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Zusammenfassung

Die sensorübergreifende Personendetektion in einem Netzwerk von 3D-
Sensoren ist die Grundlage vieler Anwendungen, wie z.B. Personenzäh-
lung, digitale Kundenstromanalyse oder öffentliche Sicherheit. Im Gegen-
satz zu klassischen Verfahren der Videoüberwachung haben 3D-Sensoren
dabei im Allgemeinen eine vertikale top-down Sicht auf die Szene, um das
Auftreten von Verdeckungen, wie sie z.B. in einer dicht gedrängten Men-
schenmenge auftreten, zu reduzieren. Aufgrund der vertikalen top-down
Perspektive der Sensoren variiert die äußere Erscheinung von Personen
sehr stark in Abhängigkeit von deren Position in der Szene. Des Weiteren
sind Personen aufgrund von Verdeckungen, Sensorrauschen sowie dem
eingeschränkten Sichtfeld der top-down Sensoren häufig nur partiell in
einer einzelnen Ansicht sichtbar.

Um diese Herausforderungen zu bewältigen, wird in dieser Arbeit
untersucht, wie die räumlich-zeitlichen Multi-View-Beobachtungen von
mehreren 3D-Sensoren mit sich überlappenden Sichtbereichen effektiv ge-
nutzt werden können. Der Fokus liegt insbesondere auf der Verbesserung
der Detektionsleistung durch die gemeinsame Betrachtung sowohl der
redundanten als auch der komplementären Multi-Sensor-Beobachtungen,
einschließlich des zeitlichen Kontextes. In der Arbeit wird das Problem
der Personendetektion in einer Sequenz sich überlappender Tiefenbilder
als inverses Problem formuliert. In diesem Kontext wird ein probabilisti-
sches Modell zur Personendetektion in mehreren Tiefenbildern eingeführt.
Das Modell beinhaltet ein generatives Szenenmodell, um Personen aus
beliebigen Blickwinkeln zu erkennen. Basierend auf der vorgeschlagenen
probabilistischen Modellierung werden mehrere Inferenzmethoden unter-
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sucht, unter anderem Gradienten-basierte kontinuierliche Optimierung,
Variational Inference, sowie Convolutional Neural Networks. Dabei liegt der
Schwerpunkt der Arbeit auf dem Einsatz von Variationsmethoden wie
Mean-Field Variational Inference. In Abgrenzung zu klassischen Verfahren
der Literatur wird hier keine Punkt-Schätzung vorgenommen, sondern die
a-posteriori Wahrscheinlichkeitsverteilung der in der Szene anwesenden
Personen approximiert. Durch den Einsatz des generativen Vorwärtsmo-
dells, welches die Charakteristik der zugrundeliegenden Sensormodalität
beinhaltet, ist das vorgeschlagene Verfahren weitestgehend unabhängig
von der konkreten Sensormodalität.

Die in der Arbeit vorgestellten Methoden werden anhand eines neu
eingeführten Datensatzes zur weitflächigen Personendetektion in mehre-
ren sich überlappenden Tiefenbildern evaluiert. Der Datensatz umfasst
Bildmaterial von drei passiven Stereo-Sensoren, welche eine top-down
Sicht auf eine Bürosituation vorweisen. In der Evaluation konnte nachge-
wiesen werden, dass die vorgeschlagene Mean-Field Variational Inference
Approximation Stand-der-Technik-Resultate erzielt. Während Deep Lear-
nig Verfahren sehr viele annotierte Trainingsdaten benötigen, basiert die
in dieser Arbeit vorgeschlagene Methode auf einem expliziten probabili-
stischen Modell und benötigt keine Trainingsdaten. Ein weiterer Vorteil
zu klassischen Verfahren, welche häufig nur eine MAP Punkt-Schätzung
vornehmen, besteht in der Approximation der vollständigen Verbund-
Wahrscheinlichkeitsverteilung der in der Szene anwesenden Personen.
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Abstract

Wide-area indoor people detection in a network of depth sensors is the
basis for many applications, e. g. people counting, customer behavior anal-
ysis, public security or ambient assisted living. In contrast to classical
pedestrian detection approaches, depth sensors typically capture the scene
from the top-view to minimize occlusions in crowded scenes. As a con-
sequence of the vertical top-view, position changes of individuals lead
to drastically varying appearances. This makes the people detection task
quite challenging for off-the-shelf, data-driven pedestrian detectors. More-
over, people are occasionally only partially visible in a single view due to
occlusion, measurement noise or the limited field of view of a top-view
depth sensor.

Considering the aforementioned challenges, the present thesis examines
how to exploit the full temporal multi-view image evidence. In particu-
lar, we investigate how the redundant and complementary multi-view
information, including the temporal context, can be jointly leveraged to
improve the detection performance. We recast the problem of multi-view
people detection in a sequence of overlapping depth images as an inverse
problem and present a generative probabilistic framework to jointly ex-
ploit the temporal multi-view image evidence. Based on the proposed
probabilistic model, we examine several inference methods, including con-
tinuous gradient based optimization, variational inference and end-to-end
deep learning methods. As our main contribution, we propose to use
mean-field variational inference to not only estimate the maximum a pos-
teriori (MAP) state, but to also approximate the joint posterior probability
distribution of people present in the scene across space and time.



For evaluation, we introduce a novel data set for indoor people detection
in multiple overlapping top-view depth images. We report state-of-the
art results for the proposed mean-field variational inference methods.
Furthermore, we demonstrate that, compared to the frame-by-frame mono-
view setup, our approach successfully exploits the temporal multi-view
image evidence and robustly converges in only a few iterations.
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Nomenclature

Common Abbreviations

Abbreviation Description

AWGN Additive white Gaussian noise
CAVI Coordinate ascent variational inference
cf. Short form of Latin confer, meaning compare with
CNN Convolutional neural network
CRF Conditional random fields
DNN Deep neural network
ELBO Evidence lower bound
HOG Histogram of oriented gradients
i.i.d. Independently identically distributed
KL Kullback-Leibler (divergence)
MAP Maximum a posteriori
MF-VI Mean-field variational inference
ML Maximum likelihood
NLLSQ Non-linear least squares
PDF Probability density function
PMF Probability mass function
POM Probabilistic occupancy map
SVM Support vector machine
VI Variational inference
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Nomenclature

Letters

Latin Letters

Symbol Description

Ā
i=s
c Conditional synthetic average image in perspective of camera c

with respect to the current mean-field state and xi forced to state
s ∈ {0, 1} (POM)

Āc Synthetic average image in perspective of camera c with respect to
the current mean-field state (POM)

Aic Synthetic binary image with a rectangle placed at location i in per-
spective of camera c (POM)

bc Foreground segmented binary image from sensor c (POM)
b Vector of binary foreground images b = (b1, . . . , bC)

ᵀ used as ob-
servations (POM)

C Number of sensors
E

box
t Energy term corresponding to the box prior in MAP inference at

time step t
E

dist
t Energy term corresponding to the distance prior in MAP inference

at time step t
F Set of faces of a 3D person model
g Synthetic depth image
H Image height in pixels
h Realization of a uniform random variable, reflecting the number of

expected persons in a randomly drawn scene configuration
Ic[ui] Rectangular bounding box of the 3D model at location ui in perspec-

tive of sensor c
J Number of threshold values ρ used for precision-recall evaluation
lbce Binary cross-entropy loss for multi-view CNN architecture
li,x, li,y Ground plane x- and y-coordinates of discrete grid location ui
m Number of people present in the scene (continuous latent space)
n Number of discrete ground plane grid cells (also referred to as grid

locations) ui
N
′
i Set of the direct neighbor indices of a grid cell with index i, including

the index i
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Nomenclature

Symbol Description

Ni Set of the direct neighbor indices of a grid cell with index i, excluding
the index i

oc,t Foreground segmented depth observation from sensor c and time t
O Symbolic representation for an observation
ot Vector of foreground segmented depth observations ot =

(o1,t, . . . , oC,t)
ᵀ at time step t

pbox(X) Box prior distribution corresponding to the continuous probabilistic
model

pFC Dropout retention probability after a fully connected layer block
pCNN Dropout retention probability after a CNN block
pdist(X) Person distance prior distribution corresponding to the continuous

probabilistic model
Q Space of proxy distributions q ∈ Q (also referred to as q-family)
qi(·) Marginal probability distribution for a single latent variable with

index i, used as proxy distribution for variational inference
q

init
i Initial mean-field optimization probability for a marginal distribu-

tion qi
qi,t(·) Marginal probability distribution of a person present at location ui

at time step t, used as proxy distribution for variational inference
r Number of latent variables
S Symbolic representation of a depth sensor
S
c
x, S

c
y, S

c
z Uniform random variables representing the scaling of the cylinder

component in x-,y- and z-directions
sx, sy, sz Axis-dependent (x-,y- and z-axis) scaling parameters for parameter-

ized transformation used for randomized scene model
S
s
z Uniform random variable representing the z-scaling of the sphere

component
T Number of temporal frames in the sequence 1 . . . T

tx, ty Realization of uniform random variables, reflecting the position
offset in x- and y- direction

ui Symbolic representation of a grid location at index i
v Vertex v = (x, y, z)

ᵀ for definition of a 3D mesh
V Set of vertices of a single person model V = {v1, . . . ,vm}
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Nomenclature

Symbol Description

Vcyl Set of vertices belonging to the cylinder component of a 3D person
model

Vsph Set of vertices belonging to the sphere component of a 3D person
model

wk Normalization weight coefficient
W Image width in pixels
x Discrete scene configuration x ∈ {0, 1}n

x̌ Location of a person on the ground plane x̌ ∈ R2

x̌max Maximum x and y ground plane coordinates (bottom-right corner)
corresponding to the box prior with x̌max ∈ R2

x̌min Minimum x and y ground plane coordinates (top-left corner) corre-
sponding to the box prior with x̌min ∈ R2

X Symbolic representation of arbitrary latent variables or an abstract
scene configuration

X Continuous scene configuration with X = (x̌1, . . . , x̌k)

xi,t Realization of a Bernoulli random variable assigned to grid cell i at
time t

x
′ One latent variable x′ ∈ X

x̃i Reduced neighborhood scene configuration x ∈ {0, 1}8

Xi,t Bernoulli random variable assigned to grid cell i at time t
y Discrete ground truth scene configuration y = (y1, . . . , yn)

ᵀ ∈
{0, 1}n for end-to-end CNN training

Z Hidden latent random variable
z One-hot-encoded realization of a random variable Z with z ∈

(z1, . . . , zn)
ᵀ

Greek Letters

Symbol Description

α Weight coefficient for asymmetric image similarity
Ω Random variable representing an abstract scene configuration
ρ Detection threshold used to generate precision-recall curves
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Nomenclature

Symbol Description

η Random variable representing the measurement noise of the depth
observations

κ Inter person distance threshold for MAP optimization
λbox Weighting parameter for MAP box energy term E

box
t

λdist Weighting parameter for MAP distance energy term E
dist
t

λfuture Weighting parameter for future expectation Ψ
future
i,t

λpast Weighting parameter for past expectation Ψ
past
i,t

λtemporal Weighting parameter for MAP temporal term
µ Mean parameter of a probability distribution
ν Arbitrary local scope variable
ξ POM parameter reflecting the reliability of the measurement
Ψc,i Expectation corresponding to the data term for one camera c and

grid location i
Ψ̃c,i Approximated expectation corresponding to the data term for one

camera c and grid location i
Ψ

data
i Expectation corresponding to the data term at grid location i

Ψ
filter
i Expectation corresponding to the filtering term at grid location i

Ψ
future
i,t Expectation corresponding to the future term at time step t and grid

location i
Ψ

past
i,t Expectation corresponding to the past term at time step t and grid

location i
Ψ

pom
c,i Expectation corresponding to the POM data term for camera c and

marginal distribution qi
Ψ

pred
i Expectation corresponding to the predictive term at grid location i

Ψ̃
pred
i Approximated predictive expectation at grid location i

Ψ
smooth
i,t Expectation corresponding to the temporal smoothing term at time

step t and grid location i
Ψ

temp
i,t Expectation corresponding to the temporal term at time step t and

grid location i
Ψi Mean-field update expectation for a single time step corresponding

to grid location i
Σ Covariance matrix of dynamics noise in the continuous latent space
σ Std. deviation of a normal distribution
σobs Std. deviation of depth measurement noise
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Nomenclature

Symbol Description

σdist Std. deviation of the distance between two individuals
τi Prior term in the mean-field update equation assigned to grid cell i
ζx, ζy, ζz Realization of a normal random variable, reflecting AWGN noise in

x, y, z direction respectively
γ Rotation angle around z-axis for randomization of the generative

scene model

Indices

Index Description

(•)1:T Time sequence from 1 to T
(•)c Sensor
(•)i Discrete grid cell on ground floor
(•)t Time

Mathematical Operators

Expression Description

f(v; ·) Transformation of a vertex v (scaling and rotation around z-axis)
Gc(·) Generative scene model, maps a scene configuration to a synthetic

depth image in perspective of sensor c
Ac(·) Generative model (POM), maps a scene configuration to a synthetic

binary foreground image in perspective of camera c
� Hadarmard product (elementwise multiplication)
δ(·, ·) Image similarity function
δasym(·, ·) Asymmetric image similarity function
δpom(·, ·) Image similarity function used by probabilistic occupancy map

(POM)
‖·‖1 L1-norm
‖·‖2 L2-norm
precision(·) Provides the precision value for a given detection threshold
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Nomenclature

Expression Description

recall(·) Provides the recall value for a given detection threshold
Rz(γ) Rotation matrix, performs a rotation of angle γ around the z-axis
M(·) Threshold functionM : RW×H → {0, 1}W×H which maps an image

to its binary foreground mask
M(·) Inverse threshold function

Probabilistic Notation

Expression Description

B(µ) Bernoulli distribution with mean parameter µ
〈·〉p(·) Expected value with respect to the PDF or PMF p(·)
A ⊥⊥ B Denotes that two random variables A,B are statistically indepen-

dent
KL(· ‖ ·) Kullback–Leibler divergence

N
(
µ, σ

2
)

Normal distribution with mean parameter µ and variance σ2

Z Partition function of an arbitrary PDF or PMF
p(·) Arbitrary PDF or PMF
q(·) Proxy PDF or PMF for variational inference approximation
q̂(·) Optimal proxy PDF or PMF with respect to the given variational

inference objective
U(a, b) Uniform distribution in the interval [a, b]
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1 Introduction

By virtue of the emergence of low-cost commodity depth sensors1, there
is an increasing demand for privacy-preserving wide-area people detec-
tion in various indoor scenarios, e. g. people counting, customer behavior
analysis, public security, ambient assisted living or smart homes. In con-
trast to the classical outdoor video surveillance scenario, the mounting
height is very limited in many indoor scenarios. Therefore, the depth
sensors typically capture the scene from the top-view to reduce occlusions
in crowded scenes. However, as a direct consequence of the top-view and
the limited mounting height, the resulting field of view and observable
area of a single depth sensor is quite limited. This is an issue in many
real-world applications such as customer behavior analysis in shopping
malls or airports. Providing complete detection in a wide-area scenario is
achieved by employing a network of multiple sensors, covering a larger
area.

Apart from the increased observable area, there are additional advan-
tages compared to the classical single-view approach. Since a single view
does not capture all the details in a 3D scene, considering additional par-
tially overlapping views provides more information about the true scene
state. This is especially relevant in situations where people are only par-
tially visible in one camera view due to occlusion or the limited field
of view (see Fig. 1.1). Hence, the detection performance (including the
detection confidence) in the overlapping regions can be improved by com-
plementary image evidence from multiple views. In particular, this is

1 A depth sensor refers to a range imaging sensor, which measures the distance to points in
the scene.
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1 Introduction

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

(d) Observation 1 (o1) (e) Observation 2 (o2) (f) Observation 3 (o3)

Figure 1.1 Example observations from our multi-view setup with six people present in the
covered area, marked with unique colors. In view (a) the magenta marked person occludes
the person marked with green, while in (b) the pair can be clearly separated. In the views
(b,c) several people are only partially visible. Note that for inference only the depth images
(d-f) are used.

relevant in demanding applications such as emergency detection in an
ambient assisted living context.

The general problem of people detection in a multi-camera setup has
been widely studied in the computer vision literature. Nonetheless, the
vast majority of existing multi-view approaches use monocular video
cameras and focus on pedestrian detection in outdoor scenarios, capturing
the pedestrians from profile or frontal view. In contrast, in this thesis we2

focus on the task of top-view people detection in a network of low-cost
commodity depth sensors.

2 Unambiguously, the present work is a contribution from the sole author. However, for the
ease of an active voice writing style, in this thesis the first-person plural is used instead of
the first-person singular. Depending on the context, "we" refers to the sole author or the
reader and the author, respectively.
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1.1 Problem Statement

1.1 Problem Statement

In this thesis we focus on indoor people detection in a sequence of con-
secutive multi-view frames, where each multi-view frame is given by
multiple overlapping depth images. The depth images are obtained by a
network of low-resolution commodity depth sensors. The sensors have a
top-view on the scene with fields of view having a significant joint overlap.
Fig. 1.1 shows one exemplary multi-view frame obtained by our setup. The
grayscale images in the top-row (Fig. 1.1 (a-c)) only serve for the purpose
of visualization. For inference, we use the foreground-segmented depth
observations in Fig. 1.1 (d-f). The major challenges are summarized as
follows:

Due to the passive3 low-resolution stereo sensors, the depth obser-
vations suffer from heavy measurement noise, including areas with
no measurements.

As a consequence of the vertical top-view, position changes of indi-
viduals lead to drastically varying appearances (see Fig. 1.1). This
makes the single view detection task challenging for discrimina-
tive detection algorithms, especially for off-the-shelf data-driven
pedestrian detectors without a domain-specific large scale data set.

Frequently, people are only partially visible in one camera view
due to occlusion, the limited field of view or measurement noise.
However, a typical detector operates independently on a single view
and thereby does not make use of the given complementary image
evidence. The challenge is to leverage the full multi-view image
evidence, including multiple overlapping regions, in order to gain
more information about the true state of the scene.

The depth sensors provide a pseudo synchronized sequence of con-
secutive frames with approximately 15 frames per second. It is

3 In contrast to active depth sensors (e. g. time-of-flight or structured light based devices),
passive stereo sensors do not emit any signal.
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1 Introduction

desirable to additionally make use of this temporal information in
order to improve the overall detection performance.

To overcome these challenges, the overarching idea followed in this
thesis is to jointly make use of the temporal multi-view image evidence.
We aim for methods which are able to make use of the given redundant and
complementary image evidence, including the temporal context. At the
same time we want to minimize the loss of information typically occurring
in a cascade of independently applied algorithms, each operating on
lossy representations of the output of its predecessor (e. g. a tracking-
by-detection pipeline applied to each single view independently). In terms
of probability theory, we are interested in methods which approximate the
joint probability distribution of people present in a scene across space and
time.

1.2 System Overview

To address the challenges identified in Sect. 1.1 we introduce a novel prob-
abilistic framework to approximate the distribution of people present in
the scene across space and time. The proposed approach is schematically
illustrated in Fig. 1.2. In contrast to the majority of existing multi-view
people detection approaches in the literature, we do not rely on locally
applied discriminative pedestrian detectors requiring a large scale labeled
data set. Instead, we formulate the problem of people detection in mul-
tiple overlapping depth images as an inverse problem. Therefore, we
introduce a generative scene model, which maps a scene state (in the
following referred to as scene configuration) to a synthetic depth image
in the perspective of each sensor (see Fig. 1.2 top center). The generative
approach allows to effectively handle the different appearances4 of people,
arising from (i) the change of viewpoint and (ii) the partial visibility of
4 In the computer vision literature appearance typically refers to the texture and color of an

object. In contrast, in this context it refers to the appearance of an individual in a depth
image.
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Figure 1.2 Overview of the proposed approach. A time sequence of foreground segmented
multi-view depth images from three sensors is used as input (left). The generative scene
model generates synthetic depth images with respect to the given intrinsic and extrinsic
sensor parameters (middle). The output of the stochastic inference are discrete probability
maps representing the probability of people present on the ground level plane across time
and space (right).

people, e. g. due to occlusion or the limited field of view. This yields a
viewpoint independent detector without the need of a training data set.
The generative model is used in a probabilistic framework which leverages
the full multi-view information given in the overlapping image regions
for joint probabilistic people detection.

Since in general we have access to a sequence of consecutive temporal
frames, we extend this framework to additionally consider the temporal
context. A common way to leverage temporal information is to use the
detections obtained from an isolated multi-view frame as input for an off-
the-shelf tracking-by-detection approach to get smooth person trajectories.
Nonetheless, those methods do not take advantage of the full temporal in-
formation since the tracking component operates on a lossy representation
of object detections and does not have access to the joint distribution of
objects in the scene. In contrast, our goal is to avoid the loss of information
by taking into account the temporal image evidence from all sensor-views.
Therefore, we introduce a probabilistic dynamics model to express the
probability flow over time. In consequence, we are able to define the full
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1 Introduction

joint distribution of people present in the scene across all sensor views and
time steps.

For inference, we propose two different methods. First, we present a
maximum a posteriori (MAP) method for people detection. Inference is ob-
tained by a continuous optimization method, which hinges on a good ini-
tialization. The MAP approach reveals the shortcomings of point estimates
in comparison to methods that explore the full posterior distribution of
people present in the scene. Second, as our main contribution we present a
variational approach. Discretization of the ground level plane (see Fig. 1.2
right) enables an effective estimate of the posterior distribution. Instead of
just estimating an MAP point estimate, we apply mean-field variational in-
ference to approximate the desired joint probability distribution of people
present in the scene.

1.3 Contribution

The idea of generative probabilistic modeling has been successfully ap-
plied to the task of multi-view people detection with monocular video
cameras by Fleuret et al. [38]. However, to the best of our knowledge,
probabilistic modeling in combination with a generative scene model has
not yet been studied in the context of people detection in overlapping
depth images. In particular, the scientific contribution of the present thesis
can be summarized as follows:

We introduce a probabilistic model for multi-view people detection
in overlapping depth images, including a generative scene model
based on an efficient 3D person shape model.

For continuous inference we deduce the MAP objective and show
how to practically solve the resulting non-linear least squares opti-
mization problem by leveraging approximate differentiable render-
ing [68].
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1.3 Contribution

Our main contribution introduces mean-field variational inference
to approximate the posterior distribution of people present in the
scene. In contrast to Fleuret et al. [38] we use depth images as
evidence and therefore are able to employ a richer generative scene
model. We also propose a novel strategy to approximate the final
mean-field update expectation by making use of geometric scene
knowledge and a pre-computed visual dictionary.

We propose a novel extension to incorporate the temporal context
into the mean-field optimization. To that end, we (i) present a prob-
abilistic grid-based dynamics model to define the joint distribution
across space and time; and (ii) deduce the mean-field variational
inference update equations to efficiently approximate the desired
probability distributions.

For comparison with our probabilistic inference methods, we in-
troduce an end-to-end multi-view CNN architecture. The CNN
architecture is only trained with synthetic depth images due to fair
comparison with the proposed generative methods.

To the best of our knowledge, no publicly available data set covering
the scenario of top-view people detection in a depth sensor network
currently exists. We introduce a novel data set for indoor people
detection in multiple overlapping top-view depth images.

For evaluation, we compare our approach with state-of-the-art
monocular multi-view people detection methods. We report state-
of-the-art results for the proposed mean-field variational inference
methods on the aforementioned data set. Furthermore, we demon-
strate that our approach (compared to the mono-view setup) success-
fully exploits the multi-view image evidence and robustly converges
in only a few iterations.
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1.4 Thesis Outline

The present thesis is structured as follows: Chapter 2 provides an overview
of the most relevant literature related to the general task of multi-view
people detection. In Chapter 3 two essential fundamentals for the present
work are explained. First, the method of mean-field variational inference
(Sect. 3.1) is elaborated. Building on that, the probabilistic occupancy map,
which is methodically strongly related to the present work, is explained
in detail (Sect. 3.2). In Chapter 4 the probabilistic model, including a gen-
eral part (Sect. 4.2), as well as manifestations for continuous latent space
(Sect. 4.3) and discrete latent space (Sect. 4.4), is introduced. Subsequently,
in Chapter 5 different inference methods regarding the proposed proba-
bilistic model are discussed. As introduction, the MAP objective for the
continuous latent space is deduced (Sect. 5.1). Practical aspects regarding
the resulting continuous non-linear least squares optimization problem
are discussed in Sect. 5.1.2. In Sect. 5.2 the main contribution of this the-
sis is presented. The mean-field update equations are deduced and it is
shown how they can be approximated in real-world applications. Com-
plementary to the probabilistic inference methods an end-to-end CNN
inference method is presented in Sect. 5.3. In Chapter 6 the results of our
experiments are discussed. This includes the introduction of a novel data
set (Sect. 6.1), comparative evaluation of the proposed probabilistic people
detection approach in discrete latent space (Sect. 6.4), as well as qualitative
results for MAP inference in continuous latent space (Sect. 6.6). Finally,
Chapter 7 concludes the thesis and provides an outlook on future research
directions.
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2 Related Work

Multi-camera people detection has been extensively studied in the context
of video surveillance. The vast majority of the existing approaches is
based on multiple monocular video cameras observing an outdoor scene.
However, the topic of indoor people detection in multiple depth images,
especially from the top-view, has not yet been explored in detail. Therefore,
we discuss the related task of people detection in multiple monocular
video cameras. Since many multi-view methods accomplish detection and
tracking by fusing local detections or local tracklets into a common world
coordinate system, we will also briefly focus on related single-view people
detection approaches in Sect. 2.1.

Besides the major categories (single and multi-view), we categorize
the literature in methods utilizing monocular video cameras (RGB-based
approaches, or intensity based approaches) and depth sensing cameras
(depth-based approaches). Since many depth sensors also provide RGB
information, many hybrid approaches exist (RGB-D), which will be cate-
gorized under the depth-based approaches.

Following the aforementioned categorization of RGB-based and depth-
based approaches, we will discuss multi-view approaches in Sect. 2.2. In
Sect. 2.2.1 we comprehensively discuss methods focusing on pedestrian
detection with multiple monocular cameras, and their relation to our
approach. In Sect. 2.2.2 we focus on multi-view people detection methods
based on depth information. Finally, we reveal the contribution in relation
to the existing literature in Sect. 2.3.

The characteristics of the approaches examined in this chapter are sum-
marized in Tab. 2.1. The binary attribute top-view indicates if the corre-
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sponding method is evaluated on top-view images in the original publica-
tion. The attribute generative indicates if some kind of generative modeling
is used for the detection component. For the multi-view approaches the
additional binary attribute joint detection indicates that the multi-view
detections are obtained jointly, rather than performing detection on each
view independently. This chapter is an extension of previously published
work [108, Ch. 2] by the author.

2.1 Single-View People Detection

The problem of pedestrian detection and tracking from the frontal or
profile view has been examined in detail in the literature. In this work,
however, we focus in particular on sensors having a top-view (also re-
ferred to as overhead view in the literature) on the scene. As set forth in
Sect. 1.1, people detection from the vertical top-view implies new chal-
lenges (e. g. the drastically varying appearance of individuals depending
on the view-point) compared to the frontal and profile view. While the de-
tection from the top-view becomes increasingly important in the computer
vision community, it still remains a niche research area. In the following
we will therefore focus in particular, but not exclusively, on single-view
people detection from the top-view. For a comprehensive survey of people
detection methods in particular specialized on top-view approaches we
refer to [3].

2.1.1 RGB-Based Approaches

The problem of people detection and tracking in a single RGB image
has been extensively investigated [54, 62, 66, 73, 104]. However, in this
section we will in particular focus on the rather rare approaches which are
addressing the problem of people detection from the top-view in a single
RGB image.
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2.1 Single-View People Detection

Table 2.1 Characterization of related single and multi-view people detection approaches.
The column top-view indicates if a method is in particular evaluated with views from the
vertical top-view in the original paper. Parentheses indicate that an attribute cannot be
assigned unambiguously.

Modality
Top

-view
Gener
-ative

Joint
detection

Method
keyword

Single-View
Ahmed et al. [4] RGB X X - HOG + SVM
Ahmad et al. [1] RGB X X - CNN
Ahmad et al. [2] RGB X X - CNN
Ahmed et al. [5] RGB X X - CNN
Bagautdinov et al. [8] Depth X X - Probab. (MF-VI)
Hacinecipoglu et al. [45] Depth (X) X - VHF + SVM
Liu et al. [67] Depth X X - CNN
Tian et al. [95] Depth X X - CNN
Li et al. [61] RGB-D X X - CNN
Rauter [80] Depth X X - SVM
Ertler et al. [33] RGB-D X X - CNN
Fuentes-Jimenez et al. [41] Depth X X - CNN
Sun et al. [92] RGB-D X X - Blob detection
Carletti et al. [19] Depth X X - Blob detection

Multi-View
Xu et al. [101] RGB X X X Probabilistic
Sankaranarayanan et al. [88] RGB X X X Homography
Khan et al. [53] RGB X X X Homography
Eshel et al. [34] RGB (X) X X Homography
Peng et al. [75] RGB X X (X) Probabilistic
Fleuret et al. [39, 38] RGB X X X Probab. (MF-VI)
Alahi et al. [6] RGB X X X Sparse opt.
Baqué et al. [10] RGB X (X) X CNN + CRF
Chavdarova et al. [23] RGB X (X) X CNN
Hou et al. [47] RGB X X X CNN
Tang et al. [93] RGB X X X CNN 3D pose
Chen et al. [24] RGB X X X CNN
You et al. [102] RGB X X X CNN
Ge et al. [42] RGB X X X Probab. (MCMC)
Zhang et al. [103] RGB X X X CNN
Castellano et al. [21] RGB (X) X X CNN
Saputra et al. [89] RGB-D X X X Kinect skeleton
Sun et al. [91] RGB-D X X X Kinect skeleton
Munaro et al. [69] RGB-D X X X HOG
Carraro et al. [20] RGB-D X X X CNN 3D pose
Tseng et al. [96] Depth X X X 3D image stitching
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Ahmed et al. [4] propose a geometric normalization with respect to the
optical center in the image to standardize the appearance of individuals.
For detection the authors follow the fundamental ideas of [27] and train
a Support Vector Machine (SVM) with histogram of oriented gradients
(HOG) features.

More recent methods incorporate deep learning frameworks to accom-
plish people detection from the top-view. In [1] the pre-trained Single
Shot Multi Box Detector [65] is applied to top-view people detection in a
single RGB image. Ahmad et al. [2] follow a similar idea and apply the
pre-trained YOLOv3 Convolutional Neural Network (CNN) [81, 82] to the
task of top-view people detection. In [5] these ideas are further developed.
The authors introduce a top-view people detection and tracking method
based on recent deep learning architectures. For detection the YOLOv3
architecture is re-trained with top-view images. The tracking is based on
Simple Online and Realtime Tracking (SORT) [100].

2.1.2 Depth-based Approaches

We will first discuss depth-based methods for people detection in the
general frontal or profile view. Bagautdinov et al. [8] introduce DPOM, a
probabilistic occupancy map for occluded single depth images (cf. Fleuret
et al. [38]). The authors propose a probabilistic generative model to define
the expected distribution of depth values with respect to the presence of
an individual. For inference a mean-field variational inference strategy
is proposed. Hacinecipoglu et al. [45] introduce a pose invariant peo-
ple detection approach, based on point cloud data. The point cloud is
first clustered and head candidates are extracted. For classification an
SVM with a Viewpoint Feature Histogram (VHF) [86] feature descriptor is
trained. Recently CNN architectures [61, 67, 95] are successfully applied to
single view depth image people detection, leveraging data sets with many
labeled images for training. However, those mentioned approaches are
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trained with data sets mostly containing people from the classical frontal
or profile view but not from the top-view.

As for monocular RGB approaches, another class of methods focuses
on top-view people detection. Rauter et al. [80] introduce a novel feature
descriptor based on local depth differences for top-view people detection.
The feature descriptor is used to train an SVM for head-shoulder detection.
To reduce the computational complexity, the resulting detector is only
applied to potential head candidates, determined by a local maxima search
in the depth image. More recent work by Ertler et al. [33] fuses depth
and RGB data by combining two CNN streams in a Faster R-CNN [83]
architecture. The authors propose a late and mid-layer fusion and report
comparative evaluation results for the different fusion methods. Recently,
Fuentes-Jimenez et al. [41] introduce the CNN architecture DPDnet. The
proposed encoder-decoder architecture takes a depth image as input and
predicts a confidence map (in image coordinates), where each detection is
represented by a 2D normal distribution.

The related problem of people counting with a single depth camera from
the top-view has been studied in great detail [19, 30, 92, 105]. In contrast
to our proposed method, those approaches focus on integrated systems
counting the number of persons crossing a certain virtual line, providing
people detection implicitly and in a rather small area.

For a comprehensive survey of people tracking in a single RGB-D view
(including, but not limited to the top-view) we refer to Camplani et al. [17].
Complementary, we refer to Liciotti et al. [63] for a narrower review of
top-view people detection and counting with RGB-D sensors.

2.2 Multi-View People Detection

2.2.1 RGB-Based Approaches

In this section we focus on people detection with multiple monocular
cameras. In order to restrict our scope, we do not consider methods
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working across non-overlapping views [13, 79, 85] but rather focus on
methods utilizing overlapping views. For an exhaustive survey of multi-
camera people detection and tracking, we refer to [46, 48, 98].

Since people detection and tracking in single-camera views have been
intensively studied [66, 73, 104], many methods accomplish multi-view
detection and tracking by fusing local detections or local tracklets into
a common world coordinate system [7, 52, 101]. Since the detection is
performed independently for each view, those methods do not take full
advantage of the multi-view information and thus are often not able to
resolve occlusion and measurement noise. Besides, the vast majority of
employed pedestrian detectors is optimized to detect people in frontal or
profile view (cf. Sect. 2.1).

Homography based approaches project local image features from each
sensor into a common plane to perform global detection [88]. In [53]
a homographic occupancy constraint is proposed to handle occlusion and
detect people on a common scene plane. Eshel et al. [34] propose a similar
approach, projecting the foreground pixels of all views into a common
height plane for head detection. In [75] those approaches are extended by
a multi-view Bayesian network in order to avoid false positive detections
arising from occlusion artifacts.

Another class of related approaches addresses the problem of multi-
camera detection by employing a generative model to jointly take ad-
vantage of the image evidence of all available views. Fleuret et al. [39]
introduce the idea of estimating the probability of people present on the
ground level plane by a binary generative scene model. The authors ex-
tend their approach and publish it together with an integrated tracking
algorithm in [38]. Since then, the method is referred to as Probabilistic Oc-
cupancy Map (POM) in the computer vision literature. POM takes binary
foreground images as input and compares them with synthesized binary
masks. The binary masks are obtained by a generative model, which
represents individuals by a simple rectangular box. The final occupancy
map is estimated by mean-field variational inference. For the last decade,
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POM served as a standard method for multi-view people detection and
has been evaluated on many standard benchmarks like PETS [12]. Since
the method proposed in this thesis is heavily inspired by POM, it will be
discussed in detail in Sect. 3.2. Alahi et al. [6] also propose a generative
method for people detection in a camera network. They recast the task
as a linear inverse problem, regularized by a sparsity constraint on the
occupancy grid. Other than in [38], a silhouette person model is proposed.
Unlike our approach, both methods utilize only 2D models and fit them to
a binary foreground mask.

Due to the massive availability of labeled RGB training data, more
recent methods employ CNN architectures for multi-view people detection.
Baque et al. [10] introduce an end-to-end multi-view people detection
architecture. They propose to use the generative model from POM [38]
in combination with a discriminatively trained CNN. In order to resolve
ambiguities arising from occlusion, the interaction between grid cells
is taken into account by Conditional Random Fields (CRFs). The final
CNN/CRF architecture can be trained end-to-end by exploiting back mean-
field techniques [106]. Chavdarova et al. [23] present a CNN architecture
enabling end-to-end multi-view probabilistic occupancy map estimation.
To overcome the lack of an appropriate multi-view data set, an existing
monocular pedestrian data set [32] is used.

In contrast to [10, 23], Hou et al. [47] introduce an anchor-free end-to-end
multi-view CNN architecture without using generative models or CRFs.
The multi-view image evidence is fed into a CNN with shared weights
among the views. Intrinsic and extrinsic camera calibrations are used to
explicitly project each feature map to the ground plane. The projected
feature maps are further aggregated by convolutions, finally predicting the
occupancy map on the ground plane. The authors report state-of-the-art
results on the challenging WILDTRACK data set [22].

Other research groups focus on integrated tracking and detection sys-
tems, leveraging deep learning methods for detection and tracking. Tang
et al. [93] propose joint multi-view people tracking and pose estimation.

15



2 Related Work

They apply a classical tracking-by-detection scheme on each single view.
To associate tracklets across views, appearance and semantic features are
used. In a second step single-view human 3D pose estimation is applied
based on OpenPose [18]. Finally, the resulting 3D poses are fed back to the
multi-view tracker in order to improve the tracklet association across multi-
ple views. Chen et al. [24] propose a real-time people tracking-by-detection
system. For detection a computationally demanding global CNN detector
is applied to key-frames of each view interdependently. To get fast detec-
tions between key-frames a local CNN detector is combined with classical
motion prediction. You et al. [102] present Deep Multi-Camera Tracking
(DMCT), an end-to-end multi-view tracking and detection pipeline, which
focuses on real-time applications.

A related class of approaches addresses the problem of multi-view
crowd counting. Ge et al. [42] propose a generative probabilistic approach,
using binary foreground masks as input. While the method is related
to POM [38], the authors propose a sampling based strategy based on
the Reversible Jump Markov Chain Monte Carlo (RJMCMC) [43] sampler
instead of mean-field variation inference. This yields the advantage that a
more complex posterior distribution can be approximated, in particular
the global optimization can be obtained in continuous location space.
More recent work focuses on deep learning techniques for crowd counting.
Zhang et al. [103] introduce an end-to-end multi-view CNN architecture
to predict the density map on the ground plane of the scene. For multi-
view fusion the authors propose different late and early fusion strategies
and report comparative results on different publicly available data sets.
Castellano et al. [21] propose an alternative CNN architecture, focusing on
the special demands of crowd counting from unmanned aerial vehicles.

2.2.2 Depth-based Approaches

In contrast to the RGB methods mentioned above, only a few existing
approaches rely on multiple depth images for people detection. In this sec-
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tion we will first discuss methods focusing on pedestrian detection from
the frontal or profile view. Those approaches follow the same paradigm
and apply a classical single-view people detector to each RGB-D view in-
dependently [20, 69, 89, 91]. Subsequently, we will discuss methods which
explicitly focus on top-view people detection and tracking in multiple
depth images [64, 96]. While the former group of approaches in general
leverages RGB and depth data (RGB-D), the latter only makes use of the
depth information.

In early research Saputra et al. [89] propose indoor people tracking using
two Kinect v1 sensors1. For people detection and tracking the authors
apply human segmentation and the skeleton tracking, obtained by the
Kinect for Windows SDK v12, to each view independently.

Following these ideas, Sun et al. [91] also employ a network of Kinect
v1 sensors for people detection. Similar to [89], the human skeleton track-
ing from the Kinect for Windows SDK v1 is applied to each single view
independently. The Kinect for Windows SDK v1 can only keep track of the
skeletons of two individuals at the same time. To overcome this limitation
a skeleton interleaving strategy is proposed to handle up to six individuals.
Kalman filter based tracking is applied to foot points of individuals present
in a single view. To handle occlusions, a trajectory matching scheme is
proposed, in order to fuse trajectories from the same person (obtained by
different views) to a single, global trajectory.

Munaro et al. [69] introduce the OpenPTtrack framework for people
tracking in an RGB-D camera network. The project aims for an integrated,
easy-to-use software system, including different camera calibration al-
gorithms as well as sensor modalities. The two-stage people detection
algorithm is performed on each view independently. First, a depth-based
clustering is applied on the point cloud data. Second, for each cluster the

1 The Microsoft Kinect v1 sensor is an active consumer RGB-D camera. The depth informa-
tion is obtained by an actively emitted pattern in near-infrared, while an infrared camera
captures the reflection of the pattern (structured light).

2 https://www.microsoft.com/en-us/download/details.aspx?id=40278, accessed
31.03.2021
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corresponding image region in the RGB image is fed into a HOG-based
people detector. The resulting detections obtained by each sensor are gath-
ered by a centralized tracking node and a typical tracking-by-detection
scheme is applied.

Carraror et al. [20] propose an approach for human body pose estimation
in a network of RGB-D sensors. To obtain a 3D skeleton, CNN-based
pose estimation [99] is applied to the RGB images of each single-view.
Incorporating the available depth data results in multiple 3D skeletons
for each view. The single view 3D skeletons are further processed by a
global node to solve the data association problem between the individual
3D skeletons, providing multi-view pose estimation.

In contrast to the aforementioned approaches, Tseng et al. [96] present
an indoor people detection system based on multiple sensors in top-view.
Their approach is based on a fused virtual top-view depth image, ob-
tained by the point cloud of each sensor. For detection a hemiellipsoidal
head model is employed to take advantage of the discriminative height
difference near the head contour of a human. In contrast to previously
mentioned methods, the authors rely on depth data only. Furthermore,
the detection is applied to the fused depth image, leveraging the full multi-
view image evidence. In [64] the authors extend their approach, and focus
on people tracking in a hybrid overlapping and non-overlapping camera
network setup.

2.3 Integration of Present Thesis

In this section we will classify the contribution of the present work with
respect to the aforementioned literature. As pointed out in Sect. 2.2.1 the
vast majority of approaches rely on monocular video cameras but not on
depth sensors for multi-view people detection. While in this thesis we ad-
dress a different setup (top-view people detection with depth sensors), our
work is methodically strongly related to multi-view approaches following
the idea of generative modeling. Namely, these are POM, introduced by
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Fleuret et al. [38], crowd detection with an MCMC sampler proposed by
Ge et al. [42] and sparsity driven people localization introduced by Alahi
et al. [6]. While, compared to the present work, the two latter approaches
use very different methods for inference, our work is methodically most
similar to [38]. Although we share a comparable mean-field inference
strategy, there are several distinctions:

(i) our approach uses depth images as evidence and is therefore able to
make use of a generative scene model based on a 3D shape model;

(ii) we introduce a novel strategy to approximate the final mean-field
update expectation by making use of geometric scene knowledge, a
pre-computed visual dictionary and a weighted asymmetric image
similarity;

(iii) we propose to incorporate the temporal context jointly in the mean-
field optimization to improve the detection performance.

According to the sensor modality our work belongs to the category
of depth based multi-view approaches. In contrast to our work the vast
majority of approaches in this category [20, 69, 89, 91] are based on RGB-D
data and focus on the classical frontal or profile view. Besides, all aforemen-
tioned approaches apply single-view detection algorithms independently
on each view and merge the local results to obtain global multi-view de-
tections. Due to the single-view approach, they do not take advantage of
the full multi-view information and heavily rely on the specific limitations
of the employed people detector (e. g. viewpoint dependence).

To the best of our knowledge the only approach explicitly addressing
the problem of indoor top-view people detection in multiple depth im-
ages is the work by Tseng et al. [96]. While our work addresses the same
problem, their approach is methodically quite different. The authors fuse
multiple depth views in a virtual top-view depth image and apply a dis-
criminatively trained detector. While the proposed early fusion strategy
successfully leverages the multi-view observations, evidenced by strong

19



2 Related Work

detection performance, their approach is focused on high quality depth
data obtained by active depth sensors. In contrast, our method is particu-
larly suitable for low resolution passive stereo sensors. Furthermore, our
method approximates the joint probability distribution of people present
in the scene, while [96] provide a MAP point estimate.

To summarize, methodically our work is highly inspired by Fleuret et al.
[38], while from an application perspective it is most related to the work
of Tseng et al. [96]. In contrast to recent data-driven CNN architectures [20,
23, 61, 67, 95] our method requires no training data and the detection con-
fidence can be quantified more precisely by approximating the posterior
distribution.
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In this chapter we will set the methodical foundations for the present
thesis. In Sect. 3.1 we will outline the general idea of variational inference.
In particular, we focus on the mean-field approximation which serves
as the basis of the inference strategy proposed in this thesis. Based on
this, we will discuss the application of mean-field variational inference to
the problem of multi-view people detection in binary foreground images,
referred to as probabilistic occupancy map (Sect. 3.2).

3.1 Mean-Field Variational Inference

A major challenge of probabilistic inference is that in many real world
applications the posterior distribution over some symbolic latent variables
X given the observations O ,

p(X | O) =
p(X ,O)

p(O)
, (3.1)

is hard to compute or even intractable. Although it is possible for typical
probabilistic models to compute the joint distribution p(X ,O), the evidence
or marginal data likelihood

p(O) =

ˆ
p(X ,O) dX (3.2)

contains an integral (or a sum in case of discrete latent variables) over
the full state space induced by X , which is often intractable. The main
idea of variational inference (VI) is to find a tractable proxy distribution
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p(X | O)

q̂(X )

Q

Figure 3.1 Schematic illustration of the variational inference objective. The green shape
represents the space of all probability distributions, whereasQ represents a subset of possible
proxy distributions (also referred to as q-family). The variational objective is to find a proxy
distribution q̂ ∈ Q which is, with respect to some similarity measure, as close to the true
posterior distribution p(X | O) as possible.

q(X ) which is, with respect to some similarity measure, as close to the true
posterior p(X | O) as possible (see Fig. 3.1). The proxy distribution q(X )

can in general be an arbitrary probability distribution and is not restricted
to some particular parametric form. In contrast to parameter estimation
methods such as maximum-likelihood estimation (ML) or maximum a posteriori
estimation (MAP), VI is a more general framework, since it allows to find
the optimal distribution q by defining the objective as a functional rather
than optimizing the parameters of a distribution explicitly.

The variational methods used in this work are part of the mean-field
theory [74], which has its origin in statistical physics. The mean-field
theory is applied in many scientific areas, in particular in statistical field
theory, for example to understand ferromagnetism (cf. Ising model [25,
49]). In the last decades these methods haven been refined by the statistics
and machine learning community [15, 28, 40, 50, 97] to make it applicable
for general probabilistic inference. In this work we stick to the notation
and conventions commonly used in the machine learning literature [11,
70].
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To derive the objective for the optimal proxy distribution q one has to
take further assumptions: First, one has to define a similarity measure be-
tween the true posterior distribution p(X | O) and the proxy distribution
q(X ). The most popular choice is to use the Kullback-Leibler divergence
(KL divergence, see Sect. 3.1.1). Following this assumption in Sect. 3.1.2,
the general objective for KL variational inference is derived. Second, one
has to take some assumptions on the structure of the proxy distribution
q. In this work we use the so called mean-field assumption, which assumes
that q factorizes over its marginal distributions. In virtue of this assump-
tion it is possible to derive an optimization scheme, where the marginal
probabilities q(x′i) are updated iteratively based on the current state of all
other latent variables {x′j : i 6= j}, see Sect. 3.1.3.

3.1.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence [60], also known as relative entropy [26,
p.19], has its origin in information theory. In the context of probability
theory it is often interpreted as a measurement of dissimilarity between
two probability distributions. Let p, q be the probability density functions
of a continuous random variable, then the KL divergence is given as

KL(p ‖ q) =

ˆ
p(X ) log

(
p(X )

q(X )

)
dX , (3.3)

which can also be written as

KL(p ‖ q) = −
ˆ
p(X ) log

(
q(X )

p(X )

)
dX . (3.4)

For discrete probability distributions one has to replace the integral by
the corresponding sum. The KL divergence is only defined if q(X ) = 0

implies p(X ) = 0. However, a common convention in the literature is that
the KL divergence is set to infinity KL(p ‖ q) =∞ if there is any X such
that q(X ) = 0 ∧ p(X ) > 0 (cf. [26, p. 19]). It can be proven that the KL
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divergence is non-negative KL(p ‖ q) ≥ 0 for any p, q and is zero if and
only if p = q (cf. [26, p. 28] and [11, p. 170]). It is important to notice that
the KL divergence is asymmetric and in consequence does not fulfill the
requirements of a distance metric.

An alternative perspective on the KL divergence follows trivially by
applying the definition of expectation to (3.3), given as

KL(p ‖ q) =

〈
log

p(X )

q(X )

〉

p(X )

(3.5)

= 〈log p(X )− log q(X )〉p(X ) , (3.6)

where 〈·〉p(X ) denotes the expectation with respect to the distribution p(X ).

3.1.2 KL Variational Inference

Since the KL divergence is asymmetric, the order of the arguments does
have an impact on the variational objective. In the literature KL(p ‖ q) is re-
ferred to as forward KL divergence and KL(q ‖ p) as reverse KL divergence
respectively. Inspecting the definition of the forward KL divergence

KL(p(X | O) ‖ q(X )) =

ˆ
p(X | O) log

(
p(X | O)

q(X )

)
dX , (3.7)

one can see that the forward KL divergence is infinity if q(X ) = 0 and
p(X | O) > 0. Thus, if using the forward KL divergence as an objective,
q(X ) gets forced to be non-zero if p(X | O) > 0. On the other hand, the
reverse KL divergence

KL(q(X ) ‖ p(X | O)) =

ˆ
q(X ) log

(
q(X )

p(X | O)

)
dX , (3.8)

has the opposite effect. It approaches infinity if p(X | O) = 0 and q(X ) >

0. Following the same argument as above, q(X ) gets forced to be zero
for p(X | O) = 0. One can conclude that when fitting a distribution q
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Figure 3.2 Comparison of the results when fitting a single univariate normal distribution
q to a univariate bimodal distribution p with respect to the forward (a) and the reverse (b)
KL divergence. The exemplary "true" distribution p(X ) (blue curve) is given as a mixture
of Gaussian p(X ) = 0.5(N (X | −µ, σ)) + N (X | µ, σ)) with µ = 8, σ = 2. (a) shows the
optimal fitting normal distribution q with respect to the forward KL divergence, given by
the moments of p(X ). (b) shows q with respect to the reverse KL divergence respectively.
In contrast to (a), the optimal choice of q is not given in closed form for the reverse KL
divergence. In this example the optimum is to locally fit q to one of the modes of p (example
based on [11, p. 619 ff.]).

to a distribution p with respect to the forward KL divergence, q is in
general overestimating the support of p. In contrast, using the reverse KL
divergence is potentially underestimating the support of the true posterior
p.

Studying Fig. 3.2 and following the arguments in [70, p. 733 f.] one
can see that in a scenario where p is a multimodal and q a unimodal
distribution, using the forward KL divergence is problematic. Since q is
forced to be a unimodal distribution, the mode of q is somewhere between
the modes of p, which is a region where p has rather low probability
density.

Another aspect is the tractability of the resulting optimization problem.
Using the forward KL divergence one has to compute the expectation with
respect to the intractable distribution p(X ) which is in general hard to
compute. However, using the reverse KL divergence yields the advantage
that expectation is computed with respect to the simpler proxy distribution
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q(X ). Depending on the choice of the q-family (thus the structure of q)
this leads to a feasible optimization problem (see Sect. 3.1.3). Therefore, it
is common to use the reverse KL divergence to formulate the variational
objective

q̂(X ) = arg min
q∈Q

KL(q(X ) ‖ p(X | O)) , (3.9)

with the KL divergence

KL(q(X ) ‖ p(X | O)) = 〈log q(X )− log p(X | O)〉q(X ) (3.10)

= 〈log q(X )〉q(X ) − 〈log p(X | O)〉q(X ) . (3.11)

Expanding the expectation over the conditional distribution we can unveil
the dependence of the evidence p(O)

〈log p(X | O)〉q(X ) = 〈log p(X ,O)〉q(X ) − 〈log p(O)〉q(X ) (3.12)

= 〈log p(X ,O)〉q(X ) − log p(O) . (3.13)

Inserting into (3.11) we can rewrite the KL divergence as

KL(q(X ) ‖ p(X | O)) = 〈log q(X )〉q(X ) − 〈log p(X ,O)〉q(X )︸ ︷︷ ︸
KL(q(X ) ‖ p(X ,O))

+ log p(O) .

(3.14)

Since log p(O) does not depend on X it can be treated as a constant
and does not affect the solution of the objective. Thus minimizing the
original KL divergence (3.11) is equal to minimizing the KL divergence
KL(q(X ) ‖ p(X ,O)). To get further insights we rearrange (3.14) to

log p(O) = KL(q(X ) ‖ p(X | O))− 〈log q(X )〉q(X )

+ 〈log p(X ,O)〉q(X ) .
(3.15)
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KL(q(X ) ‖ p(X | O)) ≥ 0

L(q) (ELBO) ≤ 0

log p(O)

Figure 3.3 Graphical illustration of (3.15). Maximizing the ELBO is equivalent to minimiz-
ing the KL divergence KL(q(X ) ‖ p(X | O)). The KL divergence can also be interpreted as
the error between the lower bound L(q) and the actual evidence log p(O). Figure inspired
by Bishop [14, Fig. 9.11].

Since KL(· ‖ ·) ≥ 0, (3.15) implies a lower bound L(q) for the marginal
data likelihood

log p(O) ≥ −〈log q(X )〉q(X ) + 〈log p(X ,O)〉q(X )︸ ︷︷ ︸
L(q)

. (3.16)

In Fig. 3.3 a graphical illustration of (3.15) and (3.16) is given. In the
machine learning literature the lower bound L(q) is referred to as evidence
lower bound (ELBO). Notice that the definition of the ELBO is related to the
concept free energy in statistical thermodynamics, therefore −L(q) is also
referred to as variational free energy (cf. [70, Sect. 21.2.1]). As a consequence
of definition (3.4) the ELBO can also be written as

L(q) = −KL(q(X ) ‖ p(X ,O)) . (3.17)

Maximizing the ELBO L(q) with respect to q has two relevant aspects:
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(i) In face of (3.15) and (3.17) one can see that the original objective (3.9)
is equivalent to the objective

q̂ = arg max
q

L(q) . (3.18)

Thus maximizing the ELBO (3.16) leads to the desired approxima-
tion of the conditional distribution p(X | O).

(ii) As a direct consequence of the definition (3.16), maximizing L(q)

yields a lower bound on the marginal data likelihood p(O). This is
particularly useful for Bayesian model selection (cf. [11, p. 619]).

3.1.3 Mean-Field Approximation

Having defined the variational objective in the previous section as maxi-
mizing the ELBO L(q) with respect to some distribution q(X ), one still has
to restrict the set Q of possible distributions q ∈ Q to make the optimiza-
tion feasible. In general, it is possible to do so by (i) assuming that q is of a
specific functional or parametric form; (ii) assuming that q has a specific
structure, i.e. defining how q factorizes over the latent variables X . While
the first assumption (i) is more restrictive, (ii) is more general and exploits
the full power of the variational approach. Notice that it is also possible to
combine both assumptions.

In this work we apply the so called mean-field assumption. While in
general this assumption allows factorizing q(X ) over arbitrary disjoint
partitions of latent variables [14, p. 464], in this work we apply the mean-
field assumption in its simplest form1. We assume that q(X ) is a fully
factorized distribution, given as product over its marginal probabilities

q(X ) =

r∏

i=1

qi(x
′
i) , (3.19)

1 Sometimes referred to as naive mean-field assumption in the literature [11, p. 623].
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where r is the number of latent variables. Even though this is a strong
simplification on the structure of possible distributions q, there are no
restrictions on the functional form of the individual distributions qi. In
practice, it turns out that this simple factorial structure leads to a tractable
variational objective for many probabilistic models.

In order to deduce the mean-field update equations one needs to define
a probability distribution over X except of one single element x′i ∈ X .
Therefore, let

q
(
X \ x′i

)
=

r∏

j=1:j 6=i
qj(x

′
j) (3.20)

denote the mean-field distribution excluding the element x′i.

3.1.3.1 Mean-Field Update Equations

Using the results from the previous section the general objective is to
maximize the ELBO with respect to the function q,

q̂ = arg max
q

L(q) . (3.21)

Applying the mean-field assumption, one possible optimization technique
is to apply a coordinate descent strategy, where one marginal distribution
qi gets updated, while the other variables stay fixed. To derive the corre-
sponding update equations one can isolate the dependency of one single
qi. Following the detailed derivation in appendix A.1, it follows that the
ELBO L(qi) for a single qi can be written as a negative KL divergence

L(qi) = −KL
(
qi(x

′
i)
∥∥ p̃i(X ,O)

)
+ const , (3.22)

with the distribution

p̃i(X ,O) =
1

Zi
exp
(
〈log p(X ,O)〉q(X \x′i)

)
, (3.23)
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where Zi is the partition function and the notation 〈·〉q(X \x′i) refers to the
expectation with respect to the distribution q(·) for all {x′j : i 6= j}:

〈log p(X ,O)〉q(X \x′i) =

ˆ
log p(X ,O)

r∏

j=1:j 6=i
qj(x

′
j) dX Kx′i . (3.24)

Up to a constant term, L(qi) (3.22) is equivalent to a negative KL diver-
gence between the desired distribution qi(x

′
i) and a distribution propor-

tional to exp
(
〈log p(X ,O)〉q(X \x′i)

)
. According to (3.22) we can maximize

the ELBO for one single distribution qi(x
′
i) by minimizing KL(qi ‖ p̃i). It

trivially follows that the optimal q̂i(x
′
i) with respect to the objective

q̂i = arg max
qi

L(qi) , (3.25)

satisfies q̂i = p̃i. This finally leads to the so called general mean-field equa-
tions [11, p. 625 ff.]

qi(x
′
i) =

1

Zi
exp
(
〈log p(X ,O)〉q(X \x′i)

)

∝ exp
(
〈log p(X ,O)〉q(X \x′i)

)
,

(3.26)

for all marginal distributions qi with i ∈ {1, . . . , r}. Fixing all other latent
variables X \ x′i, this equation updates a single distribution qi(xi) with
respect to the current mean-field state q

(
X \ x′i

)
. This is a general result

of the mean-field assumption and does not hinge on a specific paramet-
ric distribution family of qi. In practice the resulting parametric form of
the marginal distributions qi and the tractability of the mean-field up-
date equations depend in particular on the probabilistic model p(X ,O).
Thus one essential part of mean-field variational inference is to define
a factorization for q and a probabilistic model p(·) leading to tractable
mean-field update equations. Although now we have an individual equa-
tion for each marginal distribution qi, in general we cannot write this as a
closed form solution since each equation depends on the states of all other
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marginal distributions q
(
X \ x′i

)
. This commonly leads to an iterative

update scheme, where one distribution qi is updated with respect to the
current state q

(
X \ x′i

)
, which we will discuss in the following section. A

detailed discussion on the general mean-field update equations can be
found in [70, p. 736 ff.], [14, p. 465 ff.] and [15].

3.1.4 Coordinate Ascent Mean-Field Variational Inference

In the previous sections we recast the general probabilistic inference prob-
lem to an optimization problem, which is finally given by the general
mean-field equations (3.26) for each marginal distribution qi. A popular
algorithm to solve this optimization problem is referred to as Coordinate
Ascent Variational Inference (CAVI) [15]. In order to decouple the depen-
dence of the marginal distributions, CAVI iteratively updates one marginal
distribution qi after the other, while all other distributions qj : j 6= i stay
fixed. Hence, each qi is updated with respect to the current mean-field
state q

(
X \ x′i

)
as presented in Algorithm 1. In practice it is not necessarily

Algorithm 1 Coordinate Ascent Mean-Field Variational Inference (CAVI)
1: procedure OPTIMIZE Q (Data: O , Model: p(X ,O))
2: q(X )← init() . init mean-field
3: while L(q) has not converged do
4: for all i ∈ {1, . . . , r} do . iterate over marginals
5: qi ← exp 〈log p(X ,O)〉q(X \x′i)
6:
7: q(X )← qi . asynchronous update of MF state
8: end for
9: L(q)← 〈log p(X ,O)〉q(X ) − 〈log q(X )〉q(X ) . compute ELBO

10: end while
11: return q̂
12: end procedure

needed to use the ELBO L(q) as a termination condition of the optimiza-
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tion. It is often sufficient to monitor the convergence behavior of the
marginal distributions qi.

The CAVI algorithm relies on asynchronous mean-field updates (3.26),
which means that the individual qi(xi)’s are updated sequentially in each
iteration. It can be proven that updating each qi asynchronously gradually
improves the approximation for each qi (cf. [11, p. 626]). In contrast, it
is also possible to execute the mean-field updates synchronously. In a
synchronous update iteration all the qi are updated simultaneously, using
the same mean-field state obtained from the previous iteration. While
synchronous mean-field updates can be easily parallelized, the conver-
gence guarantees from the asynchronous updates do not hold anymore. In
general synchronous updates can lead to oscillating effects during the op-
timization. In Sect. 6.4.1.2 we report an example of this effect, in particular
illustrated in Fig. 6.7.

3.2 Probabilistic Occupancy Map (POM)

In 2008 Fleuret et al. [38] introduce the probabilistic occupancy map (POM).
For almost a decade, POM served as the state-of-the-art method for multi-
view people detection in RGB images. Although recent state-of-art meth-
ods such as Deep Occlusion [10] outperform classical POM, Deep Occlu-
sion still partially relies on the generative model introduced by POM. Since
the present work is inspired by POM, in this section we will discuss the
technical details of POM and reveal the relations to this thesis.

POM solves the problem of multi-view people detection as an inverse
problem. Multiple overlapping foreground-segmented binary images are
used as input and compared against synthesized binary images obtained
by a generative model. Each individual person is expressed by an axially
parallel rectangular box (see Fig. 3.4(a)) in order to generate synthetic
foreground images. For inference the KL divergence between the true
posterior distribution and a fully factorized distribution is minimized by an
iterative optimization algorithm. Even though in the original work [39, 38]
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the authors do not refer to the method of mean-field variational inference,
the update equations derived in [38, Eq. 25] satisfy the general mean-field
equations (3.26). To reveal the connection of POM to the present work
we use the notation and terminology of mean-field variational inference
introduced in Sect. 3.1 as well as the notation of the discrete probabilistic
scene model introduced in Sect. 4.4.

3.2.1 Probabilistic Model

Let b = (b1, . . . , bC)ᵀ be the input observations, given as foreground
segmented binary images obtained from C cameras at one time step. Since
POM does not depend on the temporal context we will omit the time
index in this section to keep the notation clear. To define the occupancy
grid, the plane at ground level is discretized into a regular 2D-grid of
n locations. Each grid location ui will be assigned a realization xi of a
Bernoulli random variable Xi ∼ B(µi), where µi denotes the probability
of a person present at location ui. The occupancy map is represented as
the vector x = (x1, . . . , xn)ᵀ ∈ {0, 1}n and is also referred to as a (discrete)
scene configuration in this thesis (cf. Sect. 4.4). The joint distribution over
the observations and scene configuration is given as

p(b,x) = p(b | x)p(x) . (3.27)

Fleuret et al. [38] employ two independence assumptions to make the
distribution (3.27) tractable (cf. [38, Sect. 5.1]).

First it is assumed that the prior p(x) factorizes as

p(x) =

n∏

i=1

p(xi) . (3.28)

This implies the assumption of individuals moving around independently
of each other. While in reality this assumption does not hold e. g. since
individuals are in general keeping a certain inter-person distance to each
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other (cf. Sect. 4.3.2), it is a common assumption to keep the posterior
distribution tractable.

Second, for POM it is assumed that the statistical dependence between
views is only given by the people present in the scene. Thus, if the scene
configuration x is fixed, the views are assumed to be conditionally inde-
pendent:

p(b | x) =

C∏

c=1

p(bc | x) . (3.29)

Although this assumption does not cover global effects, such as illumina-
tion changes etc., it can be justified by considering that bc are foreground
segmented images, while people are assumed to be the only moving ob-
jects in the scene.

3.2.1.1 Generative Scene Model

To be able to define the likelihood term p(bc | x) Fleuret et al. [38] propose a
generative modelAc(x), which maps a scene configuration x to a synthetic
binary image in the perspective of camera c. It is assumed that the cameras
used are extrinsically and intrinsically calibrated. To generate a synthetic
image Ac(x), fixed sized cuboids are placed in the 3D scene depending
on the provided scene configuration x. Each cuboid is rendered into
all views using the given extrinsic and intrinsic camera parameters. For
each rendered cuboid the axis-aligned bounding box is computed and the
corresponding pixels are classified as foreground pixels in the resulting
synthetic images. In Fig. 3.4 the synthetic image generation process is
illustrated in detail.

Let Aic be a binary synthetic image with only a rectangle placed at the
grid location with index i, where all pixels inside the rectangle are equal
to 1 (Fig. 3.4(a)). The synthetic image generation is formally given as

Ac(x) = ∪ni=1xiAic , (3.30)
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(a) Aic (b) Ac(x)

(c) (d)

Figure 3.4 Illustration of generative scene model producing binary images in the perspec-
tive of camera c. Each gray dot represents the center of a grid cell on the ground plane
assigned with a Bernoulli random variable Xi (for visualization only). Each black rectangle
in (a) and (b) represents an individual present at a particular grid cell. (a) shows a synthetic
binary image with exactly one individual placed at grid location i. (b) shows a generated
synthetic image corresponding to an exemplary scene configuration x with four non-zero
entries. The dimensions of the rectangles are given as the axis-aligned minimum bounding
box of a cuboid, roughly approximating the shape of a person, as shown in (c) and (d).
Figures inspired by [38, Fig. 4,6]

where the union ∪ is defined as the binary image union (pixel-wise logical
OR). An exemplary synthetic image Ac(x) is given in Fig. 3.4(b). Based on
this generative model, the likelihood for a single observation bc is given as

p(bc | x) ∝ exp
(
−δpom(bc, Ac(x))

)
, (3.31)
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where δpom(bc, Ac(x))) is a pseudo distance function between an observed
image bc and a synthetic image Ac(x). Let a, b ∈ [0, 1]W×H be images with
the dimension W ×H pixels, the pseudo distance function is given as

δpom(b, a) = ξ−1 · ‖b� (1− a) + (1− b)� a‖1
‖a‖1

, (3.32)

with ‖·‖1 = ‖vec(·)‖1 defined as the sum of all pixels (element-wise L1
vector norm). The parameter ξ can be interpreted as a pseudo standard
deviation, controlling the reliability of the measurements. Finally, the
desired posterior distribution is given as

p(x | b) =
1

Z

C∏

c=1

p(bc | x)

n∏

i=1

p(xi) (3.33)

∝
C∏

c=1

exp
(
−δpom(bc, Ac(x))

) n∏

i=1

p(xi) . (3.34)

3.2.2 Inference

Due to the high dimensional latent space {0, 1}n the posterior distribution
(3.33) is intractable. Fleuret et al. [38] propose to apply mean-field vari-
ational inference (cf. Sect. 3.1) to approximate the posterior distribution
p(x | b) with a simpler proxy distribution q(x) =

∏n
i=1 qi(xi) (mean-field

assumption). The objective is given as

q̂(x) = arg min
q

KL(q(x) ‖ p(x | b)) . (3.35)

According to the general mean-field equations (3.26) the optimal update
for the marginal distributions qi satisfy

qi(xi = 1) =
1

Zi
exp
(
〈log p(b,x | xi = 1)〉q(x\xi)

)
, (3.36)
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with the partition function

Zi =
∑

s∈{0,1}
exp
(
〈log p(b,x | xi = s)〉q(x\xi)

)
. (3.37)

Inserting the probabilistic model defined in (3.33) the update simplifies to

qi(xi = 1) =

[
1 + exp

(
τi +

C∑

c=1

Ψ
pom
c,i

)]−1

, (3.38)

with the prior term τi = log 1−p(xi=1)
p(xi=1) and the data expectation term for

one camera given as

Ψ
pom
c,i =

〈
δpom(bc, Ac(x|xi=1))

〉
q(x\xi)

−
〈
δpom(bc, Ac(x|xi=0))

〉
q(x\xi)

.
(3.39)

A detailed derivation of the POM update equations (3.38) is given in
Appendix A.2. For more insights we additionally refer to Sect. 5.2.1, where
the mean-field update equations are derived and interpreted for a similar
posterior distribution. Note that although the derivation given in this
section is different from the one given in the original POM paper [38], the
resulting update equations for the distributions qi are identical (cf. [38, Eq.
25]).

3.2.2.1 Approximation

Since the expectations in (3.39) are not tractable, the POM authors propose
to approximate the expectations by only taking into account the expecta-
tion of the image generation process rather than the full image distance.
For s ∈ {0, 1} the approximation is given as (cf. [38, Eq. 26])

〈
δpom(bc, Ac(x|xi=s))

〉
q(x\xi)

' δpom(bc, 〈Ac(x|xi=s)〉q(x\xi)
) .

(3.40)
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(a) Āc (b) Āi=1
c

(c) Āi=0
c

Figure 3.5 Schematic illustration of synthetic average images. (a) shows an exemplary
average image for a distribution q(x) with four non-zero marginal distributions qj(xj). (b)

conditional synthetic average image Āi=1
c = 〈Ac(x|xi=1)〉q(x\xi) where the black rectangle

corresponds to the grid location i. (c) shows the corresponding conditional average image
given that xi = 0. The images (a) - (c) only differ at the pixel values in the rectangle related
to the grid cell with index i. Figures based on [38, Fig. 6].

Due to the binary images the expectation over the synthetic images

Āc = 〈Ac(x)〉q(x\xi)
(3.41)

is easy to compute and can be interpreted as an average image (see
Fig. 3.5(a)). The unconditioned average image Āc is defined for every
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pixel (u, v) as (cf. [38, Eq. 30])

Āc[u, v] = 〈Ac(x)[u, v]〉q(x) = 1−
∏

j:Aj
c[u,v]=1

(1− qj(xj = 1)) , (3.42)

where the index set {j | Ajc[u, v] = 1} includes any grid index j for which
the corresponding synthetic image Ajc contains a foreground pixel at the
image coordinate (u, v). The inverse probability in (3.42) ensures that
pixels not influenced by any qj are assigned to a probability of zero. The
conditional synthetic average image for camera c with respect to the cur-
rent mean-field state q(x) and xi forced to state s ∈ {0, 1} is given as

Āi=sc = 〈Ac(x|xi = s)〉q(x\xi)
. (3.43)

Considering the state s ∈ {0, 1}, the average image Āi=sc is obtained
by forcing all pixels in Āc[u, v] effected by the state of xi (all pixels of Aic
which are equal to 1) to 0 or 1 respectively (see Fig. 3.5(b,c)).

This leads to the following two implications: (i) the conditional synthetic
average image Āi=sc is a function of q(x \ xi); (ii) the conditioned average
images Āi=0

c and Āi=1
c only differ from the average image Āc in the pixels

effected by the rectangle Aic related to xi. The final POM update equations
are given as

qi(xi= 1) =
1

1 + exp
(
τi +

∑C
c=1

(
δpom(bc, Ā

i=1
c )− δpom(bc, Ā

i=0
c )

)).

(3.44)

In order to estimate the distribution q, Fleuret et al. [38] propose an iterative
update scheme. In contrast to CAVI (Sect. 3.1.4), which uses asynchronous
mean-field updates, a synchronous update is used. This yields the advan-
tage that the average image Āc needs only to be calculated once per itera-
tion. Moreover, by exploiting integral images, the distance δpom(bc, Ā

i=s
c )

can be calculated in constant time. In total this leads to a real-time capable
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estimation of the marginal distributions qi(xi). For a detailed explanation
of the fast iterative update scheme used by POM we refer to the original
paper [38, Sect. 5.4].
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4 Probabilistic Model

In this chapter we introduce a probabilistic model for people detection
in multiple depth images. First we declare basic prerequisites, covering
aspects such as sensor network calibration and multi-view image evidence
(Sect. 4.1). Hereinafter, we propose an abstract general probabilistic model
(Sect. 4.2), which includes the generative scene model and the related
modeling of the data likelihood. Based on the general model, we derive
two different manifestations, sharing the same generative scene model and
functional structure (e. g. conditional independence of the views). Namely,
we put the general model in concrete terms for the continuous latent space
(Sect. 4.3) and for the discrete latent space (Sect. 4.4), respectively. All the
common aspects of the discrete and continuous model are covered by the
abstract general model.

4.1 Prerequisites

4.1.1 Sensor Network Setup

While the methods proposed in this work can in general be applied to any
kind of depth sensor network, we will take some initial assumptions on the
setup of the depth sensor network in order to simplify further modeling.

First, it is assumed that the observed scene has one common plane
at ground level, which we refer to as ground plane in this thesis. This
assumption can be justified considering typical man-made environments,
e. g. train stations, shopping malls or other indoor environments. Of course
this assumption does not hold in some particular relevant scenarios, e. g.
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Figure 4.1 Stitched multi-sensor image based on marker-free calibration. The colored
quadrilaterals in the left image represent the view frustums intersected with the plane one
meter parallel to the ground level. The three images on the right show the individual sensor
views with corresponding color encoding.

a staircase connected to a hallway. It is viable to combine the proposed
method with a more general ground plane model, e. g. a composite of
multiple planes, in order to handle such scenarios.

Second, we assume that the depth sensors are intrinsically and extrin-
sically calibrated in advance. If the sensors share overlapping fields of
view in a way that there is at least one path connecting all sensors, the
extrinsic calibration can be obtained by visual cues. Due to the available
depth data, marker-free extrinsic calibration can be achieved in three steps:
(i) for each sensor S 1, . . . ,SC the ground plane is estimated by a plane
fit; (ii) one arbitrary sensor coordinate system is defined as the common
world coordinate system; (iii) for the other sensors S c the rigid body trans-
formation to the common world coordinate system is obtained by the
corresponding natural image features in the overlapping fields of view.
Due to the available depth data, each natural image feature match implies
a world point correspondence. For the rest of this work we define Pc as
the projection matrix for each sensor S c, which maps a point from the
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common world coordinate system to the corresponding image coordinates
of each sensor.

As a direct consequence of the two former assumptions, we describe
the presence of people in the scene in ground plane world coordinates
(x, y) ∈ R2. A particular constellation of individuals on the ground plane
is referred to as a scene configuration. In this thesis scene configurations
are given in two manifestations: a list of continuous plane coordinates
(cf. Sect. 4.3) or as a discrete ground plane grid (cf. Sect. 4.4).

4.1.2 Observations

As image evidence, we use low-resolution depth images, obtained by pas-
sive stereo-vision-based depth sensors1. For inference, we use foreground
segmented depth images, which simplifies the proposed generative model
(Sect. 4.2.1). The foreground segmentation is obtained by static background
subtraction, applied to the raw depth images. For real-world applications
with a dynamic background, an online learned background model could
be employed (for a comprehensive review of background subtraction
methods we refer to [55]). Fig. 4.2 illustrates the intensity images, raw
disparity images and foreground segmented depth images, observed from
three synchronized sensors.

Typically, the image acquisition time of commodity (depth) cameras can
not be synchronized across a network of cameras trivially. To overcome
this limitation, we use a pseudo synchronization, where each sensor is
synchronized with a global timer over ethernet via the standard Network
Time Protocol (NTP). By annotating each captured image with the global
acquisition time, it is possible to align the observations from multiple
sensors by temporal proximity. As a result we obtain multi-view frames
with limited time difference within a single temporal frame. Considering a
typical raw frame rate of 25 Hz, the theoretical maximum synchronization

1 Although our method is particularly able to handle noisy low-resolution depth images, it
is not limited to it. Certainly it is also viable to use high-quality depth observations e. g.
from an active range sensor.
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(a) Sensor view 1 (b) Sensor view 2 (c) Sensor view 3

(d) Disparity image 1 (e) Disparity image 2 (f) Disparity image 3

(g) Observation 1 (o1) (h) Observation 2 (o2) (i) Observation 3 (o3)

Figure 4.2 Example observations from the multi-view setup with five people present in the
covered area. Each column corresponds to one sensor. The first row (a-c) shows the gray
scale intensity images. In the second row (d-f) the raw disparity images are depicted. The
third row (g-i) illustrates the foreground segmented depth images, which are finally used for
inference.

error is 1
2·25 s = 20 ms. On average the synchronization error in our setup

is roughly 10 ms, which is tolerable for the application of people detection.
For the rest of this thesis we neglect the synchronization error and assume
that the multi-view frames are acquired synchronously.

Even though the models and methods introduced in this thesis are
designed to operate on foreground-segmented depth images, they are
not limited to these specific observations. By defining a forward model
which enables the generation of synthetic observations (cf. Sect. 4.2.1), a
different sensor modality can be easily incorporated into the proposed
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framework. It is even possible to combine different sensor modalities (i.e.
types of observations), as long as the forward model for each sensor is
well-defined.

4.2 General Model

In this section we define the joint distribution of people present in the
scene over space and time. To keep the notation uncluttered, we reuse the
symbolic latent variable X introduced in Sect. 3.1. While in the previous
section X is defined as an arbitrary symbolic latent variable, here we
refine the semantics of X . In this section X t represents a symbolic scene
configuration at time step t. While the abstract scene configuration X
is used to elaborate the general structure of the probabilistic model, it
can be instantiated by any kind of scene state representation, including
continuous (Sect. 4.3) as well as discrete (Sect. 4.4) representations. The
foreground-segmented depth observations at the time step t, acquired
from depth sensors S 1 . . .SC , are given as ot = (o1,t, . . . , oC,t)

ᵀ.
The joint probability distribution for time steps 1, . . . , T is given as

p(X 1:T ,o1:T ) = p(o1:T | X 1:T )p(X 1:T ) . (4.1)

To keep the joint distribution tractable, we make two general assumptions.
First, we assume that the probability of the current state X t depends only
upon on the previous state X t−1 (first order Markov assumption). For
t > 1 we can write

p(X t | X 1:t−1) = p(X t | X t−1) . (4.2)
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Using the Markov assumption, we then can express the distribution of a
path of scene configurations as

p(X 1:T ) = p(X T | X 1:T−1)p(X 1:T−1) (4.3)

= p(X T | X T−1)p(X 1:T−1) (4.4)

= p(X 1)

T∏

t=2

p(X t | X t−1) . (4.5)

Second, we assume that for given scene configurations X 1:T the observa-
tions are conditionally independent

p(o1:T | X 1:T ) =

T∏

t=1

p(ot|X t) . (4.6)

Inserting the immediate results from the first order Markov assumption
(4.5) and the conditional independence assumption (4.6) into the joint
probability model (4.1), we can write the joint distribution as a first order
Hidden Markov Model (HMM)

p(X 1:T ,o1:T ) = p(o1 | X 1)p(X 1)

T∏

t=2

p(ot | X t)p(X t | X t−1) . (4.7)

Based on the joint distribution (4.7), we will describe the general structure
of relevant distributions in the remainder of this section. For ease of
notation, we omit the integration domain, where

´
p(X 1:T ) dX 1:T is a short

hand for
´
D · · ·

´
D p(X 1:T ) dX 1 . . . dX T with D defined as the full domain

of X . Note that in this section the integrals are defined over an abstract
state space implied by X . Depending on the concrete manifestation of the
scene configuration space, the integrals have to be refined or, in case of a
discrete scene configuration space, replaced by the sum over all discrete
states respectively. The distributions derived in the following will find
its expression in models for realizations of specific scene configuration
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spaces in Sect. 4.3 and Sect. 4.4. For a detailed derivation of the general
distributions, we refer to Appendix B.

In the context of Bayesian inference, typically the most relevant ques-
tion is how the latent variables are distributed, given the observations.
Formally, conditioning the joint distribution (4.1) on the time series of
observations o1:T leads to the full posterior distribution

p(X 1:T | o1:T ) =
p(o1:T ,X 1:T )

p(o1:T )
. (4.8)

In consideration of the first order Markov assumption and the conditional
independence of observations (summarized in (4.7)), the posterior can be
rearranged for any t ∈ {2, . . . , T} to

p(X 1:t | o1:t) =
p(ot | X t)p(X t | X t−1)p(X 1:t−1 | o1:t−1)

p(ot | o1:t−1)
, (4.9)

as derived in (B.2). In the literature, the denominator p(ot | o1:t−1) of (4.9)
is also referred to as the predicted likelihood and is, according to (B.3a),
given as

p(ot | o1:t−1) =

ˆ
p(ot | X t)p(X t | o1:t−1)dX t . (4.10)

Since the full posterior distribution given in (4.9) is hard to compute in real
world applications due to the integral in the predicted likelihood (4.10),
it is often more viable to model the probability of the current state X t
given the past observations o1:t. Marginalizing the posterior distribution
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p(X 1:t | o1:t) with respect to the previous states X 1:t−1 leads, for any t ∈
{2, . . . , T}, to the recursively defined distribution

p(X t | o1:t) =
p(ot | X t)

p(ot | o1:t−1)

ˆ
p(X t | X t−1)p(X t−1 | o1:t−1) dX t−1

︸ ︷︷ ︸
p(X t|o1:t−1)

,

(4.11)

as deduced in (B.4a). In the Bayesian filtering framework this is referred to
as the filtering or update distribution, where the integral over the previous
state X t−1 in (4.11) is called the predictive distribution

p(X t | o1:t−1) =

ˆ
p(X t | X t−1) p(X t−1 | o1:t−1)︸ ︷︷ ︸

previous filtering dist.

dX t−1 . (4.12)

To summarize, rearranging the joint model (4.7) allows to define the
recursive filtering distribution p(X t | o1:t), whereas the previous states
are condensed in the predictive distribution p(X t | o1:t−1) . Since the
predictive distribution is defined recursively and only includes an integral
over the previous stateX t−1, it can be approximated effectively in practical
applications. For a more general discussion of typical inference problems
in Hidden Markov Models we refer to Barber [11, p. 495 ff.].

4.2.1 Generative Scene Model

To define the probabilistic model we make use of a generative scene model
Gc(X ,Pc), which maps a scene configuration X and a given projection
matrix Pc to a synthetic observation (i.e. synthetic depth image) from
the perspective of sensor S c. We use a simple, rotationally symmetric 3D
person model depicted in Fig. 4.3(a), consisting of a cylinder for the body
and a sphere for the head. Exemplary samples of the proposed generative
scene model are given in Fig. 4.3(b-d).
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(a) 3D person mesh (b) G1(X ,P1)

(c) G2(X ,P2) (d) G3(X ,P3)

Figure 4.3 (a) 3D polygon mesh used in the generative scene model to represent an individ-
ual, where the head is modeled by a sphere and the body by a cylinder. (b-d) Synthetic depth
images for a given scene configuration X from the perspective of each sensor.

Since our generative forward model is not only a function of X , but also
of the projection matrix Pc, we incorporate the physical sensor model in
a principled way into our framework, allowing us to detect people from
arbitrary viewpoints and to easily integrate a new sensor modality.

4.2.2 Data Likelihood

Analog to POM [38] (Sect. 3.2), we assume that the views are conditionally
independent with respect to a fixed scene configuration X to make the
likelihood tractable. Since we assume that only people are part of the
foreground (cf. Fig. 4.2), and that the depth images are robust regarding
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illumination changes, this assumption can be justified. Similar to (3.29),
the likelihood factorizes as:

p(o | X ) =

C∏

c=1

p(oc | X ) . (4.13)

To model the likelihood p(oc | X ) for one depth observation, we assume
that an observation can be described by the generative scene model pro-
posed in Sect. 4.2.1 as a functional relation oc = Gc(X ,Pc). Of course,
this is a simplification which does not hold in reality for the proposed
generative scene model, e. g. due to different shapes and poses of individ-
uals as well as measurement noise. However, it allows us to employ an
effective and tractable likelihood model. To weaken this assumption we
additionally assume that the observations suffer from measurement noise,
thus an observation oc is modeled as a realization of a random variable

Oc = Gc(Ω,Pc) + η , (4.14)

where the random variable η represents the measurement noise and Ω a
random variable related to a scene configuration X . In the literature this
model is known as additive noise model [19, p. 42]. In general, detailed
modeling of the depth measurement noise of a stereo vision sensor is
challenging because several sources of uncertainty, such as image plane
quantization, geometric camera calibration, and stereo correspondences
matching, affect the final depth measurement (cf. [16, 51, 72]). For the sake
of computational feasibility, we assume additive Gaussian noise2 , thus

η ∼ N
(

0, σ2
obsI

)
. (4.15)

2 This implies the assumption that the total measurement noise η is given as a sum of many
statistically independent noise sources η = η1 + · · · + ην . If in addition the Lindeberg
condition [57, p. 355 ff.] is satisfied, the Lindeberg-Feller central limit theorem indicates
that the distribution of η approaches a normal distribution.
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Assuming a fixed scene configuration state Ω = X , the measurement
noise η and the scene configuration Ω are statistically independent η ⊥⊥ Ω

and the only randomness in Oc is the measurement noise η, yielding an
observation likelihood

p(oc | X , σobs) = N
(
oc −Gc(X ,Pc), σ

2
obsI

)

∝ exp

(
− 1

2σ2
obs
‖oc −Gc(X ,Pc)‖22

)
.

(4.16)

In [19, p. 41 ff.] detailed remarks on the likelihood construction incorpo-
rating additive noise can be found.

4.3 Continuous Latent Space

In this section we introduce the first manifestation of the general model
presented in the previous Sect. 4.2. The simplified probabilistic model
proposed in this section serves two main purposes. On the one hand,
it provides an introductory model, for which it is fairly easy to derive
the MAP objective and get a point estimate by solving the resulting non-
linear least-squares optimization problem (Sect. 5.1.1). On the other hand,
the resulting gradient-based inference can be used as a fine-tuning post-
processing step in combination with the discrete model and inference
methods proposed in Sect. 4.4 and Sec. 5.2, respectively.

For the sake of simplicity, we assume that the number of people m
in the scene is known a priori. Once m is fixed, a scene configuration
X in the continuous latent space can be formally defined as an m-tuple
X = (x̌1, . . . , x̌m) of ground plane world coordinates x̌i ∈ R2, where each
x̌i corresponds to the location of an individual. Based on the general
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joint model (4.7) and the independence assumption (4.13), we define the
posterior distribution

p(X1:T | o1:T ) =

∏T
t=1

[∏C
c=1 p

(
oc,t

∣∣ Xt
)]
p(Xt | Xt−1)p(Xt)

p(o1:T )
, (4.17)

with the definition p(X1 | X0)
def.
= 1. In comparison to the general joint

distribution (4.7), we append a prior distribution p(Xt) to (4.17), enabling
the incorporation of a-priori scene knowledge. The data likelihood at one
time step

∏C
c=1 p

(
oc,t

∣∣ Xt
)

is identical to the general model as introduced
in Sect. 4.2.2. For inference in continuous latent space we are only inter-
ested in the MAP state, therefore we refrain from further consideration
of the evidence p(o1:T ) in this section. The two remaining terms, namely
the dynamics model p(Xt | Xt−1) and the prior p(Xt), are defined in the
following.

4.3.1 Dynamics Model

We employ a dynamics model to express the relation between two consecu-
tive scene configurations. It is assumed that the movements of individuals
are independent of each other, thus the dynamics term factorizes over the
individual person locations x̌i,t,

p(Xt | Xt−1) =

m∏

i=1

p
(
x̌i,t

∣∣ x̌i,t−1

)
. (4.18)

Since we assume only small movements of persons between two consecu-
tive frames, we do not consider the velocity of individuals, but employ a
first-order motion model. Hence, it is assumed that a person location at
time step x̌i,t is a noisy version of its predecessor x̌i,t−1. To further sim-
plify the inference on this model, we assume that x̌i,t is normal distributed
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around x̌i,t−1. Thus the dynamics distribution for an individual person
location x̌i,t is given as

p
(
x̌i,t

∣∣ x̌i,t−1,Σ
)

= N
(
x̌i,t

∣∣ x̌i,t−1,Σ
)
. (4.19)

In Sect. 5.1.1 it turns out that this simplified Gaussian dynamics model
leads to an effective and tractable objective for MAP inference. For a broad
discussion of motion models in the context of people tracking we refer to
Fleet [37].

4.3.2 A Priori Assumptions

To incorporate given knowledge of the underlying scenario, we add prior
terms to further restrict the set of likely scene states. For a scene configura-
tion at one time step Xt we employ two independent prior assumptions,
pbox(Xt) and pdist(Xt), with p(Xt) = pbox(Xt)pdist(Xt). Since the prior
terms are independent of the current time step, we omit the time index t
in this section.

The first prior term pbox(X) reflects our knowledge of the visible ground
plane (which can be inferred by the sensor network calibration, cf. 4.1.1).
We model this knowledge by assuming that a person location x̌i is uni-
formly distributed in the observable rectangular area,

pbox(X) =

m∏

i=1

p(x̌i) (4.20)

with

p(x̌i) = U(x̌min, x̌max) , (4.21)

where U(x̌min, x̌max) is the uniform distribution over the approximated
rectangular area. In consequence the probability p(x̌i) is zero for x̌i being
outside of the observable area.
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The second prior can be motivated by the interpersonal distance. De-
pending on the social context, two individuals in general keep a certain
distance to each other in order to preserve their private space. We therefore
consider the distance between all possible pairs of individuals in the scene.
Formally, the distance prior factorizes over all possible pairs of person
locations

pdist(x̌1, . . . , x̌m) =

m−1∏

i=1

m∏

j=i+1

p(x̌i, x̌j) . (4.22)

Modeling the joint probability between two locations as a zero mean
normal distribution with respect to the inverse distance

d(x̌i, x̌j) =
1∥∥x̌i − x̌j
∥∥

2
+ ε

, (4.23)

we can write the pairwise joint probability as the unnormalized pseudo
distribution

p̃
(
x̌i, x̌j

∣∣ σdist
)
∝ exp

(
− 1

2σ2
dist

∥∥d(x̌i, x̌j)
∥∥2

2

)
, (4.24)

with σdist being the std. deviation of the inverse distance. To calculate the
partition function this distribution needs to be defined on a finite interval.
However, this is not relevant in this case, since for this model we are
only interested in an MAP point estimate, which does not depend on the
constant normalization term anyway. In Fig. 4.4 an exemplary function
plot of the unnormalized distribution (4.24) is depicted for a fixed person
location x̌j . It is clearly recognizable that the proposed pseudo distribution
has the desired effect: the distance between two individuals x̌i, x̌j is
positive correlated to the pairwise probability density p̃

(
x̌i, x̌j

∣∣ σdist
)
.
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Figure 4.4 Exemplary surface plot (a) and contour plot (b) for the pairwise distance prior.
The unnormalized density p̃

(
x̌i = (x, y), x̌j = (0, 0)

∣∣ σdist = 2
)

is plotted as a function of
ground plane coordinates (x, y) with respect to a fixed individual at x̌j = (0, 0).

4.4 Discrete Latent Space

The continuous latent space, as introduced in the previous section, has
strong limitations. First, the number of people in the scene has to be known
a priori. Second, in Sect. 5.1 it turns out that the final MAP inference highly
depends on a good initialization due to the underlying gradient based
continuous optimization. To overcome these mentioned shortcomings,
we propose a discrete scene configuration space. Similar to Fleuret et al.
[38], the basic idea is to model the ground level plane as a discrete grid,
where each grid cell can either be occupied by a person or be empty. In
the robotic community, the general concept of a discrete grid of binary
occupancy states is also referred to as an occupancy map (cf. Thrun [94]). In
contrast to the continuous latent space model, and as a direct consequence
of the occupancy map, there is no need to explicitly model the number
of individuals in the scene to define a latent space of fixed dimensions.
Moreover, the discrete scene configuration space allows us to define a prob-
abilistic model in which approximate inference can be obtained effectively
by mean-field variational inference (cf. Sect. 5.2). For the formal definition
of the discrete probabilistic model, the ground plane area is discretized
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4 Probabilistic Model

Figure 4.5 Discrete ground plane grid, projected into all three sensor views. Each grid
location (turquoise point) is associated with one Bernoulli random variable Xi,t, reflecting if
a person is occupying the grid cell at time step t.

into a 2D-grid of n locations (see Fig. 4.5). Each grid location ui will be
assigned a realization xi,t of a Bernoulli random variable Xi,t ∼ B(µi,t),
where µi,t denotes the probability of a person present at location ui at
time step t with 1 ≤ t ≤ T . The scene configuration for one time step t

is then given as the vector xt = (x1,t, . . . , xn,t)
ᵀ ∈ {0, 1}n (cf. POM [38],

Sect. 3.2.1).
Following the assumptions of the general probabilistic model defined in

Sect. 4.2, the joint distribution for a sequence of discrete scene configura-
tions x1:T is given as

p(x1:T ,o1:T ) =

T∏

t=1

C∏

c=1

p
(
oc,t

∣∣ xt
)
p(xt | xt−1) , (4.25)

with p(x1 | x0)
def.
= 1. As a direct consequence of the joint distribution

(4.25) and the general distributions in (4.9)–(4.11), we formulate three
distributions for the discrete model: (i) the data posterior distribution,
which omits the temporal context; (ii) the full posterior distribution; and
(iii) the recursively defined Bayesian filtering distribution. For all three
distributions we propose approximate inference methods in Sect. 5.2.

(i) Data posterior p(xt | ot) Omitting the temporal relationship between
consecutive scene states, the data posterior distribution allows us
to express the likeliness of a scene configuration xt, given the ob-
servations from all sensors at one time step ot. Assuming that the
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4.4 Discrete Latent Space

prior for a scene configuration factorizes as p(x) =
∏n
i=1 p(xi), the

posterior distribution is defined as

p(xt | ot) =

∏C
c=1 p

(
oc,t

∣∣ xt
)∏n

i=1 p
(
xi,t
)

∑
x
′∈{0,1}n

∏C
c=1 p

(
oc,t

∣∣ x′
)∏n

i=1 p
(
x′i
) . (4.26)

The data likelihood follows directly from the general model defined
in Sect. 4.2.2.

(ii) Full posterior p(x1:T | o1:T ) The full posterior takes all observations
from time steps 1, . . . , T into account and models the likeliness of a
path of scene configurations x1, . . . ,xT . The full posterior is given
as

p(x1:T | o1:T ) =

∏T
t=1

∏C
c=1 p

(
oc,t

∣∣ xt
)
p(xt | xt−1)

p(o1:T )
, (4.27)

with p(x1 | x0)
def.
= 1. In addition to the data posterior, the full poste-

rior includes a state transition distribution p(xt | xt−1) which rep-
resents the evolution of scene configuration states over time. The
underlying probabilistic dynamics model is defined in Sect. 4.4.1.
Note that the full posterior is hard to compute in real-world sce-
narios since the complexity grows with the number of time steps.
However, during inference it can serve as a baseline for comparison
with the recursively defined filtering distribution and can find its
application in scenarios where offline batch processing3 is viable.

(iii) Bayesian filtering distribution p(xt | o1:t) In contrast to the full pos-
terior, the filtering distribution models the likeliness of the current
scene configuration state xt, given all observations o1:t up to time
t. Applying the Bayesian filtering framework allows the recursive
definition of the filtering distribution, where the past is condensed

3 In this context batch processing refers to a detection method taking a sequence of frames
as input rather than operating in a typical frame-by-frame manner.
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4 Probabilistic Model

in the filtering distribution p(xt−1 | o1:t−1) from the previous time
step (as described in Sect. 4.2). Applying (4.11) from the general
model, the filtering distribution for the discrete scene configuration
space is given as

p(xt | o1:t) =
p(ot | xt)p(xt | o1:t−1)

p(ot | o1:t−1)
, (4.28)

with the predictive distribution

p(xt | o1:t−1) =
∑

xt−1∈{0,1}n
p(xt | xt−1) · p(xt−1 | o1:t−1)︸ ︷︷ ︸

previous filtering dist.

.

(4.29)

4.4.1 Grid Dynamics Model

The complete construction of the distributions over space and time (4.27),
(4.28), requires the definition of a state transition model p(xt | xt−1) that
describes the evolution of scene configurations over time. In this work we
do not focus on tracking but on leveraging the temporal context to regu-
larize the mean-field optimization (see Sect. 5.2). Therefore, we propose a
grid based dynamics model, without modeling the explicit motion of ob-
jects. This leads to a computationally convenient model which represents
the flow of probability mass across space and time.

Computationally feasible inference can be achieved by assuming condi-
tional independence of individual grid cell states xt,i, given the previous
state xt−1. Hence, the state transition distribution factorizes as

p(xt | xt−1) =

n∏

j=1

p
(
xj,t

∣∣ xt−1

)
. (4.30)

This assumption is limiting the expressiveness of our model significantly
because it prevents from modeling the relationship between grid cells at
the current time step t. This can be illustrated by the following example.
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xt−1

xj,t

p
(
xj,t

∣∣ xt−1

)

Figure 4.6 Schematic illustration of the transition distribution p
(
xj,t

∣∣ xt−1

)
. For an exem-

plary grid cell uj the probability p
(
xj,t

∣∣ xt−1

)
(right image, red marked cell) is defined as a

weighted sum over the transitions from all grid cells occupied in the previous time step (left
image, yellow grid cells).

Consider a person present at grid location uk at time step t− 1, moving
to grid location ui or uj in the next time step t. Regarding the factor-
ization (4.30) it is only possible to assign two independent probabilities,
p
(
xi,t

∣∣ xt−1

)
for the person present at grid location ui and p

(
xj,t

∣∣ xt−1

)

for the person present at grid location uj , respectively. However, it is not
possible to express that the person moves to either grid location ui or uj
but cannot occupy both grid cells at time step t. To be able to model the
joint probability p

(
xi,t, xj,t

∣∣ xt−1

)
at least a pairwise factorization of (4.30)

is required, thus p(x | xt−1) =
∏
j∼i p

(
xi,t, xj,t

∣∣ xt−1

)
, with j ∼ i denoting

all pairwise direct neighbor indices. However, such an assumption would
strongly increase the complexity of our model, leading to a computation-
ally intensive inference problem, despite the mean-field approximation
introduced in Sect. 5.2. Therefore, we leave this as an open question for
future work and stick to the simplification (4.30) for this work.

Considering the transition distribution (4.30) we need to define the
probability p

(
xj,t

∣∣ xt−1

)
of a person present at a grid cell uj at time step

t, given the previous scene configuration state xt−1. As illustrated in
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Fig. 4.6, the basic idea is to express the distribution p
(
xj,t

∣∣ xt−1

)
as a

weighted sum of the transitions from all previous xi,t−1 being in state one
(meaning that a person is present). The desired probability distribution is
formally derived by first adding a hidden latent auxiliary variable to the
joint model and then marginalizing over this variable4. More precisely, we
first introduce an auxiliary latent random variable Z to the distribution
p
(
xj,t

∣∣ xt−1

)
, indicating the presence of a single individual in the previous

state. Second, we marginalize over Z to express p
(
xj,t

∣∣ xt−1

)
as a sum

over all transitions from grid cells occupied in the previous state xt−1.
Let Z be a one-hot-encoded random variable with the realizations being

z = (z1, . . . , zn)ᵀ with zk ∈ {0, 1}, such that
∑n
k=1 zk = 1. Further, let

p(zk = 1) refer to the probability of a realization z with exactly one non-
zero element zk. As a consequence of the one-hot encoding the distribution
of z can be written as

p(z) =

n∏

k=1

p(zk)
zk , (4.31)

with the definition 00 def.
= 1. For the ease of notation we introduce weighting

coefficients wk ∈ [0, 1] with
∑n
k=1 wk = 1 such that p(zk = 1) = wk, thus

(4.31) can be rewritten as

p(z) =

n∏

k=1

w
zk
k . (4.32)

Introducing z to the distribution p
(
xj,t

∣∣ xt−1

)
leads to the joint distribu-

tion

p
(
xj,t, z

∣∣ xt−1

)
= p
(
xj,t

∣∣ z,xt−1

)
p(z | xt−1) . (4.33)

4 This principle is well know in probabilistic modeling, e. g. a similar technique is used for
mixture of experts models (cf. Barber [11, p. 448 ff.], Murphy [70, p. 344 ff.]).
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Semantically zk is equal to one if a person is present at cell uk in the
previous scene configuration xt−1, thus xk,t−1 = 1. In consideration of the
one-hot encoding of z and (4.31) it follows

p
(
xj,t

∣∣ z,xt−1

)
=

n∏

k=1

p
(
xj,t

∣∣ zk = 1,���xt−1

)zk (4.34)

= p
(
xj,t

∣∣ zk = 1
)
, (4.35)

where we omit the conditioning on xt−1. The resulting discrete distribu-
tion p

(
xj,t

∣∣ zk = 1
)

reflects the probability of xj,t given that one particular
cell with index k is one in the previous state xt−1. Marginalization of (4.33)
with respect to z results in the mixture model

p
(
xj,t

∣∣ xt−1

)
=

∑

z∈{0,1}n:|z|=1

p
(
xj,t, z

∣∣ xt−1

)
(4.36)

=

n∑

k=1

p
(
xj,t

∣∣ zk = 1
)
p(zk = 1 | xt−1) (4.37)

=

n∑

k=1

p
(
xj,t

∣∣ zk = 1
)
· wk . (4.38)

According to the definition of the weighting coefficients wk (cf. (4.32)), the
distribution p(zk = 1 | xt−1) can be interpreted as normalization weights

wk =





1

‖xt−1‖1
, if xk,t−1 = 1

0, else .
(4.39)

Finally, the probability flow depends on the definition of the transition
distribution p

(
xj,t

∣∣ zk = 1
)

in (4.38), which denotes the probability that a
person is present at location uj , given that a person was present at location
uk at the previous time step. In our setup we expect only limited move-
ment of individuals between two consecutive frames. Hence, we assume
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0.0 0.2 0.4 0.6 0.8 1.0
Probability

(a) xt−1 (b) p(x|xt−1)

(c) xt−1 (d) p(x|xt−1)

Figure 4.7 Example of proposed discrete dynamics model for two scene configurations (a,c)
with the corresponding output distributions (b,d) for µself = 0.2 and wk = 1.

individuals will either move to an adjacent grid cell with a probability of
µne, or stay at the current cell with a probability of µself (see Fig. 4.7). Let
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B(· | µ) be the probability mass function of a Bernoulli distribution with
the parameter µ, then the transition distribution is given as

p
(
xj,t

∣∣ zk = 1
)

=





B
(
xj,t

∣∣ µself
)
, if j = k

B
(
xj,t

∣∣ µne
)
, if j ∈ Nk

1− xj,t , else ,

(4.40)

with Nk being the index set of the direct neighbors of uk. We define

µne =
1− µself

|Nk|
, (4.41)

which leads to the special case where the emitted probability for one person
present at the previous time step equals to one. As a direct consequence
of the chosen transition model (4.40), which only allows movement in the
direct neighborhood, we can set

wk =





1, if xk,t−1 = 1

0, else ,
(4.42)

while (4.38) still meets the requirements of a probability mass function.
This has the additional effect that the expected number of people in the
scene with respect to the dynamics model stays constant, thus

〈‖xt‖1〉p(x|xt−1)
= ‖xt−1‖1 . (4.43)

Note that because of the normalization weights wk it is generally also
possible to use more sophisticated transition probability distributions.
In Fig. 4.7 two concrete samples of the proposed dynamics distribution
p(xt | xt−1) are given. Fig. 4.7(a),(b) show the trivial case with only one
person present at cell uj in the previous time step t− 1. According to (4.40)
the probability mass is distributed uniformly with µne = 0.1 to the direct
eight neighbors and is 0.2 at cell uj at time step t. In Fig. 4.7(c),(d) a more
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complex example with ‖xt−1‖1 = 9 persons present at the previous time
step t− 1 is presented.
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In the previous chapter we proposed different probabilistic models for
people detection in multiple depth images, introducing assumptions about
the scene and the sensor observations. In this chapter we will focus on the
probabilistic inference1 regarding those models. In Sect. 5.1 we derive the
MAP objective for the continuous model introduced in Sect. 4.3 and show
how the final non-linear least squares problem can be solved by gradient
based optimization methods. Instead of just obtaining an MAP point
estimate, in Sect. 5.2 we propose to use mean-field variational inference to
approximate the varieties of discrete probability distributions introduced
in Sect. 4.4. In contrast to the aforementioned generative probabilistic
inference methods, in Sect. 5.3 we propose a discriminatively trained multi-
view CNN architecture, allowing a direct comparison between generative
and discriminative inference in Chapter 6.

5.1 Maximum a Posterior Inference in

Continuous Latent Space

In this section we present an inference method for the continuous scene
model introduced in Sect. 4.3. For discrete scene configuration space, the
proposed inference method allows the approximation of the full poste-
rior distribution. In contrast, for the continuous case we only obtain a
maximum a posterior (MAP) point estimate. As defined in Sect. 4.3, it is

1 Probabilistic inference refers to the task of estimating the probability distribution (or in
case of MAP inference just the mode of the distribution) of one or more latent variables,
given some evidence (observed variables).
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(a)

(b)

(c)

Figure 5.1 Optimization result for MAP objective without temporal dynamics. (a) shows
the depth observations with the synthetic depth images corresponding to the initial scene
configuration as green overlay. (b) shows the synthetic depth images corresponding to the
final MAP result as blue overlay. The initial positions are given as green dots, the intermediate
states of the optimization are drawn in purple. (c) illustrates the final optimization result
back projected into the camera image of each sensor.

assumed that the number of people in the scene is known a priori for the
continuous model. This assumption is crucial for the proposed inference
method, since it allows straight forward gradient based optimization on
the location estimates of individuals in the scene. As a consequence of this,
the proposed method is not suitable for inference in real-world applica-
tions without further pre-processing (e. g. estimating the number of people
in the scene by a coarse person detection method). Still, it can be seen as a
complementary method to the proposed discrete inference method, since
it effectively enables fine-tuned discrete person localization (cf. Sect. 6.6,
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in particular Fig. 6.20). In the following we first derive the MAP objective
(Sect. 5.1.1) and subsequently focus on practically solving the resulting
non-linear least squares optimization problem (Sect. 5.1.2). In Fig. 5.1 an
exemplary optimization process for one multi-view frame is depicted.

5.1.1 MAP Objective

With respect to the continuous probabilistic model defined in (4.17), the
maximum a posteriori (MAP) objective is to estimate a sequence of scene
configurations X̂1:T , which most likely explains the sequence of observa-
tions o1:T . According to (4.17) the posterior distribution can be restated
as

p(X1:T | o1:T ) ∝
T∏

t=1

[
C∏

c=1

p
(
oc,t

∣∣ Xt
)
]

︸ ︷︷ ︸
data likelihood

p(Xt | Xt−1)p(Xt) . (5.1)

The mode of p(X1:T | o1:T ) is referred to as the maximum a posterior scene
configuration. In consequence the MAP objective is formally given as

X̂1:T = arg max
X1:T

p(X1:T | o1:T ) (5.2)

= arg max
X1:T

log

(
T∏

t=1

[
C∏

c=1

p
(
oc,t

∣∣ Xt
)
]
p(Xt | Xt−1)p(Xt)

)
,

(5.3)

where in (5.3) we substituted the logarithm of (5.1). Applying the product
rule of logarithms (5.4) and inserting the data likelihood and the dynam-
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ics model (5.5), we can recast the objective as a non-linear least squares
optimization problem

X̂1:T = arg max
X1:T

T∑

t=1

C∑

c=1

log
(
p
(
oc,t

∣∣ Xt
))

+

T∑

t=1

log(p(Xt | Xt−1))

+

T∑

t=1

log(p(Xt)) (5.4)

= arg min
X1:T

T∑

t=1

C∑

c=1

‖oc −Gc(Xt,Pc)‖22 +

T∑

t=2

‖Xt − Xt−1‖22

+

T∑

t=1

Ebox
t +

T∑

t=1

Edist
t

︸ ︷︷ ︸
regularization

, (5.5)

where the terms Ebox, Edist in (5.5) correspond to the box prior and the
distance prior defined in (4.20) and (4.22) respectively. Since the likelihood
and prior terms defined in (4.13) and (4.20, 4.22) only depend on the scene
configuration Xt at a single time step, they are aggregated as a sum over
each time step t.

From an optimization perspective, the prior terms act as regularization
terms, restricting the set of possible scene configurations. The term Ebox

penalizes person locations x̌ outside of the observable area. Continu-
ous numerical optimization methods require differentiable energy terms.
Therefore, we approximate the box penalty by a function which is zero for
person locations in the observable area and increases with the distance to
the border of the observable area. Let x̌νi be ν-th component of x̌i,t, then
the box penalty is given as

Ebox
t =

m∑

i=1

∑

ν∈{1,2}
[max(x̌νmin − x̌νi , 0) + max(x̌νi − x̌νmax, 0)]2 , (5.6)

where x̌min, x̌max denote the borders of the observable area.
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The distance energy term is a direct result of the prior proposed in
(4.22), with an additional max function, which assigns costs to all pairwise
distances smaller than κ = 1 m:

Edist
t =

m−1∑

i=1

m∑

j=i+1

[
max

(
d(x̌i,t, x̌j,t)−

1

κ
, 0

)]2

. (5.7)

We introduce the weighting parameters λtemporal, λbox, λdist ∈ R+ to
balance the impact of the individual energy terms. The final non-linear
least-squares objective for estimating the MAP path of scene configurations
X1:T given a sequence of observations o1:T (cf. posterior distribution
(4.17)) is given as:

X̂1:T = arg min
X1:T

T∑

t=1

C∑

c=1

‖oc −Gc(Xt,Pc)‖22
︸ ︷︷ ︸

data likelihood

+λtemporal

T∑

t=2

‖Xt − Xt−1‖22
︸ ︷︷ ︸

temporal dynamics

+ λbox

T∑

t=1

Ebox
t + λdist

T∑

t=1

Edist
t

︸ ︷︷ ︸
a priori assumptions

.

(5.8)

The temporal dynamics term connects a scene configuration Xt with the
preceding scene configuration Xt−1, enabling joint optimization of the
scene configurations X1:T . The dynamics term can be interpreted as a
temporal smoothing term, ensuring temporally consistent scene configura-
tions. In fact, qualitative experiments (Sect. 6.6.2) show that this smoothing
property can effectively prevent the optimization from getting stuck in a
local minimum.
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For single frame inference the temporal term can be dropped and the
objective for a scene configuration at a single time step trivially follows
from the full objective (5.8):

X̂t = arg max
Xt

p(Xt | ot)

= arg min
Xt

C∑

c=1

‖oc −Gc(Xt,Pc)‖22 + λboxE
box
t + λdistE

dist
t .

(5.9)

5.1.2 Optimization

Estimating the MAP sequence of scene configurations is obtained by nu-
merically solving the non-linear least squares (NLLSQ) objective (5.8),
using a continuous optimization method. In this work we use the iterative
NNLSQ solver dogleg [76, 77]. Dogleg is a trust-region method, combining
the Gauss-Newton algorithm with gradient descent. Notice that our ob-
jective does not depend on a specific solver, thus one could also use other
NLLSQ solving methods, such as the well-known Levenberg–Marquardt
algorithm. For a comprehensive discussion on NLLSQ solving methods
we refer to [71, p. 254 ff.].

Of-the-shelf gradient based NLLSQ methods require that each part of
the objective has to be differentiable. Regarding the objective (5.8) this
is the case for the regularization terms. The crucial part of (5.8) is the
data likelihood term ‖oc −Gc(Xt,Pc)‖22 (cf. residual images in Fig. 5.2).
Calculating the gradients for every output pixel with respect to Xt requires
differentiating the generative scene model function Gc(Xt,Pc), which
maps a scene configuration Xt to its corresponding synthetic depth image
(cf. Sect. 4.2.1). More precisely this involves the calculation of the partial
derivatives for every output pixel Gc,j(Xt,Pc) with respect to each scene
configuration variable Xt = (x̌1, . . . , x̌m)ᵀ = (x̌1,1, x̌1,2, . . . , x̌m,1, x̌m,2)ᵀ ∈
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(a) Iteration 0 (initial state)

(b) Iteration 4

(c) Iteration 8

(d) Iteration 12

(e) Iteration 16

Figure 5.2 Residual images showing the optimization process for a single time step. Each
column corresponds to one sensor c and each row to an optimization iteration. The images
show the normalized per-pixel error ‖oc −Gc(Xt,Pc)‖

2
2, where black pixels correspond to

the minimal and white pixels to the maximal error.
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R2m. Formally the desired partial derivatives are given as the Jacobian
matrix

Jc,t =
∂Gc
∂Xt

=
∂Gc

∂(x̌1,1, x̌1,2, . . . x̌m,2)
=




∇ᵀGc,j
...

∇ᵀGc,R


 (5.10)

with R being the number of depth pixels and the row vector∇ᵀGc,j being
the gradient of the depth value of the j-th pixel, computed by the render-
ing function. However, by virtue of discontinuities typically occurring
at the boundary of objects due to occlusion, the rendering pipeline is in
general not differentiable. To overcome this challenge we employ the
approximative differentiable renderer framework OpenDR [68]. OpenDR
approximates the partial derivatives of the rendering pipeline with respect
to some input variables of the rendering process. By approximating the
Jacobian matrices Jc,t with OpenDR and using automatic differentiation
(cf. [44]) for the other terms, one can use of-the-shelf NLLSQ solver im-
plementations to optimize the objective defined in (5.8). In Fig. 5.2 the
gradient based optimization progress for a single multi-view frame in
terms of residual images is depicted.

A drawback of the proposed gradient based approach is the dependence
of the optimization result on the initialization. If the initial scene con-
figuration corresponds to generated depth images where the individual
renderings do not have any overlap with the observed image data, the
gradients for those individuals will be zero. In consequence the optimiza-
tion potentially gets stuck in a local minimum around the initialization
state. Fig. 5.1(a) depicts an example where the initial 3D person renderings
share some overlap with the observations. We soften the dependence on a
particular initialization by applying a typical coarse to fine strategy. For
an improved convergence behavior, the data error term is calculated for
six layers of a Gaussian image pyramid.
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While the coarse to fine strategy improves the convergence behavior, the
proposed MAP approach still depends on a good initialization. Moreover,
for inference prior knowledge about the number of people present in the
scene is assumed (cf. Sect. 4.3). Both arguments emphasize that the MAP
approach is suited for the refinement of a pre-existing scene configuration
initialization, rather than providing people detection from scratch. In the
evaluation (Sect. 6.6) it is shown that the proposed MAP method can be
effectively used to fine-tune discrete detections obtained by mean-field
variational inference (Sect. 5.2).

5.2 Mean-Field Variational Inference in Discrete

Latent Space

In this section we introduce the main contribution of the present thesis.
We propose approximate inference methods for the discrete scene configu-
ration space introduced in Sect. 4.4. Based on the mean-field variational
inference (MF-VI) method described in Sect. 3.1, we deduce the mean-
field update equations to effectively approximate the desired probability
distributions defined in Sect. 4.4. For better comprehensibility we first
omit the temporal context and start with applying mean-field variational
inference to the posterior for one time step (4.26) in Sect. 5.2.1. Building
on these foundations, we extend the mean-field update equations in order
to approximate the Bayesian filtering distribution (4.28). In Sect. 5.2.3, we
finally deduce the mean-field update regulations in order to effectively
approximate the full joint posterior distribution (4.27) of people present in
the scene across space and time.

5.2.1 Data Posterior Distribution

In this section we propose a probabilistic inference method for the dis-
crete posterior distribution p(xt | ot) (4.26) at a single time step t. Inspired
by POM [38] (cf. Sect. 3.2), we employ mean-field variational inference
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(cf. Sect. 3.1.3) to effectively approximate the desired discrete distribution
p(xt | ot) (4.26). First, we derive the corresponding mean-field update
equations in detail. In Sect. 5.2.1.1 we introduce an approximation for the
deduced update expectations, enabling an iterative mean-field optimiza-
tion algorithm for real-world applications. Note that this section is an
extension of work previously published [108, Ch. 3] by the author.

Since we only consider the observations at one time step in this section,
we omit the time index t for ease of notation and restate the distribution
(4.26) of a scene configuration x given the observations o as

p(x | o) =

∏C
c=1 p(oc | x)

∏n
i=1 p(xi)∑

x
′∈{0,1}n

∏C
c=1 p

(
oc
∣∣ x′
)∏n

i=1 p
(
x′i
) . (5.11)

Due to the high dimensional scene configuration space {0, 1}n, the parti-
tion function (evidence) in the denominator of (5.11) is intractable, and
we cannot directly compute the posterior distribution. Instead, we apply
Kullback-Leibler variational inference (cf. Sect. 3.1.2) to approximate the
inconvenient distribution p(x | o) by a simpler proxy distribution q(x).
Following the reasoning given in Sect. 3.1.2, we propose to use the reverse
KL-divergence. Thus the objective for optimizing q(x) can be expressed as

q̂(x) = arg min
q

KL(q(x) ‖ p(x | o))

= arg min
q
〈log q(x)− log p(x | o)〉q(x) .

(5.12)

As elaborated in Sect. 3.1.3, a family of probability distributions (q-family)
for the proxy distribution q(x) has to be defined. According to Sect. 3.1.3
(3.19), we apply the naive mean-field assumption, which states that q(x)

is a product over its marginal probabilities

q(x) =

n∏

i=1

qi(xi) . (5.13)

74



5.2 Mean-Field Variational Inference in Discrete Latent Space

Fig. 5.3(a) shows an exemplary mean-field state q(x). Note that the mean-
field assumption does not imply that the grid states x1, . . . xn in our model
are assumed to be independent of each other. It is only a statement of the
structure of the proxy distribution, which effects the iterative optimization
schema. In order to deduce the mean-field update regulations a probability
distribution over all x except of one single element xi has to be defined
(cf. Sect. 3.1). Let q(x \ xi) denote the mean-field distribution excluding
the element xi,

q(x \ xi) =

n∏

j=1:j 6=i
qj(xj) . (5.14)

According to Sect. 3.1.3 (3.26), the general mean-field equations

qi(xi) ∝ exp
(
〈log p(x | o)〉q(x\xi)

)
(5.15)

update a single marginal distribution qi(xi) depending on the previous
mean-field state q(x \ xi). In Sect. 3.1.3 it is deduced that updating qi(xi)
asynchronously according to (5.15) will decrease the KL divergence in
(5.12) (see also Barber [11, 625 ff.]). Since each xi is Bernoulli distributed,
(5.15) for xi being in state 1, can be written as

qi(xi = 1) =
1

Zi
exp
(
〈log p(o,x | xi = 1)〉q(x\xi)

)
(5.16)

with the partition function

Zi =
∑

s∈{0,1}
exp
(
〈log p(o,x | xi = s)〉q(x\xi)

)
. (5.17)

Considering that the posterior is proportional to the joint distribution
p(x | o) ∝ p(o,x), we could substitute the posterior distribution p(x | o)

in the inner expectation of (5.15) by the joint distribution p(o,x), while the
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Figure 5.3 (a) Exemplary mean-field distribution q(x), where each grid cell corresponds to
one marginal probability qi(xi = 1). (b) Mean-field update for one marginal distribution
qi(xi = 1) (5.19) as a function of the expected value Ψi .

normalization byZi (5.17) ensures that (5.16) still satisfies the requirements
of a probability mass function.

Applying the equality e
x

e
x
+e

y = 1

1+e
y−x to (5.16) leads to the simplifica-

tion

qi(xi = 1) =

[
1 + exp

(
〈log p(o,x | xi = 0)〉q(x\xi)

− 〈log p(o,x | xi = 1)〉q(x\xi)

)]−1

.

(5.18)

Using the linearity of expectation and the quotient rule of the logarithm
we can rearrange (5.18) to

qi(xi = 1) =




1 + exp




〈
log

p(o,x | xi = 0)

p(o,x | xi = 1)

〉

q(x\xi)︸ ︷︷ ︸
Ψi







−1

, (5.19)

with Ψi being the mean-field expectation related to a marginal distribution
qi(xi = 1).
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5.2 Mean-Field Variational Inference in Discrete Latent Space

In Fig. 5.3(b) the mean-field update for one marginal distribution qi(xi =

1) is plotted as a function of the expectation Ψi . Studying (5.19) and
Fig. 5.3(b) already reveals the basic idea of an iterative mean-field update.
The update of the probability of a person being present at location ui
(hence xi = 1) increases as the expected value of the log ratio p(o,x|xi=0)

p(o,x|xi=1)

decreases. Considering the expectation with respect to the current mean-
field state q(x \ xi), the numerator reflects the probability of the grid
location ui being not occupied by a person, while the denominator reflects
the probability of the grid location ui being occupied. The correlation
between the binary states of a scene configuration is taken into account
as the expectation with respect to the current mean-field state q(x \ xi),
which evolves over optimization iterations. Informally, (5.19) answers
the following question: Considering the observations o and the current
mean-field state, is the presence of a person at location ui more likely than
the non-presence?

Given this basic intuition for an update of a distribution q(x \ xi), we
further continue with formally deducing the final mean-field equations.
Inserting the probabilistic model defined in (4.16) and (4.26), the uncondi-
tioned expectation in (5.19) can be expressed as

〈log p(o,x)〉q(x\xi)
= 〈log p(o | x)p(x)〉q(x\xi)

=

〈
−

C∑

c=1

1

2σ2
obs
‖oc −Gc(x)‖22

︸ ︷︷ ︸
δ(oc,Gc(x))

+ log p(x)

〉

q(x\xi)

= −
C∑

c=1

〈δ(oc, Gc(x))〉q(x\xi)
+ 〈log p(x)〉q(x\xi)

,

(5.20)

with the image similarity function

δ(I1, I2) =
1

2σ2
obs
||I1 − I2||22 . (5.21)
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Conditioning (5.20) on xi = {0, 1}, inserting into (5.19) and making use
of the linearity of expectation allows us to restate the final asynchronous
mean-field update as

qi(xi = 1) =

[
1 + exp

(
τi +

C∑

c=1

Ψc,i

)]−1

, (5.22)

with the data expectation for one sensor given as

Ψc,i = 〈δ(oc, Gc(x|xi=1))− δ(oc, Gc(x|xi=0))〉q(x\xi)
, (5.23)

as well as the prior term τi. Based on the independence assumption
p(x) =

∏n
i=1 p(xi) in (5.11) the prior term simplifies to

τi =

〈
log

p(x | xi = 0)

p(x | xi = 1)

〉

q(x\xi)

= log
1− p(xi = 1)

p(xi = 1)
. (5.24)

Note that Gc(x|xi = 1) maps a scene configuration x to a synthetic depth
image in the perspective of sensor S c with xi forced to 1 (cf. Fig. 5.4).

Fig. 5.4 depicts synthetic images and observations of three sensors, com-
pared in expectation Ψc,i (5.23). For the calculation of Ψc,i these synthetic
images need to be generated and compared with the observations for
every possible scene configuration state. The images in Fig. 5.4 correspond
to an exemplary scene configuration x. Studying one row 5.4 (a-c) corre-
sponding to sensor S 1, the expectation (5.23) gets more accessible. For a
given scene configuration x, weighted with the current mean-field state
q(x \ xi), the observation o1 is compared with a synthetic image with xi
forced to one (G1(x|xi = 1)) and then compared with xi forced to zero
(G1(x|xi = 0)). The difference of both image comparisons reflects the
likeliness of a person occupying cell ui under the scene configuration x

and given the observation o1.
Following the argument given in Fleuret et al. [38], one can also see

how occlusion is handled implicitly: If the forward-model projection of
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(a) G1(x|xi = 1) (b) G1(x|xi = 0) (c) o1

(d) G2(x|xi = 1) (e) G2(x|xi = 0) (f) o2

(g) G3(x|xi = 1) (h) G3(x|xi = 0) (i) o3

Figure 5.4 Illustration of synthetic images and observations compared in the expectation
Ψc,i for one scene configuration x. Each row corresponds to one sensor S c. The red dashed
rectangle illustrates the bounding box corresponding to the rendering of a person present at
location ui. The scene configuration x shown here is zero for every grid location except for
two neighbors of ui.

a person located at ui is occluded by a projection of a person with a high
probability of occupancy, the value of xi does not affect the image distance
δ(oc, Gc(x|xi = s)). Thus, the expectation Ψc,i in (5.23) converges to zero
and the corresponding marginal distribution qi equals the prior.

5.2.1.1 Approximate Mean-Field Update

In spite of the mean-field assumption, (5.22) is still intractable due to
the expectation Ψc,i = 〈·〉q(x\xi)

(5.23), which requires to calculate a sum
over all possible 2n−1 scene configuration states x \ xi ∈ {0, 1}n−1. We
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approximate the expected value Ψc,i considering only the relevant subset
of scene configurations. Therefore, we exploit the fact that the difference

δ(oc, Gc(x|xi = 1))− δ(oc, Gc(x|xi = 0)) (5.25)

only depends on the pixels belonging to the silhouette of the projection
of the 3D model at location ui (cf. Fig. 5.4). For a simpler and faster
implementation, we approximate the region of belonging pixels by the
corresponding axis-aligned rectangular bounding boxes, given as Ic[ui]
(red rectangle in Fig. 5.4). Only scene configurations, for which the pixel
values inside the bounding box Ic[ui] of the generated image Gc(x) are
affected, need to be evaluated for the expectation Ψc,i in (5.22). We assume
that only the projections of the direct eight neighbors of a grid location
ui intersect with the bounding box Ic[ui] (cf. Fig. 5.5). For our top-view
setup this is a valid assumption. However, for a frontal view setup, a
more sophisticated approximation would be preferable. Consequently, we
can approximate the expectation Ψc,i by the reduced neighborhood scene
configuration x̃i ∈ {0, 1}8. Since the local neighborhood (including xi)
allows only 29 = 512 possible local scene configurations, the expectation
can be approximated efficiently.

Instead of the image distance δ(·, ·) derived from the data likelihood in
Sect. 4.2.2, we introduce a weighted asymmetric image similarity δasym(o, g)

between a foreground segmented observation o and a generated image g.
Since there is no need to compute the derivative of the distance function in
the mean-field optimization, we replace the squared L2-norm by the more
robust L1-norm. Let M : RW×H 7→ {0, 1}W×H be a threshold function
which maps an image to its binary foreground mask, M(i) = 1 −M(i)

its inverse and � the Hadarmard product between two images. The
asymmetric image similarity is given as

δasym(o, g) =α
∥∥o�M(g)

∥∥
1

+ (2− α)
∥∥g �M(o)

∥∥
1

+ ‖(o− g)�M(o)�M(g)‖1 ,
(5.26)
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(a) (b) G1(x̃i) (c) o1

(d) (e) G2(x̃i) (f) o2

Figure 5.5 Illustration of direct neighborhood of a grid cell ui for sensor 1 (a-c) and sensor
2 (d-f). (a,d) show the direct grid neighbors in turquoise and the grid location ui in yellow,
respectively. (b,e) show the synthetic images where every element in the neighborhood scene
configuration x̃i is set to one. (c,f) show the corresponding depth observations. The red
dashed rectangle shows the bounding box Ic[ui] corresponding to the rendering of a person
present at location ui in sensor S c.

with the design parameter α ∈ [0, 2].
In Fig. 5.6 the asymmetric image similarity is graphically illustrated,

including the masks of three disjoint cases o�M(g), g�M(o) and M(o)�
M(g), respectively. For α = 1 the image similarity δasym(o, g) is identical
to the L1-norm ‖o− g‖1. For α > 1 observed depth pixels which are not
explained by the generative scene model o�M(g) will be penalized more
strongly (cf. blue mask in Fig. 5.6(d)). Let further

δxi=s
=

1

2σ2
obs
δasym(oc[ui], Gc(x̃i|xi = s)[ui]) (5.27)
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(a) o (b) g

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
L1 error / m

(c) ‖o− g‖1 (d)

Figure 5.6 Illustration of different error terms occurring in the asymmetric image similarity.
(a,b) show an exemplary observation and synthetic depth image used as input for the
image similarity δasym(o, g) (5.26). (c) depicts the L1-norm residual image, where purple
corresponds to a low error and yellow to a high error, respectively. (d) shows the masks used
in (5.26) as colored overlay, whereas blue corresponds to o�M(g), green to g �M(o) and
purple to M(o)�M(g), respectively.
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be the image similarity restricted to the cropped image region Ic[ui]. Then
the approximated expectation can be written as

Ψ̃c,i =
1

|Ic[ui]|
〈
δxi=1 − δxi=0

〉
q(x̃i)

. (5.28)

Additionally, we normalize the expectation with respect to the size
(number of pixels) of the image slice |Ic[ui]|, to account for the viewpoint
dependent size of a bounding box. In order to efficiently compute (5.28),
we propose to pre-build for each ui a visual dictionary2 of image slices
Ic[ui] for all 512 possible local scene configurations x̃i.

5.2.1.2 Optimization Details

According to Sect. 3.1.4 the final mean-field updates can be executed
asynchronously or synchronously. In an asynchronous mean-field update
iteration, the individual qi(xi)’s are updated sequentially, whereas, in a
synchronous update iteration, all the qi(xi) are updated simultaneously,
using the same previous mean-field state q(x \ xi). To avoid oscillating
effects during the optimization we use the asynchronous coordinate-ascent
variational inference (CAVI) method as listed in Algorithm 1 in Sect. 3.1.4.
Hence, the probability for each qi(xi) will be updated asynchronously
with respect to the previous mean-field state q(x \ xi) according to the
final update equation

qi(xi = 1) =

[
1 + exp

(
τi +

C∑

c=1

Ψ̃c,i

)]−1

. (5.29)

An exemplary CAVI mean-field optimization with four iterations is de-
picted in Fig. 5.7.

2 In this context the visual dictionary refers to a pre-computed list of synthetic depth image
slices, enabling efficient computation of the expectation Ψ̃c,i .
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0.0 0.2 0.4 0.6 0.8 1.0
Probability

Iteration 1 Iteration 2 Iteration 3 Iteration 4

(a)

(b)

Figure 5.7 Mean-field results for one exemplary multi-view frame. (a) shows mean-field
state q(x), given as a probability map of the marginals, at every iteration. (b) illustrates the
final mean-field optimization results q̂(x), back projected into each sensor view as probability
maps.

5.2.2 Bayesian Filtering

In this section we extend the mean-field approach introduced in the previ-
ous section by taking the history of consecutive observations into account.
As introduced in the previous section we use the mean-field assumption
to approximate the filtering distribution. However, instead of just approxi-
mating the data posterior p(xt | ot) at a single time step, in this section we
approximate the Bayesian filtering distribution p(xt | o1:t) (4.28), incorpo-
rating the previous observations. Since the desired distribution is defined
recursively (cf. (4.11)), the past state is condensed in the previous filtering
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distribution p(xt−1 | o1:t−1) . In practice, we use the final result from the
last mean-field optimization q̂(xt−1) as an approximation of the previous
filtering distribution. In consequence, each mean-field update directly
depends on the approximated marginal distributions q̂(xt−1) from the
previous time step. Following Sect. 5.2.1 the objective is to minimize the
KL-divergence between the desired distribution p(xt | o1:t) and a proxy
distribution q(xt) ,

q̂(xt) = arg min
q

KL(q(xt) ‖ p(xt | o1:t)) . (5.30)

Following Sect. 5.2.1 we apply the naive mean-field assumption (5.13),
assuming the factorization q(xt) =

∏n
i=1 qi(xi) .

Using the general mean-field equation and applying the transforma-
tions presented in (5.15)–(5.19), the mean-field equations for the filtering
distribution are given as

qi(xi = 1) =




1 + exp




〈
log

p(o1:t,xt | xi = 0)

p(o1:t,xt | xi = 1)

〉

q(xt\xi)︸ ︷︷ ︸
Ψ

filter
i







−1

.

(5.31)

Inserting the probabilistic model from (4.28), using the linearity of expec-
tation and the equality log(abcd ) = log a

c + log b
d : a, b, c, d > 0 allows the

separation of the filtering expectation Ψfilter
i into two disjoint parts; the

already known data expectation and a predictive expectation

Ψfilter
i = Ψdata

i +

〈
log

p(xt | o1:t−1, xi = 0)

p(xt | o1:t−1, xi = 1)

〉

q(xt\xi)︸ ︷︷ ︸
Ψ

pred
i

. (5.32)
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The data term for the current time step is the same as defined in (5.22),
thus given as

Ψdata
i =

C∑

c=1

〈δ(oc, Gc(x|xi=1))− δ(oc, Gc(x|xi=0))〉q(x\xi)
. (5.33)

The dependency on observations from previous time steps o1:t−1 is con-
densed in the recursively defined predictive distribution p(xt | o1:t−1).
After inserting the predictive distribution (4.29) and applying the pro-
posed factorization of the dynamics model (4.30), the expectation Ψ

pred
i

expands to

Ψ
pred
i =

〈
log

∑
xt−1

p(xt | xt−1, xi = 0)p(xt−1 | o1:t−1)
∑

xt−1
p(xt | xt−1, xi = 1)p(xt−1 | o1:t−1)

〉

q(xt\xi)

=

〈
log

∑
xt−1

∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi = 0
)
p(xt−1 | o1:t−1)

∑
xt−1

∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi = 1
)
p(xt−1 | o1:t−1)

〉

q(xt\xi)

,

(5.34)

with
∑

xt−1
being the shorthand for

∑
xt−1∈{0,1}n and N ′i = Ni ∪ i the

index set of the direct neighborhood of the cell ui, including the index
i. As a direct consequence of the chosen transition function p(xt | xt−1)

(4.40), which assumes that a person moves only in the direct neighborhood
in one time step, the set of scene configurations can be reduced to the local
neighborhood scene configurations x̃i of the cell ui. Therefore, the sum
in (5.34) can be replaced by

∑
x̃i,t−1∈{0,1}9 , which makes the computation

of the predictive expectation feasible. The filtering distribution of the
last time p(xt−1 | o1:t−1) states the likeliness of a previous state xt−1. In
practice this distribution is approximated by the result of the last mean-
field optimization q̂(xt−1). Under this assumption and after applying the
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definition of expectation to the nominator and denominator of (5.34), the
approximated predictive expectation can be written as

Ψ̃
pred
i =

〈
log

〈∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi = 0
)〉

q̂(xt−1)〈∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi = 1
)〉

q̂(xt−1)

〉

q(xt\xi)

.

(5.35)

Informally, the influence of (5.34) on a mean-field update (5.31) can be
interpreted as follows: considering the distribution of the previous state
xt−1, the proposed dynamics model p(xt | xt−1), and the current mean-
field state q(xt \ xi), is the presence of a person at location ui more likely
than the non-presence?

The final mean-field optimization for the Bayesian filtering distribu-
tion is implemented analogous to the data distribution elaborated in
Sect. 5.2.1.2.

5.2.3 Temporal Smoothing

Building upon the ideas introduced in the previous sections we address
the approximation of the full posterior distribution p(x1:T | o1:T ) in this
section. In contrast to Sect. 5.2.1 and Sect. 5.2.2, where the marginal prob-
abilities for one single time step t are approximated, we now aim for a
joint approximation of the distribution of people present in the scene for a
sequence of time steps. As a consequence, we extend the naive mean-field
assumption in (5.13) to a factorization over a sequence of scene configu-
rations x1:T and deduce the corresponding mean-field update equations.
Notice that the following section is an extension of previously published
work [109, Ch. 3.B] by the author.
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time

q(x1)

xi,1

q(xt \ xi,t)

xi,t

q(xT )

xi,T

Figure 5.8 Illustration of the fully factorized temporal mean-field distribution q(x1:T \xi,t).
The temporal mean-field distribution can be separated into T spatial mean-fields q(xk). For
an update of a single marginal distribution q

(
xi,t

)
the expectation is taken with respect to

all other spatio-temporal nodes.

Following the previous sections, we use mean-field variational infer-
ence to approximate the distribution p(x1:T | o1:T ) by a simpler proxy
distribution q(x1:T ). The optimization objective is given as

q̂(x1:T ) = arg min
q

KL(q(x1:T ) ‖ p(x1:T | o1:T )) (5.36)

= arg min
q
〈log q(x1:T )− log p(x1:T | o1:T )〉q(x1:T ) . (5.37)

In order to perform joint inference for a sequence of scene configurations
x1:T a structure for the proxy distribution q(x1:T ) enabling a computation-
ally feasible approximation needs to be defined. We extend the mean-field
assumption (5.13) by additionally factorizing over time

q(x1:T ) =

n∏

i=1

T∏

t=1

qi,t(xi,t) , (5.38)

where each qi,t(xi,t) denotes the marginal probability distribution of a
person present at location ui at time step t (cf. Fig. 5.8). Analogous to (5.14)
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let

q(x1:T \ xi,t) =

n∏

j=1

T∏

k=1
k 6=t∨j 6=i

qj,k(xj,k) (5.39)

be the mean-field distribution without the element xi,t (cf. Fig. 5.8).
According to the general mean-field equation (cf. Sect. 3.1) the optimal

update with respect to the objective (5.37) is given as

qi,t(xi,t) ∝ exp
(
〈log p(x1:T | o1:T )〉q(x1:T \xi,t)

)
. (5.40)

Re-arranging as in (5.15)–(5.19), the final update for xi,t being in state one
is given as

qi,t(xi,t = 1) =
[
1 + exp

(
Ψsmooth
i,t

)]−1

. (5.41)

Inserting the probabilistic model defined in (4.27) and using the relation
log(abcd ) = log a

c + log b
d : a, b, c, d > 0, the expectation Ψsmooth

i,t in (5.41)
expands to

Ψsmooth
i,t =

〈
log

p
(
o1:T ,x1:T

∣∣ xi,t = 0
)

p
(
o1:T ,x1:T

∣∣ xi,t = 1
)
〉

q(x1:T \xi,t)

(5.42)

=

〈
log

∏T
k=1 p

(
ok
∣∣ xk, xi,t = 0

)
∏T
k=1 p

(
ok
∣∣ xk, xi,t = 1

) (5.43)

+ log

∏T
k=1 p

(
xk
∣∣ xk−1, xi,t = 0

)
∏T
k=1 p

(
xk
∣∣ xk−1, xi,t = 1

)
〉

q(x1:T \xi,t)

.

Using the linearity of expectation, (5.43) can be expressed as the sum of a
data and a temporal expectation

Ψsmooth
i,t = Ψdata

i,t + Ψ
temp
i,t . (5.44)
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Studying the expression in (5.43) reveals that all terms in (5.43) indepen-
dent of xi,t cancel out, since the nominator and denominator for the factors
independent of xi,t are identical. Hence, the data term can be isolated to

Ψdata
i,t =

〈
log

∏T
k=1 p

(
ok
∣∣ xk, xi,t = 0

)
∏T
k=1 p

(
ok
∣∣ xk, xi,t = 1

)
〉

q(x1:T \xi,t)

(5.45)

=

〈
log

p
(
ot
∣∣ xt, xi,t = 0

)

p
(
ot
∣∣ xt, xi,t = 1

)
〉

q(xt\xi)

. (5.46)

In consequence the data term does not depend on the temporal context
anymore and is identical to the data term derived in (5.22). According to
(5.43) and (5.44), the temporal expectation is given as

Ψ
temp
i,t =

〈
log

∏T
k=1 p

(
xk
∣∣ xk−1, xi,t = 0

)
∏T
k=1 p

(
xk
∣∣ xk−1, xi,t = 1

)
〉

q(x1:T \xi,t)

. (5.47)

Following the same argument as for the data term, all factors which are
independent of the state xi,t cancel out. Depending on k, the forced state
xi,t can be either part of the condition or the argument of the distribution
p
(
xk
∣∣ xk−1, xi,t = s

)
. Analyzing the temporal expectation Ψ

temp
i,t reveals

that the factors in the product
∏T
k=1 p

(
xk
∣∣ xk−1, xi,t = s

)
with s ∈ {0, 1}

can be separated into three disjoint cases, depending on the value of k:

1) If k = t, the corresponding factor is given as p
(
xt
∣∣ xt−1, xi,t = s

)
.

Since xi,t is an element of the scene configuration xt , this distribu-
tions depend on the state of xi,t .

2) If k = t + 1 , the corresponding factor is given as p
(
xt+1

∣∣ xt, xi,t
)

.
Here the condition xt depends directly on the state of xi,t .

3) For all other values of k with k 6= t ∧ k 6= t + 1 , the distribution
p
(
xk
∣∣ xk−1,��xi,t

)
is independent of xi,t . In consequence those fac-

tors are identical for xi,t = 0 and xi,t = 1 and cancel out in (5.47).
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5.2 Mean-Field Variational Inference in Discrete Latent Space

Considering these findings and applying the linearity of expectation, we
can separate the temporal expectation Ψ

temp
i,t (5.47) into two parts, referred

to as past and future expectation,

Ψ
temp
i,t =

〈
log

p
(
xt
∣∣ xt−1, xi,t = 0

)
p
(
xt+1

∣∣ xt, xi,t = 0
)

p
(
xt
∣∣ xt−1, xi,t = 1

)
p
(
xt+1

∣∣ xt, xi,t = 1
)
〉

q(x1:T \xi,t)

=

〈
log

p
(
xt
∣∣ xt−1, xi,t = 0

)

p
(
xt
∣∣ xt−1, xi,t = 1

)
〉

q(xt\xi,t,xt−1)︸ ︷︷ ︸
Ψ

past
i,t

(5.48)

+

〈
log

p
(
xt+1

∣∣ xt, xi,t = 0
)

p
(
xt+1

∣∣ xt, xi,t = 1
)
〉

q(xt\xi,t,xt+1)︸ ︷︷ ︸
Ψ

future
i,t

, (5.49)

where Ψ
past
i,t corresponds to the past expectation and Ψfuture

i,t corresponds to
the future expectation. Based on this intermediate result, both expectations
can be further simplified. Inserting the dynamics model (4.30) in (5.48)
and considering that all terms which are independent of xi,t cancel out,
the past expectation is given as

Ψ
past
i,t =

〈
log

p
(
xt
∣∣ xt−1, xi,t = 0

)

p
(
xt
∣∣ xt−1, xi,t = 1

)
〉

q(xt\xi,t,xt−1)

(5.50)

=

〈
log

∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi,t = 0
)

∏
j∈N ′i p

(
xj,t

∣∣ xt−1, xi,t = 1
)
〉

q(xt\xi,t,xt−1)

(5.51)

=

〈
log

1− p
(
xi,t = 1

∣∣ xt−1

)

p
(
xi,t = 1

∣∣ xt−1

)
〉

q(xt−1)

. (5.52)

Finally, the past expectation only depends on the previous state xt−1 ,
thus the expectation is only taken with respect to the distribution q(xt−1) .
Following the derivation of the past expectation, inserting the dynamics
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model (4.30) in (5.49) and canceling all terms independent of xi,t , the
future expectation simplifies to

Ψfuture
i,t =

〈
log

p
(
xt+1

∣∣ xt, xi,t = 0
)

p
(
xt+1

∣∣ xt, xi,t = 1
)
〉

q(xt\xi,t,xt+1)

(5.53)

=

〈
log

∏
j∈N ′i p

(
xj,t+1

∣∣ xt, xi,t = 0
)

∏
j∈N ′i p

(
xj,t+1

∣∣ xt, xi,t = 1
)
〉

q(xt\xi,t,xt+1)

(5.54)

=

〈∑

j∈N ′i

log
p
(
xj,t+1

∣∣ xt, xi,t = 0
)

p
(
xj,t+1

∣∣ xt, xi,t = 1
)
〉

q(xt\xi,t,xt+1)

, (5.55)

and depends on the current state xt and the state xt+1 at the next time
step.

Since the dynamics model (4.40) introduced in Sect. 4.4.1 operates only
on a local neighborhood, we only need to consider the reduced neigh-
borhood scene configurations x̃i,t ∈ {0, 1}9, making the estimation of
the expectations (5.50) and (5.53) computationally feasible. Under the re-
duced scene state distributions, the final expectations used in the temporal
mean-field optimization are given as the past expectation

Ψ
past
i,t =

〈
log

1− p
(
xi,t = 1

∣∣ x̃i,t−1

)

p
(
xi,t = 1

∣∣ x̃i,t−1

)
〉

q(x̃i,t−1)

, (5.56)

and future expectation

Ψfuture
i,t =

〈∑

j∈N ′i

log
p
(
xj,t+1

∣∣ x̃i,t, xi,t = 0
)

p
(
xj,t+1

∣∣ x̃i,t, xi,t = 1
)
〉

q(x̃i,t,x̃i,t+1)

. (5.57)
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5.3 CNN Inference

Inserting into (5.41), the final mean-field equations for the temporal smooth-
ing approach are given as

qi,t(xi,t = 1) =


1 + exp


Ψdata

i,t + Ψ
past
i,t + Ψfuture

i,t︸ ︷︷ ︸
Ψ

temp
i,t







−1

. (5.58)

5.2.3.1 Optimization Details

As in the previous sections, for the mean-field optimization we use CAVI
(cf. Sect. 3.1.4). Thus all qi,t(·) are updated sequentially according to (5.58)
with respect to the previous mean-field state q(x1:T \ xi,t) . In Algorithm 2
the joint temporal mean-field optimization algorithm is listed. In each
iteration the time slices q(xt) are consecutively updated from 1, . . . , T .
This implies that the temporal context does have a direct impact on the
estimation of the data term on the next iteration, since the mean-field
distribution after one iteration is effected jointly by all temporal frames.
Since the future term (5.53) relies on the mean-field state from the next
time step we disable the future term in the first iteration. Considering
that people can enter the observable area, we initialize all border grid cells
with a probability of 0.5. To weight the temporal terms we extend (5.44) to
Ψsmooth
i,t = Ψdata

i + λpastΨ
past
i,t + λfutureΨ

future
i,t with λpast, λfuture ∈ [0, 1].

5.3 CNN Inference

In the previous sections, inference is obtained by iterative optimization
methods, explicitly derived from the probabilistic model introduced in
Sect. 4. In this section a different method is applied for inference in discrete
latent space. We propose an end-to-end multi-view convolutional neural
network (CNN) architecture to approximate the marginal probabilities of
people present in the scene for a single time step. In contrast to the explicit
iterative mean-field optimization, the CNN framework is demanding at
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Algorithm 2 Joint Temporal Mean-Field Optimization
1: procedure OPTIMIZETEMPORALMF
2: q̂(x1:T )← init() . init mean-field
3: for all m ∈ {0, . . . ,ITERATIONS} do
4: for all t ∈ {1, . . . , T} do . iterate along time axis
5: for all i ∈ {1, . . . , n} do . iterate over all grid cells

6: q̂i,t ←
[
1 + exp

(
〈·〉q(x̃i,t−1,x̃i,t,x̃i,t+1)

)]−1

7:
8: q̂(x1:T )← update(q̂i,t) . asynchronous MF update
9: end for

10: end for
11: end for
12: end procedure

training time, but once the network is trained, inference can be obtained
by a single deterministic forward pass. For a fair comparison with the
proposed mean-field methods (Sect. 5.2) and to overcome the lack of a
domain-specific large scale data-set, we sample from the generative scene
model introduced in Sect. 4.2.1 to generate synthetic training data. To
narrow the gap between synthetic training images and real-world depth
sensor observations, we extend the generative scene model to generate
randomized synthetic training images (Sect. 5.3.2). In contrast to classical
data-driven approaches the proposed multi-view CNN is only trained
with synthetic depth images and does not rely on any real-world training
data. Analogous to the mean-field inference for one time step, the network
takes three foreground segmented depth images as input and predicts the
marginal probability distributions of people present in the scene (cf. Fig.
5.9). Since the generative mean-field inference and the discriminative
multi-view CNN framework only rely on the generative scene model,
without further supervision, the methods can be directly compared at
inference time. This section is an extension of previously published work
[112, Ch.2] by the author.
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Table 5.1 Parameters of CNN feature extraction.

CNN block Layer type Filters Kernel Size
1 Conv (1,*) 32 5× 5
2 Conv (2,*) 64 3× 3
3 Conv (3,*) 128 3× 3
4 Conv (4,*) 256 3× 3
5 Conv (5,*) 512 3× 3
1-5 Max Pool * 2× 2

5.3.1 End-to-End Multi-View CNN Architecture

In this section we introduce a multi-view CNN architecture for people
detection in multiple depth images. For a fair comparison with the proba-
bilistic methods, the same discrete grid model as proposed in Sect. 4.4 is
used. Since we only consider the observations at one time step, we omit the
time index t for ease of notation. Hence, a scene configuration is given as
x = (x1, . . . , xn)ᵀ ∈ {0, 1}n and the vector of foreground-segmented depth
observations at one time step is stated as o = (o1, . . . , oc)

ᵀ. The objective
of the proposed end-to-end approach is to approximate the distribution

p(x | o) =

n∏

i=1

p(xi | o) (5.59)

with p(xi | o) being the marginal probability of a person present at ground
plane location ui given the observations o. To approximate (5.59) we
propose a multi-view CNN architecture (cf. Fig. 5.9) which jointly exploits
the depth observations from three sensors.

We observe no significant drop in performance when the input depth
images are scaled-down by a factor of 2. Therefore we use input depth
images of size 188 × 120 for each individual CNN-head, yielding the
advantage that the GPU memory footprint can be reduced significantly.
Generalization over the visual features is achieved by weights sharing
across the input CNN-heads. The resulting feature maps of each CNN-
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Figure 5.9 Overview of our proposed CNN multi-view architecture. Each input depth
image serves as input for a CNN module. The output of the last fully connected layer predicts
the marginal probability distribution of people present in the scene.
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Figure 5.10 End-to-end multi-view training with randomized synthetic depth images.

head are concatenated and fed into a multilayer perceptron (MLP) in order
to learn correlations between the individual views. Each CNN-head is
built of five blocks sharing the same structure. Overfitting is prevented by
applying a dropout layer [90] after each block. The retention probability is
set to pCNN = 0.25. The detailed parameters of the CNN layers are given
in Tab. 5.1. The three resulting feature vectors are concatenated and fed
into the first fully connected layer FC1. After the first two fully connected
layers, dropout with retention probability pFC = 0.5 is used. The final fully
connected layer FC3 is followed by a sigmoid function and predicts the
desired marginal probabilities of people present in the scene (5.59).

Training End-to-end training of the multi-view CNN is achieved by
formulating the estimation of the desired marginal probabilities in (5.59)
as a binary classification problem, thus using the binary cross-entropy loss

lbce = − 1

n

n∑

i=1

yi · log p̂(xi) + (1− yi) · log (1− p̂(xi)) , (5.60)

with y = (y1, . . . , yn)ᵀ ∈ {0, 1}n being the ground truth scene configura-
tion and p̂(xi) being the predicted probability of a person present at cell ui.
Training samples are created by drawing a random scene configuration,
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(a) (b) (c)

(d) (e) (f)

Figure 5.11 Synthetic depth images generated from the scene model for one specific scene
configuration x in sensor view one. (a) shows the synthetic depth image based on the static
person model as introduced in Sect. 4.2.1. (b)-(f) show four independently drawn samples
from the proposed randomized person model for the scene configuration x.

used as ground truth y and as input to generate randomized synthetic
depth images in perspective of each sensor, which are used as input for
the multi-view CNN. An overview of the end-to-end training process
is depicted in Fig. 5.10. For training, back propagation and mini-batch
gradient decent is used. As optimizer, we use Adam [56].

5.3.2 Randomized Synthetic Depth Image Generation

The randomized generative scene model is an extension of the generative
model proposed in Sect. 4.2.1. The basic model is built on a static rotation-
ally symmetric 3D person model, consisting of a cylinder for the body and
a sphere for the head, cf. Fig. 5.11(a). Synthetic depth image generation
is obtained by placing 3D person models in the scene depending on the
provided scene configuration x. Each 3D person model is rendered into
the perspective of each sensor S c using the given extrinsic and intrinsic
camera parameters. We extend the static person model by introducing a
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parameterized 3D person model to express different shapes of persons
in the scene. Randomization is achieved by treating the parameters of
the person model as random variables. Each individual person model
is defined by a set of vertices V = {v1, . . . ,vm} with v = (x, y, z)ᵀ and
a set of faces F where each face is given by a triple of vertices. The set
of vertices V is split into two disjoint subsets V = Vcyl ∪ Vsph, where the
vertices Vcyl correspond to the cylinder (body) and the vertices Vsph to the
sphere (head) of a person model. The separation of the two geometric
primitives is used to apply transformations independently on the cylinder
or the sphere of a person model. As world coordinate system we define the
z-axis perpendicular to the ground plane (xy-plane with z = 0), represent-
ing the height over ground. It is assumed that a person mesh is initially
centered in the xy-plane with the foot point at z = 0. Diversity in pose and
shape is provided by three principle degrees of freedom: (i) deforming the
body of a person (circular cylinder) to an elliptic cylinder to get a variety
of rotationally asymmetric shapes; (ii) rotating the person model around
the z-axis to model the body orientation; (iii) resize the height of a person.
These variants are expressed by the parameterized transformation

f(v; sx, sy, sz, γ) = R(γ) ·



sx 0 0

0 sy 0

0 0 sz


 · v , (5.61)

which applies non-uniform scaling followed by a rotation around the
z-axis with angle γ on a single vertex. To generate a single instance we
apply the transformation f(v;Scx, S

c
y, S

c
z, γ) to all vertices in set Vcyl and

f(v; 1, 1, Ssz , 0) to all vertices in the set Vsph respectively. The parame-
ters Scx, S

c
y, S

c
z, S

s
z , γ are considered to be uniformly distributed random

variables (cf. Algorithm 3). To get more variations in shape we add inde-
pendent Gaussian noise to the x, y, z-components of each vertex v ∈ V . A
detailed description of the sampling process and the assumed parameter
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distributions are given in Algorithm 3. Fig. 5.11(b)-5.11(e) show exemplary
sampled synthetic depth images for a scene configuration x.

Algorithm 3 Randomized generation of synthetic depth images.
1: procedure SAMPLEFROMGENERATIVEMODEL
2: Vcyl,Vsph,F ← init() . init with default model
3: h ∼ U(2, 6) . drawn number of expected persons
4: x ∼ B(1/h) . draw scene configuration
5: for all xi = 1 do . iterate over cells with a person
6: Scx, S

c
y ∼ U(0.5, 1.5)

7: Scz ∼ U(0.85, 1.15)
8: Ssz ∼ U(0.85, 1.15)
9: γ ∼ U(0, π)

10: V ′cyl ← {f(v;Scx, S
c
y, S

c
z, γ)|v ∈ Vcyl}

11: V ′sph ← {f(v; 1, 1, Ssz , 0)|v ∈ Vsph}
12: tx, ty ∼ U(0, 0.1) . draw position offset
13: for all v ∈ V ′cyl ∪ V ′sph do
14: ζx, ζy, ζz ∼ N (0, 0.04) . draw AWGN
15: v← v + (ζx, ζy, ζz)

ᵀ

16: v← v + (li,x, li,y, 0)ᵀ . move to grid pos. li
17: v← v + (tx, ty, 0)ᵀ . add position offset
18: end for
19: renderer.addMesh(V ′cyl ∪ V ′sph,F)
20: end for
21: return renderer.getDepthImages()
22: end procedure
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In this chapter we present quantitative and qualitative results for the infer-
ence methods introduced in this thesis. Due to the lack of appropriate data
sets for multi-view people detection in depth images, we first introduce a
novel data set in Sect. 6.1. In order to quantitatively evaluate and compare
the proposed probabilistic inference methods, we apply a threshold to the
resulting marginal probabilities to obtain detections and report results in
precision-recall space (Sect. 6.2). The experiments focus on the evaluation
of the proposed mean-field variational inference methods (Sect. 6.4). We
quantitatively compare the mean-field approach as a frame-by-frame de-
tector (Sect. 6.4.1) with state-of-the-art monocular multi-view approaches
(listed in Sect. 6.3). Sect. 6.4.2 examines the effect of the temporal context
on the mean-field variational inference optimization. In order to put the
results into perspective, we additionally compare with the proposed end-
to-end multi-view CNN architecture in Sect. 6.5. Since the MAP inference
method cannot be directly compared with the other methods due to its
dependence on the initialization of the continuous NLLSQ optimization
(cf. Sect.5.1), we present qualitative results in Sect. 6.6. Finally, we con-
clude this chapter with an extensive discussion of the presented results in
Sect. 6.7.

6.1 Data Set

To the best of our knowledge, no publicly available data set covers the
scenario of top-view people detection using multiple depth sensors with
overlapping fields of view. Therefore, we introduce a novel data set to
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including tracklets

Figure 6.1 Overview of the MULTIPLE data set for top-view indoor people detection. The
data set provides raw stereo image pairs as well as disparity maps obtained from three
calibrated stereo vision sensors. The presence of individuals is annotated in ground plane
coordinates.

compare our approach with state-of-the-art multi camera people detection
approaches. The data set contains footage from an indoor office scene
and is recorded from three low-resolution commodity stereo-vision-based
depth sensors, covering a variety of distributions of individuals in the
scene (see Fig. 6.2). The stereo sensors are passive and use block matching
to calculate the disparity maps.

The sensors have a top-view on the scene, are mounted at a height of
three meters, and have fields of view with a significant joint overlap (see
Fig. 4.1). They cover a visible area of approximately 20 m2 with up to six
individual people present in the scene, entering and leaving the visible
area multiple times. The data set consists of 2800 annotated multi-view
frames1, captured with a resolution of 376 × 240 pixel each, providing
raw rectified stereo image pairs as well as disparity maps. In total, we
annotated the ground level plane locations of more than 12000 targets.
Additionally, we associated each detection with a track to allow for full
detection and tracking evaluation. The data set is publicly available and

1 A multi-view frame contains an image from each sensor at one time step. Depending on
the context this is also referred to as a temporal frame.
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referred to as MULTIPLE (Multi-View Intensity-Depth Data Set for Top-View
Indoor People Detection)2.

6.2 Metrics

In order to obtain a set of detections, we threshold the output map of
marginal probabilities. Let ρ ∈ [0, 1] be the detection threshold. By ap-
plying the threshold to the inference results in the form of marginal prob-
abilities q(x), the set of detections for one particular value of ρ is given
as the grid cell locations {ui | qi(xi) > ρ} . For the quantitative evalua-
tion the resulting detections are matched to the ground truth data by a
nearest-neighbor search. A detection is considered to be a true positive if
it is within a radius of 30 cm of the ground truth (measured on the ground
plane in 2D world coordinates).

In contrast to typical object detection methods, the resulting detections
are given in ground plane world coordinates, rather than bounding boxes
in images coordinates. Therefore, classical object detection metrics such
as the (Generalized) Intersection Over Union (IoU) [84] are not suitable for
our setup. A typical metric for reporting detection results are the Receiver
Operating Characteristic (ROC) curves. However, if the underlying classi-
fication problem is imbalanced, the ROC metric does not reflect the true
performance of a classification algorithm. As an alternative to the ROC
metric, the precision-recall space provides a metric for evaluating the clas-
sification performance on highly class imbalanced tasks (cf. [87]). For a
comprehensive discussion on the relationship between ROC and precision-
recall curves we refer to Davis et al. [29]. Considering the present detection
problem as binary classification reveals that the problem is highly class
imbalanced, since only a few cells are actually occupied by an individual.
For the quantitative evaluation of the proposed methods we therefore use
the precision-recall space.

2 Subsets of MULTIPLE are introduced in [109, 111]. The full data set is available at
https://www.h-ka.de/isrg/publications/multiple.

103

https://www.h-ka.de/isrg/publications/multiple


6 Evaluation

(a)

(b)

(c)

Figure 6.2 Exemplary samples from the MULTIPLE data set. The first row of each sample
shows the rectified gray scale image with ground truth annotations on the ground plane,
where each individual is marked with a unique color. The second row shows the raw depth
images.
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Let TP, FP, FN are the counts of the true positives, false positives and
false negatives, respectively. The precision is then defined as the ratio

precision =
TP

TP + FP
, (6.1)

where the denominator TP + FP is given as the total count of detections
obtained by the evaluated method. Thus, in the context of object detection,
the precision can be interpreted as the proportion of correct detections.
However, the precision does not account for the false negatives, in this
context the individuals present in the scene not detected. To express
the trade-off between false positives and false negatives, the precision is
considered with respect to the recall, given as the ratio

recall =
TP

TP + FN
. (6.2)

In the context of people detection the denominator TP + FN can be identi-
fied with the number of individuals present in the ground truth. Hence,
the recall can also be identified as sensitivity or true positive rate.

To report the performance of our methods we provide precision-recall
curves (e. g. Fig. 6.3) as a function of the detection threshold ρ. To summa-
rize the performance in precision-recall space, we additionally report the
F1-Score as well as the area under the curve (AUC). The F1-Score is defined
as the harmonic mean of precision and recall:

F1 =
2 · precision · recall

precision + recall
. (6.3)

To summarize the precision-recall performance in one figure, we report
the best F1-Score achieved by a particular approach.
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The AUC (also referred to as average precision) is defined as the (ap-
proximative) integral of the precision-recall curve. In practice, the integral
is approximated by the discrete sum over J ∈ N threshold values

AUC =

J−1∑

j=0

(recall(ρj)− recall(ρj+1)) · precision(ρj) , (6.4)

with precision(·) and recall(·) being a function of a particular threshold
value ρ ∈ {ρ0, . . . , ρJ} uniformly covering the interval [0, 1] .

6.3 Approaches for Comparison

As mentioned in Sect. 2, only a few approaches in literature rely on depth
images for multi-view people detection in the top-view. To the best of
our knowledge, the only method directly comparable to our set up is the
work by Tseng et al. [96]. However, their approach hinges on high quality
depth data and neither provides a publicly available implementation nor
a data set. To put our results into perspective, we therefore compare the
methods proposed in this thesis with state-of-the-art monocular multi-
view approaches. As a baseline on the given depth observations we
introduce a difference of Gaussian (DoG) based blob detector. In detail,
the methods to be compared are:

DoG-Detector As a baseline on the given depth data, we apply
difference of Gaussian blob detection on the foreground segmented
depth images of each sensor independently and project the resulting
detections onto the common ground plane. The final detections on
the ground plane are obtained by proximity clustering.

POM [38] is methodically the most related approach to the proposed
probabilistic inference methods. However, it operates on binary in-
put observations only (cf. Sect. 3.2 for a comprehensive discussion
of POM). In the original paper, the binary foreground segmentation
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masks are obtained by monocular video cameras. In contrast, we
use the same depth based foreground segmentation masks as in our
approach for a fair comparison. Furthermore, the grid layout and
the camera calibrations are identical to our setup for better compara-
bility. For the experiments we use the original C++ implementation3

provided by the POM authors.

Deep Occlusion [10] is a current state-of-the art end-to-end archi-
tecture for multi-view person detection (a more detailed description
is given in Sect. 2.2.1). As input, we stack the given gray scale ob-
servations to a three channel image to be compatible with the RGB
architecture. Due to the lack of a large data set, we use the available
pre-trained model4 without any further supervision. Considering
that the model is pre-trained with RGB images, using stacked gray
scale images for inference may have a negative impact on the pre-
diction performance.

6.4 Probabilistic Multi-View People Detection in

Discrete Latent Space

In this section we qualitatively and quantitatively evaluate the main con-
tribution of the present thesis: The performance of the probabilistic peo-
ple detection in discrete latent space by mean-field variational-inference
(Sect. 5.2). Since we compare with methods for frame-by-frame detection,
we first report comparative results of our mean-field method, omitting
the temporal context (Sect. 6.4.1). In Sect. 6.4.2 we show the impact of
additionally using the temporal context on the detection performance.

3 https://www.epfl.ch/labs/cvlab/software/tracking-and-modelling-people/pom/ (ac-
cessed 30.04.2021)

4 https://github.com/pierrebaque/DeepOcclusion (accessed 30.04.2021)
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Table 6.1 Performance of the evaluated approaches (without temporal context).

AUC F1-Score Precision Recall
Ours (MF-VI Data Term) 0.98 0.95 0.96 0.95
POM [38] 0.93 0.93 0.91 0.95
DoG-Detector 0.76 0.86 0.93 0.79
Deep Occlusion [10] 0.58 0.70 0.80 0.62

For all experiments based on the discrete latent space we employ a
ground plane grid with 15× 12 grid points, corresponding to a horizontal
and vertical distance of 33 cm between adjacent grid points.

6.4.1 People Detection for One Time Step

The results in this section are based on the experiments previously pub-
lished in [108]. We compare our mean-field variational inference approach
applied to one multi-view frame, omitting the temporal context as intro-
duced in Sect. 5.2.1.

During our experiments we have noticed that our approach is quite sen-
sitive to the initial marginal probabilities qinit

i (xi). If the initial occupancy
probability is too small, the expectation in (5.23) will inordinately favor
scene configurations with only one person present. Thus, occlusion is not
taken into account in the first iteration. We therefore initialize each mean-
field node with a prior of qinit

i (xi) = p(xi) = 0.5. The design parameter of
the asymmetric image similarity δasym(·, ·) (5.26) is set to α = 1.25, to penal-
ize unexplained observations. The standard deviation of the measurement
noise σobs is set to a default value of 2 cm.

6.4.1.1 Quantitative Results

For the quantitative evaluation we use a subset of the MULTIPLE data set
of 2200 consecutive multi-view frames5. Fig. 6.3 depicts the performance

5 Only every 10th consecutive multi-view frame is used to calculate the precision-recall
metric.
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Figure 6.3 Precision-recall curves showing the performance (precision range [0.5, 1]) of the
mean-field variational inference approach without temporal context, over all views.

of the examined approaches over all views. The results show, that the data
set MULTIPLE is very challenging for deep learning architectures, such as
Deep Occlusion [10], without domain specific fine-tuning. There are two
aspects to put the performance of Deep Occlusion into perspective: (i) due
to the vertical top-view, the appearances of people are drastically different
compared to the classical profile view; (ii) the original architecture was
trained on RGB images rather than gray scale images.

The results of the DoG-Detector indicate that, even when considering
proximity clustered results from all three views, naive blob-based single-
view detectors are not competitive compared to the more sophisticated
multi-view approaches in our scenario.

Although POM [38] operates on binary input images it achieves remark-
able performance in our setting. However, our approach outperforms
POM in terms of precision, resulting in a better area under the curve value
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View 1 & 3 (AUC:0.97, Best-F1:0.92 [p=0.92,r=0.92])
View 2 & 3 (AUC:0.96, Best-F1:0.92 [p=0.95,r=0.90])

Figure 6.4 Precision-recall curves for different combinations of views. For a fair comparison
only the people visible in all three views are taken into account.

(AUC) as well as in a better F1-Score (see Table. 6.1). While POM is quite
sensitive (every structure of significant size is detected as an individual
person), our approach is more restrictive due to a more expressive forward
model, leading to an increased precision. Our hypothesis is that this effect
might be even stronger in more complex real-life scenarios, due to the
following reasons: (i) foreground images might include additional objects,
such as shopping carts or trolley bags; (ii) varying illumination conditions
yield a higher level of measurement noise. In both cases, the foreground
images get more cluttered, demanding a robust people detection method.

In order to show how our probabilistic model exploits the multi-view
evidence given by all three sensors, we evaluated the performance of our
approach for all different combinations of sensor views contributing to the
solution. For a fair comparison, we take only those people into account
that are visible from all three sensors (see Fig. 6.2 for the fields of view
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Figure 6.5 Precision-recall curves for different values of the asymmetric image similarity
parameter α.

of the sensors). Fig. 6.4 shows the increase in detection performance by
leveraging the multi-view information. In the mono-view case, View 2
and View 3 by themselves do not perform well with F1-Scores of 0.61 and
0.73, respectively. However, combining the image evidence of View 2 and
View 3 leads to a drastic performance increase, as evidenced by the best
F1-Score of 0.92. Similar results are reported for the combination of View 1
and View 2 with an F1-Score of 0.9 and View 1 and View 3 with an F1-Score
of 0.92. Even though View 1 achieves comparably good performance due
to the general viewpoint, using the image evidence from all three sensors
clearly outperforms all other view combinations. These results clearly
demonstrate the capability of the proposed method to jointly leverage the
multi-view information in the overlapping image regions.

Fig. 6.5 depicts the impact of the asymmetric image similarity parameter
α ∈ [1, 2], introduced in (5.26), on the precision-recall performance. For
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α = 1 the image similarity function is equal to the L1-norm, while for
α > 1 the observed pixels not explained by the rendering of the generative
scene model are penalized proportional to α. Consequently, increasing
α leads to better recall values while potentially decreasing the precision.
In this evaluation, a decrease in precision can be observed for α > 1.4.
Comparing the performance of the symmetric image similarity (i.e. α = 1)
with the performance of the asymmetric image similarity for α = 1.3 , a
significant increase in performance can be observed, evidenced by the best
F1-Score of 0.91 compared to 0.95, respectively.

6.4.1.2 Qualitative Results

Fig. 6.6 and 6.8 show exemplary mean-field optimization results after five
iterations. The final marginal probability map is projected onto the ground
plane, where purple corresponds to a probability of zero and yellow to
one respectively.

Fig. 6.6 highlights some exemplary flawless results. The given sam-
ples illustrate that our approach is able to resolve challenging scenarios,
suffering from occlusion and measurement noise, by making use of the
full multi-view image evidence. Fig. 6.6(b) gives a particular example
for the ability to handle occlusion by exploiting the image evidence from
multiple sensors. While the fifth individual is fully occluded on the first
view (left image in Fig. 6.6(b)), the second view and partially also the third
view include enough image evidence of the fifth individual to predict a
probability of occupancy close to one. Fig. 6.6(c) shows that the resulting
marginal distributions also include some uncertainty around the peaks of
the distribution. This happens in general if the generative scene model
cannot precisely explain the observations, e. g. due to discretization errors,
measurement noise or the simplified 3D person model (cf. Sect. 4.2.1).
However, for the majority of samples the resulting marginal distribution
of people present in the scene contains clear peaks with a high confidence.
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(a)

(b)

(c)

Figure 6.6 Exemplary mean-field optimization results q̂(x) (without temporal context). (a)
and (b) show an estimation of the marginal probability distribution q(x) with clear peaks
at grid locations occupied by a person. (c) includes some uncertainty near the peaks of the
distribution.
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Figure 6.7 Comparison of asynchronous and synchronous mean-field updates considering
the best achieved F1-score in each mean-field optimization iteration.

In Fig. 6.8 two mean-field optimization results, including some exem-
plary faulty detections are shown. Fig. 6.8(a) shows a typical false negative
case on the image border, which is the dominant error class occurring in
the data set. Due to the stereo-vision sensors, the depth information is
more noisy on the image border, eventually leading to an insufficient fit of
the 3D model. To overcome this limitation in future work, a richer proba-
bilistic sensor model which takes systematically varying noise into account
could be employed. Two similar false negative cases can also be observed
in Fig. 6.8(b) in the third view. Apart from that, Fig. 6.8(b) includes a false
positive detection, indicated by a blue dashed circle. This type of false pos-
itive potentially occurs between two individuals due to the discretization
error and the simplified 3D person model. However, regarding the present
data set, false positives are the minority errors occurring in the evaluation.

In Fig. 6.9, the iterative mean-field optimization process is illustrated
for one exemplary frame, for both the asynchronous and the synchronous
update strategy (cf. Sect. 3.1.4). In Fig. 6.9(b) the asynchronous mean-field
update optimization is illustrated. One can observe that after the first
optimization iteration the probability mass is already quite concentrated
around the grid locations occupied by a person. In iterations 2 and 3 the
probability mass gets more concentrated, leading to a marginal distribu-
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(a)

(b)

Figure 6.8 Exemplary mean-field optimization result q̂(x), including faulty detection re-
sults. (a) includes a typical false negative, marked with a red dashed circle. (b) includes a
false positive, marked with a blue dashed circle as well two false negatives.

tion with clear peaks. In contrast, Fig. 6.9(c) depicts the optimization for
synchronous mean-field updates. The example illustrates typical prob-
lems of synchronous mean-field updates. In contrast to the asynchronous
update, the probability mass is distributed on more grid cells after the first
iteration. Also in the upcoming iterations the simultaneous optimization
suffers from oscillating marginal probabilities, evidenced by the grid loca-
tion ui[2, 6], shown as red curve in Fig. 6.9(c). Considering the overall best
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(a) Final mean-field result for asynchronous mean-field update
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(b) Asynchronous mean-field update
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(c) Synchronous mean-field update

Figure 6.9 Evolution of asynchronous and synchronous mean-field updates. In the left-
hand plots of (b) and (c), every path corresponds to the probability evolution of one qi(xi).
The probability evolution of six grid locations of interest are plotted in unique colors, the
others are plotted in purple. The right-hand plots show the same process illustrated as
probability maps for the first four iterations.
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Table 6.2 Performance of temporal mean-field approximations.

AUC F1-score Precision Recall
MF-VI Temporal Smoothing 0.94 0.94 0.96 0.92
MF-VI Bayesian Filtering 0.96 0.93 0.95 0.90
MF-VI Data Term 0.95 0.91 0.92 0.90
DoG-Detector 0.85 0.83 0.77 0.92

F1-score per iteration, Fig. 6.7 shows that the asynchronous update strategy
clearly outperforms the synchronous update strategy. While asynchronous
mean-field optimization converges after only few iterations, synchronous
mean-field update suffers from the oscillating effects mentioned above.
In the remainder of this evaluation, the asynchronous mean-field update
strategy is used.

6.4.2 People Detection with Temporal Context

The results in the previous section are based on typical frame-by-frame
detection to be comparable to state-of-the art approaches. In contrast,
in this section we will focus on the evaluation of the additional impact
of exploiting the temporal context. Hence, we will evaluate the mean-
field variational inference approximations for (i) the Bayesian filtering
distribution p(xt | o1:T ) as proposed in Sect. 5.2.2; (ii) the full posterior dis-
tribution p(x1:T | o1:T ) (referred to as temporal smoothing) as introduced
in Sect. 5.2.3. This section is based on the results previously published in
[109].

6.4.2.1 Quantitative Results

In Sect. 6.4.1 we report quite strong detection performance for the mean-
field approach omitting the temporal context (MV-VI Data Term), evi-
denced by the best F1-score of 0.95 and an AUC of 0.98. Since these results
are nearly reaching the optimum, we evaluate the exploitation of the tem-
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Figure 6.10 Precision-recall curves showing the performance of our approach with and
without temporal context.

poral context on a slightly more challenging6 disjoint image sequence. The
sequence consists of 300 consecutive multi-view frames, which are a sub
sequence of the MULTIPLE data set introduced in Sect. 6.1. As a conse-
quence of the more challenging sequence the performance of the MV-VI
Data Term drops to best F1-score of 0.91 and an AUC of 0.95 (cf. Fig. 6.10).
Subsequently, we analyze the effects of using the temporal context by
comparison of the following methods:

MF-VI Temporal Smoothing refers to the approximation of the
full posterior distribution p(x1:T | o1:T ) as introduced in Sect. 5.2.3.
During evaluation, we observed that the influence of the proposed
future term in (5.53) on the quantitative results is negligible for the
proposed update strategy and motion model. Therefore, we set

6 Compared to the sequence used for the single time step case, the sequence contains slightly
more individuals present at the image border, making people detection more challenging.
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the weighting parameters to λpast = 0.65 , λfuture = 0.0 . In conse-
quence the presented results are based only on the past and data
term defined in (5.46), (5.50) respectively. Assuming only moderate
movement of individuals between two consecutive frames, the pa-
rameter µself

7 in the dynamics model (4.40) is set to µself = 0.8 . The
normalization weights are set according to (4.42). For evaluation,
we run six mean-field iterations.

MF-VI Bayesian Filtering refers to the approximation of the filter-
ing distribution p(xt | o1:T ) as proposed in Sect. 5.2.2. The dynamics
model parameter is set to µself = 0.2 . As for the temporal smoothing
method we perform six mean-field iterations for evaluation.

MF-VI Data Term refers to the approximation of the posterior dis-
tribution p(xt | ot) limited to the observations from a single time
step and a uniform prior, as introduced in Sect. 5.2.1 and evaluated
extensively in Sect. 6.4.1.

DoG-Detector To put the results into perspective we compare them
with the Difference of Gaussian blob detector as introduced in
Sect. 6.3.

Fig. 6.10 shows a comparison of the precision-recall performance for the
methods mentioned above. Although the performance of the mean-field
variational inference approach without temporal context (MF-VI Data
Term) is already quite high (best F1-score of 0.91), the results show that
the exploitation of the temporal context can increase the overall precision
and recall performance, evidenced by a maximum F1-score of 0.94 for the
MF-VI Temporal Smoothing approach and 0.93 for the MF-VI Bayesian
filtering approach, respectively. Considering that the temporal smoothing
approach is a batch processing method, the full sequence of observations is
optimized jointly. In contrast, the Bayesian filtering distribution is defined
recursively, where the past is condensed in the mean-field approximation
7 Reflecting that a person will stay on the current location with a probability of µself.
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Figure 6.11 Dependence on hyperparameter α evaluated for MF-VI Data Term and MF-VI
Temporal Smoothing.

of the previous time step q̂(xt−1). In practice, this enables to use the
Bayesian filtering approximation as a classical frame-by-frame detector
in real-time applications. From this perspective, it is remarkable that the
Bayesian filtering method does exhibit a similar performance on the given
data set compared to the temporal smoothing approach. Still, the results
must be interpreted carefully, since the current data set is limited and the
mean-field approximation without usage of any temporal context already
performs quite well. Our hypothesis is that in order to capture the full
capabilities of the temporal approaches, evaluation on a more challenging
large-scale data set is required.

In Fig. 6.11, the best F1-score depending on α is plotted. The results in-
dicate that the temporal smoothing is slightly less sensitive to the choice of
the image similarity weighting parameter α, compared to the MF-VI Data
Term approach. The temporal regularization might be able to compensate
for the suboptimal single frame detections.

6.4.2.2 Qualitative Results

Fig. 6.12 and Fig. 6.13 illustrate exemplary comparative mean-field opti-
mization results with and without using the temporal context. In Fig. 6.12
an exemplary multi-view frame leveraging the temporal regularization is
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(a) Input depth observations at one time step from three sensors (multi-view frame)

(b) No temporal context: MF-VI Data Term

(c) With temporal context: MF-VI Temporal Smoothing

(d) With temporal context: MF-VI Bayesian Filtering

Figure 6.12 Exemplary mean-field optimization results depicted for one multi-view frame
(a). (b,c,d) show the resulting marginal probability map projected onto the ground plane.
False negatives are marked with a red dot.
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(a) No temporal context: MF-VI Data Term

(b) With temporal context: MF-VI Temporal Smoothing

(c) With temporal context: MF-VI Bayesian Filtering

Figure 6.13 Mean-field results for five consecutive frames, projected into sensor view one.

shown. Without the temporal context (Fig. 6.12(b)), the estimated marginal
probability distribution contains high uncertainty near the two targets due
to partial visibility and measurement noise, leading to a false negative
detection in both cases. Exploiting the temporal context can resolve those
uncertainties, leading to a marginal distribution with clean peaks for both,
the MF-VI Temporal Smoothing (Fig. 6.12(c)) and the MF-VI Bayesian
Filtering approach (Fig. 6.12(d)).

Similar effects can be observed in Fig. 6.13, where results for an exem-
plary sequence of five consecutive frames (shown only in sensor view
one) are depicted. Without exploiting the temporal context (Fig. 6.13(a)),
detection of the person at the bottom right-hand side is very unstable over
time. In contrast, by applying the temporal smoothing these predictions
are getting stabilized as evidenced by Fig. 6.13(b). In this sequence, the
MF-VI Bayesian Filtering approach does not perform quite as well as the
MF-VI Temporal Smoothing method. Studying the first two frames, the
filtering approach does not improve the detection results compared to the
MF-VI Data Term (Fig. 6.13(a)), while the temporal smoothing clearly does.
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However, once there is some significant probability mass predicted by the
data term (as observed in Fig. 6.13(a), frame three), the prediction is stable
in the upcoming frames four and five as evidenced in Fig. 6.13(c). This
reveals a general difference between the temporal smoothing and the tem-
poral filtering approach. While in the temporal smoothing approach, the
marginal distributions are approximated jointly over space and time, in the
filtering approach the past is condensed in the approximated distribution
from the previous time step. Due to the joint optimization, the tempo-
ral smoothing approach effectively incorporates temporal information in
order to fill in the gap of noisy predictions.

We observed that the run time per frame decreases slightly on average
by using the temporal context. This can be explained by the fact that the
proposed dynamics model effectively restricts the set of grid cells where
a person can be present with a probability greater than zero, thus less
mean-field updates need to be evaluated. On a single CPU core8, our
non-optimized Python implementation needs approximately 700 ms per
multi-view frame.

6.5 CNN Inference

In this section we evaluate the end-to-end multi-view CNN approach
introduced in Sect. 5.3. We investigate whether the proposed black box
inference method, trained with synthetic data only, achieves comparable
results to the more involved mean-field variational inference methods. In
comparison to the probabilistic approaches, the proposed CNN architec-
ture is trained with images obtained by the modified9 generative scene
model (cf. Sect. 4.2.1). Thereby, the same discrete ground plane grid is
used to encode the prediction results. Since the proposed CNN operates
on a multi-view frame without considering the temporal context, we com-

8 Intel Core-i7 with 2.9 GHz
9 As described in Sect. 5.3.2, the depth image output of the generative scene model is

randomized.

123



6 Evaluation

0 5 10 15 20 25 30
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Be
st

 F
1-

sc
or

e

MULTIPLE data set
Synthethic training data

(a) Best F1-score vs epochs

0 5 10 15 20 25 30
Epoch

10 2

10 1

Lo
g 

lo
ss

(b) Training loss

Figure 6.14 Exemplary training process of the multi-view CNN architecture with 150.000
synthetic multi-view frames, sampled from the randomized scene model. (a) shows the best
F1-score achieved after each epoch on the MULTIPLE data set as well as on a subset of the
synthetic training data. (b) shows the corresponding training loss on a logarithmic scale.

pare it to the single frame detection method MF-VI Data Term. For the
experiments we use the same sequence of 2200 frames as in the evaluation
of the MF-VI Data Term (Sect. 6.4.1). Since we observed only a slight drop
in performance when the input depth images are downscaled by a factor
of 2, we used subsampled depth images with a resolution of 188 × 120

pixel as input. This has the advantage that the GPU memory footprint can
be reduced significantly, leading to a faster training process. The results in
this section are based on the experiments previously published in [112] by
the author.

To train the model, we use 150.000 synthetic multi-view frames (con-
sisting of three depth images each). For the randomized scene model
we sample each frame accordingly to Algorithm 3. For the plain scene
model we use the same scene configuration sampling strategy, but omit
the manipulation of the vertices. We train the model with a batch size
of 96 and use the Adam [56] optimizer with a learning rate of 0.001. An
exemplary training process is illustrated in Fig. 6.14.
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Figure 6.15 Precision-Recall curves showing the performance of the multi-view CNN
approach with and without domain randomization.

6.5.1 Quantitative Results

Fig. 6.15 shows the precision-recall performance of the evaluated ap-
proaches. While the mean-field variational inference approach (MF-VI
Data Term) outperforms the other methods, the proposed end-to-end CNN
method trained with synthetic randomized depth images (CNN (random-
ized scene model)) achieves noticeable results with best F1-score of 0.88.
To put these results into perspective, one has to consider that the CNN
architecture is a black box inference method only trained with synthetic
training data and does not incorporate any further scene knowledge or
explicit modeling. Also, the MF-VI Data Term includes an iterative op-
timization method at inference time. In contrast, the multi-view CNN
approach is computationally evolved during training, however inference
is just a forward pass. Still, the performance of the CNN approach is not
competing with the more involved mean-field inference. Comparing the
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two manifestations of the proposed architecture CNN (plain scene model)
and CNN (randomized scene model), shows that randomizing the scene
model has a significant impact on the performance (F1-score of 0.76 for
plain person model vs. F1-score of 0.88 for randomized person model).
This is a noticeable result, since the randomization of the person model
as proposed in Sect. 5.3.2 does not include any specific scene knowledge.
Still, it leads to a better generalization of the trained model by narrowing
the gap between synthetic images and real-world observations, resulting
in a significant increase in detection performance.
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6.5.2 Qualitative Results

(a)

(b)

Figure 6.16 Exemplary inference results for the multi-view CNN trained on randomized
synthetic depth images (CNN (randomized scene model)).

In Fig. 6.16 qualitative results of the proposed CNN architecture trained
with randomized synthetic depth images are illustrated for two exem-
plary multi-view frames. Fig. 6.16(a) shows an exemplary convincing
example with clear peaks at grid locations occupied by a person. In con-
trast, Fig. 6.16(b) shows a particular faulty example. The probability mass
is spread around the grid cells occupied by an individual, however the
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(a) MF-VI Data Term

(b) CNN (randomized scene model)

Figure 6.17 Results for a sequence of four consecutive multi-view frames (for visualization
purpose only sensor view one is depicted). (a) shows the marginal probabilities obtained
by mean-field variational inference. (b) depicts the marginal probabilities predicted by the
multi-view CNN approach.

marginal probabilities are all quite low. In consequence, none of them
clearly predicts the presence of a person, leading to false negative detec-
tions. Comparable false negative cases are the dominant error cases in the
present data set.

Fig. 6.17 shows the direct comparison of four consecutive frames, pro-
jected into sensor view one. This example shows a significant weakness
of the proposed CNN end-to-end inference. The results of mean-field
variational inference (without using the temporal context) are quite ro-
bust over time as evidenced by Fig. 6.17(a). In contrast, the predictions
of the CNN architecture are very unstable over the given sequence of
consecutive frames. Even the appearance of individuals hardly change
in between two consecutive frames, the predicted marginal probabilities
significantly differ. For example, the grid cell occupied by the person at the
top right-hand side exhibits a high probability in the first frame. However,
in the second frame the probability drops significantly, leading to a false
negative detection.
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6.6 MAP Inference in Continuous Latent Space

In this section we report results for the MAP inference method introduced
in Sect. 5.1.1. A fair comparison of the MAP inference method with the
methods evaluated in the previous section is not possible due to the fol-
lowing reasons: (i) in order to formulate the MAP objective, the number of
people in the scene has to be known a priori; (ii) the underlying non-linear
least squares optimization problem relies on a good initialization. As a
consequence, the MAP inference is not suitable as a stand-a-lone method
in real-world scenarios, whereas it can be seen as a complementary method
to the proposed discrete inference methods, enabling fine-tuned discrete
person localization. To illustrate the capabilities of the MAP inference
approach, we present qualitative results in this section. In Sect. 6.6.1 we
report results obtained by frame-by-frame inference, while in Sect. 6.6.2 we
apply the MAP inference method to a sequence of consecutive multi-view
frames.

6.6.1 Optimization for One Time Step

In this section, we show MAP optimization results omitting the temporal
dynamics as defined in the objective (5.9). The box regularization term is
weighted with λbox = 0.1 and the pairwise distance regularization term
with λdist = 1 respectively. The number of people present in the scene
is explicitly given as the ground truth for each multi-view frame. If not
reported otherwise, the initial scene configuration X = (x̌1, . . . , x̌m) is
drawn randomly. It is assumed that each person location x̌i ∈ R2 is drawn
independently and distributed uniformly in a rectangular initialization
area. By narrowing the initialization area to a reduced edge length of 70%

of the rectangular observable area, initial person locations close to the im-
age border are avoided. Fig. 6.18 shows a flawless MAP inference example
for one frame of the MULTIPLE data set10. Notice that the individual at the
10 The result is cherry-picked from 10 optimization results, obtained by different randomly

drawn initial scene configurations.
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(a)

(b)

(c)

Figure 6.18 Optimization result for the MAP objective without temporal dynamics. (a)
shows the depth observations with the synthetic depth images corresponding to the initial
scene configuration as green overlay. (b) shows the synthetic depth images corresponding
to the final MAP result as blue overlay. The initial positions are given as green dots, the
optimization trace is drawn in purple. (c) illustrates the final optimization result projected
into the camera view of each sensor.

bottom right of sensor view one is not considered to be part of the ground
truth since it is only hardly visible in a single sensor view. In Fig. 6.18(a)
one can see that the initial person models in the synthetic depth images are
already partially overlapping with the depth observations of the individu-
als present in the scene. In this case, for each location x̌i some gradients
point in the direction of an individual, which increases the probability of
converging to a satisfying local optimum (cf. 5.1.1).
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(a)

(b)

(c)

(d)

(e)

Figure 6.19 MAP optimization results for one multi-view frame and five different initial
scene configurations (a)-(e). Per scene configuration initialization from left to right: (left)
depth observation of sensor one with initial scene model as green overlay ; (middle) final
MAP state of scene model as blue overlay and optimization trace in purple; (right) final MAP
results projected into the camera view one.
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To emphasize the reliance on a good initialization for the proposed con-
tinuous optimization method Fig. 6.19 illustrates results for five randomly
drawn initial scene configurations. For all independent optimization runs
Fig. 6.19 (a)-(e), the given observations can only be partially explained by
the model due to a suboptimal initialization. Fig. 6.19(a) shows a particular
ill-posed initialization. Four of the five person locations are initialized
close to each other at the bottom of the observable area. After optimization
one of those person locations successfully explains the individual at the
bottom left in the scene. However, the remaining person locations are
finally located at the border of the scene. This can be explained as follows:
If a rendering of an individual does not share any overlap with the image
evidence of an individual, the data term costs will only be reduced if the
synthetic person model moves out of the field of view. During optimiza-
tion affected person locations move towards the image border until the
box prior creates an opposite effect. This behavior can be observed in all
given samples in Fig. 6.19 to some extent.

In Fig. 6.20 the combination of the MAP inference method with the mean-
field variational inference approach introduced in Sect. 5.2 is illustrated.
Fig. 6.20(a) shows the MF-VI result for a single multi-view frame. Applying
a threshold to the marginal probabilities yields a list of detections, used
to initialize the continuous optimization problem. By solving for the
MAP state, the initial discrete grid based person locations get fine-tuned,
leading to more precise locations on the ground plane. In Fig. 6.20(b) the
3D person models corresponding to the MF-VI initialization do already
fit the observations quite well. However, studying the overlay image
of the final MAP results in Fig. 6.20(c) reveals that the model fit can be
further improved. While these improvements are limited due to the chosen
discrete grid with a horizontal and vertical distance of 33 cm between
adjacent grid points (cf. Sect. 6.4), the fine-tuning can be a crucial part
for applications demanding a precise localization in image coordinates.
Another potential application is to run the MF-VI detector only for every
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(a)

(b)

(c)

(d)

Figure 6.20 Exemplary results of MAP inference initialized with the mean-field detection
results given in (a). (b) shows the depth observations with the synthetic depth images
corresponding to the initial scene configuration as green overlay. (c) shows the synthetic
depth images corresponding to the final MAP result as blue overlay, whereas the initial
positions are given as green dots and the optimization trace is drawn in purple. (d) illustrates
the final optimization result projected into the camera view of each sensor.
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k-th frame and apply MAP inference to the gap frames, initialized with
the last MF-VI result.

6.6.2 Sequence Optimization

The results in the previous section are based on frame-by-frame infer-
ence. In contrast, in this section we apply the full MAP objective given
in (5.8) to a sequence of consecutive multi-view frames of the MULTIPLE
data set. The additional temporal term is weighted with λtemporal = 0.01.
To initialize the sequence of scene configurations X1:T , we first draw
one time independent random scene configuration Xinit = (x̌init

1 , . . . , x̌init
m )

from a uniform distribution as described for the single frame inference in
Sect. 6.6.1. Based on the initial scene configuration Xinit, each initial person
location x̌i,t for i ∈ {1, . . . ,m} and t ∈ {1, . . . , T}, is independently drawn

from the normal distribution N
(
x̌init
i , σ2I

)
, with σ = 0.7 m. This ensures

that the initial scene configuration is not ill-posed and huge jumps of an in-
dividual from one time step to the other are avoided. At the same time the
proposed initialization exhibits enough randomness to explore the scene
configuration space, in order to increase the probability of successfully con-
verging to an optimal fit. Our experiments showed that by initializing each
x̌i,t independently, the temporal regularization costs will dominate the
data term costs, eventually leading to an ill-posed optimization problem.

The major strength of the additional temporal regularization is that the
optimization becomes more independent of a particular initialization. This
effect can be observed in Fig. 6.21, where the optimization process for six
consecutive multi-view frames is illustrated. Applying the proposed joint
optimization to this sequence leads to a satisfying fit for all time steps. In
contrast, solving for the scene configuration for a single time step (while
using the same initialization) is not successful for t = {3, 4, 5}. This is
exemplarily evidenced for t = 4 in Fig. 6.22. The MAP scene configuration
is successfully determined by considering this multi-view frame as part of
a sequence of frames, as shown in Fig. 6.22(a). In contrast, using the same
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Sensor 1
t=

0
Sensor 2 Sensor 3
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1
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t=
3

t=
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t=
5

Figure 6.21 MAP optimization result for a sequence of six consecutive multi-view frames.
Each row corresponds to one time step. For a explanation of the overlay see description
Fig. 6.18.
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(a) With temporal context

(b) No temporal context

(c) Initialization

Figure 6.22 Comparison of optimization results for frame at t = 4 (cf. Fig. 6.21), with (a)
and without temporal context (b). Both optimizations are initialized with the same scene
configuration, visualized in (c) as green overlay.
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initialization (illustrated in Fig. 6.22(c)) but omitting the temporal context,
the optimization process gets stuck in a local minimum far away from the
true scene state, see Fig. 6.22(b).

6.7 Discussion

The results reported in Sect. 6.4.1 demonstrate that even without using the
temporal context our proposed mean-field variational inference approach
achieves strong detection performance, outperforming state-of-the-art
monocular multi-view people detection methods. Considering that POM
operates only on binary input images, it is remarkable that POM achieves
such competitive results. On the one hand this shows the strength of the
general idea of generative probabilistic modeling in combination with the
mean-field approximation for multi-view people detection. On the other
hand our hypothesis is that the difference in performance between POM
and our approach would be more significant in more complex real-life
scenarios, where the foreground images include additional objects and
a higher level of noise. Besides the direct comparison to the literature,
the results also indicate that our joint optimization approach effectively
leverages the given multi-view information compared to a single-view
approach, as evidenced by Fig. 6.4. This claim is also supported by the
reported performance of the DoG-Detector, which operates independently
on the foreground segmented depth observations of each sensor.

The advantages of our generative joint probabilistic approach are also
supported by the direct comparison with the proposed end-to-end multi-
view CNN architecture. While the reported results are noticeable, consid-
ering that the neural network is only trained with synthetic images, the
overall performance of the proposed CNN is not competitive. This is an
interesting result, since both approaches are based on the same generative
scene model (except the additional randomization) and do not use any
further supervision (e. g. labeled real-world image data). Thus, the CNN
approach can be interpreted as black box inference method, replacing the
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more involved, hand crafted mean-field variational inference optimization.
We emphasize that while the former is a discriminative method the latter
is a generative method. In view of the reported results, we can conclude
that for multi-view people detection in overlapping depth images it is
worth to take the extra effort to deduce the mean-field equations. In spite
of the reported results, we believe that by leveraging a large scale training
data set, it might be possible to achieve competitive results with a compa-
rable CNN architecture. However, a suitable large-scale data set covering
multi-view people detection in top-view depth images does not exist yet.

Even though the mean-field approximation applied to a single frame al-
ready achieves quite strong performance, the results reported in Sect. 6.4.2
indicate that leveraging the temporal context can further increase the
detection performance. On the test sequence the best performance was
achieved by the temporal smoothing approach, directly followed by the
Bayesian filtering approach. Considering the rather moderate quantitative
performance improvements on an evaluation sequence of limited length,
the results have to be interpreted carefully. Taking also the qualitative
results into account, we can observe several sub-sequences where, com-
pared to the single frame method, the additional temporal information
clearly improves the prediction quality. Our hypothesis is that we could
observe these effects in a higher frequency on a more challenging data set,
including a more cluttered foreground segmentation.

From a practical point of view, the proposed mean-field Bayesian fil-
tering method might be the most promising approach. The temporal
smoothing approach achieves the best performance by jointly optimizing
over a sequence of temporal views. This has many theoretically appeal-
ing aspects and might also be sufficient for some applications. However,
for many real-world applications batch processing11 is often impractical.
Therefore, we favor the approximation of the Bayesian filtering distribu-
tion for all applications with real-time requirements. Due to the recursive

11 In contrast to frame-by-frame processing, batch processing refers to a detection method
taking a sequence of multi-view frames as input.
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definition of the posterior distribution, the method fulfills the require-
ments of a frame-by-frame detector while almost reaching the detection
performance of the temporal smoothing approach. Nonetheless, due to a
frame processing time in the order of one second, we have to admit that
the current implementation of our approach is not yet real-time capable.

Additionally, we report results for the MAP inference method, based
on a continuous latent space. Compared to the exhaustive evaluation of
the different manifestation of mean-field approximations, the explanatory
power of the MAP inference evaluation is limited. The qualitative results
show that for a sufficient initial scene configuration the continuous opti-
mization eventually converges, resulting in a good approximation of the
MAP state. However, the continuous optimization highly depends on an
adequate initialization. Hence, we see the potential for the MAP inference
as a post processing step, to fine-tune rather coarse detections. In practice
this can be useful for offline applications with high-precision requirements,
e. g. automatic annotation of novel data sets, where initial coarse detections
could be given by a human annotator or a detection algorithm such as the
proposed mean-field variational inference approach. Since this is a purely
offline application, with no real-time requirements, it is also a particular
example where the MF-VI temporal smoothing approach would be the
favorable choice over the Bayesian filtering method.

139





7 Conclusion and Future Work

7.1 Conclusion

In the present thesis we have addressed the problem of probabilistic multi-
view people detection in overlapping depth images. In particular, we have
investigated methods making joint use of the temporal multi-view image
evidence. Therefore, we have presented a comprehensive generative prob-
abilistic framework, recasting the problem of multi-view people detection
as an inverse problem. The core of this model is a generative scene model,
which maps a scene configuration to a synthetic depth observation. The
generative approach effectively handles the different appearances of peo-
ple, leading to a view-point agnostic detector. Since the generative scene
model is a function of the projection matrix of each sensor, our framework
makes it easy to incorporate a new sensor modality. The only requirement
is the definition of an adequate sensor forward model. Based on the pro-
posed generative probabilistic model, we have presented several inference
strategies.

For continuous latent space, we have deduced the MAP objective and
solved the resulting non-linear least squares optimization problem by
leveraging approximate differentiable rendering. While this approach
hinges on an adequate initialization, our experiments demonstrate that
the MAP inference can be used complementary to the presented methods
utilizing a discrete latent space, serving as a fine-tuning post-processing
step.

Instead of just estimating a MAP point estimate, we have further in-
vestigated mean-field variational inference methods to jointly exploit the
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multi-view information in order to approximate the probability distri-
bution of people present in the scene. We have deduced the mean-field
update equations for the data term and proposed a novel strategy to ef-
ficiently approximate the final mean-field expectations by leveraging a
pre-computed visual dictionary. For evaluation, we have introduced the
novel data set MULTIPLE. The data set is publicly available and in par-
ticular covers indoor people detection in overlapping depth images from
the top-view. Our experiments have shown state-of-the-art results on the
MULTIPLE data set. Even without using the temporal context, we have
demonstrated that our approach achieves strong detection performance,
outperforming state-of-the-art monocular multi-view people detection
methods. We were also able to show that using multi-view image evi-
dence increases the detection performance significantly compared to a
single-view.

Furthermore, we have introduced a novel temporal extension of the
presented mean-field approach, which leverages the temporal context to
regularize the stochastic mean-field optimization process. In particular,
we have proposed a grid based dynamics model to describe the flow of
probability mass over time, enabling the definition of the joint distribution
of people present in the scene across space and time. Based on the joint dis-
tribution, we have deduced the mean-field equations for the full joint dis-
tribution (temporal smoothing) as well as the recursively defined Bayesian
filtering distribution. Our results show that for the temporal smoothing
as well as the Bayesian filtering approach, the introduced temporal reg-
ularization leads to a more robust estimation of the desired probability
distributions, and in consequence increases the detection performance.

For a direct comparison with the proposed probabilistic inference meth-
ods, we have additionally introduced an end-to-end multi-view CNN
framework. In contrast to prevalent methods in the literature, the CNN
architecture is trained only on synthetic depth images, sampled from the
(randomized) generative scene model. Although we have reported notice-
able results for the proposed CNN framework, the overall performance
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is not competitive with the proposed mean-field approximations. These
results support the claim that, for multi-view people detection in depth
images without a large-scale labeled data set, it is worth making use of
more involved joint generative probabilistic modeling methods.

In summary, we have introduced a probabilistic framework for indoor
people detection in top-view depth images. The overriding goal has been
to leverage the temporal multi-view image evidence from all depth sensors
jointly to resolve occlusion as well as measurement noise. We have demon-
strated that the proposed mean-field methods effectively approximate the
joint probability distribution of people present in the scene, leading to
state-of-the-art detection performance.

7.2 Future Work

The methods presented in this thesis open up a variety of future research
directions. While in this work, we focused on a homogeneous network of
passive stereo depth sensors, it would be appealing to integrate different
types of sensor modalities into the sensor network. It would be straight-
forward to integrate other types of depth sensing devices, such as active
stereo sensors or time-of-flight cameras. However, as long as an appro-
priate forward model for the sensor modality can be defined, any kind
of sensor can be integrated into the presented frame work. Considering
indoor people detection, this could, for example, include monocular video
cameras, thermographic cameras or even light barriers.

Besides the integration of new sensor modalities, the proposed forward
model for depth sensor could be extended in several ways. A distance and
viewpoint dependent noise model could prevent false negative detections,
occasionally occurring on the image borders due to heavy measurement
noise. Second, a more expressive generative scene model could be em-
ployed. For the sake of a low dimensional latent space, in this thesis, a
simple rotationally symmetric 3D person model is used. However, one
could also extend the latent space and model each individual with a mor-
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phable 3D person model, for example incorporating degrees of freedom
for height, body size, body shape, and rotation.

From a methodological perspective, there are several opportunities to
advance the proposed mean-field optimization. For the approximation of
the data mean-field update expectation, we assume that only the direct
neighborhood of a grid location affects the expectation. While this assump-
tion is valid for the top-view, for a frontal viewpoint, a more sophisticated
approximation would be preferable. This could, for example, be obtained
by ray-tracing techniques or by checking for the intersection of the bound-
ing boxes with each other. However, the complexity of the approximated
mean-field update expectation increases exponentially with the number
of neighbor cells considered. Focusing on the run-time issues in real-time
applications, an open question to research is the (partial) parallelization of
mean-field updates. The challenge here is to employ parallel mean-field
updates, while exhibiting convergence properties similar to the proposed
asynchronous mean-field optimization.

While our experiments showed that the overall detection performance
can be improved by using the temporal context, there is a great potential
to extend this further. For example, the proposed dynamics model consid-
ers the distribution of individuals to be conditionally independent, once
the previous scene configuration state is given. This assumption makes
the problem computationally tractable, but it also significantly limits the
expressiveness of the dynamics model. Therefore, a future research direc-
tion could be the investigation of different factorizations of the transition
distribution. In particular, it would be tempting to employ transition dis-
tributions with a pairwise factorization, promising a significant increase in
expressiveness while still being tractable. Moreover, it would be engaging
to consider more powerful motion models, incorporating the direction
and speed of individuals.

Overall, to assess the extensions proposed above, a more extensive
quantitative evaluation would be desirable. Therefore, a large scale data
set for multi-view people detection in overlapping depth images is needed.
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In future work, the MULTIPLE data set could be extended by various
real-world scenarios, including customer behavior analysis in retail stores
or people tracking at an airport.

A promising, fundamental future research direction will be the method-
ical combination of generative probabilistic modeling with state-of-the-art
data-driven CNN architectures. While this idea has already been proposed
in the literature by [9, 10] in the context of multi-view people detection
with monocular video sensors, we believe that it is a forward-looking
idea and in general will become increasingly interesting for the computer
vision community in the upcoming years.
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Appendix





A Derivation of Mean-Field Update

Equations

A.1 General Mean-Field Equations

The following derivation is based on [70, p. 736 ff.] and [14, p. 465
ff.]. To keep the notation simple, we use

´
f(X ) dX as short hand for´

D · · ·
´
D f(X ) dx′1, · · · dx′m and

´
f(X ) dX Kx′i as the integral over all vari-

ables {x′i : i 6= j} respectively. The idea is to derive the update equation
for a single distribution qi by isolating the dependency in the ELBO L(q).
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A Derivation of Mean-Field Update Equations

Assuming the elements
{
qj : i 6= j

}
stay fixed, the ELBO for one single

distribution can be derived as

L(qi) = 〈log p(X ,O)− log q(X )〉q(X ) (A.1a)

=

ˆ ∏
j

qj(x
′
j)

(
log p(X ,O)−

∑

k

log qk(x′k)

)
dX (A.1b)

=

ˆ ˆ
qi(x

′
i)
∏

j 6=i
qj(x

′
j)

(
log p(X ,O)−

∑

k

log qk(x′k)

)
dX Kx′i dx

′
i

(A.1c)

=

ˆ
qi(x

′
i)

ˆ ∏
j 6=i

qj(x
′
j) log p(X ,O) dX Kx′i

︸ ︷︷ ︸
log p̃i(X ,O)=〈log p(X ,O)〉

q(X\x′i)

dx′i (A.1d)

−
ˆ
qi(x

′
i)

ˆ ∏
j 6=i

qj(x
′
j)


∑

k 6=i
log qk(x′k) + log qi(x

′
i)


 dX Kx′i dx

′
i

=

ˆ
qi(x

′
i) log p̃i(X ,O) dx′i −

ˆ
qi(x

′
i) log qi(x

′
i) dx

′
i + const (A.1e)

=

ˆ
log

p̃i(X ,O)

qi(x
′
i)

qi(x
′
i) dx

′
i + const. (A.1f)

Up to a constant factor the ELBO L(qi) is equivalent to the negative KL
divergence, thus we can re-write the objective as

L(qi) = −KL(qi ‖ p̃i), (A.2)

with

p̃i(X ,O) =
1

Zi
exp
(
〈log p(X ,O)〉q(X \x′i)

)
. (A.3)
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A.2 POM Mean-Field Equations

It follows that the optimal solution for the objective q̂i(x
′
i) = arg maxL(qi)

is given as

qi(x
′
i) =

1

Zi
exp
(
〈log p(X ,O)〉q(X \x′i)

)
. (A.4)

A.2 POM Mean-Field Equations

Inserting the probabilistic model of POM to the mean-field expectation we
obtain the unconditioned expectation

〈log p(b,x)〉q(x\xi)
= 〈log p(b | x)p(x)〉q(x\xi)

(A.5)

= −
C∑

c=1

〈
δpom(bc, Ac(x))

〉
q(x\xi)

(A.6)

+ 〈log p(x)〉q(x\xi)
.
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A Derivation of Mean-Field Update Equations

By inserting (A.6) in (3.36), the POM mean-field equations are given as

q̂i(xi = 1) =
exp
(
〈log p(b,x | xi = 1)〉q(x\xi)

)

∑
s∈{0,1} exp

(
〈log p(b,x | xi = s)〉q(x\xi)

) (A.7a)

=

[
1 + exp

(
〈log p(b,x | xi = 0)〉q(x\xi)

(A.7b)

− 〈log p(b,x | xi = 1)〉q(x\xi)

)]−1

=

[
1 + exp

(
〈log p(x | xi = 0)〉q(x\xi)

(A.7c)

−
C∑

c=1

〈
δpom(bc, Ac(x|xi = 0))

〉
q(x\xi)

− 〈log p(x | xi = 1)〉q(x\xi)

+

C∑

c=1

〈
δpom(bc, Ac(x|xi = 1))

〉
q(x\xi)

)]−1

=

[
1 + exp

(〈
log

p(x | xi = 0)

p(x | xi = 1)

〉

q(x\xi)

(A.7d)

+

C∑

c=1

(〈
δpom(bc, Ac(x|xi = 1))

〉
q(x\xi)

−
〈
δpom(bc, Ac(x|xi = 0))

〉
q(x\xi)

))]−1

.
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B Derivation of the General

Probabilistic Model

In this appendix we provide the derivations for Sect. 4.2. The derivations
are based on the joint model defined in (4.7), restated as

p(X 1:T ,o1:T ) = p(o1 | X 1)p(X 1)

T∏

t=2

p(ot | X t)p(X t | X t−1) . (B.1)

According to Sect. 4.2, in the following we omit the integration domain,
where

´
p(X 1:T ) dX 1:T is a short hand for

´
D · · ·

´
D p(X 1:T ) dX 1 . . . dX T

with D defined as the full domain of X . The integrals are defined over an
abstract state space implied by X . Depending on the concrete manifesta-
tion of the scene configuration space, the integrals have to be refined or, in
case of a discrete scene configuration space, replaced by the sum over all
discrete states.
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B Derivation of the General Probabilistic Model

B.1 Posterior Distribution

For t ∈ {2, . . . , T}:

p(X 1:t | o1:t) =
p(o1:t,X 1:t)

p(o1:t)
(B.2a)

=

∏t
k=2 p(ok | X k)p(X k | X k−1)

p(o1:t)
(B.2b)

=
p(ot | X t)p(X t | X t−1)p(o1:t−1,X 1:t−1)

p(ot | o1:t−1)p(o1:t−1)
(B.2c)

=
p(ot | X t)p(X t | X t−1)p(X 1:t−1 | o1:t−1)

p(ot | o1:t−1)
. (B.2d)

B.2 Predicted Likelihood

For t ∈ {2, . . . , T}:

p(ot | o1:t−1) =

ˆ
p(ot | X t)p(X t | X t−1)p(X 1:t−1 | o1:t−1) dX 1:t

(B.3a)

=

ˆ
p(ot | X t)

ˆ
p(X t | X t−1)p(X t−1 | o1:t−1) dX t−1

︸ ︷︷ ︸
p(X t|o1:t−1)

dX t (B.3b)

=

ˆ
p(ot | X t)p(X t | o1:t−1)dX t . (B.3c)
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B.3 Filtering Distribution

B.3 Filtering Distribution

For t ∈ {2, . . . , T}:

p(X t | o1:t) =

ˆ
p(X 1:t | o1:t) dX 1:t−1 (B.4a)

=
p(ot | X t)

p(ot | o1:t−1)︸ ︷︷ ︸
ν

ˆ
p(X t | X t−1)p(X 1:t−1 | o1:t−1) dX 1:t−1 (B.4b)

= ν

ˆ
p(X t | X t−1)

ˆ
p(X 1:t−1 | o1:t−1) dX 1:t−2

︸ ︷︷ ︸
p(X t−1|o1:t−1)

dX t−1 (B.4c)

= ν

ˆ
p(X t | X t−1)p(X t−1 | o1:t−1) dX t−1

︸ ︷︷ ︸
p(X t|o1:t−1)

. (B.4d)
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