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Abstract: Some vacuum chambers in particle accelerators perform a waveguide- or resonator-like
behavior due to their unique geometries. Electron multipacting caused by such a structural property
might be able to overwhelm the classical beam-induced multipacting. This article shows that the
wakefields of particle beams could stimulate the resonant modes of a vacuum chamber with a
near-rectangular waveguide shape and accordingly induce much stronger electron avalanche in the
chamber. Especially, it has been believed that the multipacting is responsible for pressure rise in
a vacuum chamber, where energetic secondary electrons with growing numbers collide with gas
particles at the chamber wall. Based on numerical simulations, the electron multipacting mechanism
with the mode resonance is proposed, which can explain the significant pressure variation measured
in our cryogenic vacuum chamber.
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1 Introduction

In accelerator vacuum chambers, the formation of electron clouds could be one of the significant
sources of beam-induced heat loads such as synchrotron radiation (SR), geometrical impedances,
and resistive wall heating [1]–[7]. Furthermore, serious electron multipacting (MP), which means
resonant electron discharge phenomena in materials with high secondary electron yield (SEY),
with charged particle beams in the chambers have been also reported in literature with numerical
simulations, direct measurements, and indirect observation of vacuum pressure rise [1, 8]–[10]. The
beam-induced electron MP (BIEM), which gives rise to demerits of beam energy loss and chamber
heating, is based on a mechanism that the electrons are kicked and multiplied by wakefields (WFs) of
passing bunch trains [1, 10]. The electron MP phenomena are also commonplace in radiofrequency
(RF) devices such as normal and superconducting cavities and fundamental power couplers [11].
From frequent surface impacts by synchronization of the initially emitted electrons with strong RF
fields, the number of total electrons exponentially increases with time. Thus, it is obvious that the
MP results in RF breakdown and finally limits the device performance. In general, the MP-possible
areas are confined in small regions in the device structure and can be mitigated by geometrical
design optimization [12]. The MP barriers restricting power supply to the devices have been also
overcome by RF conditioning during several to tens of hours [13].

Figures 1(a) and 1(b) show simple principles of the BIEM with positively and negatively
charged beams, respectively, in a vacuum chamber. The MP with the positively charged beams
is superior to that with negatively charged ones due to the relatively stronger kinetic energy from
attraction between the beams and the primary electrons from the chamber wall. On the other hand,
one can consider the MP with resonant modes trapped in a vacuum chamber which acts like an RF
device, as shown in figures 1(c) and 1(d). If the electromagnetic (EM) fields from the resonance are
much stronger than those from particle beams, the BIEM will be buried under the MP with mode
resonance where the more secondary electrons with higher energy will be created regardless of the
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Figure 1. Schematics showing the beam-induced electron multipacting with (a) a positively charged beam
[+], (b) a negatively charged beam [−] and with (c) electric field [E], (d) magnetic field [B] of mode resonance
in a vacuum chamber.

charge gender. The dominant fields in the mode resonance are dependent on a unique structure of
the chamber.

The pressure rise in a cold vacuum chamber with cryogenic environment may be a proof
of strong MP because the energetic secondary electrons can repeatedly desorb the gas molecules
cryosorbed in the chamber wall. An actual case was at Karlsruhe Institute of Technology (KIT),
where the Karlsruhe Research Accelerator (KARA) electron storage ring has been operated with
superconducting insertion devices such as wigglers and undulators [14]. Significant pressure
variations were observed in a cold-bore vacuum chamber for a superconducting undulator with a
period length of 14 mm (SCU14) when no magnetic fields were applied. The chamber in the SCU14
had a near-rectangular waveguide structure of two bended stainless steel (SS) substrates in upper
and lower, on which each thin copper (Cu) layer was partially deposited around a beam direction to
minimize the image current of the beam. The corresponding gas dynamic analyses demonstrated
that electron MP was responsible for the pressure rise, but the related mechanism has not been
clear [14].

It has been well informed that the BIEM severely occurs with positively-charged particle beams
attracting the secondary electrons from the chamber surface [15]. For instance, some observations
of pressure rise, as a result of the MP, with regard to a current of positron beams in the warm straight
section of the PEP-II LER (positron-electron project-II low energy ring; nominal bunch length and
spacing of ∼40 ps r.m.s. and 8 ns, respectively; 1582 bunches in 24 trains, reported in 2004) have
shown the abrupt growth whose threshold started at a current of around 600 mA and saturation (or
decay) at a peak current of ∼1.1 A [15]–[18]. The chamber material of the straight section with 4′′
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cylindrical beam pipes was SS [19]. In our case with electron beams in the KARA storage ring
(bunch length and spacing of ∼40 ps r.m.s. and 2 ns, respectively; 64 bunches in 2 trains, reported
in 2007), the pressure variation measured with an average beam current indicated Gaussian-like
distribution at the relatively lower peak current of around 150 mA, as shown in figure 2, even in
the cold vacuum chamber at a temperature of 4 K, where the binding energies of physisorbed gas
molecules were much higher than those in a warm condition [20]. A direct comparison is difficult,
however, considering that the BIEM with negatively charged beams is inferior to that with positively
charged ones, one could imagine in general that the pressure rise with the electron machine KARA
should be maintained until or beyond much higher beam currents like the PEP-II LER cases, in
contrast to the measurement results. Assuming that the vacuum pressure is linearly dependent on
the MP, our results are similar to the MP band formation with regard to the EM fields in a resonant
RF device with a specific structure.

Figure 2. An example of vacuum pressure (PUHV) variation with average beam current (I) measured at the
KARA electron storage ring. The cold vacuum chamber of the SCU14 was tested without magnetic fields.
Each curve corresponds to a different fill. Source: adapted from Casalbuoni et al. 2007 [20], figure 8.

Several research groups have investigated the trapped resonant modes in insertion devices and
verified that vacuum chambers with mode resonance, for example, a resonant waveguide- or cavity-
like chamber could give disturbance to nearby accelerator devices like a beam position monitor
(BPM) [21]–[23]. It has been also reported that the resonant modes in a vacuum chamber could be
caused by a charged particle beam [22, 24] and moreover, by a large resonance peak in transverse
impedance of a chamber gap [25]. Such previous investigations allowed us to consider the mode
resonance-assisted MP in vacuum chambers. This postulate will be also helpful to understand
the MP phenomena and resultant pressure variation observed in vacuum chambers with electron
machines such as the KARA.

The purpose of this study is to check out the possibility of reproduction of the nonlinearity
in experimental results shown in figure 2 from numerical analyses. In the following sections,
simulation results on strong MP assembled with mode resonance in a rectangular waveguide-like
vacuum chamber are presented. It starts from a condition that dominant modes in the chamber
are excited by WFs of particle beams. In order to prove the coherence between them, the wake
spectra from a single bunch passing through the vacuum chamber were compared to the eigenmode
frequencies of the resonant chamber. The MP with scaling the EM fields in a resonant mode, which
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correspond to a beam current in measurements, was also analyzed. Finally, a fundamental cause of
the strong MP from the additional studies for chambers having different structure is discussed. The
photoemission contribution to the MP by SR was not considered in this study.

2 Numerical analysis

From geometries of the SCU14, a virtual chamber was set to be a rectangular waveguide of 1-mm-
thick SS with the inner dimensions of 66 mm (width) × 29 mm (height) × 1400 mm (length) for the
following simulations, even though the real chamber has two Cu layers with a thickness of 30 μm
and a width of ±10 mm from the horizontal center on the top and bottom SS substrates, respectively,
and also partial absence of the side walls for ultrahigh vacuum.

2.1 Wakefield simulations

In order to confirm spectral coherence between electron bunch-induced WFs and resonant modes
in the vacuum chamber, the WF analyses with the CST Particle Studio (PS) Wakefield Solver were
performed at the very first. The material properties of the SS used in the simulations are summarized
in table 1, which was introduced from commercial documents and ref. [26]. The number of meshes
was more than 108 with a mesh volume of 0.34 × 0.34 × 0.34 mm3, which is enough for resolving
the chamber modeling. For simplicity of the simulation, we supposed not bunch trains but a
single bunch with a current of 1 mA and a length of 13.5 mm (45 ps). Table 2 shows the key
parameters of the KARA electron beam, where the numbers in the last column indicate the values
used in the analyses. The simulations was also performed with a temporal step of pico-second
(ps) [27]. Figure 3(a) shows the single bunch spectrum where the maximum frequency reaches
approximately 30 GHz. The variation of wake potential in longitudinal (z-) direction along the
chamber length is shown in figure 3(b), where the red curve indicates a Gaussian reference pulse
(electron bunch). The longitudinal wake potential oscillates in the entire distance, which means a
narrow-band coupling impedance in a longitudinal wake spectrum and is also shown as resonance
peaks in absolute values in figure 4(a). Both results indicate that the vacuum chamber behaves as a
resonant waveguide due to its unique rectangular structure. Figure 4(b) shows real and imaginary
parts of the longitudinal impedance, respectively. The squared cosine filtering with a roll-off factor
of 0.5 was applied to all wake and impedance spectra for the visibility. The wake potentials and
impedances in horizontal (x-) and vertical (y-) directions were zero, respectively, from the initial
condition of on-axis beams. However, if the beam offsets (shifts) in transverse directions are
given, the transverse wake characteristics grow up owing to the increasing kick factors, as shown in
figure 5 where each 2 mm shift was applied in both x- and y-directions. The resonant frequencies in
transverse spectra are almost coincident with those in the longitudinal one. There was no difference
between longitudinal wake potentials and impedances with and without the wake shifts. As the RF
frequency is 500 MHz, the WF simulation results imply that harmonic mode resonances exist in the
vacuum chamber.

2.2 Electromagnetic simulations

The CST Microwave Studio (MWS) Eigenmode Solver was utilized to characterize EM fields in
the vacuum chamber. Figure 6(a) shows the resonant frequencies in 10 modes by AKS method
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Table 1. Material properties of the stainless steel used in the WF simulations.

Parameter Value
Electric conductivity (S/m) 1.4 × 106

Material density (kg/m3) 8000
Thermal conductivity at 300 K (W K−1 m−1) 16.2
Specific heat (J K−1 kg−1) 502
Diffusivity (m2/s) 4 × 10−6

Thermal expansion coefficient (10−6/K) 17.3

Table 2. Key parameters of an electron beam in the KARA storage ring (E: electron energy, frf : RF frequency,
frev: revolution frequency, σx: horizontal beam size, σy: vertical beam size, σz: bunch length, 𝑐: speed of
light in vacuum, I: average beam current, Nb: number of bunches, and Qb: bunch charge). The numbers in
the last column (Value*) indicate the values used in the WF simulations.

Parameter Value Value*
E (GeV) 0.5–2.5

—
frf (MHz) 500
frev (MHz) 2.715
σx, σy (mm, in r.m.s.) 0.84, 0.063
σz/𝑐 (ps, in r.m.s.) several to 50 45
I (mA) ≤ 200 100
Nb 1–184 100
Qb (nC) 0.037–0.37 0.37

Figure 3. (a) A single bunch spectrum with a bunch length of 13.5 mm (45 ps) and a current of 1 mA and (b)
variations of wake potential in longitudinal (z-) directions along the vacuum chamber length. The reference
pulse indicates a Gaussian electron bunch.

(∼107 meshes) and 64 modes by JDM method (∼105 meshes), respectively [28]. The cut-off
frequencies were ∼2.3 GHz and the maxima were around 5 GHz in both methods. This frequency
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Figure 4. (a) Wake spectrum (absolute value) in longitudinal direction in the vacuum chamber and (b) its
real and imaginary parts.

Figure 5. (a) Variations of wake potentials along the vacuum chamber length and (b) wake spectra (absolute
values), in transverse directions with wake shifts of 2 mm in x- and y-directions, respectively.

ranges are well overlapped with resonant peaks in the longitudinal and transverse WF spectra in
section 2.1. Thus, it is inferred that the mode resonances in the vacuum chamber (unloaded quality
factor, Q0 = ∼ 2 × 103 in fundamental modes at both 4 and 300 K) are caused by coherent WFs
and the amplified EM fields can result in the electron MP. From the WF analyses, it seems that
the longitudinal WF dominantly affects to the mode resonances. However, one cannot completely
exclude the contribution by the transverse WF, considering the transverse impedance effects in the
off-axis WF analyses and ref. [25]. Figure 6(b) shows variations of Q0 and shunt impedance, Rsh

with respect to a mode number calculated by the AKS method. Considering the real Cu layers
partially deposited on the SS substrates, it is expected that the Q0 would rise some amount. However,
the increment is believed to be not so significant because the total surface area of the Cu is ∼20% of
that of the SS, even though a skin depth of ∼250 nm in the Cu at the frequencies is much lower than
its thickness of 30 μm. For reference, the Q0 of a vacuum chamber made of only Cu is calculated to
be ∼30 times higher than that of the SS chamber at the temperature of 4 K. Unfortunately, the EM
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modeling with two hetero-materials of SS and Cu was not possible due to a prerequisite of a perfect
conductor composed of a single material in the CST MWS code. Figure 7 shows the electric-field
(E-field) distributions in four distinguishable modes, which represent typical transverse electric
(TE) modes. As input parameters for the MP analyses in section 2.3, the EM fields at 2.3 GHz
among the harmonic modes were chosen (figure 8). Even though one consider the actual case
with partial Cu deposition in the horizontal walls, the magnetic field regions mainly belong to the
vertical walls of SS, as shown in figure 8(c), which is much more dominant in the MP and will be
described in the next section. The field values in the legends of figures 8(a) and 8(c) originated
from an assumption that an energy of 1 J was stored in the vacuum chamber. Figure 8(b) shows
the E-field distribution along the beam axis. The amplified EM fields can be calibrated by direct
measurements in the chamber.

Figure 6. Variations of (a) resonant frequency calculated by AKS and JDM methods, respectively, and (b)
unloaded quality factor, Q0 and shunt impedance, Rsh by AKS method, with respect to a mode number in the
vacuum chamber.

2.3 Multipacting simulations

The MP analyses were performed using CST PS PIC (particle in cell) Solver, where the code did
not offer the SEY information for SS. However, it is known that SS has an SEY characteristics
similar to that of Cu and the difference between the properties at room and cryogenic temperatures
for such high SEY materials is not significant, especially, in low electron energies of less than
∼100 eV [1, 29]. Thus, the SEY of pure Cu shown in figure 9(a) was inevitably applied to the MP
simulations, which is basically offered in the CST PS code. Fortunately, figure 9(a) resembles the
curve of SS in figure 9(b) which gives the SEY information of several material in the literature [1, 30].
For this reason, it is believed that the difference in the MP analyses between the Cu modeling and
the real vacuum chamber with partial Cu layers on the SS substrates would be negligible.

Figure 10 shows the MP simulation results for the vacuum chamber. For a parameter sweep
study with changing the EM fields corresponding to a beam current, the mesh number was set to
∼ 5.5 × 105 for each simulation with a mesh volume of 2.3 × 1.1 × 2.3 mm3. The mesh dimension
is enough for the analyses because the number of points for initial electron emission from the
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Figure 7. Electric field distributions in the vacuum chamber with resonant frequencies of (a) 2.27175 GHz,
(b) 2.46529 GHz, (c) 3.50685 GHz, and (d) 4.96243 GHz, respectively. They represent typical TE modes.

four inner surfaces was supposed to only 80, as shown in the inset of figure 10(a), for distinctly
monitoring the electron motion and the surface emission does not depend on the material thickness.
It was also supposed that 4 Gaussian bunches with kinetic energies of 10 eV were emitted from each
point in a time scale of nano-second (ns), which was the same as that in the EM simulations. The
EM fields in figure 8 were imported for the analyses and scaled to investigate their dependency on
the MP. The scaling factor of the EM-field intensity was denoted as ^ in the legends of figure 10,
which can also correspond to the average beam current, I in figure 2. Figure 10(a) shows typical
exponential growth of total electron numbers with respect to time at certain ^’s. In general, as
the ^, namely, EM-field intensity, increases, the particle numbers start growing in time and then
abruptly or gradually decrease after a critical ^. Otherwise, such rising and falling vanish from
the beginning or can be repeated in different ^ ranges owing to the characteristic structure of the
vacuum chamber. Therefore, in order to minimize the MP and resultant pressure rise in the vacuum
chamber, it is important to carefully design the chamber or to utilize dampers for removing the
unwanted resonant modes. The increases of secondary electron number with time are also shown
in figure 10(b), where the temporal interval between two nearby peaks is approximately 0.22 ns
(66 mm) corresponding to a half period of the resonant frequency of 2.3 GHz (0.44 ns, 132 mm).
Thus, one can guess that from the chamber width of 66 mm, two-point MP by electron flight and
collision between the vertical walls is dominant.

However, the particle tracking results in the vacuum chamber indicate that most secondary
electrons originate individually from each vertical wall, as shown in figure 11(a). This means that
the B-fields surrounding the E-fields in the TE mode are mainly responsible for the MP in the vacuum
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Figure 8. (a), (b) Electric field and (c) magnetic field distributions in the vacuum chamber with a resonant
frequency of 2.3 GHz used for the MP analyses.

chamber. In other words, the initial low-energy electrons emitted from a vertical wall experience
a cyclotron motion by B-fields, collide to another point on the same wall, and finally result in
secondary electrons, which are much more than those by E-fields between the two horizontal walls.
In static point of view, the E-fields in the TE mode are beneficial to the acceleration of electrons
from a horizontal wall, but not to those from the opposite wall at the same time. Furthermore, the
accelerated electrons might collide with those from the opposite wall and lose partial energies. The
secondary electrons from the horizontal walls can also periodically experience deceleration after
emission, be driven back to the emission surface, and be finally absorbed there [31]. Therefore, it is
apparent that a main cause of the MP in the rectangular waveguide-like chamber is not E-fields but
B-fields. Figure 11(b) shows a particle tracking result without mode resonance, where the emission
of primary electrons are just shown. The emitted electrons will interact with particle beams passing
through the chamber, however, the EM-fields by the beams are much lower than those from the
mode resonance, which will be described in the next paragraph.

The electron MP phenomena can be expressed as the following equation in terms of time:

𝑁 (𝑡) = 𝑁0𝑒
𝛼𝑡 , (2.1)

where 𝑁 (𝑡) is a total electron number after a time 𝑡, 𝑁0 an initial electron number, and 𝛼 growth
rate. Figure 12 shows the variation of the 𝛼 with respect to the ^. Two input frequency ranges were
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Figure 9. SEY curves of (a) Cu offered in the CST PS and (b) several materials in the literature. Source
of (b): Malyshev 2020 [1], figure 8.16 (copyright 2020 Wiley-VCH) and Baglin et al. 2000 [30], figure 3
(copyright 2000, CERN).

examined in the simulations: one is narrow in 2–3 GHz and another is some broad in 1–6 GHz
which is close to the mode frequency range in figure 6(a). The former resulted in the relatively more
abrupt increase and gentle decrease, but the latter case was on the contrary and its maximum 𝛼 was
higher, as more clearly shown in the nonlinearly fitted data. One interpretation is that the multimode
competition of 1–6 GHz slowly leads to higher maximum 𝛼 and then abruptly decays without the
lasting quasi-single mode contribution as in 2–3 GHz. It seems that the decay in high field region is
resulted from both the SEY property with high-energy primary electrons and the near-confinement
of secondary electrons by extremely strong B-fields at the vertical walls of the chamber. The
nonlinearly fitted curve in 1–6 GHz (black bold and solid curve) is very similar to the pressure
measurement ones seen in figure 2. As the ^ corresponds to the average beam current, it is possible
to conclude that in our case, the BIEM is covered with much stronger MP with mode resonance of
the vacuum chamber. With a classical approach for ultra-relativistic charges in a cylindrical pipe
of perfect conductor, an analytical estimation of the E-field by the 1 mA single bunch in the KARA
electron storage ring is approximately 33.5 kV/m with beam parameters in table 2. However, in
the fitted black solid curve of figure 12, the ^ at the maximum 𝛼 is ∼3.3, which corresponds to an
E-field of ∼73 MV/m, where the ^ of 1 represents ∼22 MV/m, as shown in figure 8(b), with the
stored energy of 1 J in the chamber. The amplified E-field can be calibrated by direct measurements
in the resonant chamber. It has been reported that beam WFs could give rise to mode resonance of
a vacuum chamber, where the peak E-fields were more than MV/m level [23, 24].

Similar MP simulations for vacuum chambers with different geometries have been performed.
For a rectangular waveguide-like chamber with a height of 8 mm (a minimum gap of the SCU14)
and the same other dimensions, no MP was foreseen, even though the same frequencies in both
WFs and resonant TE modes exist in the chamber. The area reduction in the vertical walls seems to
cause the decrease of secondary particles affected by B-fields. We also tried an elliptical vacuum
chamber having dimensions of 33 and 14.5 mm in major and minor axes, respectively, with the
same length of 1400 mm, similar to the rectangular chamber of 66×29×1400 mm3used in the main
analyses, and the result was no MP as well. Although the both cases have not been experimentally
verified, one can consider that a major factor causing the strong MP based on the mode resonance
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Figure 10. Variations of (a) total electron number and (b) secondary electron number, with time in the
vacuum chamber. The scaling factor, ^ corresponds to the electromagnetic field intensity. The inset in (a)
shows 80 points for initial electrons emitted from four inner surfaces to simplify the MP simulations.
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Figure 11. Transient particle tracking results (a) with and (b) without the mode resonance in the vacuum
chamber. In (a), the dominant factor for much more secondary electrons is magnetic fields. In (b), the emission
of primary electrons is just shown and there is no avalanche due to the absence of strong electromagnetic
fields.

and the resultant pressure variation in a vacuum chamber is the chamber geometry itself, similar
to the resonant RF devices. Figure 13 shows the E-field distributions in fundamental modes for
the rectangular and elliptical vacuum chambers, respectively. In addition, the authors would like to
remark that no pressure rise was observed and the absence of MP was proven by direct electron flux
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Figure 12. Variations of growth rate, 𝛼 with electromagnetic field intensity, ^ in different frequency ranges
in the vacuum chamber. The ^ of 1 represents the field intensity with the stored energy of 1 J in the chamber.

Figure 13. Electric field distributions in fundamental modes for (a) rectangular (66 × 8 × 1400 mm3) and
(b) elliptical vacuum chambers (a major axis of 33 mm, a minor axis of 14.5 mm, and a length of 1400 mm),
respectively.

measurements in warm and cold elliptical liners (Cu vacuum chambers) of the COLDDIAG (cold
vacuum chamber for beam heat load diagnostics), developed at KIT, with electron beams at the
DLS (Diamond Light Source) storage ring [32]–[34]. Our recent simulation results for the elliptical
liner (a major axis of 30 mm, a minor axis of 5 mm, and a length of 490 mm) also showed no MP.

3 Discussion

The best way for validating the simulation results in figure 12 is to reproduce the pressure measure-
ment curves in figure 2 from them. For this purpose, the ^ band with positive 𝛼 (0 to >10 in the
fitted black solid curve) should match with the beam current range from ∼80 or 110 mA to ∼190 mA
in the background vacuum of 10−10 mbar, under the assumption that the vacuum pressure is linearly
dependent on the MP. The ^ value at maximum 𝛼 in figure 12 should be also coincident with one
of the peak currents in figure 2. In this case, the EM-field intensities in figure 12 correspond to the
average beam currents in figure 2, which means the amplification of WF to mode resonance. How-
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ever, the nonlinear pressure curve always changed with a filling pattern of the KARA electron beam
which affected to gas dynamic parameters such as composition and thickness of a cryosorbed layer
in the vacuum chamber [20]. Meanwhile, the calculated EM-fields imported for the MP simulations
originated from the eigenmodes in the chamber structure, regardless of beam parameters and filling
patterns. Furthermore, the WF simulations were independently performed for just confirming the
spectral coherence between the WF and the EM simulation results. Therefore, a direct comparison
between the simulation and measurement results is unreasonable. As an alternative, heat loads
by MP can be analytically calculated with the secondary electron energy gain and the number of
colliding electrons per unit time (usually, several hours in gas dynamic analyses) and compared with
measurement data of the heat loads. However, the MP simulation results showed the exponential
growth of particle number in a time scale of nano-seconds, where the final electron number de-
pends on the initial emission parameters such as the number and kinetic energy of primary electron
bunches from the material. Thus, it is also very difficult to estimate the MP-based heat loads from
the simulation results. If the EM-field intensities in the resonant vacuum chamber are measured
with changing the beam current and the filling pattern, the correspondence between the simulation
and measurement results might be verified. The pressure measurements were performed in 2007
and unfortunately, the present status is that the SCU14 was completely removed from the KARA
storage ring.

Nevertheless, this scenario is the only way to explain the explosive pressure variation observed
at relatively lower beam currents in the electron machine. Under such a postulate of the MP
with mode resonance, the introduction of a big aperture for decreasing the collision number of
secondary electrons between the chamber walls can be not beneficial to the suppression of “total”
MP, differently from the classical beam-induced approach. It is also believed that coupled EM and
MP analyses for vacuum chambers make it possible to predict the existence of strong MP with mode
resonance characterized by the chamber geometry.

4 Conclusions

Simulation results on strong electron MP with mode resonance were presented to explain the
significant pressure variation measured in a cryogenic vacuum chamber of the KARA electron
storage ring. Through the numerical analyses, the spectral coherence between the WFs and the
eigenmodes in the chamber was verified and the measured pressure nonlinearity was theoretically
reproduced. In addition, the secondary electron motion in a relatively much shorter time scale in
contrast to that in the previous gas dynamic studies could be understood. The theoretical connection
of the WFs with the mode resonance in terms of a beam parameter and a filling pattern is still a
subject to resolve.
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