteration. We are interested in the data

for the last iteration. This data includes, among others, a file with all generated candidates,

and a file with the optimal candidates. These files include the component choices for each

candidate, the quality metrics and the candidate IDs [21]. We can see that all candidates

with an odd ID have their quality metric set to Infinity, while all candidates with an even

ID have a specific value. We interpret these results as meaning that our filter correctly

marks candidates to be discarded as infeasible, while not interfering with the evaluation

of candidates that should be kept. We calculate precision and recall based on the formula

stated in the evaluation design. Since we have zero candidates that should be kept but

were marked with Infinity (False Positive), and zero candidates that should be discarded

that were not marked with Infinity (False Negative), our formula simplifies to𝑇𝑃/𝑇𝑃 for

both precision and recall, resulting in a value of 1.0 for both metrics. In the set of optimal

candidates, we find that some candidates are marked with Infinity. However, this may

also occur in regular DSE runs without our filter [21, 6].

Q2.2: Our filter is designed in such away that, should the implemented FilteringAnalysis

produce a keep-decision, we proceed with the normal program flow. The runAnalysis

method of the OnlyKeepFilteringAnalysis class immediately returns true, i.e. a keep-
decision. Performing a DSE run with the Media Store case study with the filter produces

no discard-decisions. We see this reflected in the result files. Table 6.2 shows the number

of candidates generated after two completed DSE runs, once in plain PerOpteryx, i.e. with

the filter stage removed, and once with the filter enabled and OnlyKeepFilteringAnalysis

as our analysis class.

Plain PerOpteryx With Filter Stage

Number of candidates generated 26 26

Number of candidates with Infinity 0 0

Number of optimal candidates 1 1

Table 6.2: Results of a DSE run with and without our filter stage.

These results show that our filter is transparent to the DSE process if no candidates are

to be discarded.
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6.4 Threats to Validity

Runeson et al. [25] present a scheme based on which we discuss the threats to the validity

of our evaluation. We discuss the threats to internal and external validity, construct validity

and the reliability of our evaluation.

Internal Validity A threat to the internal validity arises when the results of our evaluation

are influenced by a factor that was not taken into account during the evaluation. An

internal threat may occur with the evaluation of goal G1. We may have missed some

steps for performing candidate analyses on a system model with our filter, or missed

some additional knowledge required about PerOpteryx to implement or adapt candidate

analyses for use in the filter. This could result in higher effort required to run analyses on

candidate models with the filter stage. However, due to the author having created some

implementations of analyses, and having performed candidate analyses on case studies

himself, this threat is minimized.

In the evaluation of the confidentiality filter analysis for question Q2.1, our decision to

perform only one iteration may pose an additional internal threat. Performing the confi-

dentiality analysis on a candidate model causes, to the best of our knowledge, a side effect

in the PerOpteryx process pipeline, causing subsequent iterations of the model evaluation

phase to fail. We believe that this problem arises due to the way the confidentiality analysis

is performed, and is not caused by the actions of the filter itself. We asserted the correct

functionality of the filter itself in our results for Q2.1 by confirming that information can

be extracted from the candidate model, and that the keep/discard decision is made and

propagated correctly. Furthermore, we confirm that multiple iterations of our filter can

work as expected with a different analysis class that does not cause side effects. We believe

that this mitigates the extent of the impact of this threat.

External Validity Threats to external validity concern the possibility of generalizing the

evaluation results to other cases outside the investigated ones. This threat may occur for

the evaluation of goal G2, where we use only two case studies to validate our approach.

There are multiple example models provided with Palladio [19], but not all models can

be used for performing DSE. Some may not feature component alternatives, others are

missing model files or quality annotations required for PerOpteryx. Amending an example

for use with PerOpteryx is time consuming. We chose MediaStore as the case study to use

due to multiple factors. For one, it is utilized as an example model in multiple publications

regarding Palladio [24, 10]. Furthermore, it features a very complete and refined PCM

model representing a realistic usage scenario. We therefor assume MediaStore to be a

good representative model for use in our evaluation.

Another threat to external validity may occur in our discussion of the evaluation results.

It is possible that the argumentation is too specific to the case studies involved. While it

is not possible to further generalize our findings without performing more case studies,

we expect our arguments to apply to other scenarios as well. However, this cannot be

confirmed and as such remains a threat to our questions Q2.1 and Q2.2.

Construct Validity Threats to the construct validity are related to whether the questions

we pose and the metrics we use are appropriately chosen for the goals of our evaluation.
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By using the Goal-Question-Metric approach [2] and clearly defining the metrics and

questions according to which we perform our evaluation, we try to reduce this threat.

We believe that our selection of questions and metrics are appropriate and sufficient for

evaluating our goals.

Reliability Threats to reliability are related to the repeatability of the evaluation, whether

the same evaluation results can be achieved by a different person. To allow for the

reproduction of our evaluation, we provide the source code and models used for our

evaluation with this thesis [14], which together with the specification of our evaluation

design in Section 6.2 reduces this threat.

6.5 Limitations

Valid candidates from invalid predecessors Our approach assumes that candidate models

that would be discarded in one iteration do not repair themselves in a subsequent iteration.

In other words, we assume that candidate models that were marked as infeasible in

one iteration will not be the predecessors of newly generated candidates that should

be kept. Using the confidentiality analysis as an example, for a candidate model that

violates confidentiality, it may be possible that the candidate generation mechanism for

new iterations (step 2c in Figure 5.3) would choose a different set of components for

the candidate model that replaces the violating component. If the violating candidate

was discarded before the generation phase, the new candidate without confidentiality

violations may not be generated.

Non-optimal result set After our filter stage has been performed and a discard decision

for a candidate has been made, we mark the candidate to be infeasible by applying the

worst possible values to its quality metrics. Later in the PerOpteryx pipeline when the

worst candidates are removed from the set of viable candidates (the selection phase), we
assume that a problem might occur which would lead to infeasible candidates left in the

final optimal candidate set. This problem would arise when there are fewer non-infeasible

candidates than the amount PerOpteryx should produce. For example, if PerOpteryx

were to generate 5 optimal candidates, but there are only 3 non-infeasible candidates and

3 infeasible candidates, the resulting optimal candidate set would include 2 infeasible

candidates in addition to the 3 non-infeasible candidates. In the case of the confidentiality

analysis, this would mean that the resulting set of optimal candidates includes 2 candidates

where a confidentiality violation was found. This problem does not arise if the amount of

feasible candidates is higher than the amount that PerOpteryx should output.

This problem could be fixed in the selection phase by discarding all infeasible candidates

(i.e. with ±∞) regardless of how many candidates are left in the viable candidate pool.

This would lead to PerOpteryx producing fewer candidates than requested, but would

ensure that the result set does not contain candidates that should have been discarded.

In general however, this would not be a cause for concern. While infeasible candidates

are included in the final candidate set, they are clearly marked with ±∞ as their quality

metrics. Developers can safely ignore these candidates, as they would do for other times
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±∞ is determined as the quality metric. This is expected and can happen, as stated

previously, with the default PerOpteryx pipeline as well [21, 6].
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7 Lessons Learned

In this chapter, we go over some lessons that we have learned related to problems we

have encountered in this thesis, and things we would have done differently for a smoother

course of development.

For this thesis, a large proportion of the available time was spent on getting acquainted

with Palladio models and the PerOpteryx process pipeline. Since the author of this

thesis has had no prior experience with PerOpteryx, Palladio, DSE and model-driven

software development, this increased the learning overhead. Due to the nature of our

work (extending the PerOpteryx pipeline), the workflow of PerOpteryx had to be well

understood. This involved adapting example models for PerOpteryx and running them

with the debugger. In the course of doing so, various unexpected errors were encountered

which required deeper understanding of methods and objects used in PerOpteryx. However,

the documentation seems to be out of sync with the actual state of the code in some areas,

which may be due to the fact that PerOpteryx and Palladio are under active development.

Furthermore, due to us integrating the filter stage at a location in PerOpteryx not intended

for active outside development, documentation was less extensive and additional time was

required to understand the program flow in order to solve errors.

For future work in this area, the author recommends additional focus on the preparation

and acquaintance phase to gain experience. The dissertation of Anne Koziolek [12] provides

a vast trove of information about the PerOpteryx process and is recommended to be used

if conceptional ideas about PerOpteryx are unclear.

During implementation, the handling of EMF objects proved to be more difficult than

expected. This is related to our threat to internal validity concerning the confidentiality

analysis only working error-free for the first iteration, explained in Section 6.4. This

problem could have likely been solved if a reliable way of performing a deep copy on the

candidate model was found. Various attempts to do so including using methods specified

in EMFHelper and EcoreUtil classes for copying EMF objects could not resolve this issue,

or introduced other problems. Due to time constraints and lack of deeper knowledge, this

problem could not be conclusively dealt with.

35





8 Conclusion

In this chapter, we conclude our thesis with a summary of our approach in Section 8.1.

Section 8.2 presents possible future work related to this thesis.

8.1 Summary

In this thesis, we developed an approach to run arbitrary analyses on architecture candi-

dates in combination with the design space exploration optimization process. We provided

a filter stage which integrates into the PerOpteryx optimization pipeline and is capable of

discarding candidates with unwanted properties based on the results of candidate model

analyses, and discussed the drawbacks of the traditional approach of decoupling candidate

analyses from the optimization process.

In order to select an ideal entry point for our filter into the design space exploration

process, we analyzed the PerOpteryx pipeline based on a set of requirements. At this entry

point, we enabled the use of a workflow to run one or more analyses on candidate models.

We provided an interface for implementing new analyses for use in the filter stage. Using

this interface, we adapted the data flow confidentiality analysis from Seifermann et al. [27]

to be used in our filter, so that candidate models in the DSE process can be analyzed and

filtered based on their confidentiality properties. We also demonstrate the capabilities of

other analyses for our filter by implementing further analysis classes.

Our approach enables software architects to automate candidate architecture analyses

by integrating them into the PerOpteryx optimization process. Candidate model analyses

do not have to be performed manually, and a correct optimal model can be identified which

features the best quality metrics while simultaneously adhering to the requirements set

by the filter. Candidates that are discarded are not evaluated for their quality properties,

saving time and resources.

We evaluated our approach by applying the filter with the confidentiality analysis and

other analyses on case studies. Our results indicated that our filter stage works as intended,

able to perform candidate model analyses, accurately determine a keep/discard decision

and discard unwanted candidates from the final optimal candidate set. We evaluated the

accuracy of our approach by measuring whether candidates are correctly discarded by

the filter based on analysis results, and determined our approach to have a precision and

recall of 1.0.

8.2 Future Work

Future work directly relating to the filter functionality can be focused on resolving the

deep-copy issue stated in Chapter 7. This would likely enable the filter to work for multiple
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iterations of the PerOpteryx DSE process irrespective of the actions taken in the analysis

class, removing the limitation of a singular iteration we set ourselves in the evaluation for

Question Q2.1.

Further work can also be done to make the configuration of the filter more user-friendly.

Currently, configuration options for the filter stage must be manually set in the source

code. This includes the setting of which analysis or analyses to run, and any other potential

analysis-specific settings. A more user-friendly way of setting the configuration would be

through the launch options in the Run Configurations dialog for a DSE run. This would

also be in line with other aspects of PerOpteryx which have configurable options, such as

the performance analysis. Figure 8.1 shows the configuration dialog for the performance

analysis. Here, the launch options allow the specification of the analysis tool to be used,

together with relevant parameters. Such a tab could be created for the filter stage as well

allowing for the setting of analysis parameters. In addition to the analysis parameters,

Figure 8.1: The Run Configuration Dialog for a Design Space Exploration, with the Perfor-

mance Analysis Tab selected.

Eclipse extension points could be used to allow for the automatic discovery of all available

filter analysis classes. These could then potentially be selected in the launch options via

an Add / Remove dialog, like shown in Figure 8.2.

OnlyKeepFilteringAnalysis

PCMConfidentialityAnalysis

Remove

Add...

Analysis Selection
select analyses to run in the filter stage:

Figure 8.2: Mockup of a possible analysis selection dialog.
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