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Abstract

Optimal operation of District Heating Networks (DHNs) is a very challenging task. One of the main challenges for DHNs
ptimization tool designers is the choice of an adequate dynamic thermal pipeline model which gives a good tradeoff between
ccurately modeling the physics of the thermodynamic processes and simultaneously yielding a numerically efficient model. To
ddress this, the paper states the main Partial Differential Equation (PDE) which is used to describe the convection of hot water
hroughout the literature, together with reasonable assumptions that lead to minor deviations from measurements. Then, different
pproaches are described which can be used to solve the respective PDE. More specifically, the very common Node Method
NM), approximations of the NM, the lagrangian approach and different Finite Difference (FD) approaches are presented. The
ain aim of this work is to provide a qualitative and quantitative comparison of these modeling approaches in the context of

ptimal DHN operation. Our quantitative results show, that by comparing the different approaches to measurement data, the
M yields the smallest modeling errors for most of the temporal discretization sizes. The qualitative comparison identifies that

he lagrangian method lacks the differentiability necessary for the implementation in optimization tools. The advantages of the
D approaches include guaranteeing a fixed number of variables, a constant information depth of the temperature distribution
long the pipeline and the simplicity of implementation into optimization tools. The approximations of the NM bring benefits
hen varying mass flow directions need to be considered, which is a crucial aspect in 4th generation DHNs.

c 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

District Heating Networks (DHNs) will be a key technology for a successful energy transition [1,2]. Thereby, the
ptimal operation of DHNs is a major task to reduce losses, save costs [3], lower emissions [4] or obtain an optimal
nteraction of DHNs and electric power systems [5,6], to e.g. reduce the need for grid reinforcements. The basis of
ptimal operation of a DHN is an optimization problem which usually incorporates a model of the respective DHN.
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Nomenclature

CFL Courant–Friedrichs–Lewy
DHN District Heating Network
DQ Difference Quotients
EM Element Method
FD Finite Difference
FEM Finite Element Model
FV Finite Volume
MC Method of Characteristics
MINLP Mixed Integer Nonlinear Programming
NLP Nonlinear Programming
NM Node Method
PDE Partial Differential Equation
RMSE Root Mean Square Error
A cross-section area
c specific heat capacity
cst specific heat capacity of steel
cw specific heat capacity of water
Cws combined heat capacity of steel and water
d1 inner diameter
d2 outer diameter
I number of sampling points in space
∆k time span of a time step
kh heat transmission coefficient
L pipe length
ṁ mass flow
N number of sampling points in time
R water mass
S water mass
t time
∆t time step width
tstay average length of stay of the water masses leaving the pipeline
T temperature
Ta ambient temperature
Ti temperature of water mass i
T n

i temperature at space xi and time tn
Tout,1 lossless output temperature
Tout,2 output temperature
Tst temperature of the steel core
x space
∆x spatial step
γ auxiliary variable
ε auxiliary variable
κw thermal conductivity of water
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ρ density
ρst density of steel
ρw density of water

Typically, a DHN model is divided into a hydraulic and a thermal model. The hydraulic model is used to calculate
the mass flows and pressure losses in the individual DHN components. The mass flows are used by the thermal
model to calculate the temperatures at outputs, inputs and throughout the pipelines. The most common components
in DHNs are pipelines. As, on the one hand, imprecise pipeline models lead to significant subsequent errors and, on
the other hand, overly complex models result in very large, often nonlinear, optimization problems which are not
solvable in real time, an accurate model choice is of profound interest. In contrast to simulation, the models applied
in operational optimization need to be differentiable to enable real-time optimization. This requirement limits the
viability of well-known simulation models for operational optimization. However, as presented in detail later in
the introduction, there is very little literature comparing these different dynamic pipeline models for operational
optimization of DHNs, which is why this work aims to bridge that gap.

Note that apart from pipelines, the thermal and hydraulic models of DHN components, e.g. pumps, valves,
roducers, consumers and nodes, typically contain nonlinearities, as e.g. in [7]. Therefore, the entire optimization
roblem usually results in a Nonlinear Programming (NLP) or a Mixed Integer Nonlinear Programming (MINLP)
roblem. DHN pipelines can be described by dynamic or stationary models [8]. As dynamic models more accurately
epresent the underlying physics, they will be studied in detail here. In optimization problems, discrete dynamic
roblems lead to stationary optimization problems which do not have to solve the discretization problem at runtime,
hile still representing the dynamic effects of the underlying physics [9]. This is a valuable aspect considering

he already high computational burden of optimal operation of DHNs [10]. Furthermore, discrete pipeline models
an easily be aligned with discrete measurement data and discrete bids in the context of market-based control
f DHNs [4,11,12]. Hence, in this paper different dynamic, discrete, thermal pipeline models are compared
uantitatively and qualitatively.

The Partial Differential Equation (PDE) describing the convection of heat in a DHN pipeline can be derived
rom the first law of thermodynamics for open systems [13]:

ρwcw A
∂T
∂t  

1

+ ṁcw

∂T
∂x  

2

= κw A
∂2T
∂x2  

3

+ kh(Ta − T )  
4

(1)

Herein ρw denotes the density of water, cw the specific heat capacity of water, A the cross sectional area of the
ipeline, T the temperature of the water, ∂t the temporal and ∂x the spatial change, ṁ the mass flow, κw the thermal
onductivity of water, kh the heat transmission coefficient and Ta the ambient temperature.

The four terms of the PDE in (1) are: (1) the change due to internal energy, (2) the enthalpy flux of water,
3) the conductive heat transfer in the fluid, and 4) the convective heat transmission through the insulation of the
ipeline [13]. This PDE is based on the following assumptions commonly found throughout the literature [7,13–16]:
i) The transport medium is incompressible and has a constant density ρ and a specific heat capacity c; (ii) Frictional
eat is negligible, the pipeline is cylindrical, has a constant heat transmission coefficient and the ambient temperature
s constant along the length of the pipeline; (iii) The cross-section of a pipeline has spatially homogeneous velocity
nd temperature throughout [7], and heat diffusion in the axial direction is neglected [16], leading to the simplified
DE, as follows:

ρwcw A
∂T
∂t

+ ṁcw

∂T
∂x

= kh(Ta − T ) (2)

hese assumptions bring great benefit as they allow a one-dimensional spatial model of the pipeline while leading
o accurate approximations as shown in Section 4.

There are several approaches used to solve the PDE in (2) [15,17–19]. The so-called Node Method (NM) was
ntroduced in [15] and compared with the Element Method (EM), a Finite Difference (FD) approach. In [18], an
D approach was compared to the NM but the effects of temperature losses through the insulation and the steel
ore of the pipeline were neglected. The authors of [17] compared five different explicit FD approaches but did not
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consider implicit approaches which are unconditionally stable. A comparison of the implicit upwind method and the
Method of Characteristics (MC) model was performed in [19] and recommended time and spatial step sizes were
stated. An approach based on the MC is presented and compared to the NM and Finite Volume (FV) approaches
in [20]. In comparison to [15] and [18], the developed model distinguishes between the turbulent core and the
boundary layers of the water mass to achieve higher modeling accuracy for simulation purposes. This higher level
of modeling accuracy necessitates additional parameters and increases the computational burden, and is therefore
not further considered here. In [21] a Finite Element Model (FEM) was proposed and compared to the EM and
the NM. The NM and the FEM are validated against measurement data with a very small temperature gradient of
5◦C/2 h. Furthermore, only two different spatial step lengths are compared at a fixed small time-step length.

A second group of papers gives a broad overview of the optimization of DHNs [22–24]. In [22], published models
f DHNs are classified as either deterministic or stochastic energy models and existing software recommendations
or the respective implementations are stated. In [23], several models for different DHN components can be found.
he authors of [24] present different optimization techniques applied to DHN optimization but omit the aspect of
ipeline modeling. Nevertheless, none of these papers consider pipeline models in a detailed methodical form.

As none of the papers above has given a full quantitative and qualitative comparison of the different FD
pproaches, the FV approach and the different forms of the NM, we aim to bridge that gap by facilitating the
hoice of an adequate thermal pipeline model for future DHN optimization tool designers.

The rest of this paper is structured as follows. Section 2 describes different methods to solve the PDE (2). The
est setup and simulation environment used to carry out the quantitative comparison is described in Section 3. The
esults of the quantitative and qualitative comparison are depicted in Section 4. Finally, the main contributions are
ighlighted in Section 5.

. Methods for solving the partial differential equation

Two main groups of methods to solve the PDE (2) are presented in this section. The first is the MC, resulting
n the NM, and the second is the group of the FD approaches. In the one-dimensional case, with fixed intersection
nd equidistant spatial discretization, the FV and FD approaches become identical [25]. Thus, FV approaches are
ot further regarded here.

.1. Method of characteristics – The node method

The MC uses a transformation of the PDE into a new set of coordinates to describe the solution of the PDE
n characteristics with a reduced set of coordinates, depending on its initial conditions [26]. This model was first
ntroduced in [15], where it is presented in the following discretized form and called the NM, as temperatures
re only calculated at the outlet of a pipeline based on the input temperatures of the previous steps. The outlet
emperature of a pipeline Tout,2 is among others dependent on the lossless output temperature Tout,1 and the time
tep k.

Tout,2(k) = Ta(k) +
(
Tout,1(k) − Ta(k)

)
exp

(
−

kh tstay(k)
ρwcw A

)
(3)

The lossless outlet temperature Tout,1 is calculated by a weighted sum of the temperatures Ti of the water masses
that have entered the pipeline in the previous several time steps.

Tout,1(k) =
1

ṁ(k)∆k
[(R(k) − ρw AL) Ti (k − γ (k))

+

k−γ (k)−1∑
κ=k−ε(k)+1

(ṁ(κ)∆kTi (κ)) + (ṁ(k)∆k + ρw AL − S(k)) Ti (k − ε(k))]
(4)

he three parts of the weighted mass, see Fig. 1, are described by the auxiliary variables, γ and ε and the water
asses R and S, which can be calculated as in [15]. Thereby, γ and ε describe the time step at which the water
ass entered the pipeline which is now the last (γ ) and respectively the first to leave the pipeline (ε). With these

uxiliary time steps the auxiliary water masses R and S, see Fig. 1, can be calculated.
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Fig. 1. Scheme of a pipeline and the relevant variables of the NM.

The entire water mass in the pipeline is calculated by the product of the density of water ρw, the cross-section
area A, and length L of the pipeline. The time span of a time step ∆k is then used together with the currently
inflowing mass flow ṁ(k) to define the total amount of water mass leaving the pipeline at the respective time step.
The average length of stay of the water masses leaving the pipeline tstay is calculated by a weighted sum similar
to the one in (4). This form, being more accurate but still computationally fast, was first introduced in [6] and is
stated in (5) below:

tstay(k) =
1

ṁ(k)∆k
[γ (k) (R(k) − ρw AL)

+

k−γ (k)−1∑
κ=k−ε(k)+1

((k − κ)ṁ(κ)∆k) + ε(k) (ṁ(k)∆k + ρw AL − S(k))]∆k
(5)

To calculate the outlet temperature of the pipeline while accounting for the low pass characteristic of the steel core
of the pipeline Tout,1,st the formula (6) is introduced in [15] as follows:

Tout,1,st (k) =
Tout,1(k)ṁ(k)cw∆k + Cst Tst (k − 1)

Cst + ṁ(k)cw∆k
, (6)

ith the temperature of the steel core at the last time step Tst (k − 1), which is determined by Tout,1,st of the last
ime step, so Tst (k − 1) = Tout,1,st (k − 1). The heat capacity of the entire steel core Cst of the pipe is calculated
y:

Cst =
π

4
(d2

2 − d2
1 )ρst cst L , (7)

ith the inner and outer diameters d1 and d2, the specific heat capacity cst and density ρst of steel. If the steel
ore is considered, the final outlet temperature of the pipeline Tout,2 is calculated by replacing Tout,1 in Eq. (3) with

Tout,1,st .

.2. The approximated node method

The auxiliary variables γ and ε used in (4)–(5) lead to an MINLP problem which is very time consuming to
olve. To overcome this disadvantage, an adequate approximation is presented in our previous work [27] which
eads to an NLP problem with a reduced computational burden. This model is used in a model predictive control
ontext and uses mass flow approximations from the last time steps and measurement data. As the mass flow of the
easurement used for validation and comparison of the different models in this work are constant, the results of the

pproximated NM are identical to the ones of the original NM, so it will not be further regarded here. Nevertheless,
ur comparison of this approximation with the original node method has shown almost the same accuracy while

reventing the high computational burden, in previous case studies [27].
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2.3. The Lagrangian approach

In [14] and [7], an approach is presented which can be seen as an extension of the NM. This approach seeks
o increase the model accuracy of the thermal pipeline model by defining the temperature throughout the water

asses using a linear interpolation of the temperature at the ends of each water mass. Instead of continuously
erging multiple water masses at the end of a pipeline, as defined in (4) and visualized in Fig. 1, the water masses

eaving a pipeline in one time step are handed to the next pipeline unmodified. A disadvantage of this approach is
hat this model leads to a non-differentiable model as different cases need to be checked, e.g. if a water mass has
lready entered a new pipeline or not. Therefore, it is a valid model for simulation with predefined input parameters
n a DHN, but not easily utilizable for the real-time operational optimization in large DHNs and thus not further
xamined here.

.4. Finite difference methods

With FD methods, the solution of a PDE, here (2), is calculated at discrete sampling points, in this context
ypically of space and time, by approximating the derivatives of the PDE by Difference Quotients (DQs). For (2),
t is possible to represent the discretized space in a space–time plane (x, t), where the spaces are considered on

a one-dimensional axis. The spatial step width ∆x and time step width ∆t are chosen equidistant for the entire
relevant space. In the following, the indices i and n are used for space xi and time step tn respectively. The shorthand
T n

i is used for T (xi , tn).
The order of the selected DQ influences the order of the scheme. Depending on the chosen DQ, the approaches

can be differentiated into explicit and implicit FD methods. Explicit approaches use a right-sided DQ, while
implicit approaches use a left-sided DQ, for the approximation of the partial temporal derivative. To guarantee
numerical stability, explicit approaches need to fulfill the Courant–Friedrichs–Lewy (CFL) condition [28]. An
intuitive explanation of this condition is that the flow velocity has to be smaller than the propagation speed of
the numeric calculation ∆x/∆t [19]. As the maximal flow velocity in DHNs of about 3 m/s leads to a high number
of optimization variables, due to a need of closely spaced sampling points in space or/and time for each pipeline,
only implicit FD approaches are considered here, which do not inherently impose a condition on the choice of the
sampling points.

To consider the steel core of the pipeline, (2) can be transformed to:

Cws
∂T
∂t

+ ∆xṁcw

∂T
∂x

= ∆xkh(Ta − T ), Cws = ∆x
π

4

(
ρwcwd2

1 + ρst cst (d2
2 − d2

1 )
)
, (8)

ith the combined heat capacity of water and steel defined by Cws , thereby assuming that the steel core and water
n the respective space have the same temperature. This assumption is valid for small ∆x due to the fact that “heat
ransfer between the water and the steel pipe as well as the heat conduction through the steel is very large compared
o the heat transmission through the insulation and the ground” [15].

Various computational implementations of (8) are given in the following subsections.

.4.1. Implicit upwind scheme
This scheme has the order O(∆x,∆t), i.e. first order difference quotients are used to approximate the partial

patial and temporal derivatives. Heat losses are accounted for by considering the temperature T at time step n +1.
he resulting implicit upwind scheme for (8) is shown below:(

Cws

∆t
+ ṁcw + kh ∆x

)
T n+1

i − ṁcwT n+1
i−1 =

Cws

∆t
T n

i + kh ∆xTa (9)

.4.2. Full implicit scheme
This scheme has the order O(∆x2,∆t). The spatial derivative is approximated by the following central difference

uotient. The resulting full implicit scheme for (8) is shown below:

ṁcw

2
T n+1

i+1 +

(
Cws

∆t
+ kh∆x

)
T n+1

i −
ṁcw

2
T n+1

i−1 =
Cws

∆t
T n

i + kh∆xTa (10)
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2.4.3. Crank–Nicolson scheme
The order of this scheme is O(∆x2,∆t2). In this scheme, the values of the solution function at time step

n + 1/2 are considered. The approximation of the local derivative is shown in (11), while accounting for the
interpolation [28].

∂T
∂x

=
T n+1/2

i+1 − T n+1/2
i−1

2∆x
=

T n+1
i+1 − T n+1

i−1 + T n
i+1 − T n

i−1

4∆x
(11)

Heat losses are calculated based on the temperature T at time step n + 1/2. Thus, the right side of (8) can be
formulated as:

∆xkh(Ta − T (x, t)) ≈ ∆xkh(Ta − T n+1/2
i ) = ∆xkh

(
Ta −

1
2

(T n+1
i + T n

i )
)

(12)

The final equation for the scheme is given below:

ṁcw

4
T n+1

i+1 +

(
Cws

∆t
+

kh ∆x
2

)
T n+1

i −
ṁcw

4
T n+1

i−1 =

(
Cws

∆t
−

kh ∆x
2

)
T n

i +kh ∆xTa +
ṁcw

4
(T n

i−1 −T n
i+1) (13)

2.4.4. Approximation of the finite difference schemes in the boundary areas
The space of the one-dimensional pipeline is discretized with I sampling points, where the points with the

indices i = 1 and i = I represent the input and the output of the pipeline, respectively. Similarly, the calculation is
performed for the points in time with the indexes n = 1 to n = N . By specifying the initial condition T (x, t = 0),
the temperature values T 1

i for the entire pipeline is given. In addition, the input temperature values T (x = 0, t)
defined by T n

1 are given for all N points in time. In the following, the full implicit scheme and the Crank–Nicolson
scheme, both FD approaches, are compared quantitatively to the NM. The implicit upwind scheme is not considered
due to the lower accuracy expected from the lower numerical order of the scheme. For the creation of a determined
set of equations, it is necessary to change the FD scheme of the two FD approaches at the discrete nodes at the
end of the pipeline T n

I . Here the implicit upwind scheme can be used, and is implemented in this work.

3. Test setup and simulation

The central idea of the quantitative results obtained in this work is to compare the simulated outlet temperatures
of a pipeline, incorporating the effects of the steel core, with the measured data from [29]. The error metric typically
used in this case is the Root Mean Square Error (RMSE) which has the advantage of over proportionally weighting
outliers, which can create large deviations due to the possible consecutive faults arising from the simulation over
several subsequent pipelines. The test setup used to produce the measurement data is described in detail and relevant
parameters are given in [29]. The mass flow ranges from 0.1 m/s to 1.03 m/s, the temperature of the water is
measured at the in- and output of the pipeline. The measured time series are available online [29]. These were
created for four different scenarios, with input temperature differences ranging from 18 ◦C to 35 ◦C applied over
periods ranging from 50 s to 7000 s [29]. As the time steps of the measured data are not strictly equidistant, the
simulated data was linearly interpolated to enable a reasonable comparison.

4. Results

This chapter states the main quantitative and qualitative results of the comparison of the NM and the full implicit
and Crank–Nicolson FD approaches.

The main quantitative results coming from a comparison of all four scenarios are depicted in Fig. 2 and Table 1.
Note that the spatial step size of the NM is fixed to 39 m, which is determined by the length of the regarded
pipeline. Considering other spatial step sizes for the NM would require artificially dividing the simulated pipeline
into multiple pipelines, which would obviously deviate from the considered setup. The NM shows the smallest
average RMSE over all scenarios with a minimum of 0.507 ◦C for the smallest considered time step of 0.5 s. From
Fig. 2 (a) it is cognizable that a further reduction of the time steps does not show a significant change, as e.g. the
reduction from 4 s to 0.5 s only shows a reduction of the RMSE of 0.0176 ◦C. This is valuable information as
t allows reducing the amount of optimization variables adequately without significantly increasing the deviation

etween the pipeline model and the measurements. Regarding the FD approaches in Fig. 2 (b) and (c), the expected
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Table 1. RMSE values of all three numerical approaches.

RMSE [◦C] NM Full implicit FD Crank–Nicolson FD

∆t\∆x 39 m 2.44 m 4.88 m 9.75 m 19.5 m 2.44 m 4.88 m 9.75 m 19.5 m

0.5 s 0.507 0.762 0.724 0.891 1.409 0.862 0.775 0.902 1.406
4 s 0.525 0.497 0.578 0.869 1.445 0.847 0.764 0.907 1.426
8 s 0.547 0.532 0.617 0.906 1.487 0.841 0.763 0.919 1.448
16 s 0.590 0.764 0.822 1.040 1.571 0.871 0.804 0.959 1.493
32 s 0.628 1.128 1.164 1.303 1.714 1.125 1.039 1.123 1.588
64 s 1.038 1.654 1.673 1.746 1.992 1.817 1.732 1.631 1.890

Fig. 2. RMSE of all three numerical approaches.

trend of small discretization steps in space and time leading to lower RMSEs can be observed for most of the
(∆x,∆t)-pairs, yielding minimal RMSEs of 0.497 ◦C at (2.44 m, 4 s) for the full implicit FD approach and 0.763
◦C at (4.88 m, 8 s) for the Crank–Nicolson approach. Beyond these minima, the RMSEs increase for smaller
discretization steps in place and time. This likely is an effect of the dispersive and dissipative errors which result from
the numeric approximation of the PDE [28] and accumulate with every additional discretization point. Additionally,
comparing the RMSE values over all (∆x,∆t)-pairs in Table 1 of both FD approaches, it is evident that the full
implicit approach has a lower mean RMSE of 0.643 ◦C. This results from less overshoot and oscillation.

For the qualitative comparison of the three approaches, the full implicit FD approach and the Crank–Nicolson
FD approach can be grouped together, as their qualitative properties do not differ significantly. The only immediate
difference lies in the fact that the full implicit FD approach only uses one sampling point in the current time
step, while the Crank–Nicolson FD approach uses three. In comparison to the FD approaches, the NM requires a
changing number of variables, strongly dependent on the current and previous mass flows, to calculate the output
temperature of a pipeline. In the context of optimization problems, where a constant number of variables is desirable,
this property of the FD approaches facilitates the implementation and reduces the computational burden compared

with the NM. In addition, the discrete FD approaches do not need to approximate any integer auxiliary values,
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circumventing an MINLP problem. Also, the FD approaches always maintain equidistant sampled information on
the temperature of the medium in the pipeline. This equidistance of information can vary strongly with the NM,
where the water masses with their respective temperatures are strongly dependent on the mass flows. Nevertheless,
the NM has the advantage of not creating unwanted oscillations, arising from the dispersive and dissipative errors of
the FD approaches [28]. Furthermore, while an NM approach for the case of varying mass flows has been presented
in [30], this approach assumes that the mass flow direction does not change over the prediction horizon. A summary
of the qualitative and quantitative comparison of the NM and the FD approaches is found in Table 2.

Table 2. Summary of the qualitative and quantitative comparison of the NM and the FD approaches.

Node method Finite difference approaches

Solves the initial PDE with the MC Solves the initial PDE by replacing the derivatives by various
DQs

Higher implementational burden. Either high computational
burden of MINLP or NLP approximation

Simple implementation

Changing number of optimization variables involved in
calculation of outlet temperature of a pipeline

Constant number of optimization variables for calculation of the
outlet temperature

Lowest mean RMSE due to less overshoot and oscillation Dispersive and dissipative errors tend to grow with increasing
discretization step sizes which result from the numeric
approximation of the PDE

First differentiable approaches for varying mass flow
directions exist

5. Conclusion

The choice of an adequate pipeline model is a key challenge for DHN optimization tool designers as pipelines
re the most numerous components in DHNs and both consecutive errors as well as the computational burden of
he optimization problems can become large. In this work, several approaches for the modeling of DHN pipelines,
ased on solving the PDE for heat convection, were compared and their usability in the context of DHN optimization
as described. Several valuable assumptions are stated which ease the computational burden while maintaining the
ecessary accuracy. A comparison of the different approaches with measurement data shows that the NM has the
mallest computational error for most discretization steps and that it can be implemented for the case of varying
ass flows. Still, the FD approaches, especially the implicit, unconditionally stable approaches, have properties that

re advantageous in certain circumstances. These are the simplicity of their implementation, the constant number
f variables required, and the constant information depth on the temperature fronts exhibited along the pipeline.
urther research in the field of modeling DHN pipelines for varying mass flow directions in the application of
perational optimization of DHNs is recommended as, until now, only very few approaches based on restrictive
ssumptions have been proposed. The qualitative and quantitative comparison presented in this paper, can help
uture DHN optimization tool designers to choose an adequate pipeline model.
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