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Abstract

We compute the quantum corrections to Higgs boson masses in the charge-parity violating
Next-to-Minimal Supersymmetric Standard Model at second order in perturbation theory.
The emphasis is on corrections that are specific to this model and not present in the Minimal
Supersymmetric Standard Model. These corrections are interesting for two major reasons.
First, they can considerably impact the mass spectrum and the resulting predictions for new
phenomena studied at particle collider experiments. Therefore, they can change the discovery
prospects of the investigated model depending on the considered point in parameter space.
Second, the newly calculated corrections are subject to a technical difficulty, the appearance
of (infra-red) divergences, which is not common to simple theories usually studied but ap-
pears in many non-minimal models beyond the Standard Model. The different solutions for
the problem of infra-red divergences considered in this thesis can also impact future studies
of different models.

Furthermore, we estimate the precision of the perturbative calculation using the methods
of renormalization-scheme and renormalization-scale variation. In particular, we employ a
mixed OS/DR renormalization scheme in the Higgs boson and top/stop sector of the theory.

We show that the relative corrections calculated in this work can be as large as 6% but remain
below 3% in the region compatible with perturbative unitarity below the Grand Unification
scale. The overall size of the scheme- and scale-uncertainty varies between approximately
1-8% and 0-3%, respectively.

Zusammenfassung

In dieser Dissertation werden Quantenkorrekturen zu Higgs Boson Massen in dem ladungs-
und paritätsverletzenden Nicht-Minimalen Supersymmetrischen Standardmodell auf Zweis-
chleifenordnung berechnet. Der Fokus dieser Arbeit liegt auf jenen Korrekturen, welche
ausschließlich im nicht-minimalen nicht aber im Minimalen Supersymmetrischem Standard-
modell auftreten. Diese Beträge sind deshalb interessant, weil die korrigierten Higgs Boson
Massen Einfluss auf Vorhersagen haben können, welche experimentell an Teilchenbeschleu-
nigern getestet werden. Daher können die Higgsmassenkorrekturen die Aussicht auf eine
Entdeckung des betrachteten Modells beeinflussen. Des Weiteren können die hier vorgestell-
ten Korrekturen auch für zukünftige Untersuchungen anderer Modelle von Interesse sein. Der
Grund dafür ist das Auftreten von (infra-rot) Divergenzen, welche nicht für derartige Berech-
nungen in minimalen Modellen üblich sind. Die verschiedenen Lösungen für dieses Problem,
welche in dieser Arbeit studiert werden, können daher auch in anderen nicht-minimalen Mod-
ellrechnungen angewandt werden.

Darüber hinaus macht diese Arbeit Aussagen über die Genauigkeit der störungstehorischen
Resultate zu den Higgs Boson Massen unter Zuhilfenahme der Abhängigkeit derselbigen von
der Wahl des Renormierungsschemata und der Renormierungsskala. Insbesondere werden
gemischte OS/DR Renormierungsschemata im Higgs Boson Sektor aber auch im top/stop
Sektor der Theorie angewandt.

Es wird gezeigt, dass die relativen Korrekturen bis zu 6% groß werden können. In dem Be-
reich des Modells, welcher mit Unitarität unterhalb der Skala an der sich die Eichkopplungen



viii

treffen kompatibel ist, sind die Korrekturen jedoch nicht größer als 3%. Des Weiteren be-
trägt die theoretische Unsicherheit abgeleitet aus der Variation des Renormierungsschematas
in etwa 1-8% und die abgeleitet aus der Renormierungsskala in etwa 0-3%.
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CHAPTER 1

Introduction

The Standard Model of particle physics (SM) it is one of the most successful theories describ-
ing fundamental interactions with a tremendous precision in an energy range spanning over
multiple orders of magnitude. Despite its popularity, there is experimental and theoretical
evidence for physics beyond the SM (BSM) such as for instance the naturalness of a small
Higgs boson mass value. Supersymmetry (SUSY) is one promising candidate being able to
address this problem [1–7].
In particular, supersymmetric Higgs boson masses are closely connected to the theories’ gauge-
and Yukawa-sector which reduces the number of independent parameters of the considered
model. For instance, the Minimal Supersymmetric Standard Model (MSSM), cf. Refs. [8, 9],
predicts the value mh for the SM-like Higgs boson mass to be bounded from above by the Z-
boson mass mh < mZ at tree-level. This is in conflict with the experimental measured value
for the Higgs boson mass mh ≈ 125GeV > mZ [10–12] and demands for the inclusion of
higher-order corrections. On the other hand, SUSY cannot be an exact symmetry realized in
nature but is at least softly broken [9]. As a consequence, the Higgs boson mass can be raised
to its experimental value by increasing the soft-SUSY-breaking mass scale MSUSY which enters
the higher-order corrections to mh. Even though the leading one-loop corrections to the Higgs
boson mass in the MSSM are in addition proportional to the fourth power of the top-quark
Yukawa coupling, rather large values of MSUSY are required in order to achieve corrections
which are large enough to obtain the measured Higgs boson mass. This in turn weakens mo-
tivations regarding naturalness of the MSSM. In contrast, the Next-to-MSSM (NMSSM), cf.
Refs. [13–18], features additional F-term contributions from the superpotential parameters λ
and κ raising the Higgs boson mass already at tree-level such that higher-order corrections
become less important. Therefore, the NMSSM reduces the required amount of finetuning
compared to the MSSM [19].

The experimental value of the SM-like Higgs boson mass has been measured at the Large
Hadron Collider (LHC) to very high precision with an uncertainty of a few hundred MeV [20,
21]. Therefore, precise predictions for Higgs boson masses in SUSY models are necessary in
order to comply with the experiment. In addition, the inclusion of higher-order corrections
can be used to study the convergence of the perturbative calculation in different corners of
the models parameter space. It is expected that the theoretical uncertainty of the Higgs
boson mass prediction is reduced upon the inclusion of higher-orders. Thus, precise Higgs
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boson mass predictions in SUSY models require the calculation of higher-order corrections.
However, the occurrence of large mass gaps MSUSY � mh can lead to large logarithmic cor-
rections spoiling the perturbative series at any finite order. In these scenarios, effective field
theory (EFT) techniques are required in order to resum these large logs. However, in contrast
to the MSSM, the NMSSM is less constrained by the experimental measurements such that
scenarios with top superpartners lighter than 1-2TeV are still viable. Therefore fixed-order
calculations utilized in this work, which incorporate the full logarithmic dependence at a
given order, are still a useful tool for precision predictions in the NMSSM.
A further important ingredient of higher-order calculations is the choice of the renormaliza-
tion conditions. The dependence on the renormalization prescription should ideally vanish
in an all-orders calculations. Therefore, the variation of the renormalization scale as well
as a comparison of results obtained using e.g. minimal subtraction (MS) or on-shell (OS)
renormalization conditions can give an estimate of the size of missing higher-order terms.

Another aspect of the fixed-order calculation is the dependence on the electroweak (EW)
gauge couplings (also known as the D-term corrections). State-of-the-art (two-loop) three-
loop calculations in the (N)MSSM are performed in the limit of vanishing UY (1) and SUL(2)
gauge couplings g1 and g2, also referred to as the gaugeless limit. This restriction reduces
the number of Feynman diagrams to a smaller set of diagrams with relatively simple tensor
structure.
Going beyond the gaugeless limit in the MSSM was for a long time avoided because of the
appearance of infra-red (IR) divergences and imaginary parts in the loop-integration due to
Goldstone bosons with a vanishing or negative squared mass [22, 23]. The gaugeless limit
circumvents these divergences in the MSSM. However, they reappear in the NMSSM at the
two-loop order when considering NMSSM-specific corrections proportional to λ and κ (also
known as the F-term corrections), even in the gaugeless limit. With increasing interest in
the MSSM D-term as well as NMSSM F-term contributions, solutions to the problem of IR
divergences have been developed first for the MSSM two-loop effective potential based on
resummation [24–26]. For general field theories, Ref. [27] developed the generalised effective
potential approach based on OS counterterms for massless Goldstone bosons which has al-
ready been applied to the CP-conserving NMSSM [28] in a minimal subtraction scheme.
In addition to the gaugeless limit, the approximation of vanishing external momentum is often
applied in the calculation of the Feynman diagrams, since the two kinds of corrections are
estimated to be of similar size. Furthermore, vanishing external momentum simplifies the cal-
culation of two- and three-loop integrals significantly. While in the MSSM, there exist studies
about the momentum dependence of the two-loop QCD [29,30] and leading top/stop [31] cor-
rections, the momentum dependence in the NMSSM is not known beyond the one-loop order.

This work complements the diagrammatic two-loop calculations in the CP-violating NMSSM
of Refs. [32] and [33] by taking into account all two-loop Feynman diagrams proportional to
the NMSSM specific superpotential parameters λ and κ and the top-quark Yukawa coupling
in the gaugeless limit. A mixed OS/DR renormalization scheme for the top and stop sector,
the charged Higgs boson mass and the EW vacuum expectation value (VEV) is employed.
It is shown that a subset of the IR-divergences due to massless Goldstone bosons cancels in
the final expression for the neutral Higgs boson selfenergy by using a mass regulator. The
remaining IR-divergences are treated in three different ways: (i) using only a mass regulator,
(ii) by expanding IR-divergent Feynman diagrams around small external momentum and (iii)
by using arbitrary external momentum in all (even IR-finite) diagrams.

This thesis is organised as follows.
Part I introduces the SM at tree-level, focusing on the mechanism of electroweak symmetry
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breaking in Chapter 2. Chapter 3 discusses the regularization of UV-divergences as well as
the idea behind renormalization of scalar, vector boson and fermion masses at the one- and
two-loop level. We give explicit examples for the SM Higgs boson, Z-boson and top-quark
mass. The results of these examples lead to the main motivation for SUSY in this thesis, the
hierarchy problem, which is discussed in Chapter 4.
The theoretical foundations for SUSY are discussed in Part II. The focus is set on the tree-
level parts of the NMSSM that are important for the considered two-loop corrections. In
addition, we shortly review previous works performed in this research field that are impor-
tant for this thesis.
In Part III, we present the calculation conducted during this dissertation. Chapter 7 applies
the renormalization techniques from Chapter 3 on the NMSSM and derives all counterterms
necessary for the two-loop calculation. In Chapter 8, the method of calculating the two-loop
selfenergy Feynman diagrams is explained while focusing on the different treatments of the
appearing IR divergences and how they relate two previous works.
The impact of the two-loop corrections on the phenomenology of the NMSSM is discussed in
Chapter 9. We draw conclusions in Chapter 10 as well as discuss open problems and ideas
for future research.





Part I.

The Standard Model





CHAPTER 2

The Standard Model of Particle Physics

Quantum field theory (QFT) is rooted in the foundations of quantum mechanics, field the-
ory and special relativity. It incorporates a Lorentz invariant description of quantized field
operators. Probability amplitudes can be calculated as functions of the field operators using
perturbative expansions of time-ordered operator products. In momentum space, this pre-
scription boils down to the computation of an infinite series of Feynman diagrams. Therefore,
QFT provides a powerful framework which can be universally applied to calculate observ-
able predictions. Gauge theories are QFTs that postulate Lagrangians which are invariant
under certain local symmetry transformations. This leads to conservation laws, the connec-
tion between several classes of Feynman diagrams and further identities that simplify QFT
calculations.
The Standard Model (SM) is a spontaneously broken gauge theory, that aims to explain a
large fraction of observed physical phenomena. Many of its predictions have been evaluated
very precisely up to multiple orders in perturbation theory while an enormous amount of ex-
periments test it at a similar accuracy. For an overview on measurements and corresponding
predictions of the SM, we refer to the Review of Particle Physics [34].
This chapter addresses several aspects of the gauge and matter sector of the SM. We focus
on the mass generation in the Higgs- and gauge-boson as well as the top-quark sector since
these are of particular importance for the calculations discussed in Part III of this thesis.

2.1. Gauge Symmetries and Field Content

The SM Lagrangian is invariant under local SUc(3)⊗SUL(2)⊗UY (1) gauge transformations.
The gauge fields transform according to the adjoint representation of the respective gauge
group. That is, an octet representation for the eight Gluons gaµ, a = 1, . . . , 8, of SUc(3), a

triplet representation for the three gauge bosons W i
µ, i = 1, 2, 3, and a singlet representation

for the gauge boson Bµ. The charges associated with the gauge transformations are color for
the SUc(3), weak iso-spin I3 for SUL(2), and hypercharge Y for the UY (1). While the SUc(3),
which mediates the strong interaction, remains unbroken the SUL(2)⊗UY (1) is spontaneously
broken to a Ue.m.(1) with a massless photon, a massive neutral and two charged gauge bosons
which are the mediators of the electromagnetic and electroweak forces, respectively.
Quarks and leptons are arranged in triplets, doublets and singlets of the SUc(3), SUL(2)
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gauge/matter field generations (UY (1), SUL(2), SUc(3))

B 1 (0, 1, 1)

W 1 (0, 3, 1)

G 1 (0, 1, 8)

q
(
u
d

)
L
,
(
c
s

)
L
,
(
t
b

)
L

(1/6, 2, 3)

l
(
ντ
τ

)
L
,
(
νµ
µ

)
L
,
(
νe
e

)
L

(−1/2, 2, 1)

d dR, sR, bR (1/3, 1, 3)

u uR, cR, tR (−2/3, 1, 3)

e τR, µR, eR (1, 1, 1)

Φ 1 (1/2, 2, 1)

Table 2.1.: Field content of the SM categorized in gauge (upper) and matter (middle) fields.
The Higgs doublet (lower part), containing the only scalar degree of freedom, plays a special
role. The second column shows the number of generations and the notation used to distinguish
the first, second and third generation of the fermions as well as the representation they belong
to. The L stands for doublet and the R for singlet under SUL(2). The last column identifies
all representations (Y, n,m) under the SM gauge groups. Here, Y is the UY (1) hypercharge
and n=1,2 refers to singlet and doublet representations of the SUL(2) gauge group. m=1,2
and 8 refers to the singlet, triplet and octet representation of the SUc(3) gauge group.

and UY (1), i.e. they transform under the fundamental representations. In addition, the SM
contains one complex Higgs doublet Φ with hypercharge Y = 1/2. The complete field content
of the SM along with their representations is listed in Tab. 2.1.
The most general Lorentz- and gauge-invariant Lagrangian describing all fields of Tab. 2.1
reads

LSM =(DµΦ)
† (DµΦ)

=−V (Φ)︷ ︸︸ ︷
−µ2Φ†Φ− 1

2
λ|Φ†Φ|2

− 1

4
GµνG

µν − 1

4
WµνW

µν − 1

4
BµνB

µν

+ i l̄ /Dl + i ē /De+ i q̄ /Dq + i ū /Du+ i d̄ /Dd

− Yd qΦ d− Yu qΦ
† u− Yl lΦ e

+ Lghosts + Lgaugefix ,

(2.1)

where we have suppressed all generation and group indices. The first line in Eq. (2.1) describes
the kinetic term and the scalar potential V (Φ) of the Higgs doublet Φ with a mass parameter
µ2 and a quartic self-coupling λ. The second line contains the gauge boson kinetic terms and
self-interactions with the gluon, W and B boson field strength tensors Gµν , Wµν and Bµν ,
respectively. The third and fourth lines are the kinetic fermion terms and Yukawa interactions
of all fermion fields with the Higgs doublet. The last line consists of the Faddeev-Popov ghost-
field Lagrangian, Lghosts, and the gauge-fixing Lagrangian ,Lgaugefix, which remove unphysical
degrees of freedom from the gauge-boson sectors of the theory. We will not discuss them in
more detail since they are not of relevance for this thesis. The covariant derivative Dµ ensures
local gauge invariance and is given by

Dµ = ∂µ − ig1Y Bµ − ig2I3 σiW
i
µ + i

g3 λa
2

gaµ , (2.2)
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where σi, i = 1, 2, 3, are the Pauli- and λa, a = 1, . . . , 8, are the Gell-Mann matrices. The
gauge couplings g1, g2 and g3 belong to the UY (1), SUL(2) and SUc(3) gauge groups, respec-
tively. Together with the complex 3×3 Yukawa matrices Yf , f = d, u, l, they are free input
parameters of the theory. However, one can show that Yl can be assumed to be diagonal with-
out loss of generality, since the kinetic terms in LSM are invariant under U(3) transformations
UL,R in generation space,

l → UL l̂ and e → URê . (2.3)

Thus, the transformation (2.3) will only alter the Yukawa matrix
(
U l
L

)†
YlU

l
R ≡ Ŷl which

breaks this U(3) symmetry. Appropriate choices for U l
L and U l

R diagonalize Yl using a sin-
gular value decomposition. The states l̂ and ê are called mass eigenstates while e and l are
the interaction eigenstates. Since the Lagrangian for the hatted and un-hatted lepton fields
has the same form, we can relabel l̂ = l and ê = e. Thus, mass and interaction basis for the
leptons coincide.
The simultaneous diagonalization of Yd and Yu is more involved since we do not have enough
U(3) transformations. The resulting Lagrangian will depend on an additional U(3) trans-
formation VCKM which is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [35]. VCKM is
of particular importance for flavor physics. However, it does not play an important role in
the context of the Higgs boson mass calculations performed in this thesis and is therefore set
to unity. The motivation for this approximation is a large hierarchy between the top-quark
Yukawa coupling to the Higgs boson compared to all other Yukawa couplings. Likewise, we
neglect the presence of neutrino masses (i.e. right-handed neutrinos are missing in Tab. 2.1)
since they do have a negligeble small effect on the Higgs boson mass prediction.

The SM Lagrangian in Eq. (2.1) does not contain any explicit mass terms for fermions and
gauge bosons since these would break the chiral- and gauge symmetries of the model. The
description of massive fields is achieved using the mechanism of spontaneous symmetry break-
ing, discussed in the next chapter, which connects the free parameters Yl,d,u, µ

2 and g1,2 to
physical masses.

2.2. Electroweak Symmetry Breaking

In this section we briefly discuss electroweak symmetry breaking (EWSB) i.e. the dynamical
generation of gauge boson and fermion masses without explicitly breaking local gauge invari-
ance and chiral symmetries. This is also called the Higgs mechanism [36–38].
Consider the scalar potential V (Φ) in Eq. (2.1). If the squared mass parameter of the scalar
field Φ is negative, µ2 < 0, the potential develops a minimum

〈Φ〉 =
√
−µ2

λ

(
0

1

)
≡ v√

2

(
0

1

)
, (2.4)

with the vacuum expectation value (VEV) v. We can expand the scalar field Φ around this
minimum

Φ =

 G+

v + h+ iG0

√
2

 , (2.5)

where h is the physical Higgs boson and G0,+ are the neutral/charged Goldstone bosons
discussed later. We rotate the four massless gauge bosons W 1,2,3

µ and Bµ into a diagonal
basis (

Zµ

Aµ

)
=

(
cθw −sθw

sθw cθw

)(
W 3
µ

Bµ

)
and W±

µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.6)
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with the Weinberg angle θw and the notation sx = sinx, cx = cosx, tx = tanx which is used
throughout this thesis1. Using Eqs. (2.5) and (2.6) one can show that the kinetic term of Φ
generates the gauge boson mass terms

(DµΦ)†DµΦ =
(g1v

2

)2
︸ ︷︷ ︸
M2

W

W+
µ W−µ + v2

g21 + g22
8︸ ︷︷ ︸

1
2
M2

Z

ZµZ
µ + interactions (2.7)

while the photon field Aµ remains massless. In accordance with the Goldstone theorem, cf.
Ref. [39], the three Goldstone bosons G±,0 remain massless and only the field h acquires a
mass

V (Φ) ⊃ v2λ

2
h2 ≡

m2
h

2
h2 . (2.8)

In order to obtain the correct definition of the electrical charge e, it is useful to write the
covariant derivative in the mass basis

Dµ = 12x2∂µ − i
2g2I3√

2

(
0 W+

µ

W−
µ 0

)
− 12x2ieQAµ − 12x2

ie

cθwsθw
Zµ
(
I3 −Qs2θw

)
, (2.9)

using the Gell-Mann-Nishijima identity, Y = 2(Q− I3), and

e =
g1g2√
g11 + g22

=
2MW

v
sθw =

2MW

v

√
1−

M2
W

M2
Z

. (2.10)

Solving this equation for v, we can eliminate v as input parameter in favour of MW , MZ and
e. At tree-level, this choice seems to be equivalent. However, in Part III we will exploit this
relation at one- and two-loop order to construct an on-shell VEV counterterm which severely
depends on the choice of input parameters.

We continue with the masses of the fermions. Using the expansion Eq. (2.5) in any Yukawa
term of the type YffLΦfR, shows that the mass matrices of the fermions are

mf =
v√
2
Yf , f = l, u, d . (2.11)

Their experimentally measured values show a clear mass hierarchy, with the top quark mass
mt ≈ 173GeV being by far the heaviest fermion with a mass gap of several orders of magni-
tude [34]. Due to the tree-level relation, Eq. (2.11), this hierarchy is translated to a hierarchy
in the Yukawa couplings. The proportionality between masses and coupling strengths to
the Higgs boson is a very strong prediction of the EWSB mechanism. Due to this hierar-
chy, a common approximation in higher-order Higgs boson mass calculations is to neglect all
Yukawa couplings Yl = Yd = 0 and only take into account the top quark Yukawa coupling,
(Yu)ij = δi3δj3yt. Thus, the masses and couplings to the Higgs boson of all fermions other
than the top-quark fermion are set to zero and the CKM matrix becomes unity.
It is important to note that the relations between masses and couplings, Eqs. (2.7), (2.8)
and (2.11), are violated by higher-order corrections. Therefore, precision predictions that
depend e.g. on mt and yt as an input, such as those of the Higgs boson mass, require to
go beyond tree-level accuracy. The basic principles of such higher-order calculations are
discussed in the next chapter.

1Note that tx = tanx clashes with the notation for the tadpole parameters tΦ = ∂V/∂Φ defined in Sec. 5.3.1.
However, in this thesis the tangens only appears as a function of mixing angles such that it is always clear
from the context.



CHAPTER 3

Higher-Order Corrections to Mass Parameters

This chapter introduces the notation and tools that are commonly used in the calculation of
higher-order corrections to mass parameters.
Due to the quantum nature of higher-order calculations, they involve the summation and
integration over all possible intermediate states, quantum numbers and momenta. The latter
is called loop integration which can feature divergences at various places in the integration
domain. A particular type of divergence is the ultra-violet (UV) divergence which can appear
for very large loop momenta. The process of regularization, discussed in Sec. 3.1, isolates
these divergences by introducing a regulator. Since physical observables need to be finite,
UV divergences are a sign for a missing piece in the calculation. In fact, the quantities
entering the SM Lagrangian discussed in Chapter 2 are not physical parameters since they
can contain divergences at higher-orders. Therefore, it requires additional definitions of what
we call physical parameters which are embedded into the theory by adding a minimal set
of counterterms to the Lagrangian. This procedure is called renormalization and is briefly
introduced in Sec. 3.1. The practical use of regularization and renormalization is explained
at the example of one-loop corrections to scalar, vector boson and fermion masses in Sec. 3.2,
3.3 and 3.4, respectively. The basic tools for scalar two-loop mass corrections are discussed
in Sec. 3.2.1.

3.1. Regularization and Renormalization

We consider the scalar one-loop two-point integral at vanishing external momenta which often
appears in higher-order calculations

=

∫
dk4

(2π)4
1

(k2 −m2)2
. (3.1)

In the integration region with large loop momenta, k2 � m2, the integral scales with∫ ∞

m2

dk

k
∝ lim

Λ→∞
log Λ2 (3.2)

which means that it diverges logarithmically in D = 4 dimensions. In Eq. (3.2) we intuitively
introduced a mass regulator Λ which would enable us to proceed with the rest of the calcu-
lation and to employ renormalization conditions that cancel all log Λ2 terms before taking
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the limit Λ → ∞. However, the introduction of a mass regulator is in general not Lorentz
invariant. A better way to deal with this kind of divergences is dimensional regularization
which makes use of the fact, that integrals similar to Eq. (3.1) become UV finite if

dk4

(2π)4
→ µD−4

MS

dkD

(2π)D
, (3.3)

with D = 4 − 2ε chosen small enough [40]. The resulting expression will be Lorentz invari-
ant and involves inverse powers of ε parametrizing the divergence as ε goes to zero. This
procedure is called dimensional regularization (DReg). The prefactor µD−4

MS is a dimensional
quantity which ensures that the dimensions of all Lagrangian parameters in D = 4 stay the
same in D = 4−2ε dimensions. At the n-loop order, we maximally encounter poles of O(ε−n).

Once all divergent contributions have been isolated in ε−n poles, a minimal set of counter-
terms and renormalization conditions is chosen to obtain a UV finite result. In practice, the
bare (unrenormalized) quantities and fields, qbarei and Ψbare

i , in the classical Lagrangian are
related to the physical (renormalized) quantities and fields, qren.i and Ψren.

i , by

qbarei = qren.i + δqi and (3.4a)

Ψbare
i =

√
ZΨiΨ

ren.
i . (3.4b)

The counterterms δqi are calculated perturbatively in terms of the physical parameters

δqi =
∞∑
n=1

δ(n)qi
(
qren.j

)
(3.5)

where the δ(n)qi’s will contain terms up to O(ε−n). Depending on the chosen renormalization
conditions, the δ(n)qi’s may contain additional finite parts.
The wave function renormalization constants (Z-factors), ensure the proper normalization of
the two-point correlator and can be similarly expanded:

√
Zψi

=

(
1 +

∞∑
n=1

δ(n)ZΨi

) 1
2

= 1 +
δ(1)Zψi

2
− 1

2

(
δ(1)Zψi

2

)2

+
δ(2)Zψi

2
+ . . . (3.6a)

≡ 1 +
∆(1)ZΨi

2
+

∆(2)ZΨi

2
+ . . . (3.6b)

where we introduced the ∆-notation used in this thesis. In the minimal subtraction (MS)
scheme, the δqi and Z-factors are chosen to only cancel all ε−n terms

δqMS
i =

∞∑
n=1

1

εn
a(n)qi , (3.7)

where the a(n)qi can be determined by demanding UV-finite qren.i . In the modified minimal

subtraction (MS) scheme, one also chooses to cancel constant factors,

1

(4π)
D/2

Γ(1 + ε)

ε
=

1

(4π)2

(
1

ε
− γE + log 4π +O(ε)

)
, (3.8)

which appear due to the D-dimensional phase space integral:

δqMS
i = δqMS

i − γE + log 4π , (3.9)

where γE ≈ 0.577 is the EulerMascheroni constant. In an equivalent way, one can make this
cancellation manifest without modifying the MS counterterms but define the renormalization
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scale µMS in the MS scheme, which is closely connected to the regularization scale µMS used
to regularize the loop integrals:

µ2
MS

= 4πe−γµ2
MS . (3.10)

Therefore, we do not explicitly mention the constant terms in analytic expressions of MS
counterterms but only refer to the UV-divergent parts and to the renormalization scale µMS

as µ without the MS subscript.
However, DReg explicitly breaks SUSY as the number of degrees of freedom of gauge bosons
changes in D 6= 4 dimensions while those of the corresponding fermionic superpartners remain
constant. Dimensional reduction (DRed) treats all space-time indices in D = 4 dimensions
except those of the four-momenta which intuitively should preserve SUSY. However, even in
DRed no general proof for SUSY-preservation exists. Instead, various SUSY Ward identities
have been explicitly shown to hold up to two- and three-loop order [41,42]. The correspond-
ing renormalization scheme of DRed is labeled DR. While the SUSY-preservation of DR
counterterms needs in general to be proven on a case-by-case basis, the two-loop calculation
presented in this thesis does not require such a proof. We apply the approximation of vanish-
ing gauge couplings, i.e. there are no internal gauge boson propagators, and therefore there
is no issue with SUSY-breaking counterterms at the considered loop-level.
In addition to the MS/DR schemes, it is also possible to include further finite parts in (some
of) the counterterms. A popular choice is the OS scheme which employs conditions on the
mass parameter counterterms in order to ensure that mren. is given by the pole of the cor-
responding field propagator. If we calculate a physical observable O(qren.i ) perturbatively in
terms of the input parameters qren.i , the result will in general depend on the choice of the
renormalization conditions for the parameters qren.i . However, physical observables must not
depend on the chosen renormalization scheme. Therefore, the results for O obtained from
different renormalization conditions have to agree in an all-orders calculation. Thus, the free-
dom to choose different renormalization conditions for a set of input parameters qren.i can be
used to estimate missing higher-order terms in the calculation of the observable O(qren.i ). In
this thesis, the qren.i ’s are a set of dimensionful parameters renormalized in different renor-
malization schemes while O is the propagator-pole of the Higgs boson fields.
In the next section, we show how OS/DR counterterms are calculated in practice for general
scalar, vector boson and fermion mass terms. In addition, we list short example results for
the SM Higgs boson, the top-quark and the Z-boson masses. Not only the corrections to the
Higgs boson mass are going to be important for the calculation of the two-loop corrections in
the NMSSM in this work, but also those to fermions and vector bosons since they contribute
at the sub-loop level.

3.2. Scalar Mass Parameters

In an interacting QFT, the free-field tree-level propagator,

iS(0)
s = = i(p2 −m2

s)
−1 , (3.11)

of a real scalar field with mass ms receives quantum corrections characterized by an infinite
series of Feynman diagrams. Collecting all one-particle-irreducible (1PI) diagrams one can
write the all-orders propagator using a Dyson series,

iSs(/p) = + 1PI + 1PI 1PI + . . .

1

(3.12a)

=
i

p2 −m2
s − Σ̂s(p2)

, (3.12b)

where Σ̂s(p
2) is the renormalized scalar selfenergy given by the first 1PI blob in Eq. (3.12). At

the one-loop order, Σ̂s(p
2) in any renormalizable QFT is obtained by calculating the Feynman
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S
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Figure 3.1.: All possible generic scalar (vector if sij are vectors) one-loop selfenergy diagrams.

diagrams shown in Fig. 3.4: Diagram (a) to (f) form the unrenormalized selfenergy Σs(p
2).

The diagrams schematically depict the contributions from arbitrary scalars (S), fermions
(F ), vectors bosons (V ) and corresponding ghosts2 (G). Diagram (g) is the counterterm
contribution which renders the total selfenergy UV finite:

Σ̂(1), Y
s (p2) = Σ(1), Y

s (p2) + (p2 −m2, Y
s )δZY − δm2, Y

s , (3.13)

where the superscript (1) denotes the number of loops and Y is a label for the chosen renor-
malization scheme. The tensor integrals contributing to Σ(1), Y

s (p2) can be reduced to two
common scalar integrals, the one-point integral A and the two-point integral B, using e.g.
the Passarino-Veltman reduction formalism [43, 44]. They have been computed in Ref. [45]
in terms of logarithms and di-logarithms. For completeness, we recall their definitions used
in [46] here using the (+,−,−,−) convention for the Minkowski metric:

A(x) = (4π)2µ4−D
∫

dkD

(2π)D
[
k2 − x

]−1
, (3.14a)

B(x, y) = (4π)2µ4−D
∫

dkD

(2π)D
[
k2 − x

]−1 [
(k + p)2 − y

]−1
, (3.14b)

with the squared mass parameters x and y and the external momentum p. Both integrals
feature a ε−1 pole and give additional UV-finite contributions. As discussed in the previous
section, there are two common renormalization prescriptions. In the OS scheme, Y = OS,
the conditions

R̃eΣ̂OS
s

(
p2 = m2,OS

s

)
= 0 and R̃e

∂

∂p2
Σ̂OS
s (p2)

∣∣∣∣
p2=m2,OS

s

= 0 (3.15)

are solved for δm2
s and δZ respectively:

δm2,OS
s = R̃eΣOS

s

(
p2 = m2,OS

s

)
and δZOS = −R̃e

∂

∂p2
ΣOS
s (p2)

∣∣∣∣
p2=m2,OS

s

,

(3.16)
which ensures that mOS

s entering the loop-corrected propagator

iSOS
s (p2) = i(p2 −m2,OS

s )−1 (3.17)

is the physical pole mass with a residue of one. Therefore, the OS scheme fulfils all require-
ments to be used in scattering and decay processes formulated using the standard Lehmann-
Symanzik-Zimmerman (LSZ) formalism [47]. The parameter mOS

s is an observable input of

2Diagrams with vector bosons and ghosts in the loop are not relevant for this work since we assume vanishing
gauge couplings. However, for completeness we show the full set of generic one-loop diagrams including vectors
and ghosts.
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the theory while the loop corrections are absorbed into δm2,OS
s . The symbol R̃e in Eqs. (3.15)

and (3.16) ignores all absorptive contributions i.e. it uses the real value of all loop functions
but otherwise takes into account imaginary parts of all complex parameters.
In the modified minimal subtraction scheme, Y = MS, we only absorb the UV divergent parts
(cf. the discussion of Eq. (3.10)) in δZ and δm2

s:

R̃eΣ̂MS
s

(
p2
)
|ε−n = 0 and R̃e

∂

∂p2
Σ̂MS
s (p2)|ε−n = 0 (3.18)

⇔ δm2,MS
s = R̃eΣMS

s

(
p2
)
|ε−n and δZMS = −R̃e

∂

∂p2
ΣMS
s (p2)|ε−n , (3.19)

where X|ε−n takes the UV-divergent part of X into account. Therefore, the scalar propagator
in the MS scheme is of the form

iSMS
s (p2) = i

(
p2 −m2,MS

s + R̃eΣ̂MS
s

(
p2
))−1

, (3.20)

where the tree-level mass mMS
s and the UV-finite part of the selfenergy enter. In contrast to

m2,OS
s , the mass m2,MS

s is not at the propagator pole, iSMS
s (p2 = m2,MS

s ) 6= 0. The actual pole

of SMS
s is the loop-corrected MS mass

m̃2,MS
s = m2,MS

s + R̃eΣMS
s (p2 = m̃2,MS

s )
∣∣∣
UV-finite part

(3.21)

which can be solved iteratively for m̃2,MS
s . It should be noted that the iterative solution

mixes contributions from different orders in perturbation theory. Furthermore, m̃2,MS
s seems

to depend on the chosen renormalization scale µ. However, physics must be independent of
the artificial parameter µ. Therefore, the µ-dependence of the renormalized parameters which
enter m̃2,MS

s must be such that the overall µ-dependence of m̃2,MS
s vanishes. Demanding that

m̃2,MS
s cannot depend on µ

µ
∂m̃2,MS

s

∂µ
= 0, (3.22)

can be used to derive a differential equation for m2,MS
s (µ) which depends on the other the-

ory parameters entering Σs
3. In phenomenologically relevant models, with many mass and

coupling parameters qi, this procedure leads to a system of coupled equations

∂qMS
i

∂ logµ
≡ βqi(q

MS
i , qMS

j , . . . ) (3.23)

which are called the Renormalization Group Equations (RGEs). The expressions on the
right hand side of Eq. (3.23) are called beta functions. The RGEs are known for arbitrary
renormalizable QFTs up to two-loop order [49–51] and are an important tool to study the
behavior of higher-order corrections. They have been implemented in the computer program
SARAH [52–55] which can calculate the RGEs for any renormalizable gauge theory. In partic-
ular, the RGEs can be used to study the residual dependence of e.g. m̃2,MS

s on µ as a further
estimate of the size of missing higher-orders. In Ref. [49] it was shown that the RGEs are
inevitably connected to the UV-structure of the theory. More specifically, the coefficient of
the n-loop RGE for a coupling qi is fully determined by the single-pole of the corresponding
n-loop MS counterterm. This gives a convenient and effective possibility to construct MS
counterterms without actually calculating Feynman diagrams. Likewise, one can partially

3A more elegant but equivalent way of obtaining differential equations for the renormalized parameters is to
demand that the bare parameters and fields are independent of µ. For a detailed discussion, we refer to
Ref. [48].
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Figure 3.2.: All possible generic scalar one-loop tadpole diagrams.

double-check analytic results for higher-order corrections to a parameter qi by comparing
the pole-structure with generic results for the beta function from the literature (such as for

instance Σ(1),MS
s |ε−1 and β

(1)
m2

s
). This strategy is also applied in this thesis to cross-check the

required counterterms for the two-loop Higgs boson mass calculation.

Unlike the squared mass parameter m2
s of the hypothetical scalar from our previous dis-

cussion, the squared mass parameter µ2 in the SM, and in general in any spontaneously
broken theory, is replaced by the VEV and the quartic Higgs self-coupling by making use of
the minimum condition

∂

∂Φ
V (Φ)

∣∣∣∣
Φ=〈Φ〉

≡ t
(0)
Φ

tree-level
= 0 (3.24)

⇔− µ2 =
v2λ

2
−

t
(0)
Φ

v
≡

m2
h

2
, (3.25)

where we explicitly kept the dependence on the position of the tree-level minimum t
(0)
Φ = 0.

Thus, the MS/DR counterterm for the squared scalar mass of the Higgs boson is derived from
the MS/DR counterterm of the VEV (δv), the quartic coupling (δλ) as well as the tadpole
counterterm (δtΦ)

δm2
h(q1, . . . , qn) =

qn∑
x=q1

∂m2
h

∂x
δx =

∂m2
h

∂v
δv +

∂m2
h

∂λ
δλ+

∂m2
h

∂tΦ
δtΦ . (3.26)

Therefore, the treatment of the loop-corrected vacuum is of particular importance in spon-
taneously broken theories. In practice, this means that the tree-level minimum condition
t(0)si = 0 of the scalar potential V (s1, . . . , sn) of any spontaneously broken theory w.r.t. a field
si is shifted by quantum corrections to yield the renormalized all-orders minimum t̂si . At the
one-loop level, all possible types of corrections to t̂(1)si are shown in Fig. 3.2. Diagrams (a) to
(d) are all proportional to trilinear couplings of si to scalars (a), fermions (b), vector bosons
(c) and ghosts (d). Diagram (e) shows the one-loop counterterm contribution. A convenient
tadpole renormalization prescription is to choose

t̂si = t(0)si = 0 (3.27)

⇔ δtsi = tsi (3.28)

such that diagram (e) in Fig. 3.2 effectively cancels all other tadpole diagrams. Therefore, the
tree-level minimum t(0)si stays at the physical minimum t̂si at each order in perturbation theory.

For demonstration purposes, we end this section by considering the top quark contribution
to the SM Higgs boson mass, i.e. Fig. 3.1 (b) with si,j = h and F1,2 = t, t̄, in the limit of
vanishing external momentum:

Σ
(1)
h (p2) =

3m2
t

8π2v2
(
2A(m2

t ) + (p2 − 4m2
t )B(m

2
t ,m

2
t )
)

(3.29)

p2=0
= − 3m4

t

4π2v2

(
−1 + log

m2
t

µ2
− 3

ε

)
+O(ε) (3.30)
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which contains UV-divergent and UV-finite parts. The tadpole contribution, Fig. 3.2 (b) with
si = h and F = t, reads:

t
(1)
h = − 3m2

t

4π2v
A(m2

t ) (3.31)

= − 3m4
t

4π2v

(
−1 + log

m2
t

µ2
− 1

ε

)
+O(ε) (3.32)

Thus, the one-loop corrected MS mass is given by

m2(1),MS

h ≈ m2(0)

h + Σ̂(1),MS(p2 = 0)− 1

v
t̂
(1),MS
h (3.33)

= λv2 +
3m4

t

2π2v2
log

m2
t

µ2
(3.34)

which is a crucial result for the discussion of the hierarchy problem in Chapter 4.

3.2.1. Scalar Two-Loop Corrections

The renormalization of two-loop corrections to scalar mass parameters works similar to the
one-loop case. In addition to the two-loop counterterm, which has the same structure as the
one-loop counterterm, there are also contributions from products of two one-loop counterterms

two-loop

=(p2 −m2
s)∆

(2)Zs − δ(2)m2
s

+ (p2 −m2
s)
1

4

(
∆(1)Zs

)2
− δ(1)m2

s∆
(1)Zs, (3.35)

and similarly for the tadpole counterterm

two-loop

= δ(2)ts −
1

2
∆(1)Zsδ

(1)ts . (3.36)

The full set of all generic two-loop selfenergy and tadpole diagrams with internal scalars
and fermions is shown in the Appendix in Fig. D.2 and Fig. D.1, respectively. For the sake
of readability, we show here five sample two-loop selfenergy diagrams in Fig. 3.3 discussed
in the following. The diagram in Fig. 3.3 (a) consists of two closed internal lines and is
therefore called a genuine two-loop diagram. Diagrams (b)-(e) can be interpreted in two
ways: they consist of only one closed internal loop and therefore contribute with the one-loop
integrals defined in Eqs. (3.14a) and (3.14b). However, since they also contain a one-loop
counterterm, they are formally a two-loop contribution of O(ε−2). Therefore, we call them
counterterm-inserted two-loop diagrams. Diagrams (b) and (c) contribute with a one-loop
mass counterterm while diagrams (d) and (e) contribute with a vertex counterterm. In this
thesis, we take into account Z-factor contributions from scalar mass- and vertex counterterm
diagrams. However, for fermion mass counterterm insertions, such as Fig. 3.3 (c), we only
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Figure 3.3.: Example scalar selfenergy diagrams. Shown are a genuine two-loop diagram (a)
and counterterm-inserted diagrams (b-d).



18 3. Higher-Order Corrections to Mass Parameters

require the δ(1)mF contributions but not δ(1)ZF since we do not calculate any two-loop dia-
grams with fermions on the external lines.
Therefore, a full-fledged two-loop calculation that takes into account the contributions from
certain scalar and fermion degrees of freedom (as we do in this work), requires a one-
loop renormalization of the corresponding sectors. In order to consistently cancel all UV-
divergences, the sub-loop renormalization must consider the same approximations as in the
genuine two-loop diagrams (e.g. if certain parameters are assumed to vanish or not).
The loop integrals appearing along the evaluation of all considered two-loop diagrams can
be reduced to a set of master integrals using the recurrence algorithm proposed in Ref. [56]
which was implemented in the computer program TARCER [57]. The two-loop master integrals
required in this work are [46]

S(x, y, z) =

∫
2

1

[k2 − x][q2 − y][(k + q − p)2 − z]
(3.37a)

T(x, y, z) = − ∂

∂x
S(x, y, z) (3.37b)

U(x, y, z, u) =

∫
2

1

[k2 − x][(k − p)2 − y][q2 − z][(q + k − p)2 − u]
(3.37c)

V(x, y, z, u) = − ∂

∂y
U(x, y, z, u) (3.37d)

M(x, y, z, u, v) =

∫
2

1

[k2 − x][q2 − y][(k − p)2 − z][(q − p)2 − u][(k − q)2 − v]
, (3.37e)

with ∫
2
=
(
(4π)2µ4−D)2 ∫ dDk

(2π)D

∫
dDq

(2π)D
. (3.38)

In the limit of vanishing external momentum, all integrals reduce to the tadpole integral
I(x, y, z) ≡ S(x, y, z)|p2=0 and derivatives thereof which are known analytically [58]. For
arbitrary external momentum and mass parameters, one can rely on numerical techniques
such as implemented in the computer program TSIL [59] which numerically solves differential
equations involving the master integrals. For the evaluation of the mass counterterm-inserted
diagrams, Fig. 3.3(b-c), it is useful to define a special case of the one-loop three-point integral

C(x, y, z) =
B(y, x)− B(z, x)

y − z
. (3.39)

The one- and two-loop integrals are further discussed in Chapter 8 and Appendix B.

In Sec. 2.2 we discussed that, due to the Higgs mechanism, all couplings between the SM
Higgs boson and the fermions are connected to the VEV of the Higgs boson. Furthermore,
the VEV also enters the tree-level mass of the Higgs boson. As a consequence, the one- and
two-loop VEV counterterms, δ(1)v and δ(2)v, are required for the calculation of Fig. 3.3(b-e)
and for the determination of the two-loop Higgs mass counterterm in Eq. (3.26). Further-
more, the Higgs mechanism predicts a close connection between the SM VEV and the W±-
and Z-boson masses, cf. Eq. (2.10). Thus, a two-loop Higgs boson mass calculation, which
relies on vector boson masses as input, also requires the one- and two-loop SM vector boson
mass counterterms in order to construct the VEV counterterm.
Therefore, we briefly discuss the renormalization of vector boson and fermion mass parameters
in Secs. 3.3 and 3.4 while focusing on the construction of mass counterterms. The calculation
of wave-function renormalization constants for fermions and vector bosons is not required for
this thesis.
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3.3. Vector Boson Mass Parameters

The discussion about higher-order corrections to vector boson masses goes along the same
lines as the one of the scalar masses, cf. Sec. 3.2. However, the tree-level propagator

iS
(0)
V = = −i

[
gµν

p2 −m2
V

+ (ξV − 1)
pµpν/(p2 −m2

V )

p2 − ξM2
V

]
(3.40)

of a vector boson V with mass mV and gauge-fixing parameter ξV involves non-trivial Lorentz
structures. For simplicity, we work in the Feynman gauge, ξV = 1, which eliminates the
second term in the propagator ∝ pµpν . If one considers an on-shell decay of a heavy vector
V = W±, Z into a pair of fermions with massmf , the p

µpν are contracted with the 4-momenta
of the fermions which yields an overall suppression4 m2

f/m
2
V such that only the transverse

part is of relevance. The Dyson series for the all-orders selfenergy works as in Eq. (3.12) for
the scalar field:

iŜV (p) =
−igµν

p2 −m2
V − Π̂TV (p

2)
, (3.41)

with the transverse part of the renormalized vacuum polarisation tensor which is determined
using an appropriate projector,

Π̂TV (p
2) =

1

D − 1

(
gµν − pµpν

p2

)(
1PI

)
µν

, (3.42)

leading to the following OS counterterm for the squared mass parameter

δm2,OS
V = R̃e

[
ΠTV (p

2 = m2
V )
]
. (3.43)

Using a loop-expansion of the tree-level relation, Eq. (2.10), between the vector boson masses
and the VEV v, one can then connect the counterterms δmV , V = W±, Z, δe and δv with
each other. This procedure is discussed in more detail in Sec. 7.2.2 for the complex NMSSM.

The diagrams contributing to the vector boson selfenergy look very similar to the scalar
case: replacing the external scalar propagators in Fig. 3.1 with those of the vectors si → Vi
yields all possible generic one-loop diagrams for ΠTV .
For instance, the leading one-loop corrections from the top-quark to the squared Z-boson
mass in the limit of vanishing external momentum in the MS scheme, i.e. Fig. 3.1 (b) with
si = Z and F1,2 = t, t̄, reads in the SM

m2(1),MS

Z = m2(0)

Z + Π̂TZ(p
2 = 0)

= m2(0)

Z

(
1 +

3m2
t

8π2v2
logm2

t

)
, with m2(0)

Z =
g21 + g22

4
v2 , (3.44)

where we have introduced the notation

log x = log
x

µ2
. (3.45)

4It was shown in Ref. [60], that the one-loop corrections to the longitudinal components indeed vanish in the
limit mf → 0.
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3.4. Fermion Mass Parameters

The propagator

iS
(0)
F = = i(/p−mF )

−1 , (3.46)

of a fermion with mass mF also receives selfenergy corrections from 1PI diagrams

iŜF (/p) =
i

/p−mF − Σ̂F (/p)
, (3.47)

with the renormalized selfenergy Σ̂F (/p) defined in spinor space. It is convenient to split the
selfenergy into vector left/right-handed (VL/VR) and scalar left/right-handed (L/R) parts:

ΣF (/p) =
[
mFΣ

L
F (p

2) + /pΣ
V L
F (p2)

]
PL+

[
mFΣ

R
F (p

2) + /pΣ
V R
F (p2)

]
PR, PL/R =

1∓ γ5
2

(3.48)

which can be found with the help of appropriate projectors

Σ
L/R
F (p2) =

Tr
[
ΣF (/p)PL/R

]
mF

, Σ
V L/V R
F (p2) =

Tr
[
/pΣF (/p)PL/R

]
p2

. (3.49)

Since ΣF (/p) acts in the spinor space, the on-shell condition for the fermion propagator [61]
is slightly different from the one for scalar fields:

R̃e
[
ΣF (/p)u(p)|/p=mF

]
= 0 and R̃e

[
ū(p)ΣF (/p)|/p=mF

]
= 0 (3.50)

which is used to derive the OS fermion mass counterterm [61]

δmOS
F =

mF

2
R̃e
[
ΣV LF (mF ) + ΣV RF (mF ) + ΣLF (mF ) + ΣRF (mF )

]
. (3.51)

In the SM, the leading one-loop contribution to the renormalized top-quark selfenergy origi-
nates from Fig. 3.4 (a) and (b) with {S, F} = {h, t} and {V, F} = {g, t̄} respectively. Using
general statements about the involved dimensions of the couplings, the one-loop corrected
top-quark mass in the MS scheme has to scale like

m
(1),MS
t = m

(0)
t + Σ̂t(/p = mt) (3.52)

∝ m
(0)
t [1 +O(αs) +O(αt)] , with m

(0)
t =

v yt√
2
, (3.53)

where O(αs) with αs = g23/4π are the QCD corrections and O(αt) with αt = y2t/4π are top-
quark Yukawa corrections. The powers of αX are conventionally used to denote the number of
loops originating from a certain sector X of a theory. For instance O(αsαt) denotes two-loop
corrections with mixed QCD and Yukawa couplings.

fi fj

S

F

(a)

fi fj

V

F

(b)

fi fj

(c)

Figure 3.4.: All possible generic fermion one-loop selfenergy diagrams.



CHAPTER 4

The Hierarchy Problem

This chapter briefly discusses one of the major theoretical issues of the SM, the hierarchy
problem, based on the results of the previous chapters.

We summarize the behavior of the one-loop corrected SM Higgs boson, top-quark and Z-
boson masses:

m2(1),MS

h ≈ m2(0)

h +
3m4

t

2π2v2
logm2

t , (4.1)

m
(1),MS

t ≈ m
(0)

t [1 +O(αs) +O(αt)] and (4.2)

m2(1),MS

Z ≈ m2(0)

Z

[
1 +

3m2
t

8π2v2
logm2

t

]
, (4.3)

which have been discussed in Sec. 3.1. A special property of the Z-boson and top-quark
masses is that the loop corrections vanish once we set their corresponding tree-level masses
to zero

m
(1),MS

t

m
(0)

t → 0
−−−−−→ 0 ,

m2(1),MS

Z

m2(0)

Z → 0
−−−−−−→ 0 . (4.4)

This is a consequence of the gauge and chiral symmetries which protect the masses of gauge
bosons and fermions, respectively. Therefore, Eq. (4.4) also holds to all orders in perturba-
tion theory in any model that preserves the gauge and chiral symmetries. However, the Higgs

boson mass m2(1)

h is non-zero even for very small or vanishing tree-level Higgs boson masses.
Thus, there is no ad-hoc mechanism in the SM that can protect mh from receiving very large
quantum corrections. Such corrections should appear at latest at the scale where gravity is
becoming a strong force, i.e. at the Planck scale mPlanck ≈ 1019GeV. Since mh � mPlanck, a
very large counterterm would be required in order to cancel these corrections. A cancellation
in many orders of magnitude can be seen as a sign for a hidden symmetry of the theory which
makes this cancellation manifest. The absence of such a symmetry within the SM is called
the hierarchy problem.
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The problem of a light Higgs boson mass in the presence of heavy new physics becomes
even more pronounced when considering a UV cut-off Λ to regulate the loop integral A(x)
that contributes to the Higgs boson mass through diagrams like Fig. 3.1 (a). In this scheme,
Λ is interpreted as the scale of new physics where the description of particle interactions in
the SM breaks down.
While the two-point integral was shown to diverge only logarithmically with Λ, cf. Eq. (3.1),
the tadpole integral diverges quadratically

A(x) ∝ Λ2 +O(x log Λ2) , (4.5)

which yields a much stronger dependence of mh on the new physics scale Λ than e.g. those
of chiral fermions which depend only logarithmically on Λ. Using the mass-regularization
scheme, it was shown in Ref. [62] that the one-loop contribution to the Higgs boson mass
indeed contains a quadratically divergent component

δm2(1),mass-reg.

h =
3Λ2

v2(4π)2
(
m2
Z + 2m2

W +m2
h − 4m2

t

)︸ ︷︷ ︸
!
=0 (Veltman condition)

+O(log Λ2) . (4.6)

Postulating a cancellation between the different contributions in Eq. (4.6), also known as the
Veltman condition [63], had interesting consequences at the time the top-quark mass and the
Higgs boson mass were still unknown. Today it is out of question that the Veltman condition
can be satisfied within the SM. This can be seen as another manifestation of the hierarchy
problem. However, even if not applicable in the SM, it is important to note that the Veltman
condition is satisfied for

mZ = mW = mh = mt (4.7)

which implies a symmetry among the bosons and fermions. Supersymmetry is such a sym-
metry. In fact, it was shown in Ref. [64] that supersymmetric theories are free of quadratic
divergences. Likewise, it was argued in Ref. [65], that soft-SUSY-breaking contributions
(which are discussed later) do not influence the Veltman condition and therefore do not spoil
the cancellation of quadratic divergences. Thus, softly broken SUSY, discussed in the next
chapter, is a promising candidate for the solution to the hierarchy problem.
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CHAPTER 5

Supersymmetry

In Chapter 4 we introduced supersymmetry as one of the most promising candidates for the
solution of the hierarchy problem which is the main motivation for SUSY in this thesis. In
this chapter we will provide the basic notation used to describe softly-broken supersymmetric
models.
However, SUSY has a long tradition in particle physics since the first supersymmetric QFTs
were already formulated in the early 70’s [2–7]. Therefore, we refer to the literature [9,13,17,
18,66,67] for a rigorous introduction into the field.

Supersymmetric gauge theories require the same number of boson and fermion degrees of
freedom, nB = nF , within the individual representations of all gauge groups. For instance, a
gauge boson Aaµ charged under the gauge group Ga with gauge coupling ga and generators T a

requires the existence of a Weyl spinor λa which is usually referred to as the gaugino of Ga.
The gauge boson and gaugino are combined in one vector Superfield Âa = (Aµa , λa) trans-
forming under the adjoint representation of Ga. Likewise, we can define a chiral superfield
Φ̂i = (Φi,Ψi) consisting of a complex scalar field Φi and a Weyl spinor Ψi (here i is a group
index for the fields charged under a specific representation R of Ga). The most general scalar
potential VΦ invariant under SUSY transformations is constructed as follows [9]

VΦ =W∗
iW i︸ ︷︷ ︸

F-Terms

+
1

2
g2a

(
Φi

∗
T aijΦ

j
)2

︸ ︷︷ ︸
D-Terms

+ soft-breaking terms , (5.1)

where summation over repeated indices is implicit. For our calculation we further require
the recipe for the construction of SUSY-invariant interactions between the scalars and Weyl
spinors [9]:

LΦ,Ψ,λ =
1

2

(
W ijΨiΨj + h.c.

)
+
√
2ga

(
(Φi

∗
T aijΨ

j)λa + h.c.
)

(5.2)

+ soft-breaking terms

with

W i1,...,in =
δnW

δΦi1 ...δΦin
. (5.3)
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Superfield fermion scalar generations (UY (1), SUL(2), SUc(3))

B̂ B̃ B 1 (0, 1, 1)

Ŵ W̃ W 1 (0, 3, 1)

Ĝ G̃ G 1 (0, 1, 8)

q̂ q q̃ 3 (1/6, 2, 3)

l̂ l l̃ 3 (−1/2, 2, 1)

d̂ d̄ d̃∗ 3
(
1/3, 1, 3

)
û ū ũ∗ 3

(
−2/3, 1, 3

)
ê ē ẽ∗ 3 (1, 1, 1)

Ĥu H̃u Hu 1 (1/2, 2, 1)

Ĥd H̃d Hd 1 (−1/2, 2, 1)

Table 5.1.: Field content of the MSSM categorized in vector (upper cell) and chiral (two lower
cells) superfields. The second and third columns show the notation used for the scalar and
fermionic degrees of freedom. The generations and representations in the fourth and fifth
column are as in the SM, cf. Tab. 2.1.

The superpotential W(Φ̂n) is a holomorphic function of the superfields and has mass dimen-
sion 3 [9]. It is the central object of the theory and can be constrained by imposing additional
symmetries on it. The soft-breaking terms in Eqs. (5.1) and (5.2) break SUSY softly which
means that SUSY is only broken by dimensionful parameters. Without specifying the SUSY-
breaking mechanism, the most general soft-SUSY-breaking Lagrangian Lsoft consists of all
operators with dimension D < 4 which obey the gauge symmetries of the model and the
discrete symmetries of W.

In summary, the Lagrangian of a SUSY invariant theory is fully determined by the gauge
group, the superpotential and the (super)field content. Sec. 5.1 introduces the MSSM field
content and the resulting Lagrangian based on Eqs. (5.1) and (5.2) as well as discusses a se-
lection of theoretical problems of the MSSM. These problems are used as the main motivation
for the NMSSM introduced in Sec. 5.2. Section 5.3 discusses the resulting NMSSM tree-level
spectrum in more detail while focusing on the parts relevant for the two-loop calculation.

5.1. The Minimal Supersymmetric Standard Model

The field content of the minimal SUSY extension of the SM, the MSSM, is shown in Tab. 5.1
in the same manner as for the SM (all gauge and Lorentz indices are suppressed), cf. Tab. 2.1.
The MSSM gauge group, shown in the first block, is identical to the SM. Therefore, there are
eight additional gluinos, three winos and one bino with spin 1/2 which transform identically to
the gluons, W bosons and B boson, respectively. Chiral vector fields are added in the second
block such that their fermionic components resemble the field content of the SM lepton and
quark sectors. In the last block two additional chiral doublets are added for the sake of
electroweak symmetry breaking. The most general lepton- and baryon-number conserving
superpotential with the field content of Tab. 5.1 reads:

WMSSM = −YeĤd · l̂ ê− YdĤd ·q̂ d̂+ YuĤu ·q̂ û+ µĤd ·Ĥu , (5.4)

where Ye,d,u are the usual Yukawa matrices and µ is a dimensionful parameter (not to be con-
fused with the µ2-parameter of the SM). Color- and generation-indices have been suppressed.
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The symplectic product ”· ” consists of the anti-symmetric tensor ε12 = ε12 = 1. In contrast
to the SM, the MSSM requires two Higgs doublets because of the additional constraint of a
holomorphic superpotential, since the term which couples Ĥd with û would require a complex
conjugate. The soft-breaking Lagrangian reads

Lsoft
MSSM =−m2

Hd
H†
dHd −m2

Hu
H†
uHu −m2

q̃ q̃
†q̃ −m2

l̃
l̃† l̃

−m2
ũR

ũ∗RũR −m2
d̃R
d̃∗Rd̃R −m2

ẽR
ẽ∗RẽR

−
[
BµHu ·Hd − TeHd ·L̃ẽ∗R − TdHd ·q̃d̃∗R + TuHu ·q̃ũ∗R

+
M1

2
B̃B̃ +

M2

2
W̃iW̃i +

M3

2
G̃G̃+ h.c.

]
, (5.5)

with the soft gaugino mass parameters M1,2,3, the soft trilinear Higgs-sfermion-sfermion cou-
pling matrices Te,d,u, the squared soft bilinear masses Bµ and m2

i for the Higgs bosons
i = Hu,Hd as well as the soft-breaking mass matrices m2

i for the sfermions, with i =
q̃, ũR, d̃R, l̃, ẽR (left- and right-handed squarks as well as sleptons). In general, all mentioned
parameters can be complex except for the soft squared mass parameters. With the super-
field content given in Tab. 5.1, the superpotential in Eq. (5.5) and the recipes in Eqs. (5.1)
and (5.2), all ingredients are available to determine the MSSM Lagrangian. However, the
result is rather lengthy and not important for this thesis. Instead, we continue with the dis-
cussion of two shortcomings of the MSSM as a motivation for the NMSSM and later derive
the NMSSM Lagrangian.

In analogy to EWSB in the SM, the two Higgs doublets are expanded around their min-
ima

Hd =

(
H0
d

H−
d

)
=

vd + hd + iad√
2

h−d

 and Hu =

(
H+
u

H0
u

)
= eiϕu

 h+u
vu + hu + iau√

2

 , (5.6)

with the complex phase ϕu and the ratio of the two VEVs

tanβ ≡ tβ ≡ vu
vd

, (5.7)

such that

v2 = v2u + v2d ≈ (246GeV)2 (5.8)

coincides with the SM VEV at tree-level. Similarly to the µ2-parameter of the SM, one can
eliminate m2

Hu
and m2

Hd
in the MSSM by making use of the tadpole conditions for hu and

hd. For instance, the tadpole condition for hu yields

∂

∂vu
VMSSM = 0 ⇔ m2

Hu
= Bµt

−1
β +

m2
Z

2
cos 2β − µ2 , (5.9)

which inevitably connects µ with the EWSB and the SUSY-breaking scales. While mZ and
Bµ are connected through some SUSY-breaking mechanism to solve the hierarchy problem,
there is no obvious reason why µ should be of the order of the electroweak scale rather than,
for instance, at the Plank scale. The lack of an explanation for the size of µ is called the
µ-problem [68], and is one motivation for considering the NMSSM, which naturally connects
µ to the soft-SUSY-breaking scale. Another theoretical problem of the MSSM is the upper
bound on the lightest tree-level Higgs boson mass,(

mMSSM
h

)2 ≤ m2
Z cos2 2β , (5.10)
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Super field fermion scalar generations (UY (1), SUL(2), SUc(3))

Ŝ S̃ S 1 (0, 1, 1)

Table 5.2.: Additional degrees of freedom of the NMSSM compared to the MSSM, cf. Tab. 5.1.

which requires very large quantum corrections in order to agree with the experimental value
of mh ≈ 125GeV. To achieve higher-order corrections of the order of 40%, the masses of the
scalar superpartners need to be above the TeV scale which reintroduces a small hierarchy
between the MSSM and the SM. This is called the little hierarchy problem and is a further
motivation for studying non-minimal SUSY extensions that modify the tree-level prediction
for mh and therefore require smaller loop corrections and soft-SUSY-breaking scales.

5.2. The Next-To-Minimal Supersymmetric Standard Model

There exist several versions of the NMSSM [18]. In this thesis, we focus on a minimal extension
which adds one additional singlet superfield, Ŝ, to the MSSM. The associated components
and their transformation under the SM gauge group are listed in Tab. 5.2. The considered
superpotential,

WNMSSM = WMSSM|µ=0 + λŜĤd ·Ĥu +
1

3
κŜ3 , (5.11)

is identical to the MSSM with a vanishing µ-term and additional singlet couplings. Equa-
tion (5.11) exhibits a Z3-symmetry which forbids all scale-dependent terms in the superpo-
tential. The soft-SUSY-breaking Lagrangian is also very similar to the MSSM,

Lsoft
NMSSM = Lsoft

MSSM

∣∣∣
Bµ=0

−m2
S |S|2 +

(
TλSHd ·Hu −

1

3
TκS

3 + h.c.

)
, (5.12)

with the soft trilinear couplings Tλ,κ and the soft squared mass parameter m2
S . Once the

scalar singlet field acquires a VEV,

〈S〉 = vS e
iϕs

√
2

, S =
eiϕs

√
2
(vS + hs + ias) , (5.13)

with the complex phase ϕs, one can define an effective µ-term:

WNMSSM ⊃ λ〈S〉Hu ·Hd
SSB−−→ λ vS e

iϕs

√
2

Hu ·Hd ≡ µeffHu ·Hd , (5.14)

which plays the very same role as the µ-parameter in the MSSM. However, µeff is dynamically
generated and has its origin in the symmetry-breaking scale of the new scalar singlet mass
since one can relate the soft-SUSY-breaking parameterm2

S with the singlet VEV vs by making
use of the tadpole equation ∂VNMSSM/∂vS = 0. Thus, also µeff(vS) is now naturally connected
to the soft-SUSY-breaking scale which solves the µ-problem of the MSSM discussed in Sec. 5.1.
Furthermore, the tree-level prediction for the lightest Higgs boson mass, cf. Eq. (5.10),
receives an additional contribution from the F-terms(

mNMSSM
h

)2 ≤ m2
Z cos2 2β +

v2

2
λ2 sin2 2β , (5.15)

which can relax the little hierarchy problem discussed in Sec. 5.1.

In summary, the Z3-symmetric NMSSM is a natural extension of the MSSM which does not
only solve the little-hierarchy- and the µ-problem, but also features a richer phenomenology
due to the additional singlet states.
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5.3. The NMSSM Tree-Level Spectrum

We parametrize all trilinear soft-breaking couplings with their superpotential counterparts

Tα = αAα, α = λ, κ , (5.16a)

Ti = αiAi, αi = Yd,Ye,Yu (5.16b)

and use the Aα’s and Ai’s as input parameters. This parametrization allows us to study the
MSSM-limit of the NMSSM

λ, κ → 0, vS → ∞ and µeff = constant (5.17)

which decouples the singlet and recovers all couplings of the MSSM. Comparing with the
MSSM limit is particularly useful for studying effects that are exclusive to the NMSSM.
In this thesis, we are interested in the two-loop corrections that are proportional to linear
combinations of yt, λ, κ,At, Aλ and Aκ. The latter three are by construction always multiplied
with yt, λ and κ, respectively. Therefore, we denote the two-loop corrections studied in this
work as O((αt + ακ + αλ)

2) corrections. These corrections are the successors of the O(α2
t )

and O(αtαs) corrections which have been calculated in Refs. [32,33]. The sum of all two-loop
contributions as well as the NMSSM-specific contributions are abbreviated as

O(α2
new) = O((αt + ακ + αλ)

2) +O(αtαs) , (5.18a)

∆O(α2
new) = O(α2

new)−O(αtαs)−O(α2
t ) . (5.18b)

The complete interaction Lagrangian relevant for the O((αt + ακ + αλ)
2) calculation takes a

rather simple form
VNMSSM|O((αt+ακ+αλ)2)

= VH + Vt̃ + VYukawa , (5.19)

with the Higgs boson potential

VH =(|λS|2 +m2
Hd

)H†
dHd + (|λS|2 +m2

Hu
)H†

uHu +m2
S |S|2

+
∣∣κS2 − λHd ·Hu

∣∣2 + (1

3
κAκS

3 − λAλSHd ·Hu + h.c.

)
, (5.20)

the stop/sbottom potential

Vt̃/b̃ =m2
q̃3

(
|t̃L|2 + |b̃R|2

)
+m2

t̃R
|t̃R|2 + |yt|2

[
|t̃R|2

(
|t̃L|2 + |b̃L|2

)
+ |H0

u|2(|t̃R|2 + |t̃L|2)
]

− yt

[
At

(
t̃Lt̃

∗
RH

0
u − d̃Lt̃

∗
RH

+
u

)
+ (λS)∗ t̃∗Rt̃L(H

0
d)

∗ + h.c.
]
, (5.21)

and the fermion-scalar interactions

VYukawa =κS̃S̃S + λS̃
(
H̃u ·Hd + H̃d ·Hu

)
+ λSH̃d ·H̃u

+ yt

(
tLt̄RH

0
u − dLt̄RH

+
u + dLt̃

∗
RH̃

+
u + tLd̃

∗
RH̃

−
d + tLt̃

∗
RH̃

0
d

)
+ h.c. , (5.22)

where tL/R and t̃L/R are the left/right-handed top and stop5 fields, bL/R and b̃L/R are the

left/right-handed bottom and sbottom fields, H̃u/d are the up/down-type higgsinos with the
components

H̃d =

(
H̃0
d

H̃−
d

)
and H̃u =

(
H̃+
u

H̃0
u

)
, (5.23)

and S̃ is the singlino. From this Lagrangian, we derive all mass matrices and couplings
that are generated after the scalar fields develop their VEVs. Note that all contributions
from the gauge couplings g1,2,3 are set to zero since they do not contribute at the considered
order ∆O(α2

new).

5Note that scalar superpartners have no chirality but we refer to the chirality of their fermion superpartners.
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5.3.1. Higgs Boson Sector

After spontaneous symmetry breaking and expanding the Higgs boson fields around their
vacuum expectation values, cf. Eqs. (5.6) and (5.13), we parametrize the scalar potential in
the broken phase according to

VH ⊃ th+ hTMφφh+ h+,†Mh+h−h
− , (5.24)

with

h = (hd, hu, hs, ad, au, as)
T , h+ = (h−,∗d , h+u )

T ,

and the tadpole coefficients

(t)Φ = tΦ =
∂VH
∂Φ

, Φ = hd, hu, hs, ad, au, as . (5.25)

Analytic results for the neutral and charged squared mass matrices Mhh and Mh+h− in the
most general (CP-violating) case are rather lengthy and given in Appendix F of Ref. [33]
using the same notation as in this thesis. Therefore, we refrain from showing them here in
full detail. The diagonalization of Mφφ is carried out using a two-fold rotation into the mass
basis while Mh+h− is diagonalized with one single rotation,

Mhh = RG(βn)Mφφ(RG(βn))
T , (5.26a)

diag(m2
h1 ,m

2
h2 ,m

2
h3 ,m

2
h4 ,m

2
h5 ,m

2
G0) = M′

hh = RMhhRT , (5.26b)

diag(M2
H± ,m

2
G±) = RG−

(βc)Mh+h−(RG−
(βc))

T , (5.26c)

which results in five physical neutral Higgs bosons ordered in mass mh1 < ... < mh5 , two
charged Higgs bosons with mass MH± and neutral/charged Goldstone bosons with vanishing
masses, mG0/± ≡ mG = 0, due to the gaugeless limit g1,2 = 0.

The rotation RG (RG−
) projects onto the neutral (charged) Goldstone mode. In case of

the charged Higgs/Goldstone bosons, the resulting tree-level matrix is already diagonal. The
neutral Higgs boson mass matrix is diagonalized by a further rotation R,

(hd, hu, hs, ad, au, as)︸ ︷︷ ︸
gauge basis

Mφφ

RG(βn)−−−−−→
(hd, hu, hs, a, as, G

0)︸ ︷︷ ︸
Goldstone separated

Mhh

R−−−−−→
(h1, h2, h3, h4, h5, G

0)︸ ︷︷ ︸
mass basis

M′
hh

, (5.27a)

(h−,∗d , h+u )︸ ︷︷ ︸
gauge basis

Mh+h−

RG−
(βc)−−−−−−→

(h+, G+)︸ ︷︷ ︸
Goldstone separated

diag(M2
H± ,mG± )

= mass basis.
(5.27b)

At tree-level all three mixing angles coincide, βc = βn = β. However, it is still necessary to
distinguish between them since βc and βn are mixing angles and do not receive a counterterm.
Only the counterterm of tanβ = vu/vd is non-zero. This means that the counterterm δf of
any tree-level quantity f(β, βc, βn) is calculated from f(β + δβ, βc, βn)|βc=βn=β. Likewise, we
keep the dependence on the tree-level tadpole parameters for the construction of the mass
counterterms, as discussed in Sec. 3.2, Eq. (3.26). The tadpole dependence introduces many
non-zero contributions on diagonal and off-diagonal elements of M′

hh. Of special interest are
the Goldstone components in the gaugeless limit which are entirely given by the tadpoles

m2
G0 = m2

G± ≡ m2
G =

sβthu + cβthd
v

, (5.28)
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i.e. the Goldstone boson masses vanish if the tadpoles thu and thd vanish. This is a crucial
result for the discussion in Chapter 8 about the infra-red divergences appearing in the two-
loop integrals.
In alignment with the SUSY Les Houches Accord (SLHA) [69, 70], we define the absolute
values |λ| and |κ| as well as the phases ϕλ and ϕκ of λ and κ as independent input parameters.
Furthermore, we write Aλ,κ = ReAλ,κ + iImAλ,κ and eliminate ImAλ,κ, as well as the soft-
SUSY-breaking masses m2

Hu,d,S
, by making use of the tadpole conditions for tad,as , as well as

thd,u,s , given in Eqs. (2.9)-(2.14) of Ref. [33]. Common linear combinations of CP-violating
phases entering the tree-level mass matrices and counterterms are

ϕy = ϕκ − ϕλ + 2ϕs − ϕu and (5.29a)

ϕw = ϕκ + 3ϕs . (5.29b)

Using these conventions, the massive eigenvalue of Mh+h− is given by

M2
H± =

|λ|c2β−βcvS
(
|κ|vS cos(ϕw) +

√
2ReAλ

)
s2β cos(ϕy − ϕw)

− 1

2
|λ|2c2β−βcv

2

+
sβ

(
cβc

2
βc
thu + sβs

2
βc
thd

)
+ c2β−βctad tan(ϕy − ϕw)

cβs
2
βv

. (5.30)

We can also choose to solve Eq. (5.30) for the parameter ReAλ and therefore replace the
dependence on ReAλ with the dependence on MH± in all Feynman rules and the neutral
Higgs boson mass matrix. Thus, we are able to choose between the input parameters MH±

and ReAλ which has interesting implications on the renormalization procedure discussed in
Chapter 7.

5.3.2. The Top/Stop and Bottom/Sbottom Sector

If the up-type Higgs boson Hu acquires a VEV, the top quark mass can be read-off from the
Yukawa potential in Eq. (5.22). To this point, the top-quark mass is a complex number

mt =
vuyt√

2
ei(ϕu+ϕL−ϕR) , (5.31)

where ϕu is the phase of the field Hu and eϕL/R are arbitrary U(1) field transformations of
the left/right handed quark fields. Therefore, we choose ϕL = −ϕR = −ϕu/2 to achieve a real
top-quark mass.
The squared mass matrix of the left/right handed scalar top partners t̃L/R can be derived

from the quadratic terms in Vt̃/b̃ with
√
2Hu → vu = v sinβ:

Mt̃ = diag(m2
t̃1
,m2

t̃2
) = U t̃

 m2
q̃3 +m2

t mt

(
A∗
t e

−iϕu − µeff

tanβ

)
mt

(
Ate

iϕu −
µ∗
eff

tanβ

)
m2
t̃R

+m2
t

U t̃
†
, (5.32)

where U t̃ rotates the left- and right-handed stop fields t̃L,R into the mass eigenbasis t̃1,2.

There is no mass term for the bottom quark in Vt̃/b̃, since we assume Yd = 0, and there-
fore there is no neutral current that would couple the bottom quark to the Higgs boson fields.
However, the (massless) bottom quark can still contribute to the diagrammatic calculation
through the charged currents in Eq. (5.22) which are proportional to yt.
The only squared term for the sbottom fields is the squared soft-SUSY-breaking mass for
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the superpartners of the left-handed bottom component, m2
q̃3 . Therefore, the gauge- and

mass-eigenstate of the sbottom entering the O((αt + ακ + αλ)
2) corrections coincide and has

a mass
m2
b̃1

= m2
q̃3 , (5.33)

while the superpartner of the right-handed bottom, b̃R, does not contribute in this approxi-
mation.

While the tree-level masses for the top/stop and bottom/sbottom fields do not change be-
tween O(α2

t ) and ∆O(α2
new) (i.e. there are no new tree-level contributions to mt/mt̃1/2

which

are proportional to λ or κ), the stop/sbottom potential, Vt̃/b̃ in Eq. (5.21), introduces a new
contribution to the quartic Higgs-Stop coupling which is proportional to λ. This means that
the results for the two-loop diagrams of O(α2

t ), previously calculated in Ref. [33], cannot
be disentangled and need to be reevaluated at O((αt + ακ + αλ)

2) since these diagrams con-
tain mixed contributions of O(αtαλ). However, one can still rely on results of the O(α2

t )
calculation when doing a consistency check in the MSSM limit

lim
λ,κ→0

O((αt + ακ + αλ)
2)−O(α2

t ) = 0, (5.34)

which was used to cross-check intermediate tree-level, one- and two-loop results that have
been obtained analytically.

5.3.3. Electroweakino (EW-ino) Sector

The mass generation for wino, bino, higgsino and singlino interaction states is entirely deter-
mined by the Yukawa potential, Eq. (5.22). Since we are applying the limit of vanishing gauge
couplings, the gauginos B̃ and W̃ fully decouple. Therefore, we only consider the symmetric
3×3 sub-matrix for the neutral higgsinos and the singlino,

diag(mχ̃0
3
,mχ̃0

5
,mχ̃0

5
) =N∗


0 −µeff − λ√

2
vSsβe

iϕu

−µeff − λ√
2
vSsβe

iϕu − λ√
2
vcβ

0 − λ√
2
vcβ

√
2κvSe

iϕs

N † , (5.35)

with the mixing matrix N . Therefore, the singlino and neutral higgsinos (S̃, H̃0
u, H̃

0
d) mix to

form the neutralinos (χ̃3, χ̃4, χ̃5) in the mass eigenbasis with mass ordering mχ̃0
3
< ... < mχ̃0

5
.

The 1×1 sub-matrix for the chargino (charged higgsino) reads

mχ±
2
= mh̃± =µeffV

∗
22U

∗
22 ≡ |µeff|, (5.36)

where U and V are unitary 2×2 mixing matrices. We absorb the phase of µeff into the
unitary 2×2 chargino mixing matrix V . As a consequence, the higgsino couplings entering
the two-loop diagrams will depend on eiϕµeff .

5.3.4. Summary

Let us shortly summarize the tree-level mass spectrum which is relevant for the two-loop
O((αt + ακ + αλ)

2) corrections. An overview of the mass and gauge eigenstates is given
in Tab. 5.3. The scalar sector consists of five neutral and one charged Higgs boson which
have non-zero masses and cubic as well as quartic self-couplings. In the CP-conserving case,
there are three CP-even and two CP-odd Higgs bosons. Furthermore, there are two color-
charged stop and one sbottom scalars with distinct masses. They couple linearly with all
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Gauge basis mass basis new couplings

Higgs bosons

H0
u, H

0
d , S, H

+
u , H

−
d

h1, . . . , h5, h
±, G0, G±

mh1 ≤ · · · ≤ mh5 , MH± ,
mG0 = mG± = 0

all cubic and quartic couplings

left-/right-handed
stops t̃L, t̃R

t̃1, t̃2
mt̃1

≤ mt̃2

ytλ
∗S∗t̃Rt̃LH

0
d + h.c.

left-handed

sbottom b̃L

b̃1
mb̃ = mq̃3

-

higgsinos, singlino

H̃0
u, H̃

0
d , S̃, H̃

+
u , H̃

−
d

χ̃3, . . . , χ̃5, χ̃
±
2

mχ̃3 ≤ · · · ≤ mχ̃5 , mχ̃±
2

all singlino/singlet couplings
(first line in Eq. (5.22))

top / bottom
tL/R, bL/R

t, b
mt 6= 0, mb = 0

-

Table 5.3.: Summary of the gauge and mass eigenstates contributing at O((αt + ακ + αλ)
2).

The last columns lists the couplings which are new compared to the O(αt(αt + αs)) calcula-
tions.

considered fermions (top/bottom quark) and Higgs bosons. Furthermore, they feature squark-
squark-Higgs-Higgs couplings as well as quartic self-couplings. In the fermion sector three
neutral (two higgsinos and one singlino) and one charged SUL(2)⊗UY (1) fermion (higgsino)
contribute with distinct masses as well as the massive top quark and massless bottom quark.
The W - and Z-bosons as well as the corresponding Goldstone modes are massless due to the
approximation of vanishing gauge couplings. While the W - and Z-bosons do not contribute
in loop-propagators, the Goldstone modes have non-zero couplings to the Higgs bosons which
are proportional to λ and κ.
One of the main difficulties compared to the O(α2

t ) corrections is the presence of cubic and
quartic Higgs self-couplings which vanish at O(α2

t ). This leads to an increased number of
two-loop diagrams with up to five different mass scales. Moreover, the couplings between the
massless Goldstone bosons and the massive Higgs bosons (proportional to λ, κ and g1, g2 and
therefore absent in the gaugeless limit at O(αt(αt + αs))) generate Feynman diagrams which
can be IR divergent due to multiple massless loop propagators. Chapter 8 discusses this issue
in detail.





CHAPTER 6

Previous Predictions for the MSSM and NMSSM

In this chapter, we review the higher-order calculations to the Higgs bosons masses in the
MSSM and NMSSM as well as discuss how the calculation performed in this thesis relates
to previous works. In particular, the numerical analysis of the two-loop O((αt + ακ + αλ)

2)
corrections to the Higgs boson masses presented in Chapter 9 relies on tree-level, one- and
two-loop results previously calculated in the literature. Note, however, that a phenomeno-
logically viable analysis also needs to confront the considered parameter space with available
experimental data other than only the SM Higgs boson mass constraint. Higgs search data
and exclusion limits are important experimental constraints that also need to be taken into
account [8]. Furthermore, the NMSSM can have multiple sources of CP-violating phases
which predict the presence of sizeable anomalous electric dipole moments (EDMs) of e.g. the
electron or neutron. Therefore, this thesis also makes use of previous results on Higgs signals
rates and EDMs which are briefly discussed in Sec. 6.2 and Sec. 6.3.
In the past years, there also have been major improvements in the treatment of IR divergences
caused by massless Goldstone bosons which influenced this work. Since these divergences are
a crucial part of the calculation performed in this thesis, there is a dedicated discussion about
this issue in Chapter 8.

6.1. Higgs Boson Masses

Higher-order corrections to Higgs boson masses can be obtained using three different meth-
ods that are based on fixed-order (FO), effective field theory (EFT) or hybrid techniques. In
this thesis, FO calculations are defined by calculations which include all corrections of the
considered theory at a single renormalization scale while the EFT approach separates the
hierarchies in the calculation by making use of RGEs. Hybrid approaches try to combine
results of both methods. In the following, we briefly review the progress in the MSSM and
NMSSM regarding the three techniques to obtain Higgs boson mass predictions and show
how previous works feed into the calculation of this thesis. The focus is on the FO approach
in the NMSSM since it concerns the calculation performed in this thesis. For a complete
review on Higgs boson mass calculations in SUSY models we refer to Ref. [71].

Concerning the MSSM, FO calculations enjoy a 30-year old tradition with major develop-
ments within the last years that range from leading logarithmic to full one- and two-loop
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results including CP-violation up to three-loop accuracy in the strong gauge coupling at van-
ishing external momentum [22,23,29,30,42,72–110].
Resummation techniques assume the SM or an extension of it as low-energy EFT of the
MSSM and make use of RGEs and threshold corrections by integrating out all heavy de-
grees of freedom [31, 99, 111–132]. For a more detailed review about the different FO as
well as EFT techniques we refer to Ref. [71]. Notably, the FO and EFT calculations have
been implemented in a variety of public available computer tools such as FeynHiggs [113,
117, 120, 125, 133], SARAH/SPheno [134–136], Flexible SUSY [119, 137, 138], SusyHD [115] or
MhEFT [116]. This allows us to precisely calculate the MSSM Higgs boson masses at both low
and high soft-SUSY breaking scales. Furthermore, generic spectrum generator generators
such as SARAH [52–54,139–141] and FlexibleSUSY [119,137,138] are based on two-loop effec-
tive potential [23, 142] and diagrammatic [143–146] results for arbitrary renormalizable field
theories in the MS/DR scheme. This allows us to also study the NMSSM at fixed-order with
high precision using the DR renormalization scheme which is discussed in the next paragraph.

The NMSSM Higgs boson mass spectrum at fixed-order was first calculated in the CP-
conserving case using the one-loop effective potential approach [147–149]. The one-loop cor-
rections including the full external momentum dependence have been calculated in Refs. [103,
141] using a pure DR scheme and in Refs. [150–153] using mixed OS/DR schemes. The two-
loop O(αs(αt + αb)) corrections in the DR scheme have been calculated in Ref. [103] using
the effective potential approach. The first effective potential results which include the leading
QCD and the full two-loop contributions from all superpotential parameters in the gaugeless
limit (i.e. including the NMSSM-specific parameters) have been calculated in Ref. [140] in
the DR scheme.
In the CP-violating version of the NMSSM, the one-loop effective potential corrections have
been calculated in Refs. [154–157] in the DR scheme. Diagrammatic calculations which incor-
porate the full external momentum dependence at the one-loop order have been performed in
Refs. [103, 141, 158] in the DR and in Ref. [159] in a mixed OS/DR renormalization scheme.
Two-loop effective potential corrections which include the O(αtαs) as well as all contributions
from the MSSM and NMSSM superpotential parameters have been calculated in Ref. [160] us-
ing the DR scheme. The direct predecessor calculations of this thesis calculated the two-loop
O(αtαs) [161] and two-loop O(α2

t ) [33] corrections using a mixed OS/DR renormalization
scheme in the Feynman diagrammatic approach in the approximation of vanishing external
momentum for the CP-violating as well as CP-conserving case. This renormalization scheme
is also pursued in this thesis. It uses an OS condition for the SM VEV and gives the possi-
bility to choose between OS/DR conditions for the charged Higgs boson mass as well as the
top/stop sector.
In the discussion of the MSSM, we already mentioned the generic spectrum generators which
are also able to study the NMSSM using a DR renormalization scheme. However, NMSSM-
specific computer packages exist which go beyond the DR renormalization scheme by imple-
menting the calculations mentioned above. Furthermore, these tools also calculate observables
within the NMSSM other than the Higgs boson masses such as for instance various decay
widths, EDMs or the Dark Matter (DM) relic density. The program NMSSMTools is a con-
sortium of the codes NMHDECAY [162,163], NMHDECAY_CPV [158], NMSDECAY [164], NMSPEC [165],
NMGMSB [166] and micrOMEGAs [167] which can be used to calculate the NMSSM Higgs boson
mass spectrum using the two-loop QCD corrections [103] as well as Higgs boson and sfermion
decay widths and the dark matter relic density for various SUSY-breaking scenarios in the
CP-conserving and CP-violating case. For detailed informations, we refer to the author’s
website [168]. The computer code Next-to-Minimal SOFTSUSY [169] can calculate the Higgs
boson mass spectrum in the case of a Z3-breaking superpotential at the one-loop order and fur-
ther implements the two-loop QCD corrections from Ref. [103]. The code NMSSM-FeynHiggs
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calculates the one-loop corrected Higgs boson masses using a mixed OS/DR scheme (which
differs from the scheme employed in this thesis) but combines them with two-loop corrections
calculated in the in the MSSM-limit using known analytic MSSM results available in Feyn-

Higgs. Furthermore, the program package NMSSMCALC [33,150,159,161,170–173] implements
the neutral and charged Higgs boson mass corrections at the full one-loop order and two-loop
O(αt(αt + αs)) based on the mixed OS/DR renormalization which is also pursued in this
thesis. The results obtained with NMSSMCALC and NMSSM-FeynHiggs at O(αtαs) in the CP-
conserving case have been compared in detail in Ref. [174] which focused on the differences
between their mixed OS/DR renormalization conditions. In addition, the two-loop O(αtαs)
corrections in the CP-violating version of NMSSMCALC obtained using the DR scheme in the
top/stop sector have been cross-checked with SARAH in Ref. [160] which found excellent agree-
ment. NMSSMCALC also calculates the decay widths of all Higgs bosons as well as the EDMs
which is described in the next sections. A detailed comparison between various spectrum
generators for the CP-conserving NMSSM was performed in Ref. [175].
Among all these two-loop corrections, the O(αt(αt + αs)) corrections implemented in NMSSM-

CALC are the only available two-loop results that can take into account NMSSM-specific con-
tributions from OS counterterms of the top/stop sector, electroweak VEV and the charged
Higgs boson in the CP-violating and CP-conserving case. However, in Ref. [140] it was shown
in the DR context that the two-loop contributions involving the superpotential parameters λ
and κ can be as sizeable as the QCD corrections. In order to estimate the uncertainty due
to the scheme ambiguity introduced by the O((αt + ακ + αλ)

2) corrections, a mixed OS/DR
calculation can be performed. The calculation of these corrections and the implementation
in the computer code NMSSMCALC is performed in this thesis.

EFT Higgs boson mass predictions for the NMSSM can be obtained by combining tree-
level (one-loop) NMSSM results with one-loop (two-loop) MSSM results as it was done in
Refs. [119, 153] (Ref. [176]) by assuming only the SM as EFT and performing a pole-mass
matching of the SM-like Higgs boson mass. Generic one-loop results based on diagrammatic
matchings [136,177] as well as the effective action [178,179] can be used to study more com-
plex split-SUSY scenarios with additional light degrees of freedom such as a singlet extended
SM in the EFT [180].

6.2. Constraints from Higgs Boson Data

NMSSMCALC is a computer program specifically designed for computing predictions related to
the Higgs boson sector of the (CP-violating) NMSSM. It does not only calculate the Higgs
boson masses at two-loopO(αt(αt + αs)), which are complemented by theO((αt + ακ + αλ)

2)
corrections in this work, but also calculates the decay widths of the charged and neutral
Higgs bosons including leading QCD and full one-loop electroweak corrections [171–173]. In
addition, NMSSMCALC calculates effective couplings of the Higgs bosons to gluons, photons,
W±/Z-bosons and the top/bottom quark as well as the tau lepton normalized to the value of
the respective SM coupling. Using the program packages HiggsSignals/HiggsBounds [181–
185] this information can be turned into signal strengths which are compared against current
collider searches. The return value of HiggsSignals is the result of a χ-squared test based
on the signal rates and masses showing how compatible the Higgs data collected at collider
experiments is with a given parameter point. The precise values of the Higgs boson masses
can have an impact on the kinematics of the decays but can also change the mixing between
the Higgs boson mass eigenstates and therefore we also expect a different χ-squared value
when including the new O((αt + ακ + αλ)

2) corrections to the Higgs boson masses.
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6.3. Constraints from CP Violation

The current experimental upper bound on e.g. the electron EDM is [186]

de < 1.1× 10−29ecm, (6.1)

which strongly constrains the CP-violating phases of the NMSSM [187]. The calculation of
the electron, neutron, thallium and mercury EDM has been implemented in NMSSMCALC in
Ref. [187]. It is used in this thesis to study the influence of the CP-violating phases in the new
two-loop Higgs boson mass corrections within the range that is compatible with the EDMs.
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CHAPTER 7

Renormalization of the NMSSM Higgs Bosons at the Two-Loop Order

In this chapter, we generalize the renormalization prescription discussed in Sec. 3.1 to the
Higgs sector of the complex NMSSM. In case of the neutral Higgs bosons, the five mass eigen-
states h1,...,5, which have been diagonalized in Sec. 5.3 at tree-level, mix upon the inclusion of
higher-order corrections. Therefore, the pole of the inverse of the propagator is determined
by iteratively solving

Det
(

15×5p
2 −M′

hh + Σ̂hh(p
2)
)
= 0 (7.1)

where,
(
Σ̂hh

)
ij

is the renormalized selfenergy i.e. incorporates the 1PI diagrammatic cor-

rections to the hi → hj transition. Since also the loop-corrected charged Higgs boson mass
is required in our calculation, we omit the hh suffix for the moment as the following defini-
tions also apply for the 2× 2 dimensional selfenergy of the charged Higgs/Goldstone bosons
Σ̂H+H− . We approximate Σ̂ to one- and two-loop order as

Σ̂ij(p
2) = Σ̂

(1)
ij (p2) + Σ̂

(2)
ij (p2) , (7.2)

using the Feynman-diagrammatic approach. The generalization of the renormalized selfenergy
to a complex n× n matrix at the one-loop order is given by

Σ̂(1)(p2) = Σ(1)(p2) +
1

2

[
δ(1)Z† (1p2 −M

)
+
(
1p2 −M

)
δ(1)Z

]
+ δ(1)M , (7.3)

and has already been studied for the complex NMSSM in Ref. [159] including all possible
one-loop contributions. The two-loop approximation reads

Σ̂(2)(p2) = Σ(2)(p2) +
1

2

[
δ(2)Z† (1p2 −M

)
+
(
1p2 −M

)
δ(2)Z

+
1

2
δ(1)Z† (1p2 −M

)
δ(1)Z − δ(1)Z†δ(1)M− δ(1)Mδ(1)Z

]
(7.4)

− δ(2)M

and was calculated at O(αtαs) and O(α2
t ) in Refs. [32] and [33] in the gaugeless limit at

vanishing external momenta using a mixed OS/DR renormalization scheme. In order to
consistently combine the new corrections with the O(αtαs) corrections from Ref. [32], we
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v, sin θw M2
H± (ReAλ) mt,m

2
t̃
, At thi,ai

|λ|, |κ|, vS,
ReAκ, tanβ

m
χ̃0,±
i

m2
hi

OS × × × ×
DR (×) × × × ×

required
CT

O(ε−2) O(ε−2) O(ε−1) O(ε−2) O(ε−2) O(ε−1) O(ε−2)

Table 7.1.: The input parameters entering the two-loop selfenergies. The crosses (×) mark
whether the parameters are OS and/or DR renormalized (in case of two crosses the user can
choose between both, in case of M2

H±/ReAλ either MH± is chosen as OS input or ReAλ as
DR input). The last row tells up to which order the counterterms are required. The masses
of the neutral Higgs boson mhi (last column) and their counterterms are no input parameters
but dependent on the other quantities in the middle part.

apply the same renormalization scheme in this work at the order O((αt + ακ + αλ)
2). The

total two-loop selfenergy reads:

Σ̂O(α2
new)

(p2) = Σ̂
(2)
O(αtαs)

(p2 = 0) + Σ̂
(2)
O((αt+ακ+αλ)2)

(p2) . (7.5)

While in Ref. [32] the momentum dependence was neglected at O(αtαs) in the calculation

of Σ̂
(2)
O(αtαs)

, the new selfenergy corrections, Σ̂
(2)
O((αt+ακ+αλ)2)

, to the neutral Higgs bosons are

optionally calculated with finite p2 to cure the appearance of IR divergences (see Chapter 8
for a detailed discussion). We will later show that the charged Higgs selfenergy is found to
be manifestly IR-finite, regardless of the value of p2, and therefore is always computed at
vanishing external momentum. The same also applies to the calculation of the W -boson and
Z-boson selfenergies discussed later.

In the following chapter, we discuss the renormalization schemes and derive all required
OS and DR counterterms which enter the two-loop Higgs boson mass counterterm matrices,
the two-loop selfenergies and the two-loop Z-factors.

7.1. Employed Strategy of Renormalization

To achieve UV-finite renormalized selfenergies, we have to renormalize all tree-level param-
eters discussed in Sec. 5.3 to either one- or two-loop order. If the tree-level Higgs boson
mass matrix explicitly depends on a parameter, the corresponding counterterm needs to be
determined at the two-loop order. If the parameter only starts to contribute to the Higgs
boson mass at the one-loop level at O(αλ + ακ + αt), then we only need to renormalize it
at the one-loop level. This means that the top/stop and electroweakino masses only need to
be renormalized at one-loop order while all other parameters that contribute to the tree-level
mass matrix have to be evaluated up to O(ε−2).
In Tab. 7.1 we give an overview of the different input parameters and whether they are
renormalized in an OS or DR scheme (second row) as well as up to which loop order the cor-
responding counterterms are evaluated (third row). In addition to the parameters in Tab. 7.1,
the phases ϕα, α = s, u, κ, λ are independent input parameters. It turns out, that the phases
do not develop a UV-divergence and all counterterms are chosen to identically vanish. Ac-
cording to Tab. 7.1 the renormalization scheme of all parameters is fixed to either DR or
OS. However, for the charged Higgs boson (or ReAλ respectively) and the top/stop sector we
leave it open to choose between OS or DR which will allow us to estimate the size of missing
higher-order corrections by varying the renormalization scheme. While the top/stop sector
can be entirely defined in the OS or DR scheme, the scalar sector will always consist of a
mixed OS/DR combination of counterterms.
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7.2. Derivation of all Two- and Sub-Loop Counterterms

In the subsequent sections, we introduce the calculation of the various parameter countert-
erms at one- and two-loop order in the OS/DR schemes. If the OS scheme is chosen, the
counterterms are calculated from selfenergies which can be expanded up to O(ε1). The O(ε1)-
terms would in principle vanish after taking the limit ε → 0. However, a strict expansion in
ε potentially multiplies O(ε−1) and O(ε1) terms, thereby the O(ε1ε−1)-terms yield additional
finite parts in intermediate results that do not vanish for ε → 0. In Sec. 7.2.4 we show that a
consistent expansion in ε, including O(ε1)-contributions in all (OS as well as DR) countert-
erms, leads to the cancellation of these additional finite parts and yields the same result for
the renormalized selfenergy as if we were ignoring all O(ε1) contributions in the first place.
Since UV-divergences are universal, we also partially cross-check all OS counterterms by com-
paring the UV-divergent parts with the corresponding DR counterterms.

The complete renormalization of the NMSSM at the one-loop order has already been worked
out in Refs. [151,152,159,171,188]. Thus, we only give the explicit expressions for all needed
one-loop counterterms after applying our approximations discussed in Sec. 5.2. The one-loop
OS counterterms are of particular importance as they enter counterterm-inserted diagrams as
well as two-loop mass counter terms thereby generating additional finite contributions which
are not present in a pure DR calculation.

7.2.1. Electroweak Gauge Bosons and the SM VEV

According to the first column in Tab. 7.1, the electroweak VEV counterterm is defined as OS
parameter and required at one- and two-loop order. In Sec. 3.3 we have shown the possibility
to relate the SM VEV with the W - and Z-boson masses. The tree-level relation between the
VEV and the electroweak sector, cf. Eq. (2.10), also holds in the NMSSM:

v =
2MW

e
sθw =

2MW

e

√
1−

M2
W

M2
Z

(7.6)

and is expanded using one- and two-loop counterterms

x → x+ δ(1)x+ δ(2)x, x = e, v,M2
W ,M2

Z , sθw , (7.7)

which yields (using δ(n)e = 0):
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+ cos θ2w(1 + 3 sin θ2w)

(
δ(1)M2

Z

M2
Z

)2
 ,

where δnm is the Kronecker delta. Using OS conditions for the W and Z bosons as described
in Sec. 3.3,

δ(n)M2,OS
V = Σ

(n)
V

T
(p2 = m2

V = 0), V = W,Z , (7.9)

yields an OS VEV counterterm δ(n)vOS. While the transverse part of the vector boson self-

energies and their tree-level masses vanish in the gaugeless limit, Σ
(n)
W,Z

T
= 0 and M2

W,Z = 0,
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their ratio contributing to the VEV counterterms is non-zero. However, the counterterm for
the electric charge, i.e. δ(n)e, is given by the photon selfenergy which vanishes in the gaugeless
limit. The vector boson selfenergies are calculated at vanishing external momentum using
the procedure described in Chapter 8.

In order to cross-validate our result, we compare the UV-divergent part obtained from the
diagrammatic calculation with the DR counterterm which can be constructed using results
from the literature. In the DR scheme one can make use of the general relation [189,190]

δ(n)vDR
i

vDR
i

=
1

2
∆(n)ZDR

φi
(7.10)

which connects the counterterm of the VEV vi to the field renormalization constant of the
respective field φi of any renormalizable QFT. Expanding the tree-level relation v2 = v2u+ v2d
up to two-loop order, we can express the SM VEV counterterm through the Z-factors of the
gauge eigenstates Hu,d:

δ(n)vDR

vDR
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s2β
2
∆(n)ZDR

Hu
+

c2β
2
∆(n)ZDR

Hd
+ δ2n

s22β
32

(
δ(1)ZDR

Hd
− δ(1)ZDR

Hu

)2
n = 1, 2 . (7.11)

We find full agreement between the UV-divergent part of our diagrammatic approach for the
OS VEV, Eq. (7.8), and the DR counterterm Eq. (7.11). The derivation of the Z-factors at
one- and two-loop order which are required for this cross-check is discussed in Sec. 7.2.3.

The one-loop counterterm of the weak mixing angle, δ(1) sin θw, is required since it enters
the diagrammatic calculation via vertex-counterterm diagrams. We derive δ(1) sin θw by solv-
ing Eq. (7.6) for sin θw and proceeding in the same way as for δ(1)v:

δ(1) sin θw =
c2θW
2sθW

(
δ(1)M2

Z

M2
Z

−
δ(1)M2

W

M2
W

)
. (7.12)

The linear combination (Σ
(n)
Z /M2

Z − Σ
(n)
W /M2

W ) is proportional to the oblique T parameter [191]

and therefore UV-finite. We explicitly verified that δ(1)sDR
θw vanishes while δ(1)sOS

θw is UV-finite.
It is useful to write the one-loop OS counterterms in the following form

δ(1)vOS = δ(1)vOS|fin +
1

ε
δ(1)vOS|ε−1 + ε δ(1)vOS|ε (7.13)

and similarly for all other one-loop OS counterterms derived in the following.

7.2.2. Fermion Sector

The fermion masses do not enter the tree-level Higgs boson mass matrix but only contribute
as internal loop propagators of one- and two-loop Higgs boson selfenergies. At the two-loop
level, we therefore have to calculate the one-loop mass counterterms as well as the Yukawa
coupling counterterms of all contributing fermions.

Top-Quark Mass and Yukawa Coupling
If the top-quark mass is defined as OS input parameter, we calculate its counterterm from
the vector and scalar components of the top selfenergy, cf. Sec. 3.4:

δ(1)mOS
t =

mOS
t

2
R̃e
[
Σ
(1),V L
t +Σ

(1),V R
t +Σ

(1),L
t +Σ

(1),R
t

]
(7.14)
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evaluated at p2 =
(
mOS
t

)2
in the gaugeless limit g1,2,3 → 0. The counterterm of the top-Higgs

Yukawa coupling, which contributes in one-loop diagrams with a vertex counterterm, can be
derived by expanding the expression for the tree-level top mass Eq. (5.31):

δ(1)yOS
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√
2

sβvOS2

(
vOSδ(1)mOS

t −mOS
t δ(1)vOS − vOSmOS

t c2βt
−1
β δ(1)tβ

)
, (7.15)

where the counterterm δtβ of tanβ is derived in the next section.

If the top quark is defined as DR parameter, we can simply set δ(1)yOS
t |fin = δ(1)yOS

t |ε = 0
and similarly for the mass counterterm. As a further cross-check, we can compare against
the DR counterterm which we get from the renormalization group equations for yt calculated
with the help of the computer package SARAH:
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t |ε−1 (7.16)
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2
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, (7.18)

where β(1)
yt is the beta function of the top-quark Yukawa coupling yt in the NMSSM and

k = (4π)−2 . (7.19)

We explicitly verified that using Eq. (7.18) in Eq. (7.17) yields the same result for δ(1)mDR
t

as using our diagrammatic result in Eq. (7.16). Likewise, the single pole of the diagrammatic
result in Eq. (7.15) is identical to Eq. (7.18).

Chargino and Neutralino Masses

The electroweakino masses are defined in the DR scheme and are dependent on the other in-
put parameters discussed in this chapter. Therefore, it is sufficient to replace all parameters
x in the chargino/neutralino mass matrices by x → x+δ(1)x and to consistently expand them
up to one-loop order.
In Sec. 5.3.3 we found that the tree-level mass of the chargino is given by the absolute value
of the effective µeff parameter. Thus, the corresponding counterterm reads

δ(1)mχ±
2
= δ|µeff| =

1√
2

(
vSδ

(1)|λ|+ |λ|δ(1)vS
)
, (7.20)

where the counterterms δ(1)|λ| and δ(1)vS are derived in the next section.
The symmetric neutralino counterterm mass matrix reads in the gauge basis:(
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)
34

= −ei(ϕλ+ϕs)δ(1)mχ±
2

(7.21a)(
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, (7.21d)
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while the upper 2×2 matrix for the gaugino mass counterterms vanishes. The rotation into
the mass basis (cf. Eq. (5.35))

δ(1)Mχ0 = N∗δ(1)mχ0N † , (7.22)

diagonalizes the tree-level mass matrix mχ0 but not necessarily the counterterm mass ma-

trix δ(1)Mχ0 which is in general not diagonal.
In order to cross-validate the electroweakino mass counterterms, we verified that they lead to
UV-finite chargino/neutralino selfenergies.

7.2.3. Scalar Sector

The scalar sector requires the renormalization at the one- and two-loop level of the superpo-
tential parameters which are connected to the field renormalization constants. Furthermore,
the one- and two-loop counterterms of the charged Higgs boson mass and soft-SUSY-breaking
parameters are required. The stop sector is, however, only needed at the one-loop order.

Squark Masses and Soft-SUSY-Breaking Quark Yukawa Couplings
The renormalization of the squark sector at the one-loop level using OS conditions has been
formulated in Ref. [192]. For completeness we repeat the basic ingredients here. Without
further specification of a renormalization scheme, we can derive relations between the coun-
terterms of the Lagrangian parameters m2

t̃R
, m2

q̃3 , At and the counterterms of the stop masses

m2
t̃1,2

. In order to do so, we consider the one-loop expansion of Eq. (5.32) in the gauge basis:
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 (7.23)

where δYt̃ is used to render the off-diagonal elements of the stop quark selfenergy UV-finite.
Solving the diagonal and off-diagonal elements for δm2

q̃3 , δm
2
t̃R

and δAt yields:

δm2
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+ |U t̃12|2δm2

t̃2
U t̃21U

t̃,∗
11 δYt̃ + U t̃11U

t̃,∗
21 δY

∗
t̃
− 2mtδmt , (7.24a)
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and
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Since the top/stop sector is only needed at one-loop order, we omit the (1)-suffix on all
corresponding loop-quantities for simplicity. The counterterm for At is of particular interest
since it also enters Feynman diagrams with a vertex counterterm insertion. If the squark
sector is renormalized on-shell, we use the conditions

0 = R̃eΣt̃i t̃i(m
2
t̃i
)− δm2,OS

t̃i
, i = 1, 2 and (7.26a)
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, (7.26b)

to obtain δm2,OS

t̃i
and δY OS

t̃
, which enter the mass counterterm-inserted diagrams. Using

Eqs. (7.24) and (7.25) leads to the on-shell counterterms δm2,OS
q̃3

, δm2,OS

t̃R
and δAOS

t .
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In the DR scheme we again utilize the beta functions (note that we parameterized Tyt = ytAt)
calculated with SARAH:

δADR
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1
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βTyt −Atβyt
yt

(7.27a)

= k
(
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2
t

)
, (7.27b)
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=
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δm2,DR

t̃R
= 2δm2,DR

q̃3
, (7.27d)

which have been verified to agree with the single-poles of the corresponding OS counterterms.

Higgs Boson Wave-Function Renormalization Constants
The fields of the Higgs boson gauge eigenstates are renormalized multiplicatively as described
in Sec. 3.1, Eq. (3.6b):

Φ →
(
1 +

1

2
∆(1)ZΦ +

1

2
∆(2)ZΦ

)
Φ, Φ = Hu,d, S. (7.28)

The Z-factors are defined in the DR scheme. In Sec. 3.1, we discussed, that they are connected
to the derivatives of the selfenergies

δ(n)ZΦ = −
∂Σ

(n)
ΦΦ(p

2)

∂p2

∣∣∣∣∣
UV-div

, (7.29)

where only the UV-divergent parts are taken into account due to the DR nature. In the
DR scheme, it is also possible to derive the Z-factors using generic results for the anomalous
dimension γΦ of the Higgs bosons in general QFTs [189,190]:

δ(1)ZΦ =
1

ε
γ
(1)
Φ , (7.30a)
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Φ

∂x

]
, (7.30b)

with x = {yt, λ, κ}. The γΦ’s have been derived with the help of SARAH and cross-checked
against explicit results given in Refs. [189,190]. This is a further cross-check for the calculation
of the selfenergies.
However, there is a subtle difference between Eq. (7.29) and Eq. (7.30): the parameters
entering the anomalous dimension matrix as well as the beta functions are defined in a
pure DR scheme while the quantities entering the selfenergies can be defined in a different
renormalization scheme. Thus, a scheme change in e.g. the top sector from DR to OS will lead
to a different result when using the method of computing the derivative of the selfenergies.
Therefore, we label the Z-factors with OS/DR which fixes the renormalization of the top/stop
sector entering the Z-factors (while the Z-factors are always defined in the DR scheme). At
one-loop order only tree-level quantities enter (which are identical in all schemes). Therefore,
the Z-factors agree in both schemes:

δ(1)ZDR
Hd

= δ(1)ZOS
Hd

= −k|λ|2 (7.31a)
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= δ(1)ZOS
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(
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)
. (7.31c)
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If we renormalize all parameters in Tab. 7.1 in the DR scheme, we obtain at two-loop
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2
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[
2|κ|2 + 3|λ2|+ 3yDR
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) (7.32a)
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) (7.32b)
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In Eq. (7.31b) it was used that the DR and OS parameters are identical at tree-level. However,
at the one-loop order this is no longer the case. From this, one can show that the scheme

change from yDR
t to yOS

t will introduce additional higher-order contributions in the one-loop
field constant δ(1)ZHu(y

OS
t +δ(1)yOS

t ) that are of two-loop order (i.e. contributing to δ(2)ZHu).
Thus, the two-loop field constants with an OS-label are

δ(2)ZOS
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(7.33a)
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, (7.33c)

which are still DR-renormalized but only refer to the additional UV-divergent sub-loop con-
tributions from the top sector. Using Eq. (7.15) and expanding to O(ε−1) one finds:

δ(2)ZOS
Hu

− δ(2)ZDR
Hu

= −1

ε

3mOS
t

2

4π2v2s2β

(
δ(1)mOS

t |fin
mOS
t

− δ(1)vOS|fin
vOS

)
, (7.34)

which is consistent with the result of the O(α2
t ) calculation in Ref. [33]. The result can

also be understood and validated with the diagrammatic calculation: the only way a finite
part δC|fin of any OS counterterm δC can contribute to the UV-poles of the derivative of
the selfenergy is via the counterterm-inserted diagram shown in Fig. 7.1. In all other dia-
grams there is no δC|fin ·ε−1-term left after taking the derivative w.r.t. p2. Therefore, only
OS fermion masses and VEVs can generate a scheme shift in the two-loop Z-factors but no
OS scalar masses. The analytic results for δ(1)mOS

t and δ(1)vOS are presented in Appendix A.

In general, the diagrammatic approach of calculating δ(2)ZHi will give the same result for
any value of p2 in Eq. (7.29). Therefore, it is common to calculate the derivative in Eq. (7.29)
at p2 = 0 since it is less computational intensive. However, at O((αt + ακ + αλ)

2) in the limit
p2 → 0 the coefficients of intermediate results of the derivatives of some Feynman diagrams
feature logarithmic and quadratic IR divergences due to the massless Goldstone bosons. This
issue is discussed in more detail in Chapter 8. By introducing a mass regulator for the vanish-
ing Goldstone boson masses, we verified that there is no dependence on the mass regulator in

hu hu

δ(1)Chutt̄

(
yOS
t , v OS

SM

)∣∣
fin

t

mOS
t

t̄

mOS
t

Figure 7.1.: The diagram that leads t a difference in the single pole of the two-loop wave
function renormalization constant δ(2)ZHu if the top quark and v are renormalized OS.
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the sum of the derivatives of all Feynman diagrams. As a further cross-check, we have taken
into account the full momentum dependence in the UV-divergent parts of all diagrams (which
avoids all IR divergences) and verified that also the p2-dependence cancels in the sum of the
derivatives of all diagrams. The two methods of calculating the Z-factors diagrammatically
fully agree with the method of using the analytic results Eq. (7.30). This does not only serve
as a good cross-check for the calculation of the Z-factors, but also for the selfenergies and the
treatment of the IR divergences discussed later.

Finally, the field renormalization matrices which are used in the renormalized charged/neutral
Higgs boson selfenergies, cf. Eqs. (7.3) and (7.4), are obtained with the rotation transforma-
tions defined in Eq. (5.26):

δ(n)ZG = diag(∆(n)ZHd
,∆(n)ZHu ,∆

(n)ZS ,∆
(n)ZHd

,∆(n)ZHu ,∆
(n)ZS) , (7.35a)

δ(n)Z = RG
(
δ(n)ZG

) (
RG
)T

, (7.35b)

δ(n)ZH± = RG−
(
δ(n)ZG

∣∣∣
upper 2×2

)(
RG−

)T
, n = 1, 2 , (7.35c)

which separates the Goldstone modes. For the Z-factor matrix of the charged Higgs bosons,
only the upper 2× 2 sub-matrix of δ(n)ZG is required.

Tadpole Parameters
The renormalization condition for the tadpole parameters is chosen such that the minimum
at two-loop order is identical to the tree-level minimum, cf. Sec. 3.2. In the basis with
φ = hd,u,s, ad,s, where the Goldstone modes are separated, the counterterms read

δ(1)tφ = t
(1)
φ , (7.36a)

δ(2)tφ = t
(2)
φ −

δ(1)Zφ
2

δ(1)tφ , (7.36b)

where t
(n)
φ is the n-loop one-point function of the external field φ. In Tab. 7.1, we call this an

OS condition even though the tadpoles are strictly speaking not associated with any on-shell
field.
All one- and two-loop tadpole Feynman diagrams calculated in this thesis are discussed in
Appendix D.1.

Ratio of the Up- and Down-Type VEVs (tanβ)
The ratio of the VEVs vu and vd of the doublets Hu and Hd defines the mixing angle tanβ
which diagonalizes the charged Higgs boson mass matrix at tree-level, cf. Sec. 5.3.1. Using
the relation in Eq. (7.10), the counterterm of tanβ(vu, vd) can be related to the field renor-
malization constants of Hu and Hd which are defined in the DR scheme. Therefore, tanβ is
also defined in the DR scheme. At one-loop order we find

δ(1)tβ =
tβ
2

(
∆(1)ZHu −∆(1)ZHd

)
= k

3 tβ
2ε

yDR
t

2
, (7.37)

while the two-loop expansion yields

δ(2)tβ =
tβ
2

(
∆(2)ZHu −∆(2)ZHd

)
+

tβ
4

[(
δ(1)ZHd

)2
− δ(1)ZHd

δ(1)ZHu

]
. (7.38)

Since the two-loop tβ counterterm depends on δ(2)ZHu , it will also receive additional UV-
divergent contributions if the top sector is renormalized in the OS rather than DR scheme.

Therefore, we also define δ(2)tDR
β and δ(2)tOS

β accordingly.



50 7. Renormalization of the NMSSM Higgs Bosons at the Two-Loop Order

Charged Higgs Boson Mass Parameter

In Sec. 5.3.1 we showed that it is possible to trade the parameter ReAλ in terms of M2
H± .

When doing so, the neutral Higgs boson mass matrix depends on M2
H± rather than on ReAλ

and thus is sensitive to a scheme change between OS and DR conditions in the charged Higgs
boson mass at one as well as two-loop order. Likewise, the counterterm of ReAλ/MH± enters
many Feynman rules (counterterm-inserted diagrams) which can affect the phenomenology.
In this thesis, the charged Higgs boson selfenergy is always calculated in the limit of vanishing
external momentum as discussed later in Chapter 8. Therefore, the mass counterterm receives
additional field renormalization contributions (which would otherwise cancel if p2 = M2

H± is
chosen). At one-loop order the counterterm reads:

δ(1)M2
H± = Σ

(1)
H−H−(p

2 = 0)−M2
H±δ

(1)Z(H−,H−)
H± , (7.39)

while at two-loop order we have

δ(2)M2
H± =Σ

(2)
H−H−(p

2 = 0)−M2
H±

[
1

4

(
δ(1)Z(H−,H−)

H±

)2
+ δ(2)Z(H−,H−)

H±

]
− δ(1)Z(H−,H−)

H± δ(1)M2
H± − δ(1)Z(H−,G−)

H± δ(1)mH−G− , (7.40)

with the (n,m) component of the charged Higgs boson Z-factor matrix Z(n,m)
H± given in

Eq. (7.35) and the Goldstone-Higgs mixing counterterm

δ(1)mH−G− =
−c2βM

2
H±vδ

(1)tβ + cβδ
(1)thu − sβδ

(1)thd
v

+
iδ(1)tad
sβv

. (7.41)

In the DR scheme, we can set δ(n)M2,DR
H± = δ(n)M2,OS

H±

∣∣∣
UV-div

. If ReAλ is chosen as input pa-

rameter, we can solve M2
H±(ReAλ) for ReAλ and can express δ(n)ReAλ in terms of δ(n)M2

H±

such that we effectively do not require the counterterm of ReAλ. The definition of the soft-
SUSY-breaking parameter counterterms is described in the next paragraph in more detail.
Note that also some of the Feynman diagrams contributing to the charged Higgs boson selfen-
ergy are IR-divergent. However, the sum of all diagrams and therefore the mass counterterm
itself is IR-finite as described in Chapter 8.

Superpotential- and Soft-SUSY-Breaking Parameters
One benefit that comes with the enhanced symmetry of SUSY models is that the renormal-
ization of all parameters in the superpotential is significantly simplified. The SUSY-non-
renormalization theorems, cf. Refs. [193–195], state that the superpotential is free of any UV
divergences except for those originating from wave-function corrections. Consequently, the
counterterms for the superpotential parameters are entirely fixed by the Z-factors.
The bare (unrenormalized) NMSSM-specific superpotential contributions,

W0
NMSSM ⊃ λ0S0H0

u ·H0
d +

κ0

3

(
S0
)3

, (7.42)

can be expressed in terms of the renormalized couplings and fields,

|λ0| → |λ|+ δ(1)|λ|+ δ(2)|λ| , (7.43a)

|κ0| → |κ|+ δ(1)|κ|+ δ(2)|κ| , (7.43b)

Φ0 → Φ

(
1 +

1

2
∆(1)ZΦ ,+

1

2
∆(2)ZΦ

)
, Φ = Hu,d, S (7.43c)
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and expanded up to one- and two-loops. According to the SUSY-non-renormalization theo-
rems, the resulting renormalized superpotential is UV-finite, such that we can solve for the
counterterms of λ and κ. At the one-loop order, we find for the renormalized superpotential
using Eqs. (7.42) and (7.43)

WNMSSM ⊃
(
|λ|+ δ(1)|λ|+ |λ|

2

Hd,Hu,S∑
i

δ(1)Zi︸ ︷︷ ︸
!
=0

)
eiϕλSHu ·Hd

+

(
|κ|
3

+
δ(1)|κ|

3
+

δ(1)ZHs

2︸ ︷︷ ︸
!
=0

)
eiϕκS3 . (7.44)

Solving for the counterterms, we find full agreement with the results obtained from the beta
functions for λ and κ:

δ(1)|λ| = k

2ε
β
(1)
|λ| = −|λ|

2

Hd,Hu,S∑
i

δ(1)Zi =
k|λ|
2ε

(
2|κ|2 + 4|λ|2 + 3yDR

t

2
)

, (7.45a)

δ(1)|κ| = k

2ε
β
(1)
|κ| = −3|κ|

2
δ(1)ZHs =

3k

ε
|κ|
(
|κ|2 + |λ|2

)
. (7.45b)

The same procedure leads to the following two-loop counterterms in the DR scheme:

δ(2)|λ| = −|λ|
2

Hd,Hu,S∑
i,j

(
∆(2)Zi −

1

4
δ(1)Ziδ

(1)Zj (1 + δij)

) , (7.46a)

δ(2)|κ| = −3
|κ|
2

(
∆(2)ZS −

(
δ(1)ZS

)2)
. (7.46b)

Note that also δ(2)|λ| depends on δ(2)ZHu and therefore implicitly also depends on the renor-
malization scheme chosen in the top sector.
Analogous to the counterterm of the SM VEV in the DR scheme, we can also calculate the
singlet VEV counterterm using the general identity from Eq. (7.10):

δ(n)vS =
vS
2
∆(n)ZHs , n = 1, 2 . (7.47)

We proceed with the counterterms of the soft-SUSY-breaking couplings. The counterterm
δ(1)ReAκ is defined in the DR scheme and can be constructed using the one-loop beta function
for κ and Tκ:

δ(1)ReAκ =
k

2ε
Re

β
(1)
Tκ

−Aκβ
(1)
κ

κ

=
6k

ε

(
|κ|2ReAκ + |λ|2ReAλ

)
. (7.48)

Likewise, the counterterm of the soft-SUSY-breaking coupling ReAλ, which is required if
MH± is chosen in the DR scheme, reads:

δ(1)ReADR
λ =

k

ε

(
2|κ|2ReAκ + 4|λ|2ReAλ + 3Aty

2
t

)
. (7.49)

Inverting the relation between the charged Higgs boson mass and ReAλ, cf. Eq. (5.30), one
can choose to parametrize the counterterms of ReAλ and ReAκ in terms of the parameters
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MH± , v, mt and ti:

ReAλ =m2
H± +

tβv
2|λ|cϕw−ϕy

(1 + t2β)
√
2vS

− vS√
2
|κ|cϕw

+

√
2

vvS|λ|
(
sϕw−ϕy tad − cϕw−ϕy

(
s3βthd + c3βthu

))
. (7.50)

The implicit dependence of δ(1)ReAκ,λ on the potentially OS defined parameters is useful to
study the generation of higher-order corrections when performing a scheme change by ex-

panding
(
∂XOSδ(1)Aκ,λ

)(
δ(1)XOS|fin

)
, X = {v,MH± ,mt, ti}.

Furthermore, we can perform a one- and two-loop counterterm expansion of Eq. (7.50) to
obtain a relation between the counterterm of ReAλ and M2

H± . Thus, we can eliminate

δ(n)ReAλ, n = 1, 2 in both the DR and OS scheme using the numerical results for the UV-
divergent and UV-finite parts of the charged Higgs selfenergy.
The last missing two-loop counterterm is δ(2)ReAκ which is defined in the DR scheme. Since
multiple components of the renormalized neutral Higgs boson selfenergy matrix depend on
δ(2)ReAκ, we can determine it by demanding UV-finiteness in one of the components it con-
tributes to. We choose to demand the (3,3)-component to be UV-finite,

Σ̂h3h3

∣∣∣
UV-div

= 0 , (7.51)

and solve it for δ(2)ReAκ. It was verified that the solution of Eq. (7.51) for δ(2)ReAκ also
renders all other components of the selfenergy UV-finite. However, one can also obtain an
analytic expression for δ(2)ReAκ (and analogously for δ(2)ReAλ) using one- and two-loop beta
functions, respectively counterterms [49]:

δ(2)ReAκ =
1

2ε
Re

β
(2)
Tκ

−Aκβ
(2)
κ

κ
+

1

2

∑
x

(
∂

∂x
δ(1)ReAκ

)
δ(1)x , (7.52)

with x = {ReAκ,ReAλ, |κ|, |λ|,ReAt, yt}. Solving Eq. (7.51) for δ(2)ReAκ has been verified
numerically with the analytic result of Eq. (7.52) using the two-loop beta functions for κ and
Tκ obtained with SARAH and the counterterms derived above.

Neutral Higgs Boson Mass Matrix
The (one-loop) two-loop counterterm for the neutral Higgs boson mass matrix is given by the
(one-loop) two-loop expansion of the tree-level mass matrix in the basis where the Goldstone
bosons have been separated (cf. Eq. (5.27b)),

Mhh + δ(n)Mhh = Mhh(x → x+
n∑

m=1

δ(m)x), n = 1, 2 , (7.53)

with all parameters x for which we have derived the one- and two-loop counterterms in the
previous paragraphs. The resulting counterterm matrix was cross-validated with the previous
calculation in Appendix G of Ref. [33].

7.2.4. Independence of O(ε1) Counterterms

A consistent expansion in ε using OS one-loop mass counterterms demands to expand all
contributing loop functions and tensor structures up to O(ε1):

δ(1)XOS = δ(1)XOS|fin +
1

ε
δ(1)XOS|ε−1 + ε δ(1)XOS|ε1 . (7.54)
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These contributions can be multiplied with the single-pole of other loop functions in counter-
term-inserted diagrams, cf. Fig. 3.3(b-e), or with the single-pole of other one-loop countert-
erms δ(1)XOSδ(1)Y in the two-loop mass counterterm of the neutral Higgs bosons. Therefore,
the O(ε1) contributions give a finite contribution after renormalization in the limit ε → 0.

At the order O(αt(αt + αs)) it was shown that the finite contributions generated by the
O(ε1)-terms of the top-quark mass counterterm can be compensated by a finite shift in the
two-loop wave-function renormalization constant δ(2)ZHu [29,32,33,161].
In the calculation of this thesis, the OS counterterms of v, the charged Higgs boson mass and
the tadpoles can generate finite parts in addition to the top quark mass counterterm. We
find that these finite parts can also be canceled in the renormalized selfenergy if all two-loop
DR counterterms which depend at one-loop order on the OS parameters, are consistently
expanded in ε. Consistent means that the finite shifts generated at two-loop by the O(ε1)
counterterms are also taken into account in the DR parameters. This is the same procedure
as the consistent expansion in δ(2)ZHu , cf. Eq. (7.34), in order to cancel all the sub-loop diver-
gences. The finite parts that are generated by the ε-expansion can be derived by expanding
the one-loop counterterms in Eq. (7.31b) and Sec. 7.2.3:

δ(2)ZOS
Hu

∣∣∣
fin

=

v,mt∑
α

(
∂

∂αOS
δ(1)ZHu

)(
ε δ(1)αOS|ε1

)
, (7.55a)

δ(2) tanOS β
∣∣∣
fin

=
tanβ

2
δ(2)ZOS

Hu

∣∣∣
fin

, (7.55b)

δ(2)|λOS|
∣∣∣
fin

= −|λ|
2
δ(2)ZOS

Hu
|fin , (7.55c)

δ(2)ReAOS
κ

∣∣∣
fin

=
∑
α

(
∂

∂α
δ(1)ReAκ

)(
ε δ(1)αOS|ε1

)
, α = {v,M2

H± , thd,hu,ad} . (7.55d)

Furthermore, we require a finite shift of the OS VEV counterterm
(
∂vδ

(1)v|ε−1

)(
δ(1)v|ε1

)
which is generated at the two-loop order. The superscript ”OS” on the left-hand side of
Eq. (7.55) refers to the OS-nature of the implicit dependent parameters. We have explicitly
verified that the renormalized selfenergies are identical if we calculate them (i) including the
O(ε1) counterterm contributions and the finite shift from Eq. (7.55) or (ii) if we truncate the
counterterms at O(ε0) and use the original DR counterterms derived in Secs. 7.2.1 to 7.2.3
which are compatible with the beta functions. Therefore, the parameters ZHu , tanβ, |λ| and
ReAκ using (ii) are DR quantities as the finite parts of their counterterms Eq. (7.55) do not
contribute to the physical result. In summary, we have shown that the two renormalization
procedures (i) and (ii) yield the same result and are therefore equivalent.

In order to save computational resources, the practical implementation in the computer code
NMSSMCALC does not contain the O(ε) contributions in the OS one-loop counterterms and does
not include any finite terms in the two-loop DR counterterms.





CHAPTER 8

Two-Loop Corrections in the Gaugeless limit

In Chapter 7, we already mentioned the appearance of IR divergences in intermediate results
of the two-loop counterterms δ(2)ti, δ

(2)v, δ(2)MH± and δ(2)ZHi which cancel in the sum of all
Feynman diagrams contributing to the counterterms. This kind of IR divergence is called un-
physical in the following. However, in the calculation of the neutral Higgs boson selfenergies,
in the limit of vanishing external momentum, also IR divergences appear which do not cancel
in the final result. These divergences are called genuine IR divergences in the following. In
this chapter, we discuss the different possible treatments of the unphysical as well as genuine
IR divergences applied in this work in more detail.

In the following, we briefly review the appearance of IR divergences in the context of Higgs
boson mass predictions. The term Goldstone Boson Catastrophe (GBC) goes back to un-
physical results that appear in higher-order corrections to the SM effective potential [196]. In
the general Rξ gauge the Goldstone boson G, which gives the mass mV to the vector boson
V , has a squared mass of m2

G = ξVm
2
V . Therefore, the Goldstone boson mass vanishes in the

Landau gauge where ξV = 0 is chosen. However, there are higher-order contributions to the
n-loop effective potential which scale purely logarithmically with the Goldstone boson mass

i.e. V
(n)
eff ∝ logm2

G for n large enough. Therefore, the effective potential seems not to be
IR-finite in the limit of vanishing Goldstone boson masses. Furthermore, derivatives of the
effective potential will feature IR divergence at even lower orders in perturbation theory. This
has strong implications for all Higgs boson mass calculations which use the approximation of
vanishing external momentum6.
While this problem can in principle be avoided by choosing a different gauge, it cannot be
fully circumvented. For instance, in the SM at three-loops in the Landau gauge, the effective
potential was minimized iteratively using numerical methods in Ref. [196]. During the itera-
tive procedure (where the Goldstone masses do not vanish since one is not at the minimum)
the squared Goldstone masses can also become (close to) zero or even turn negative within
intermediate iterations which causes numerical instabilities. See also Ref. [196] for a detailed
study. Solutions to the problem of IR divergences in the effective potential have been worked

6The kth derivative of V
(n)
eff w.r.t the scalar field S is identical to the sum of all 1PI Feynman diagrams of

the k-point function with external fields S at vanishing external momentum i.e. the first derivative gives the
n-loop tadpole and the second the n-loop MS/DR mass in the limit of vanishing external momentum.
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out in Refs. [24, 197] for the SM and extended to the MSSM in Ref. [26]. The principle of
their solution is to resum the Goldstone contributions by integrating out all heavy degrees
of freedom when calculating the n − 1 loop-corrected Goldstone boson mass and use this
effective Goldstone boson mass in the minimization of the n-loop effective potential. The
authors of Ref. [25] finally proved that this procedure resums the unphysical IR divergences
to all orders in perturbation theory and leads to an IR-finite effective potential. Furthermore,
Refs. [24,25] introduced an alternative method which defines the Goldstone boson masses to
vanish on-shell at the sub-loop level. The equivalence between the two approaches was shown
recently in Ref. [27] at the two-loop order. Furthermore, Ref. [27] derived a closed analytic
and IR-safe form of the effective potential and its first derivative at the two-loop order for
arbitrary renormalizable QFTs.
However, the second derivative of the effective potential is not necessarily IR-finite even if
the Goldstone boson contributions are resummed or the Goldstone boson mass is set on-shell.
In the Feynman diagrammatic approach, these divergences are the genuine IR divergences
which appear due to Feynman diagrams with external momentum flowing through a sub-loop
diagram which is a Goldstone boson selfenergy graph. For a vanishing Goldstone boson mass,
the only mass scale in the (sub) loop is the external momentum, such that the diagrams scale
with log p2. Therefore, p2 → 0 is not a good approximation for such diagrams since there is
no other mass scale to which it could be comparably small.

A new solution to the GBC which also addresses the genuine divergences was derived in
Ref. [27] which combines the resummation techniques with approximate solutions from dia-
grammatic calculations in the small-momentum region. In practice this means that Ref. [27]
resums the IR divergences in the effective potential and its first derivative. Once the unphys-
ical divergences have been removed, finite external momentum is introduced but only in the
loop integrals which are genuinely IR divergent while all other contributions are still calcu-
lated in the zero-momentum approximation. In addition, the loop functions are expanded
around small external momentum to only include the dangerous log p2 terms. This is called
the generalized effective potential approximation which is a big step towards automated cal-
culations in the pure MS/DR scheme. It was implemented in the computer code SARAH and
used to investigate two-loop corrections to Higgs boson masses in the SM, 2HDM, NMSSM,
Split SUSY and the Georgi-Machacek model, cf. Ref. [28].

The previous works were centered around the effective potential and its derivatives. This
work uses the Feynman diagrammatic approach to calculate all scalar one- and two-point
functions at the two-loop order in the CP-violating NMSSM. Starting from the approxima-
tion of vanishing external momenta, the two approaches should in general be equivalent.
However, there is a minor but important difference: while the generalized effective potential
developed in Ref. [27] was considered to be a UV-finite object renormalized in the MS/DR
scheme, our diagrammatic calculation involves intermediate UV- and possibly IR-divergent
quantities defined in either DR or mixed OS/DR schemes. Furthermore, a diagrammatic
calculation can be extended to also include the full-momentum dependence. In the following,
we introduce the used framework to generate and calculate the required Feynman diagrams.

8.1. The Goldstone Boson Catastrophe

from a Diagrammatic Approach

To obtain the Feynman rules for the CP-violating NMSSM we make use of the computer pro-
gram SARAH 4.14.3 [52–54,139,140,198] to generate a FeynArts model file which also includes
the vertex counterterms. Using FeynArts 3.1 [199, 200] we generate all required one- and
two-loop Feynman diagrams for the calculation of the mass corrections. The evaluation of
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the fermion traces and the reduction of the one-loop integrals was performed using FeynCalc

9.2.0 [201, 202]. FeynCalc also provides an interface to TARCER 2.0 [57] which was used to
reduce all two-loop integrals to the master integrals discussed in Sec. 3.2.1 while keeping the
full external momentum dependence. We first perform the tensor reduction of all necessary
diagrams using the most general tensor and coupling structure with arbitrary masses with-
out any model assumptions. The result for each diagram is a product of generic couplings,
masses and the master integrals of TARCER defined in Eqs. (3.14) and (3.37). The latter are
potentially IR-divergent. The NMSSM-specific insertions for the masses and couplings are
then summed over with the help of FeynArts. The numerical evaluation of the loop functions
depends on the chosen method to treat the IR divergences. At the one-loop order, we do not
encounter any IR divergences and therefore can evaluate all one-loop counterterms. At the
two-loop order, all loop functions are known analytically in the limit of vanishing external
momentum but are not necessarily IR-finite.

The IR divergences are treated in three different ways:

(i) Using only a mass regulator
When introducing an auxiliary non-zero mass MR for the Goldstone bosons masses,
we expect from the results of the effective potential that a subset of IR divergences
cancels while another subset will have a residual dependence on MR. This way, we can
distinguish between a set of diagrams which requires momentum regularization and a set
which contains only unphysical divergences i.e. is IR-finite. We can also use this rather
simple approach to study the overall dependence of the Higgs boson mass prediction on
the regulator MR.

(ii) Using partial momentum dependence
Knowing the regulator-dependent subset of diagrams (i.e. with the physical divergences)
from method (i), we use finite external momentum in this particular set of diagrams.
Following the strategy of the generalized effective potential approximation [27, 28], we
also expand around small external momentum.

(iii) Using full momentum dependence
Once the unphysical divergences have been canceled in (i), we can also calculate all
Feynman diagrams of O((αt + ακ + αλ)

2) at arbitrary external momentum using the
computer program TSIL [59].

In the following, we elaborate on them in detail.

8.2. Using only a Mass Regulator

The use of auxiliary masses is a common and convenient trick to regulate unphysical IR di-
vergences. In the context of Higgs boson mass calculations, it was first done for the NMSSM
in Refs. [28,136] by replacing the vanishing Goldstone boson mass with a mass regulator MR

whenever an IR-divergent loop integral was encountered. However, this approach induces
not only O(log

n
M2
R)-terms which diverge in the limit MR → 0, but also O(M2

R)-terms which
vanish in the IR-limit. To circumvent the O(M2

R)-terms, we proceed as follows. For an ar-
bitrary loop integral f(m2

1, ...,m
2
i ,m

2
j , ...m

2
n) which diverges for any combination of at least

two vanishing masses mi,mj → 0, we expand f(m2
1, ...,M

2
R,M

2
R, ...m

2
n) around M2

R = 0 up

to first non-vanishing order in log
n
M2
R and M−2n≤−2

R . The required set of loop functions
expanded for small M2

R is given in Appendix B. The proper expansion in M2
R should reduce

the dependence on the regulator mass to a minimum.

In order to investigate the IR-finite and IR-divergent subsets of Feynman diagrams, we di-
vide them topologically into five different sets. Appendix C, Tabs. C.1 and C.2 contain the
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complete list of IR-divergent two-loop tadpole and selfenergy topologies along with the re-
sponsible loop integrals and the set they belong to. In the last column of the lists, we give the
information about whether the IR divergence is canceled against other diagrams (i.e. if it is
unphysical) or if one needs to include external momentum (i.e. if it is a genuine divergence).
We divide the sets according to:

• Set A contains all topologies which are tadpole-like i.e. have no external momentum
flowing in the loop. Therefore, set A is expected to be IR-finite if all diagrams are
summed over.

• Set B contains IR-divergent topologies which have two Goldstone propagators with the
same loop momentum (i.e. a one-loop Goldstone boson selfenergy) and one additional
massive propagator in the same loop.

• Set C has also one massive and two massless propagators but contains an off-diagonal
Goldstone-Higgs one-loop selfenergy in the sub-loop.

• Set D contains a diagonal Goldstone selfenergy but, in contrast to set B, the external
momentum is flowing only through one of the Goldstone propagators.

• Set E contains one completely massless (sub) loop.

We find that Set A, B and C are separately IR finite. However, the cancellation is only
observed if the Goldstone boson mass counterterms take a particular form. From the Gold-
stone tree-level masses, cf. Eq. (5.28), one can show that the finite parts of the one-loop
counterterms are given by the one-loop tadpole counterterms:

δ(1)m2
G0

∣∣∣
fin

= δ(1)m2
G±

∣∣∣
fin

=
sβ δ(1)thu

∣∣
fin

+ cβ δ(1)thd
∣∣
fin

v
. (8.1)

We find that we need to include these finite contributions in order to cancel the associated IR
divergences in all two-loop quantities. This is done by ensuring that the tree-level minimum is
the true minimum of the potential, cf. Eq. (7.36). Due to this choice, the one-loop Goldstone
boson masses are automatically on-shell. Thus, we are also in alignment with the solution
to the GBC in the effective potential of Ref. [27] which showed that the use of vanishing OS
Goldstone boson masses leads to an IR-finite subset.

While all five sets of Tab. C.2 contribute to the neutral Higgs boson selfenergies, the charged
Higgs, Z and W boson selfenergies only receive contributions from the IR finite subsets A, B
and C. Therefore, the derived two-loop counterterms are also IR-finite.
Since sets E and D have a left-over physical IR divergence, it looks surprising that the Z-
factors, which are derived from the derivatives of the neutral selfenergies, are IR-finite and
in agreement with the results from the anomalous dimension matrix (cf. Sec. 7.2.3). How-
ever, in Refs. [203–205] it was shown in a model-independent way that the beta functions
do not depend on the mass regulator if appropriate counterterms for the mass regulator are
introduced. In the calculation presented here, the Goldstone boson mass counterterms are
sufficient to achieve IR-finite Z-factors.

Finally, the only two-loop quantity that suffers from a residual dependence on the mass

regulator, scaling with O(logM2
R) and O(log

2
M2
R), is the unrenormalized selfenergy for the

massive neutral Higgs bosons. The responsible diagrams are depicted in Fig. D.3. In Sec. 9.2.4
we study of the phenomenological impact of M2

R on the prediction of the Higgs boson mass
spectrum.
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8.3. Using Partial Momentum Dependence

A solution to the GBC without introducing a dependence on the unphysical mass regulator
but circumventing the time- and resource-consuming numerical evaluation of loop integrals
at finite external momentum was worked out in the generalized effective potential approxi-
mation [27]. The idea of Ref. [27] is to use finite external momentum only in the IR-divergent
subset and obtain analytic expressions for the loop integrals by expanding around small p2.
In the notation of this thesis this means that only the diagrams within the set D and E
in Tab. C.2, i.e. those in Fig. D.3, are computed at finite external momentum while all
other diagrams are computed at p2 = 0. Since the number of independent mass scales en-
tering the diagrams in Fig. D.3 is at most three, it is possible to obtain analytical solutions
for the involved loop integrals. In fact, all special cases for the loop integrals appearing in
Fig. D.3 have already been worked out in general as well as in the low-momentum expansion
in Refs. [27,28,46,59,206–208].
With these loop integrals at hand, some individual diagrams in set C and E still feature an
unphysical IR divergence originating in the IR-divergent integrals V(x, 0, z, u) and C(x, 0, 0).
The reason why the divergence of the V-topology cancels against the C-topologies becomes
more clear when using the identity

V(x, 0, z, u) = −Ṽ (x, z, u)− B(z, u)|p2=0C(x, 0, 0). (8.2)

The integral Ṽ (x, z, u) has been derived in Ref. [28]7. It scales with log p2 and is IR-finite
for non-zero p2. Therefore, the choice of regulating C(x, 0, 0) is not important as there is no
dependence on this function in the final result. We validated that the resulting selfenergies
are indeed independent of the mass regulator when using this set of loop integrals.

One disadvantage of the small-momentum expansion is that the description becomes un-
reliable at latest near thresholds, since they are not captured by the log p2 terms, or for very
large values of p2. Alternatively one can go one step further and include the full external
momentum dependence.

8.4. Using Full Momentum Dependence

This method is similar to the partial momentum dependence, i.e. we cancel all unphysical
divergences using a mass regulator and use finite external momentum to remove the gen-
uine IR divergences. However, instead of taking only partial momentum dependence into
account, we allow for p2 6= 0 in all two-loop diagrams of the O((αt + αλ + ακ)

2) calculation.
While the momentum dependence for the leading two-loop O(αtαs) corrections is not yet
available in NMSSMCALC, its size has already been studied in Refs. [29,31] and [30] within the
MSSM using differential equations and sector decomposition for the numerical evaluation of
the loop integrals. We assume that the momentum dependence in the NMSSM at O(αtαs)
is comparable to the MSSM O(αtαs) corrections which were found to be at most about one
GeV in the loop-corrected Higgs boson mass compared to the zero momentum approximation.

The generalization of the calculation to non-zero external momentum is straightforward since
we use the basis integrals of TARCER which are also used in the numerical tool TSIL.
The UV renormalization slightly changes in the full momentum calculation. Using p2 6= 0
in all two-loop diagrams introduces UV-divergences O(p2ε−n) which require the inclusion of
additional Z-factor contributions in the renormalized selfenergies, cf. Eq. (7.4). We verified
that the inclusion of the Z-factor contributions indeed leads to a UV-finite result in the full

7Our notation slightly differs from appendix A.1.1 in Ref. [28]: their B(x, y′) and P(z, u) corresponds to our
C(x, y, y) and − B(z, u)|p2=0.
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momentum approach. Additional modifications to the two-loop counterterms are not neces-
sary. It should be noted that we are neglecting p2 contributions from the charged Higgs boson
mass counterterm, which is calculated in the approximation of vanishing external momentum.

The iterative solution of the Higgs boson propagator pole, cf. Eq. (7.1), involves multiple
evaluations of the renormalized selfenergy at different values of p2. This repeated evaluation
is considerably fast at the one-loop order, which relies on analytic solutions of the loop inte-
grals. However, the loop integration of one set of master integrals using differential equations
in TSIL is about 20 times slower than using analytic result for the p2 = 0 approximation.
In addition, there are many different mass states entering the O((αt + ακ + αλ)

2) correc-
tions which need to be summed over. In order to reduce the runtime of the program to
a minimum, we chose a fixed value for p2 in the calculation of the new selfenergy correc-

tions Σ̂
(2),O((αt+ακ+αλ)

2)
ij (p2). Therefore, the selfenergies only need to be computed once for

a given parameter point. We set p2 = (m2
hi

+ m2
hj
)/2, where mhi,j are the tree-level Higgs

boson masses that enter Σ̂
(2),O((αt+ακ+αλ)

2)
ij (p2). This approximation was already studied

in Ref. [28] within the SM. It was shown that the SM Higgs boson mass prediction is only
altered by a few MeV if the external momentum is varied between several orders of magnitude.

As a closing remark we want to discuss the reliability of the full external momentum re-
sults. It is not known how the momentum-dependent corrections compare against e.g. the
electroweak corrections which are neglected in this work. In the MSSM it can be argued
that the momentum-dependent and the EW gauge contributions are of similar size [71]: The
p2-dependent corrections to the SM-like Higgs boson mass are by construction O(α2

mh
) with

mh ≈ 125GeV. This is of similar size than the EW corrections in the MSSM which are
of O(α2

MZ
), i.e. both contributions are expected to be of the size

O(α2
p) ≈ O(α2

mh
) ≈ O(α2

MZ
) ≈ O

(
(100GeV)2

(4π)4

)
≈ (0.5GeV)2 . (8.3)

However, the p2-dependent contributions in the NMSSM can also be proportional to λ and
κ at O((αt + ακ + αλ)

2) which could yield an additional enhancement of the momentum de-
pendent corrections if λ, κ >∼ O(1). In this case, there can also be a large mixing between
the singlet scalar and SM-like Higgs boson. In this regime, the momentum corrections might
be dominant over the EW gauge contributions. This behavior is studied in more detail in
Chapter 9. However, MSSM-like scenarios might require the inclusion of gauge-dependent
contributions which is reserved for future works.

Another interesting approach is to construct UV-finite selfenergies and tadpoles at a generic
level by making use of the BPHZ [209] theorem as it is done in the computer program
TLDR [146] for arbitrary renormalizable theories. Since TLDR includes also all contributions
involving vector boson couplings, the GBC is not present in this approach and all unphysical
IR divergences should cancel there as well. While TLDR itself does not yet provide a regular-
ization method for such IR divergences, it is now also possible to extend it to make use of
our IR-regulated loop integrals.



CHAPTER 9

Phenomenological Impact of the O((αt + ακ + αλ)
2) Corrections

In this chapter we study the phenomenological impact of the O((αt + ακ + αλ)
2) corrections

to the Higgs boson mass spectrum.

9.1. Setup of the Parameter Scan

The central tool for the numerical analysis is the computer program NMSSMCALC which incor-
porates the O((αt + ακ + αλ)

2) corrections discussed in the previous chapter since version
4.00. For a documentation of the technical implementation of the new corrections into the
program code as well as a manual we refer to Ref. [210] and the NMSSMCALC webpage8.

In order to scrutinize the NMSSM parameter space, a random scan is performed over all
input parameters that are important for the Higgs boson mass spectrum. In the following,
we describe the setup used in this parameter scan.
The charged Higgs boson as well as the top and stop sector are renormalized in the OS
scheme. The OS input for the top-quark mass as well as all other SM input values are chosen
from Ref. [34]:

α(MZ) = 1/127.955, αMS
s (MZ) = 0.1181 ,

MZ = 91.1876 GeV , MW = 80.379 GeV ,

mt = 172.74 GeV , mMS
b (mMS

b ) = 4.18 GeV ,

mc = 1.274 GeV , ms = 95.0 MeV ,

mu = 2.2 MeV , md = 4.7 MeV ,

mτ = 1.77682 GeV , mµ = 105.6584 MeV ,

me = 510.9989 keV , GF = 1.16637 · 10−5 GeV−2 .

(9.1)

Table 9.1 summarizes the parameter ranges which are sampled using uniform distributions.
The random scan assumes that all CP-violating phases vanish. The effects of the individual
phases are studied in Sec. 9.2.5. The predictions for the Higgs boson mass spectrum and

8
https://www.itp.kit.edu/~maggie/NMSSMCALC/

https://www.itp.kit.edu/~maggie/NMSSMCALC/
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parameter scan range [TeV]

MH± [0.5, 1]

M1,M2 [0.4, 1]

M3 2

µeff [0.1, 1]

mQ̃3
,mt̃R

[0.4, 3]

mX̃ 6=Q̃3,t̃R
3

parameter scan range

tanβ [1, 10]

λ [0.01, 0.7]

κ λ · ξ
ξ [0.1,1.5]

At [-3, 3] TeV

Ai 6=t [-2, 2] TeV

Table 9.1.: Ranges for the randomized scan over the NMSSM parameter space. Values of
κ = λ · ξ > 0.7 are omitted. All soft breaking masses mX̃ with X̃ = b̃R, L̃, τ̃ and trilinear
couplings Ai with i = b, τ, κ, are set equal to 3TeV.

decays are required to fulfil the most recent experimental constraints discussed in Chapter 6.
For this purpose the programs HiggsBounds with version 5.9.0 [182–184] and HiggsSignals

with version 2.6.1 [181, 185] were utilized. The theoretical uncertainty propagated to Hig-

gsSignals is set to ±3GeV. This effectively requires at least one SM-like Higgs boson h
within the mass range

122GeV ≤ mh ≤ 128GeV , (9.2)

which has mostly SM-like couplings. Since the gauge eigenstate hu has the largest coupling
to the top quark, similar to the SM-like Higgs boson, it is expected that h consists of a
large hu component with only small admixtures from the hd and hs eigenstates such that
all Higgs signal strengths measured at the LHC are reproduced. Therefore, we use ”hu-
like” and ”SM-like” as equivalent terms in the following sections. The χ2 values returned by
HiggsSignals for the individual parameter points of the NMSSM are compared against the
χ2 value returned for the SM. Parameter points which do not agree with the SM9 χ2 within
2σ (assuming 2 degrees of freedom) are not taken into account. For a detailed discussion
about the statistical interpretation of the χ2-test, we refer to Ref. [185]. The numerical mass
regulator introduced in Sec. 8.2 is chosen to be M2

R = Rµ2
0 with the renormalization scale

µ0 and a default value of R = 10−3 which is discussed later. The value of µ0 is dynamically
chosen from the input parameters of the stop sector, µ0 =

√
mq̃3mt̃R

. The input scale at

which all DR input parameters are defined is also given by µ0. Furthermore, we require that
the resulting mass spectrum of the parameter points obeys the following conditions:

(i) mh5 ,mχ0
5
,mχ±

2
< 1TeV, mt̃2

< 2TeV,

(ii) mhi −mhj > 0.1GeV, m
χ
(±)
i

−m
χ
(±)
j

> 0.1GeV,

(iii) mχ±
1
> 94GeV, mt̃1

> 1TeV .

Condition (i) restricts the largest Higgs boson and electroweakino masses to be smaller than
1TeV as well as the largest stop mass to be smaller than 2TeV. Thus, the resulting mass
spectra contain only degrees of freedom which are not too heavy and well suited for precise
fixed-order predictions. The constraint (ii) guarantees the absence of nearly-degenerate mass
configurations for which not all ingredients of the of two-loop calculation are optimised. We
also want to note, that the limit λ, κ → 0 is numerically difficult and should be taken with care.
Condition (iii) takes into account model-independent lower limits for the lightest chargino
and stop masses [34].
The rather small scan range of the parameter λ in Tab. 9.1 is motivated by the renormalization

9In HiggsSignals-2.6.1, the SM χ2 obtained with the latest data set is 84.44.
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group running of the coupling λ, cf. Eqs. (7.45a) and (7.46a),

βλ ≈ λ

(
3

(4π)2
y2t +

9

(4π)4
y4t

)
. (9.3)

The top-quark Yukawa coupling is large at the TeV scale, yt ≈ 1, and contributes with a
positive sign to the running of λ. Therefore, large initial values of λ can spoil the validity
of perturbation theory at relatively low scales. The authors of Ref. [211] found that λ < 0.7
ensures perturbativity up to the grand unification (GUT) scale. However, for illustrative
purposes in the subsequent sections we will also consider the case of λ, κ > 0.7 for individual
parameter points.

9.2. Results

The resulting parameter sample contains twenty thousand points which fulfil all constraints
discussed in the previous section while the charged Higgs boson and the top/stop sector are
renormalized on-shell and the new two-loop O(α2

new) corrected selfenergies are used. All in-
dividual parameter points of this sample are re-evaluated while calculating the Higgs boson
mass spectrum only at O(αt(αt + αs)) and O(αtαs) and only at the one-loop order, respec-
tively. In addition, we change the renormalization in the top/stop sector from OS to DR for
each order in perturbation theory. This allows us to perform a global comparison between
the various loop corrections and renormalization schemes over a large part of the NMSSM
parameter space. The results are visualized using scatter plots.
Furthermore, we pick two parameter points from the original scan sample and study their
individual behavior under the change of the input parameters. The initial input parameters
of the two points are shown in Tab. 9.2 which have been selected because of their specific
admixtures between the SM-like and the singlet-like Higgs bosons. The parameter point P1OS
from Tab. 9.2 features a small hu/hs mixing while the parameter point P2OS has the largest
hu/hs mixing of the collected sample of around 12%. The stop-quark masses resulting from
these input parameters are listed in Tab. 9.3. While the default renormalization scheme is the
OS scheme, the obtained stop masses in the DR scheme are also given in Tab. 9.3 for both
parameter points. Tables 9.4 and 9.5 list the values for the Higgs boson masses of P1OS and
P2OS, respectively, at tree-level, one-loop, two-loop O(αtαs), O(αt(αt + αs)) and O(α2

new) in
the OS scheme of the top/stop sector. Numbers in parentheses are the mass values obtained
if the top/stop sector is renormalized in the DR scheme.
In the following, we briefly describe the features of the two parameter points. For this purpose,
we define the relative difference ∆X

Y (Mh) of the mass MX
h of the Higgs boson h calculated

at order X with the mass MY
h calculated at the order Y in perturbation theory. Likewise,

we define the relative difference ∆ren.(M
X
h ) for the result of MX,OS

h obtained if the top/stop

sector is renormalized in the on-shell scheme and in the DR scheme, MX,DR
h , at a given order

X in perturbation theory:

∆X
Y (Mh) =

∣∣MX
h −MY

h

∣∣
MY
h

, ∆ren.(M
X
h ) =

∣∣∣MX,OS
h −MX,DR

h

∣∣∣
MX,DR
h

, (9.4)

with X,Y = {tree-level, one-loop, O(αtαs), O(αt(αt + αs)),O(α2
new)}.

The results for the parameter point P1OS shown in Tab. 9.4 also list the dominant gauge
eigenstate in the corresponding mass eigenstate in square brackets. The lightest Higgs bo-
son h1 is hu-like at all considered orders and renormalization schemes. Furthermore, the
point features a rather light singlet-like pseudoscalar with a mass of about O(100GeV), a
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O(350GeV)-heavy singlet-like scalar and two down-type scalar/pseudoscalar Higgs bosons
above 600GeV. While the loop corrections of the non-SM-like Higgs bosons are relatively
stable at the different loop-orders, the hu-like Higgs boson h1 receives sizeable corrections.
From tree-level to one-loop it receives a rather large positive correction ∆one-loop

tree-level(Mh1) ≈ 53%
in the OS scheme and around 31% in the DR scheme which yields a rather large scheme
dependence of ∆ren.(M

one-loop

h1
) = 16%. From one-loop to two-loop O(αtαs), the Higgs boson

mass Mh1 is altered by -10% in the OS scheme while the scheme dependence ∆ren.(M
O(αtαs)
h1

)

becomes very small (0.7%) as the results obtained in the DR and OS scheme of the top/stop
sector differ by less than 1GeV. At O(αt(αt + αs)) the scheme dependence is again increased

to ∆ren.(M
O(αt(αt+αs))
h1

) = 4.5% due to comparably large corrections in the OS scheme of

about ∆αtαs

αt(αt+αs)
(Mh1) = 5.2%. The new ∆O((αt + ακ + αλ)

2) corrections10 decrease the
Higgs boson mass in the OS scheme by about 500MeV and at the same time increase the
corrections in the DR scheme such that the scheme dependence is slightly reduced to the

value ∆ren.(M
O(α2

new)
h1

) = 4.0%.
In Tab. 9.5 we see a very similar behavior for the hu-like Higgs boson mass of the parameter
point P2OS. This parameter point features an SM-like Higgs boson and a light singlet-like
scalar while all other Higgs bosons are heavier than 500GeV. However, due to the large
singlet admixture, the dominant hu/hs components in h1/h2 change upon inclusion of the
higher-order corrections. In Tab. 9.5 we colorize the cells with a dominant hs component in
blue and those with a dominant hu component in red. One can see that the behavior is almost
as for P1OS except for the one-loop corrected Higgs boson mass in the OS/DR scheme. At
this order, the hu- and hs-like Higgs bosons change their mass ordering due to the larger cor-
rections in the OS scheme. The dominant gauge eigenstate determines the coupling strengths
of the Higgs boson to all other sectors of the theory and therefore also the size of the loop
corrections. Thus, we rather compare the mass values with the same dominant component
(i.e. equal colors in Tab. 9.5) rather than the same mass eigenstates. This means that we
compute ∆tree-level

one-loop (Mhu) = 28% rather than ∆tree-level
one-loop (Mh1) = 25%. This strategy is also fol-

lowed in the rest of this thesis.
We can summarize the behavior for Mhu from Tabs. 9.4 and 9.5 when successively going from
order X to Y as:

X
∆ren.

∆X
Y−−→ Y :

∆ren.

tree-level
0%

25-50%−−−−→ one-loop
16%

5-10%−−−→ O(αtαs)
0-1%

0-5%−−→ O(αt(αt + αs))
3-4%

0-1%−−→ O(α2
new)

3-4%

.

This pattern shows that the O(α2
t ) corrections seem to introduce a larger scheme dependence

which is only slightly reduced upon the inclusion of the ∆O((αt + ακ + αλ)
2) corrections. We

will study this behavior in more detail in the following sections.

λ κ tanβ ReAκ MH± µeff At mq̃3 mt̃R
M1 M2 M3

[TeV]

P1OS 0.46 0.43 3.70 -0.004 0.64 0.200 2.0 1.00 1.80 0.80 0.40 2

P2OS 0.59 0.23 2.05 -0.546 0.92 0.397 -0.9 1.20 1.37 0.66 0.67 2

Table 9.2.: Input parameters for the two sample parameter points. All trilinear soft-breaking
couplings other than At and Aκ are set to zero, Ai 6=t,κ = 0GeV. The soft-breaking masses
for all quarks and leptons except for t̃R and q̃3 are set to mX̃ 6=q̃3,t̃R = 3TeV.

10Note that ∆O((αt + ακ + αλ)
2) only refers to the shift which is due to NMSSM-specific contributions while

O(α2
new) refers to the sum of all two-loop corrections, cf. Eq. (5.18b).
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mt̃1
[GeV] mt̃2

[GeV]

OS DR OS DR

P1OS 1022.64 991.64 1815.54 1815.40

P2OS 1212.54 1190.44 1402.77 1392.33

Table 9.3.: The stop-quark masses mt̃1
and mt̃1

from the parameter points P1OS and P2OS

defined in Tab. 9.2. The values are given for the OS scheme, which was used in the scan
to obtain P1OS and P2OS, as well as when switching to the DR scheme in the top and stop
sector. The data for the table was taken from Ref. [210].

h1 [hu] h2 [hs] h3 [hd] a1 [as] a2 [ad]

tree-level 87.64 365.32 646.65 103.09 639.83

one-loop
133.97
(115.21)

359.42
(359.35)

646.67
(646.4)

116.51
(116.8)

639.78
(639.8)

two-loop O(αtαs)
119.09
(119.98)

359.36
(359.37)

646.5
(646.43)

116.76
(116.69)

639.81
(639.79)

two-loop O(αt(αt + αs))
125.58
(120.15)

359.36
(359.37)

646.6
(646.43)

116.76
(116.69)

639.81
(639.79)

two-loop O(α2
new)

125.03
(120.18)

359.68
(359.59)

646.62
(646.47)

116.58
(116.63)

639.77
(639.78)

Table 9.4.: Mass values in GeV for the parameter point P1OS defined in Tab. 9.2 of the
neutral Higgs bosons at tree-level, one-loop, two-loop O(αtαs), two-loop O(αt(αt + αs)) and
at two-loop O(α2

new) obtained by using OS renormalization in the top/stop sector. Numbers in
parentheses are results obtained in the DR scheme. The main component (in square brackets)
stays the same at all orders in both schemes. The data for the table was taken from Ref. [210].

h1 [hu] h2 [hs] h3 [hd] a1 [as] a2 [ad]

tree-level 96.86 112.10 926.25 511.34 925.86

one-loop
129.01
(116.3)

135.09
(130.1)

926.69
(926.33)

512.55
(512.66)

925.08
(925.18)

two-loop O(αtαs)
121.36
(121.65)

129.7
(130.39)

926.37
(926.46)

512.62
(512.61)

925.11
(925.15)

two-loop O(αt(αt + αs))
126.09
(121.54)

130.04
(130.38)

926.49
(926.45)

512.62
(512.61)

925.11
(925.15)

two-loop O(α2
new)

125.28
(121.69)

129.92
(130.2)

926.63
(926.53)

511.92
(512.12)

925.08
(925.15)

Table 9.5.: Same as Tab. 9.4 but for the parameter point P2OS. States with red numbers are
hu-like while states with blue numbers are hs-like. The data for the table was taken from
Ref. [210].
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9.2.1. Impact of the O((αt + ακ + αλ)
2) Corrections

In this section we study the relative size of the O(α2
new) corrections compared to the previous

predictions. We use the parameter points P1OS and P2OS as starting points and observe how
the Higgs boson masses change if we change λ, κ or At. Furthermore, we investigate the
whole scan sample obtained in Sec. 9.1.

Impact of λ and κ

We simultaneously vary κ = λ ·κ0/λ0 where κ0 and λ0 are the starting values of the respective
input parameters from Tab. 9.2. The reason for this choice is to be able to vary λ and κ
over large ranges without the appearance of negative mass squares in the eigenvalues of the
tree-level mass matrices.
In Fig. 9.1 (upper panels) we show the result for the Higgs boson mass prediction, Mhu , as a
function of λ for the parameter point P1OS (left) and P2OS (right). The results using the OS
(DR) scheme in the top/stop sector are show with solid (dashed) lines. The red, black and
blue lines are obtained at the O(α2

new), O(αt(αt + αs)) and O(αtαs), respectively. We find
that in all considered scenarios, the O(αtαs) and O(αt(αt + αs)) results in the DR scheme
are very close to each other for all considered values of λ and At (i.e. blue and black dashed
are on top of each other) while a larger difference is found in the OS scheme. For small values
of λ, the O(α2

new) results also agree with the previous calculations in the DR scheme but start
to significantly deviate for large λ. This is a good cross-check since the O(α2

new) results should
coincide with the O(αt(αt + αs)) results in the MSSM-limit. In the middle panels, we show

the relative difference ∆
α2
i

α2
new

(cf. Eq. (9.4)) of the new corrections w.r.t α2
i = O(αt(αt + αs))

(black) and O(αtαs) (blue). We are mainly interested in the comparison with O(αt(αt + αs))

Figure 9.1.: Upper left (right) panel: Mass of the hu-(h1-)like Higgs boson for the parameter
point P1OS (P2OS) at two-loop O(αtαs) (blue), O(αt(αt + αs)) (black) and O(α2

new) (red)
in the OS (full) and DR (dashed) renormalization scheme as a function of λ. The black

and blue dashed lines lie on top of each other. Middle panels: Relative difference ∆
α2
i

α2
new

(cf. Eq. (9.4)) of the new corrections w.r.t α2
i = O(αt(αt + αs)) (black) and O(αtαs) (blue).

Lower panels: Relative difference ∆ren. due to the renormalization scheme change in the
top/stop sector (i.e. between solid and dashed lines of the same color). The region of |λ|
which is compatible with the current LHC Higgs signals at O(α2

new) is shown in the zoomed
regions. The data for the figures was taken from Ref. [210].
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Figure 9.2.: Left: Relative size ∆
α2
new

αt(αt+αs)
(Mhu) of the new two-loop O(α2

new) corrections to

the hu-like mass w.r.t. the O(αt(αt + αs)) corrections as a function of
√
λ2 + κ2 for all

points obtained in the scan described in Sec. 9.1. The color code indicates the value of tanβ.
Right: The same but for ∆αt(αt+αs)

αtαs
(Mhu). The data for the figures was taken from Ref. [210].

since these are the precursors of the O(α2
new) corrections. In both scenarios we find that the

new corrections remain small for moderate values of λ. In the case of small singlet mixing
(P1OS, left), λ > 1 is required to see a notable effect which is larger than 2%. The maximum
deviation can be up to 7% for λ = 2. However, for a large singlet mixing (P2OS, right), the
new corrections start to deviate with more than 1.5% already at smaller values of λ for λ > 0.5.

To obtain a global picture of the impact of λ and κ on the size of the new corrections,
we utilize the collected parameter points from the scan described in Sec. 9.1. In Fig. 9.2(left)

we show the relative difference ∆
α2
new

αt(αt+αs)
(Mhu) of all obtained parameter points as a function

of sλκ ≡
√
λ2 + κ2. The color code indicates the value of tanβ. One can see that in the

MSSM limit, sλκ → 0, the relative corrections are negligible as suggested by Eq. (5.34). For
large values of sλκ > 0.6 and low values of tanβ < 2, the relative corrections can be as large
as 3%. However, we note that in this scan λ and κ are separately not larger than 0.7 in order
to ensure perturbativity below the GUT scale (cf. discussion of Eq. (9.3)).
In addition, we show the relative difference ∆αt(αt+αs)

αtαs
(Mhu) of the previous two calculations

in Fig. 9.2(right). They are mostly unaffected by a change of sλκ and are between about
4.5% and 12% for sλκ < 0.6 and therefore always larger than the largest O((αt + ακ + αλ)

2)
corrections in this regime of the parameter space. This shows that applying the MSSM-limit
in the two-loop calculation is a good approximation for a wider range of λ and κ. However,
for large values of sλκ > 0.6 and small values of tanβ, the relative corrections can be as small
as ∆αt(αt+αs)

αtαs
(Mhu) ≈ 2 − 4%. In this regime, the new relative corrections are maximized,

∆
α2
new

αt(αt+αs)
(Mhu) ≈ 3% (left plot in Fig. 9.2). Therefore, the NMSSM-specific corrections,

which are proportional to λ and κ, can be of the same size as the O(α2
t ) corrections if λ, κ

are large and tanβ is small.

Impact of At

In Fig. 9.3(left) we show the hu-like Higgs boson mass of the parameter point P2OS as a
function of At. The notation in the figure is the same as in Fig. 9.1. The kinks which appear
as At is varied are due to the fact that the dominant hu component changes from the lightest
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Higgs boson h1 to the next-to-lightest Higgs boson h2. In the OS scheme of the top/stop
sector, the O(αt(αt + αs)) corrections are up to 10% larger than the O(αtαs) results (note
that the blue solid line in the middle panel of Fig. 9.3(left) is re-scaled by a factor 0.1 for
better readability) while the O(α2

new) result differs by at most 2GeV from the O(αt(αt + αs))

result. The overall dependence of ∆
α2
i

α2
new

on At is rather flat for all corrections except for

the regions |At| ≈ 1.2− 2TeV where the dominant hu component changes between the mass
eigenstates. In the DR scheme, for |At| < 2TeV, we observe that the three calculations are
very close to each other. For larger |At|, the O(αt(αt + αs)) and O(α2

new) results still agree in
the DR scheme but disagree slightly more with the O(αtαs) result by up to 1-2%. Thus, the
deviations in the OS scheme of the top/stop sector are again larger than in the DR scheme
which is further discussed in Secs. 9.2.2 and 9.2.3.
Furthermore, we study in Fig. 9.3(right) the impact of the variation of At on the squared
coupling C2

V V hu of the hu-like Higgs boson to the SM vector bosons, V = W±, Z, normal-
ized to the respective squared SM coupling. The figure is generated in the OS scheme of
the top/stop sector. We plot the coupling when using the O(α2

new) (red), O(αt(αt + αs))
(black) and O(αtαs) (blue) corrections in the Higgs boson mass calculation. The regions
with transparent lines are either not compatible with the measured Higgs signal rates or do
not fulfil the Higgs boson mass constraint. The solid (dashed) lines indicate regions where
hu is the dominant component in the lightest (second-lightest) mass eigenstate. We see that,
throughout all calculations, the coupling C2

V V hu needs to be at least as large as 75% of the
SM coupling in order to fulfil the HiggsSignals constraints.
The Higgs boson mass obtained in the OS scheme of the O(αt(αt + αs)) and O(α2

new) cal-
culations is much larger than the O(αtαs) results (left plot). Therefore, the allowed regions
with Mhu = (125±3)GeV in Fig. 9.3(right) (red/black compared to blue solid lines) are very
distinct. The dips in the right plot are regions of large hu/hs mixing which are slightly moved
horizontally when considering the different orders . This has a large influence on the allowed

Figure 9.3.: The dependence of the parameter point P2OS on At. Left: Same as Fig. 9.1(right)
but as a function of the parameter At (the black and blue dashed lines lie on top of each other).
The blue solid line in the middle panel has been rescaled by a factor of 0.1. Right: The squared
couplings C2

V V hu of the hu-like Higgs boson to the massive vector bosons V = W,Z normalized
to the squared SM coupling. The result is given for the O(α2

new) (red), O(αt(αt + αs)) (black),
and O(αtαs) (blue) result. Transparent regions are either excluded by HiggsSignals or do
not fulfill the Higgs boson mass constraint. For solid lines, hu is the lightest Higgs, for dashed
ones it is the next-to-lightest one. The data for the figures was taken from Ref. [210].
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range of At. Even though the ∆O((αt + ακ + αλ)
2) corrections add only about −1GeV to

the hu-like Higgs boson mass, the shape of the At distribution is significantly modified due
to a different mixing between hu and hs. This shows that aiming for a high precision in the
Higgs boson mass calculations is mandatory in order to draw conclusions about the collider
phenomenology of the considered model.

9.2.2. Renormalization Scheme Dependence

In the lower panels of Fig. 9.1 and Fig. 9.3(left) we also show the uncertainty ∆ren. due to
the change in the top/stop sector from the OS to the DR renormalization scheme at the
considered orders. For large ranges of λ, κ and At we see a similar behavior to what was
already observed in Tabs. 9.4 and 9.5: the renormalization scheme dependence is increased
by the O(α2

t ) corrections and only mildly reduced by the ∆O((αt + ακ + αλ)
2) corrections.

Therefore, the inclusion of 3-loop corrections of O(αtα
2
s), which also depend on the scheme

of the top/stop sector, or even beyond might be required. However, at O((αt + ακ + αλ)
2)

also terms of O(αt(αλ+ακ)) are contributing which could in principle reduce or increase the
scheme dependence if they are of the same size as the O(α2

t ) corrections. To investigate this
case, we again make use of the collected scan sample and vary the renormalization scheme
at O(α2

new) in the top/stop sector from OS to DR. In Fig. 9.4(left) we show the scheme
dependence ∆ren.(Mhu) at O(α2

new) for the mass of the states with the largest hu component

as a function of sλκ =
√
λ2 + κ2. The color code indicates the value of |At| in the OS scheme.

For small values of sλκ < 0.6, the scheme dependence is always rather large compared to the
overall size of the new corrections and between 4% to 8%. Furthermore, the scheme depen-
dence is proportional to |At| and becomes large for |At| > 2TeV. In general, the higher-order
corrections which depend on At can contain terms that are polynomials of O(At/mt̃2

). How-
ever, in our scan we required mt̃2

< 2TeV which means that, for all points with |At| > 2TeV,
the At power-corrections may become too large and lead to unreliable results. If we increase
sλκ > 0.6 and stay below |At| = 1− 2TeV, the scheme dependence is significantly reduced to

∆ren.(M
O(α2

new)
hu

) = 1−3%. This is the same regime of sλκ as in Fig. 9.2(left) where the O(α2
t )

Figure 9.4.: The scheme dependence ∆ren. (cf. Eq. (9.4)) for Mhu as a function of

sλκ =
√
λ2 + κ2. Left: ∆ren.(Mhu) at O(α2

new). The color code indicates the value of

|AOS
t |. Right: The improvement ∆ren.(M

O(αt(αt+αs))
hu

) − ∆ren.(M
O(α2

new)
hu

) in the scheme de-

pendence when going from O(αt(αt + αs)) to O(α2
new). The color code indicates the value of

tanβ. The data for the figures was taken from Ref. [210].
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corrections can become smaller than the ∆O((αt + ακ + αλ)
2) corrections and thus contribute

with a smaller scheme dependence. To investigate this further, we plot the difference in the

scheme uncertainties ∆ren.(M
O(αt(αt+αs))
hu

)−∆ren.(M
O(α2

new)
hu

) between the O(αt(αt + αs)) and

O(α2
new) corrections as a function of sλκ and tanβ in Fig. 9.4(right). We observe that the

region with sλκ > 0.6 and tanβ < 2 indeed leads to a reduction of the scheme dependence of
up to 2.3% compared to the previous calculations. The scheme dependence for the singlet-like
scalar/pseudoscalar (not plotted here) is found to be 5% (0%) for large (small) values of sλκ.
We conclude that the two-loop O(αt(αλ + ακ)) contributions, can reduce the scheme depen-
dence for the hu-like state for increasing λ and κ but increase the scheme dependence of the
hs- and as-like states on the top/stop sector at the same time.

9.2.3. Renormalization Scale Dependence

In this section we study the dependence of the two-loop-corrected Higgs boson mass Mhu

on the choice of the renormalization scale µ. For this purpose, we utilize the RGEs of the
NMSSM which have been implemented in NMSSMCALC in Ref. [33]. Since the RGEs are only
defined for MS input parameters, the top-quark mass is required in the MS scheme at the
scale µ. In NMSSMCALC this is achieved by matching the measured OS top-quark mass onto
the SM using one-loop and leading two-loop-QCD precision at the scale µ = mZ . Then, the

SM RGEs are used to run mMS, SM
t (mZ) to the scale µ where the one-loop and two-loop-QCD

SUSY corrections are taken into account to obtain mMS,NMSSM
t (µ). For more details we refer

to Ref. [33]. This procedure partially avoids the appearance of large logarithmic corrections
in the calculation of the top-quark mass.

In this thesis, the scale dependence ∆scale of the mass Mhu is defined as

∆scale =
|Mhu(µ)−Mhu(µ0)|

Mhu(µ0)
, (9.5)

where µ0 =
√
mq̃3mt̃R

is the default scale used in NMSSMCALC as described in Sec. 9.1.

In Fig. 9.5(upper panels), we plot Mhu as a function of µ/µ0 calculated at O(α2
new) (red),

O(αt(αt + αs)) (black) and O(αtαs) (blue) for the parameter point P1OS (left) and P2OS

(right). The lower panels show the result of ∆scale(µ/µ0) in percent.
We vary the renormalization scale from µ0/2 to 2µ0 and observe the largest change in Mhu

of ±1GeV (+1
−4GeV) for the parameter point P1OS (P2OS) for the O(αt(αt + αs)) result. At

O(α2
new) the scheme dependence is slightly reduced compared to O(αt(αt + αs)) while it is

smallest at O(αtαs) for both parameter points. Thus, the relation between the individual
corrections is very similar as in the renormalization scheme dependence. This leads to a simi-
lar conclusion as for the renormalization scheme dependence, cf. Sec. 9.2.2, that the inclusion
of three-loop corrections from the top/stop sector is required in order to reduce the scale
dependence.
However, comparing the scale dependence between the point P1OS, which has a small hu/hs
mixing, and P2OS (large hu/hs mixing), we see that all three calculations perform almost
equally bad in the case of a large hu/hs mixing while for small mixing the O(αtαs) has a very
flat renormalization scale dependence. We argue that the origin of this behavior might be due
to the extraction of the MS top-quark mass from the SM as described above. This approach
assumes that all non-SM degrees of freedom are rather heavy and do not mix with the SM-like
Higgs boson. This is a good approximation for P1OS but not for P2OS. In the latter case,
we argue that a matching of the OS top quark mass to a singlet-extended SM rather than
the SM might be more appropriate. A proper treatment of large-mixing contributions in the
determination of the MS top-quark mass is reserved for future works.
Furthermore, we always use the full two-loop RGEs regardless of the considered two-loop



9.2. Results 71

Figure 9.5.: Upper panels: The Higgs boson mass prediction for the hu-like state as a func-
tion of the renormalization scale µ normalized to the default scale µ0 =

√
mq̃3mt̃R

for the

parameter point P1OS (left) and P2OS (right). The prediction is shown at O(α2
new) (red),

O(αt(αt + αs)) (black) and O(αtαs) (blue). Lower panels: The scale dependence ∆scale

(Eq. (9.5)) in percent. The data for the figures was taken from Ref. [210].

corrections. In general, one needs to apply the same approximations in the RGEs as in the
diagrammatic calculation, e.g. if calculating only Σ̂O(αt(αt+αs)) one would only need to take
into account terms of O(αt(αt + αs)) in the RGEs. Thus, the comparison between the three
different contributions has to be taken with caution.

9.2.4. Impact of the IR Regulator

In this section we study the numerical impact of the three different methods to regulate
the physical IR divergences discussed in Chapter 8. We remind the reader that the previ-

Figure 9.6.: Left: The five neutral Higgs boson masses M full p2

i obtained for the point P2OS
when including the full external momentum dependence in all O((αt + ακ + αλ)

2) diagrams.
The result is shown as a function of λ. Right: The relative difference between the lightest

Higgs boson mass M full p2

h1
obtained with full external momentum and the mass Mmass regulated

h1

obtained using a mass regulator M2
R = Rµ2

0 with R = 10−5, 10−3, 1 and 103 (dashed lines).

The solid line shows the relative difference between M full p2

h1
and the result obtained using a

small external momentum expansion in the IR divergent diagrams. The grey shaded region
fulfils the HiggsSignals constraints. The data for the figures was taken from Ref. [210].
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ously studied parameter samples have been obtained using the method of a mass regulator
M2
R = Rµ2

0 with the specific value R = 10−3. In this section we will justify this choice by
comparing the results for the Higgs boson mass Mhu obtained at O(α2

new) for different values
of R with the results obtained when taking the full and partial momentum dependence into
account.

In Fig. 9.6(left) we show all neutral Higgs boson massesM full p2

i , with i = {hu,d,s, as, a} (where
the label marks the dominant gauge eigenstate contributing to the respective mass eigenstate),
as a function of λ within the range λ = [0, 2]. The Higgs boson masses have been obtained at
O(α2

new) by using the full external momentum dependence in all O((αt + ακ + αλ)
2) diagrams

as described in Sec. 8.4. The hu-, hs- and as-like Higgs boson masses (black, red, and blue
lines) depend strongly on λ while the heavy and nearly-degenerate hd and a (green solid and
dashed lines) only change for very large values of λ (note that a log scale is used). Due to
the large mixing, the hu- and hs-like Higgs bosons change in the role of the lightest Higgs
boson near λ = 0.2 and again near λ = 1.6. The grey shaded region is compatible with the
HiggsSignals constraint.

In the right plot of Fig. 9.6 we compare the relative difference of M full p2

h1
with the result ob-

tained using a mass regulator, cf. Sec. 8.2, for different values of R = {10−5, 10−3, 100, 103}
(dashed lines from top to bottom) in percent. In addition, we also plot the relative difference

of M full p2

h1
with the result obtained using a small external momentum expansion in the IR-

divergent diagrams (solid line), cf. Sec. 8.3. An important cross-check is that all dashed and
the solid lines converge for λ → 0 since they only differ in the treatment of the IR-divergent
diagrams which are all proportional to λ and κ. However, they do not necessarily need to

converge at M full p2

h1
−M regulated

h1
= 0 since the full-momentum result also takes into account

the momentum dependence in the O(α2
t ) contributions which are IR-finite.

The partial-momentum result can be considered as physically well-motivated (compared to
the mass regulated result) and should be closest to the full-momentum result. We find that
the relative difference is not larger than 0.1% in the considered range of λ. In the range
compatible with HiggsSignals, we find an absolute difference of less than 100MeV. The
results obtained with different values for the mass regulator differ between -1.1% (R = 103)
and +0.2% (R = 10−5) from the full external momentum result. For R = 10−3 we find
excellent agreement with the partial momentum result with a relative difference in the sub
per mille level. In Sec. 8.3 we argued that the logarithmic dependence of the selfenergies on
the mass regulator compared to the log p2 dependence in the small-momentum expansion is
very similar. However, the chosen value for the mass regulator is artificial while the external
momentum can be identified with the tree-level mass. Thus, it is expected that the mass
regulator should also be of the same order as the tree-level masses. For typical values of the
renormalization scale µ0 ≈ 1 − 2TeV and tree-level masses mh ≈ mZ one indeed finds that
R = 10−3 is a good choice.

To further investigate the behavior of the different regulators, we utilize the scan sample col-
lected in Sec. 9.1 which was obtained with R = 10−3. In Fig. 9.7(left) we re-evaluate the scan

sample using the small momentum expansion and show the relative difference ∆partial p2

R=10−3 (Mhu)
of the hu-like Higgs boson mass to the mass-regulated result in percent (which is analogously

defined to the ∆X
Y in Eq. (9.4)). The effect is shown as a function of sλκ =

√
λ2 + κ2 and

tanβ. The distribution of the points is very similar to the relative difference of the O(α2
new)

to O(αt(αt + αs)) corrections in Fig. 9.2. However, overall the scale is one order of magni-
tude smaller. Therefore, the error introduced by a mass regulator with R = 10−3 w.r.t. the
small-momentum expansion is negligible compared to the overall size of the new two-loop
corrections.



9.2. Results 73

Figure 9.7.: Left: Comparison of the result for Mhu obtained when using partial external
momentum or a mass regulator (R = 10−3) to cure the IR-divergences. Right: The same
comparison but using full instead of partial external momentum dependence for a randomly
selected subset of 1000 points. The data for the figures was taken from Ref. [210].

We also investigate how the mass-regulated result compares with the full-momentum result
in the considered parameter space. For this purpose, we choose a random subset11 of one
thousand parameter points and re-evaluate them using the full external momentum approach.
The calculation was restricted to a smaller number of points in order to save computational

resources12. In Fig. 9.7(right) we show the relative difference of M full p2

hu
and Mmass-regulated

hu

with R = 10−3 in percent. Also in this comparison the relative difference is always smaller
than 0.3%. However, in contrast to the comparison between the two IR-regulators, the dif-
ference to the full-momentum result does not tend to zero for sλκ → 0. In this limit, the full
external momentum is still taken into account in the O((αt + ακ + αλ)

2) λ,κ=0
= O(α2

t ) correc-
tions. These corrections can also be as large as 0.1% compared to the mass-regulated result.
Therefore, the full external momentum dependent corrections at O(α2

t ) can be as important
as those at ∆O((αt + ακ + αλ)

2) for large λ and κ.

9.2.5. Impact of the CP-Violating Phases

In this section we study the impact of the CP-violating phases on the size of the two-loop
O(α2

new) corrections. For this purpose we utilize the parameter point P2OS from Tab. 9.2,
which was evaluated assuming CP-conversation, and study its dependence on the CP-violating
phases.
However, the CP-violating phases already enter the tree-level mass matrices which makes
it difficult to identify loop-induced effects if the phases are varied individually. In Sec. 5.3
we discussed that there are two common linear combinations called ϕw and ϕy of the phases
ϕλ, ϕκ, ϕu and ϕs which enter all tree-level relations, cf. Eq. (5.29). In particular, the neutral
Higgs boson mass matrix only depends on sinϕy at tree-level. We choose one possible solution
for ϕy = 0,

ϕλ = 2ϕs and ϕκ = ϕu = 0 , (9.6)

in order to prevent the appearance of any CP-violating phase in the tree-level mass matrix
of the neutral Higgs bosons. The phase ϕAt of the parameter At only contributes at higher
orders. Using the condition in Eq. (9.6), there are only two independent CP-violating phases,

11We validated that this subset still has all important features of the original sample.
12The evaluation of all points still took about 2 months of CPU time.
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Figure 9.8.: Upper panels: Mass of the hu-like Higgs boson for the parameter point P2OS as a
function of ϕλ (left) and ϕAt (right) at two-loop O(α2

new) (red), O(αt(αt + αs)) (black), and
O(αtαs) (blue) in the OS renormalization scheme of the top/stop sector. Lower panels: Rel-

ative difference ∆
α2
new

α2
i

between the new two-loop O(α2
new) corrections and the O(α2

i ) result

with α2
i = O(αt(αt + αs)) (black) and O(αtαs) (blue). The blue line in the lower panels is

rescaled by a factor 0.1. The data for the figure was taken from Ref. [210].

ϕλ and ϕAt , which enter the higher-order corrections.
In Fig. 9.8 (upper panels) we show the Higgs boson mass prediction for the hu-like state as a
function of ϕλ (left) and ϕAt (right) at O(α2

new) (red), O(αt(αt + αs)) (black), and O(αtαs)
(blue) in the OS renormalization scheme of the top/stop sector. The lower panels show the

relative difference ∆
α2
new

α2
i

between the result obtained at O(α2
new) and O(α2

i ) = O(αt(αt + αs))

(black) and O(αtαs) (blue, rescaled by a factor 0.1 for readability). The phases are varied
between −π and π. Using the EDMs calculated by NMSSMCALC and the experimental upper
bounds discussed in Sec. 6.3 we find that non-zero values of ϕλ for this parameter point are
excluded while ϕAt is allowed for all considered values. Furthermore, the HiggsSignals con-
straint is also fulfilled in the whole considered range of ϕAt

The variation of ϕλ at O(α2
new) changes whether the mass eigenstate with the dominant hu

component is h1 or h2. This explains the kinks observed at |ϕλ| ≈ 0.3π in Fig. 9.8(left). At
O(αt(αt + αs)) and O(αtαs) the mixing is such that h1 is always the hu-like Higgs boson.
The overall dependence on the phases in Fig. 9.8 is governed by the one-loop contributions
which are not shown here for the sake of readability. Successively introducing the two-loop
contributions does change the relative difference to the O(α2

new) result by at most 0.6% for
ϕλ and at most 0.3% for ϕAt as the phases are varied (note that the blue lines in the lower
panels are scaled by a factor of 0.1).

We conclude that the overall dependence of the two-loop corrections on the CP-violating
phases is rather small. The new corrections proportional to ϕλ are larger than those propor-
tional to ϕAt . However, in the region allowed by the current EDM and collider constraints
the corrections of ϕAt play the dominant role. This is also in agreement with the findings
of Ref. [187] which identified only a small window of allowed values for the NMSSM-specific
phases using a random scan (with tanβ < 5) rather than a fixed input parameter (the exper-
imental EDM constraints have been improved by one order of magnitude in the meantime,
such that this window is much smaller today).



CHAPTER 10

Final Conclusion and Outlook

This thesis studied the higher-order corrections to Higgs boson masses in the CP-violating
Next-to-Minimal Supersymmetric Standard Model (NMSSM). We calculated the two-loop
corrections that are proportional to the NMSSM-specific superpotential parameters λ and κ
at the order (αt + ακ + αλ)

2, to the charged and neutral Higgs boson masses in the limit
of vanishing gauge couplings in the Feynman diagrammatic approach. This is a major step
towards precision predictions for Higgs boson masses in the NMSSM. The renormalization
prescription involved mixed DR and on-shell (OS) conditions in the Higgs boson sector and
OS as well as DR conditions in the top/stop sector. The possibility to choose between OS and
DR conditions in the top/stop sector was used to estimate the size of missing higher-order
corrections.

In Part I of this thesis, we introduced the Standard Model (SM) and studied the leading
one-loop corrections to the Higgs boson, top-quark and Z-boson mass within the SM which
we used to discuss the hierarchy problem. We introduced the concepts of regularization and
renormalization as well as the notation used in this thesis to describe higher-order corrections
to mass parameters.

In Part II, we introduced SUSY as one possible solution to the hierarchy problem and moti-
vated the NMSSM as one possible candidate to solve the little hierarchy and the µ-problem
of the Minimal Supersymmetric Standard Model (MSSM). We introduced the notation used
to describe SUSY models and discussed the tree-level relations of the NMSSM which are
important for the two-loop O((αt + ακ + αλ)

2) corrections. Furthermore, we gave a short
of the state-of-the-art of higher-order corrections to Higgs boson masses in the MSSM and
NMSSM.

Part III presented the two-loop O((αt + ακ + αλ)
2) calculation which has been performed in

this thesis in detail. We prepared the diagrammatic two-loop calculation of the neutral and
charged Higgs boson selfenergies by computing all necessary one- and two-loop counterterms.
These include an OS two-loop counterterm for the SM vacuum expectation value (VEV) as
well as the charged Higgs boson mass and the tadpole parameters, two-loop DR wave function
renormalization constants and superpotential parameter counterterms, one-loop OS as well
as DR counterterms for the top/stop sector and one-loop DR counterterms for all remaining
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parameters. We found that additional finite parts are generated in intermediate results of the
renormalized selfenergies due to O(ε1)-terms in OS counterterms. We confirmed that these
finite parts cancel in the total renormalized selfenergies if the ε-expansion inD = 4−2ε dimen-
sions is consistently applied to all counterterms including the generation of additional finite
shifts in DR counterterms. These findings are in agreement with works that studied the same
behavior at two-loop O(αtαs) and O(α2

t ). Furthermore, we encountered unphysical infra-red
(IR) divergences in the derivation of some two-loop OS counterterms, due to the appearance
of massless Goldstone bosons, which cancel in the sum of all Feynman diagrams. To show this
cancellation, we introduced a mass regulator in order to regularize the IR divergences and
verified that the final results for the counterterms are independent of the mass regulator. The
analytic expressions for the Feynman diagrams calculated in this thesis have been obtained
using the Mathematica packages SARAH, FeynArts, FeynCalc and TARCER. If the Feynman
diagrams have been evaluated at vanishing external momentum, we relied on analytic expres-
sions from the literature for the two-loop integrals. In the case of IR-divergent loop integrals,
we complemented these results with a set of IR-regulated loop functions which have been
expanded around the mass regulator. In the calculation of the neutral Higgs selfenergies we
encountered also a different type of IR divergence which does not cancel in the final sum
but leads to a residual dependence on the mass regulator. The subset of Feynman diagrams
leading to this residual dependence was identified and optionally evaluated at finite external
momentum using a small momentum expansion. This is similar to the generalized effective
potential approximation which has recently been developed in the literature. Furthermore,
we optionally evaluated all Feynman diagrams of the O((αt + ακ + αλ)

2) corrections with ar-
bitrary external momentum while solving the loop-integrals numerically using the computer
package TSIL.
In the numerical analysis of the O((αt + ακ + αλ)

2) corrections, we found that the SM-like

Higgs boson mass is altered by 0− 3% for
√
λ2 + κ2 = 0− 1 using a random parameter scan.

The choice of λ and κ was motivated by ensuring perturbativity below the grand unification
scale. In this scan, the previously calculated O(α2

t ) corrections were found to be as large
as 12% but can also become as small as 2-4% for large values of λ and κ. Therefore, the
O((αt + ακ + αλ)

2) corrections calculated in this work are of particular importance in the
regime of large λ and κ since they can become large relative to the previously calculated
O(α2

t ) corrections. For even larger values of λ and κ, we found corrections which can amount
up to 6% by studying the dependence of individual parameter points on λ and κ. We further
studied the impact of the two-loop corrections on the phenomenologically important couplings
of the SM-like Higgs boson two the SM vector bosons which were significantly modified upon
inclusion of the higher-order corrections. We also investigated the dependence of the SM-like
neutral Higgs boson mass on the chosen renormalization scheme in the top/stop sector as
well as on the chosen renormalization scale. We found that the renormalization scheme de-
pendence is slightly reduced by 0-2% compared to the previous calculation to an overall size
of 1-8% in the considered parameter space. The renormalization scale dependence was found
to be between 1-3% and largest if the singlet-like state mixes with the SM-like Higgs boson.
Furthermore, we investigated the three different methods of treating the residual IR diver-
gences with a mass regulator, partial- or full-external momentum and their impact on the
prediction of the SM-like Higgs boson mass. We found that a mass regulator of M2

R = Rµ2
0

with R = 10−3, where µ0 is the renormalization scale, introduces a deviation compared to the
partial- and full-external momentum results which is one order of magnitude smaller than the
overall size of the O((αt + ακ + αλ)

2) two-loop corrections. The impact of the CP-violating
phases on the Higgs boson mass prediction was found to be only mildly modified by the
O((αt + ακ + αλ)

2) corrections. Overall the effect of was found to be smaller than 1% com-
pared to the two-loop O(αt(αt + αs)) corrections.
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In conclusion, we have calculated the two-loop O((αt + ακ + αλ)
2) corrections to the Higgs

boson masses in the CP-violating NMSSM while providing an efficient way of regularizing
intermediate and residual IR divergences which has been implemented in the computer code
NMSSMCALC 4.00. This is a major step towards precision predictions for the NMSSM Higgs
boson masses.

In the following we briefly give an outlook on future directions that can be taken to further
improve on the precision predictions for the NMSSM Higgs boson masses. We found that
dependence of the Higgs boson mass prediction on the renormalization scheme in the top/stop
sector is not significantly reduced compared to the previous calculations. This demands for
the inclusion of higher-order corrections which are specific to the top/stop sector such as the
three-loop O(α2

sαt) corrections. To increase the precision of the calculation at the two-loop
level, the momentum-dependent corrections in the O(αtαs) calculation as well as the correc-
tions proportional to the electroweak gauge couplings are required. Completing the two-loop
calculation is a difficult but technically feasible calculation that could be studied in the future.
Furthermore, the extraction of the MS top-quark mass from the measured OS value using
an effective SM could be extended by a matching to an effective singlet-extended SM in the
future in order to reduce the renormalization scale dependence in the case of a large mixing
between the SM-like and singlet-like Higgs boson. Another aspect of the O((αt + ακ + αλ)

2)
corrections which was not studied in this thesis is the renormalization scheme dependence of
the neutral Higgs boson masses on the choice of OS/DR renormalization conditions for the
charged Higgs boson mass. It would be interesting to perform a detailed study of the scheme
uncertainty when including the new two-loop corrections compared to the one-loop result.
Furthermore, the two-loop calculation presented in this work can be used as an independent
cross-check of the calculation implemented in the computer tool SARAH. However, SARAH uses
a pure DR scheme to obtain the loop-corrected Higgs boson masses. Therefore, a comparison
of the selfenergies (or even the loop-corrected masses) computed by both programs requires
to control all input parameters accordingly. Another direction, which was not the focus of
this thesis, is to calculate the Higgs boson masses in the NMSSM using an Effective Field
Theory (EFT) approach by integrating out all heavy fields. This has already been studied
in detail for the MSSM. However, the NMSSM has more degrees of freedom which entails a
large number of possible EFT scenarios such as e.g. a singlet-extended SM, a Two-Higgs-
Doublet Model (2HDM) or a singlet-extended 2HDM, to name but a few. Performing one-
and two-loop matchings in all possible scenarios is a tedious but feasible task.





APPENDIX A

Finite One-Loop Counterterm Contributions

In the following, we present the results for the finite parts of the one-loop OS counterterms
for mt and v which were already presented in Ref. [210]. The finite part of the one-loop
top-quark mass counterterm reads
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The functions A0, B0 (B1) are the UV-finite parts of the one-loop scalar one-point, and scalar
(tensor) two-point functions [33]. The finite part of the one-loop VEV counterterm reads
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and

F0(x, y) = x+ y − 2xy

x− y
log

x

y
, (A.4a)

F1(x, y) = x+ y − 2
x2log(x)− y2log(y)

x− y
, (A.4b)

F2(x, y) = 3x+ 3y − 2
x2log(x)− y2log(y)

x− y
. (A.4c)

Expressions for finite parts of the two-loop one-shell counterterms are quite lengthy and not
shown here.



APPENDIX B

Mass Regulated One- and Two-Loop Functions

In this appendix, we extend the analytically known one- and two-loop selfenergy integrals
at vanishing external momentum, p2 = 0, by a set of IR-regularized integrals. For p2 = 0,
all scalar two- and one-loop integrals can be written in terms of the two- and one-loop tad-
pole integral I(x, y, z) and A(x), respectively. The integral I and its analytical solutions for
all possible combinations of mass parameters have been studied in Refs. [58, 142]. The tad-
pole integrals I(x, y, z) and A(x) are IR-finite. However, the derivatives w.r.t. their squared
mass parameters are IR divergent, i.e. diverge if the derivatives are evaluated at zero mass
squared. If this is the case, we replace the vanishing scalar masses with a mass regulator
0 → M2

R and expand the loop integrals around the small regulator mass. We keep all terms

of order O(log
n≤2

M2
R) and O(M−n≤0

R ) in the expansion.

All necessary one- and two-loop scalar integrals have already been introduced in Chapter 2,
Eqs. (3.14a), (3.14b), (3.37) and (3.39). The notation used for describing the integrals is the
same as in the computer program TSIL, cf. Ref. [46,59]. In addition, we introduce the scalar
three-point integral C, cf. Eq. (3.39). This integral allows us to keep track ofthe IR diver-
gences caused by the function C(x, 0, 0) which are cancelled between counterterm-inserted
diagrams and genuine two-loop diagrams involving the V-integral, as discussed in Sec. 8.3.

At one-loop order, we need the following IR-safe integrals

C(x, 0, 0) = ∂B(0, x) (B.1)
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There are also two-loop diagrams which can be written as products of two one-loop functions.
If a one- and three-point function are multiplied, a strict expansion in the mass regulator yields

A(M2
R)C(M

2
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2
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2
R) =

1

2
+ logM2

R +
1

2ε
+O(M2

R) . (B.6)

However, the one-point function vanishes for a vanishing argument, A(0) = 0. Thus, this kind
of diagram would vanish if we were to calculate it at finite external momentum. Therefore,
we neglect the contributions from such diagrams in the expansion.

At two-loop order, we can write all scalar selfenergies in terms of I and its first and sec-
ond derivative using the following notation

∂I(x, y, z) ≡ ∂

∂x′
I(x′, y, z)|x′=x (B.7)

∂2I(x, y, z) ≡ ∂2
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I(x′, y′, z)|x′=x,y′=y . (B.8)

For the NMSSM, we need the following special cases of IR-regularized two-loop functions
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The function T is IR-finite and has been introduced in Ref. [46]. It is identical to the function
RSS(x, y) used in Refs. [26, 27]. For completeness, we repeat here the solutions required for
the NMSSM O((αt + ακ + αλ)

2) calculation:

T (0, x, y) =
(x+ y)I(0, x, y) + 2(A(x)− y)(A(y)− x) + x2 + y2
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(B.15)
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2
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2
. (B.16)

Using this set of IR-safe functions, we can write the remaining two-loop functions, which are
IR-divergent at vanishing external momentum, in an IR-regulated manner. We begin with
the UV-divergent U-integral,
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Thus, we are required to regulate
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There are also unphysical UV-IR mixing terms O(logM2
R/ε). We verified that these terms

cancel with contributions from counterterm-inserted diagrams that involve a vertex countert-
erm and an IR-divergent B(0, 0) integral.

The V-integral

V(x, y, z, u) = − ∂

∂y
U(x, y, z, u) (B.21)

also contributes with UV-IR mixing terms since its single pole can be written as
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ε
. (B.22)

It was checked to cancel against counterterm-inserted diagrams involving a Higgs boson mass
counterterm and a three-point function. Furthermore, we need the following special cases of
vanishing arguments,
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V(x, 0, z, u) =
I(x, z, u)− I(0, z, u)− x∂I(0, z, u)

x2
(B.26)
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The two-loop master integral M at vanishing external momentum is UV-finite and requires
to be IR-regularized in the following two special cases,

M(x, 0, z, 0, v) =
∂I(0, x, v)− ∂I(0, z, v)

x− z
(B.28)

M(x, 0, x, 0, v) = ∂2I(0, x, v) . (B.29)

For the calculation of the wave function renormalization constant, we further need the deriva-
tives of the one-loop integrals and the derivatives of the UV-divergent parts of the two-loop
integrals w.r.t. the external momentum. For the regularized expansion, we get

∂p2U(0, 0, x, y)|UV-div =
∂p2B(0, 0)

ε
(B.30)
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1

6M2
R
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The finite part of the derivative of the U-integral is not necessary since all all wave functions
are renormalized in the DR scheme.
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We only simplify all expressions for Feynman diagrams up to the level of the M, U, V and
S two-loop integrals, even in the zero-momentum approximation (i.e. we do not write them
in terms of the I-integral). During the numerical evaluation at zero external momentum, we
express them in terms of the I integrals given above. If we compute the Feynman diagrams
using partial external momentum dependence, we only replace those loop-functions with the
IR-regularized ones which cannot be regularized by momentum according to Tab. C.2 and
use the partial momentum results from the literature [27, 28] for the remaining integrals. If
we include the full external momentum dependence in all Feynman diagrams, we proceed as
in the partial-momentum case but rely on the numerical results obtained with the computer
program TSIL.

When using only a mass regulator, we find that the final result of the neutral Higgs boson self-
energies only depends on O(logM2

R) and O(log 2M2
R) divergences while all O(M−n≤−2

R )-terms
cancel. The logarithmic divergences correspond to O(ε−1

IR ) and O(ε−2
IR ) poles in dimensional

regularization while the quadratic divergences are of kinematic nature. Thus, only the phys-
ical divergences (which can be regularized by finite external momentum) remain while all
other divergences are cancelled.



APPENDIX C

IR-Divergent Topologies

We list all IR-divergent two-loop tadpole and selfenergy topologies in Tab. C.1 and Tab. C.2.
The first column contains a counting index. The second column shows a graph of the topol-
ogy with labels on each generic propagator. The third column lists all special cases which
lead to IR-divergent loop functions. The notation is such that e.g. m3,4,5 = 0 means that all
masses need to vanish (logical and) while m3 = m4/5 = 0 means that only one of the two
masses labeled with 5 and 4 vanishes (logical or). The fourth column collects the various sets
discussed in Chapter 8. The fifth column lists the IR-divergent loop functions that appear
in all possible field-insertions after applying TARCER’s reduction algorithm. The last column
indicates whether the IR divergence cancels in the final result or if it requires the inclusion
of external momentum. Note that the IR divergences can only be caused by massless scalars
which can be shown from first principles using dimensional arguments.

The tadpole diagrams shown in Tab. C.1 cannot be treated with external momentum and are
therefore manifestly IR-finite if the sum of all contributions is consistently taken into account

# topology
conditions for
IR divergence

set
IR-divergent
functions

momentum
regularizable?

1 1

2 4

53

m2 = m3 = 0 A B(0, 0) no

2 1 5

3

2

4 m2 = m3 = 0 A U(0, 0,m2
4,m

2
5),B(0, 0) no

3 1

3

2

m2 = m3 = 0 A B(0, 0) no

Table C.1.: All IR-divergent two-loop tadpole topologies. The IR divergences can only be
caused by vanishing scalar masses while all remaining lines can be scalars or fermions if the
couplings allow for it. Table taken from Ref. [210].
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as described in Sec. 8.2. However, the selfenergy diagrams require external momentum for a
few special cases. In addition, there are cases (such as for instance m3 = m4 = 0 in topology
4) which cannot be made IR-finite by including external momentum. In these cases, we found
a cancellation between other diagrams which are connected by the BPHZ theorem [209] (such
as set C which forms an IR-finite subset). Similarly to the tadpole diagrams, the tadpole-like
topologies 8, 10 and 13 (set A) form an IR-finite subset since there is no external momentum
running into the loops.
Applying these rules to the NMSSM, we find that only the diagrams in Fig. D.3 are regular-
ized by momentum. To cross-check this result, we validated that the residual dependence of
the mass regulator (when not using finite external momentum) reduces to the same subset of
diagrams.

# topology
conditions for
IR divergence

set
IR-divergent
functions

momentum
regularizable?

4
1

3

2

4 5

6
m3,4,5 = 0

m4 = m5 = 0
m3 = m4/5 = 0

E
B
C

C(0, 0, 0)

C(0,m2
4/3, 0)

C(m2
5, 0, 0)

yes
no
no

5 1

6

2

3 5

4 m5 = m6 = 0 D U(0, 0,m2
3,m

2
4) yes

6 1 2

4 3

67

5
m4 = m7 = 0

m3 = m6 = 0
D
D

M(m2
3,m

2
4,m

2
6,m

2
7,m

2
5),

B(0, 0)
yes

7 1 2

4

5

6
7

3

m3,4,7 = 0
m4 = m7 = 0
m3 = m4/7 = 0

E
B
C

V(0, 0,m2
5,m

2
6),C(0, 0, 0)

V(m2
3, 0,m

2
5,m

2
6),C(m

2
3, 0, 0)

U(0, 0,m2
5,m

2
6),C(0,m

2
7/4, 0)

yes
no
no

8

1 2

5

3 4

m3 = m4 = 0 A B(0, 0) no

9 1 2

3 5

64

m3 = m4 = 0
m5 = m6 = 0

D
D

B(0, 0) yes

10

1 2

3

65

4 m5 = m6 = 0 A U(0, 0,m2
4,m

2
3),B(0, 0) no

11 1 2

5

3 4 m3,4,5 = 0
m3 = m4 = 0

m3/4 = m5 = 0

E
B
C

C(0, 0, 0)

C(0,m2
4/3, 0)

C(m2
5, 0, 0)

yes
no
no

12 1 2

3

4

m3 = m4 = 0 D B(0, 0) yes

13

1 2

34 m3 = m4 = 0 A B(0, 0) no

Table C.2.: All two-loop selfenergy topologies. For topologies 5 and 12 mirror diagrams exist
which can be derived by renaming the indices accordingly. Table taken from Ref. [210].



APPENDIXD

Two-Loop Feynman Diagrams

In this appendix we show the Feynman diagrams calculated in this thesis. All Feynman
diagrams shown in this thesis have been created with the help of TikZ-Feynman [212].

D.1. Tadpoles

Figure D.1 shows all generic two-loop tadpole diagrams with internal scalars and fermions.
The summation over internal fields considers all possible NMSSM permutations which obey
the constraint

nhi + nh±j
+ nχk

+ nχ±
l
≥ 2 , (D.1)

where nΦ is the number of internal propagators of the field type Φ. Furthermore, we calcu-
late the two-loop diagrams of O(α2

t ), cf. Ref. [33] Fig. 3, while this time taking into account
terms of the order O(αtαλ) which were neglected in the applied MSSM-limit in Ref. [33].
At the one-loop order, all tadpole diagrams (cf. Fig. 3.2) with at least one Higgs boson,
electroweakino, stop or top-quark field in the loop are taken into account.

In Fig. D.1 we colorize all propagators in red which lead to IR divergences for S = G0, G± i.e.
if the propagators become massless. However, if we use the mass regularized loop functions
given in Appendix B, we confirm that the sum of all tadpole diagrams is IR-finite and does
not depend on the regulator mass.

hi S3

S1

S2

hi S3

S1

S2

S3 hi F2

S1

S2

F1 hi S

F1

F1

F2

hi

S1

S3

S2 hi

S1

S2

hi

F1

F2

hi S hi F

Figure D.1.: All generic two-loop tadpole diagrams considered in this work. S denotes scalars
and F denotes fermions. Diagrams with red propagators become IR divergent for massless
Goldstone bosons. Figure taken from Ref. [210].
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D.2. Selfenergies

Figure D.2 lists all generic selfenergy diagrams appearing in the calculation of the two-loop
O((αt + ακ + αλ)

2) Higgs boson and vector boson selfenergies. The external fields si can
be the neutral (hi) or charged (h−) Higgs bosons as well as massive SM vector bosons (Z
or W−). Similar to the two-loop tadpole diagrams, we re-calculate all selfenergy diagrams
from the O(α2

t ) calculation, cf. Ref. [33] Figs. 14 and 15, while also taking into account
contributions of O(αtαλ).

The summation over the internal degrees of freedom is carried out in the same way as for the
tadpole diagrams, i.e. using Eq. (D.1). For asymmetric diagrams such as (b), (d), (p) or (q),
an additional factor of two need to be taken into account in order to include the contributions
from the mirrored diagrams.

si sj

S2 S4

S3S1

S5

(a)

si sj

S2 F1

F2S1

F3

(b)

si sj

F2 F3

F4F1

S

(c)

si

S2

sj

S3 S1

S4

(d)

si

S1

sj

S2 S3

S4

(e)

si sj

S1

S4

S5

S2

S3

(f)

si sj

S1

F1

F2

S2

S3

(g)

si sj

F1

F4

S

F2

F3

(h)
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Figure D.2.: All generic two-loop selfenergy diagrams. The external fields can be neutral or
charged scalars as well as vector bosons (in the case of vector bosons, some diagrams such
as (j) and (m) are not present due to gauge invariance or the approximation of vanishing
external momentum). The summation of the internal degrees of freedom follows Eq. (D.1).
Figure taken from Ref. [210].
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D.2.1. Momentum Regulated Diagrams

We list the full set of Feynman diagrams which feature a residual dependence on the IR
regulator in Fig. D.3. The sum of all other diagrams not shown here is IR-finite if the IR-safe
loop functions from Appendix B are used. The list of diagrams shown in Fig. D.3 can also
be derived from the information given in Tab. C.2. However, for the sake of completeness we
give here the full list of diagrams including the insertions of internal fields (generation and
color indices have been suppressed).
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Figure D.3.: All two-loop selfenergy diagrams which feature a residual dependence on the IR
mass regulator. Figure taken from Ref. [210].
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[42] D. Stöckinger and J. Unger, “Three-loop MSSM Higgs-boson mass predictions and
regularization by dimensional reduction,”Nucl. Phys. B 935 (2018) 1–16,
arXiv:1804.05619 [hep-ph].

[43] L. M. Brown and R. P. Feynman, “Radiative corrections to Compton scattering,”
Phys. Rev. 85 (1952) 231–244.

[44] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation
Into mu+ mu- in the Weinberg Model,”Nucl. Phys. B 160 (1979) 151–207.

[45] G. ’t Hooft and M. J. G. Veltman, “Scalar One Loop Integrals,”Nucl. Phys. B 153
(1979) 365–401.

[46] S. P. Martin, “Evaluation of two loop selfenergy basis integrals using differential
equations,” Phys. Rev. D 68 (2003) 075002.

[47] H. Lehmann, K. Symanzik, and W. Zimmermann, “On the formulation of quantized
field theories,”Nuovo Cim. 1 (1955) 205–225.

[48] M. Srednicki, Quantum field theory. Cambridge University Press, 1, 2007.

[49] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in
a General Quantum Field Theory. 1. Wave Function Renormalization,”Nucl. Phys. B
222 (1983) 83–103.

[50] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in
a General Quantum Field Theory. 2. Yukawa Couplings,”Nucl. Phys. B 236 (1984)
221–232.

[51] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in
a General Quantum Field Theory. 3. Scalar Quartic Couplings,”Nucl. Phys. B 249
(1985) 70–92.

[52] F. Staub, “SARAH,” arXiv:0806.0538 [hep-ph].

[53] F. Staub, “SARAH 4 : A tool for (not only SUSY) model builders,”Comput. Phys.
Commun. 185 (2014) 1773–1790, arXiv:1309.7223 [hep-ph].

http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
https://link.aps.org/doi/10.1103/PhysRev.127.965
http://dx.doi.org/10.1088/1126-6708/2005/03/076
http://arxiv.org/abs/hep-ph/0503129
http://dx.doi.org/10.1016/j.nuclphysb.2018.08.005
http://arxiv.org/abs/1804.05619
http://dx.doi.org/10.1103/PhysRev.85.231
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1103/PhysRevD.68.075002
http://dx.doi.org/10.1007/BF02731765
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://dx.doi.org/10.1016/0550-3213(85)90040-9
http://dx.doi.org/10.1016/0550-3213(85)90040-9
http://arxiv.org/abs/0806.0538
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://arxiv.org/abs/1309.7223


94 References

[54] F. Staub, “Automatic Calculation of supersymmetric Renormalization Group
Equations and Self Energies,”Comput. Phys. Commun. 182 (2011) 808–833,
arXiv:1002.0840 [hep-ph].

[55] I. Schienbein, F. Staub, T. Steudtner, and K. Svirina, “Revisiting RGEs for general
gauge theories,”Nucl. Phys. B 939 (2019) 1–48, arXiv:1809.06797 [hep-ph].
[Erratum: Nucl.Phys.B 966, 115339 (2021)].

[56] O. V. Tarasov, “Generalized recurrence relations for two loop propagator integrals
with arbitrary masses,”Nucl. Phys. B 502 (1997) 455–482, arXiv:hep-ph/9703319.

[57] R. Mertig and R. Scharf, “TARCER: A Mathematica program for the reduction of two
loop propagator integrals,”Comput. Phys. Commun. 111 (1998) 265–273,
arXiv:hep-ph/9801383.

[58] C. Ford, I. Jack, and D. Jones, “The Standard model effective potential at two loops,”
Nucl. Phys. B 387 (1992) 373–390. [Erratum: Nucl.Phys.B 504, 551–552 (1997)].

[59] S. P. Martin and D. G. Robertson, “TSIL: A Program for the calculation of two-loop
self-energy integrals,”Comput. Phys. Commun. 174 (2006) 133–151.

[60] A. Djouadi and P. Gambino, “Electroweak gauge bosons selfenergies: Complete QCD
corrections,” Phys. Rev. D 49 (1994) 3499–3511, arXiv:hep-ph/9309298. [Erratum:
Phys.Rev.D 53, 4111 (1996)].

[61] A. Denner, “Techniques for calculation of electroweak radiative corrections at the one
loop level and results for W physics at LEP-200,” Fortsch. Phys. 41 (1993) 307–420,
arXiv:0709.1075 [hep-ph].

[62] M. J. G. Veltman, “The Infrared - Ultraviolet Connection,”Acta Phys. Polon. B 12
(1981) 437.

[63] I. Masina and M. Quiros, “On the Veltman Condition, the Hierarchy Problem and
High-Scale Supersymmetry,” Phys. Rev. D 88 (2013) 093003, arXiv:1308.1242
[hep-ph].

[64] B. Zumino, “Supersymmetry and the Vacuum,”Nucl. Phys. B 89 (1975) 535.

[65] M. B. Einhorn and D. R. T. Jones, “The Effective potential and quadratic
divergences,” Phys. Rev. D 46 (1992) 5206–5208.

[66] M. Drees, R. Godbole, and P. Roy, Theory and phenomenology of Sparticles: an
account of four-dimensional N=1 supersymmetry in high-energy physics. World
Scientific, Singapore, 2004. https://cds.cern.ch/record/873465.

[67] S. Dawson, “The MSSM and why it works,” in Theoretical Advanced Study Institute in
Elementary Particle Physics (TASI 97): Supersymmetry, Supergravity and
Supercolliders. 6, 1997. arXiv:hep-ph/9712464.

[68] J. E. Kim and H. P. Nilles, “The mu Problem and the Strong CP Problem,” Phys.
Lett. B 138 (1984) 150–154.

[69] P. Z. Skands et al., “SUSY Les Houches accord: Interfacing SUSY spectrum
calculators, decay packages, and event generators,” JHEP 07 (2004) 036.

[70] B. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, et al., “SUSY Les
Houches Accord 2,”Comput.Phys.Commun. 180 (2009) 8–25.

[71] P. Slavich et al., “Higgs-mass predictions in the MSSM and beyond,” Eur. Phys. J. C
81 no. 5, (2021) 450, arXiv:2012.15629 [hep-ph].

http://dx.doi.org/10.1016/j.cpc.2010.11.030
http://arxiv.org/abs/1002.0840
http://dx.doi.org/10.1016/j.nuclphysb.2018.12.001
http://arxiv.org/abs/1809.06797
http://dx.doi.org/10.1016/S0550-3213(97)00376-3
http://arxiv.org/abs/hep-ph/9703319
http://dx.doi.org/10.1016/S0010-4655(98)00042-3
http://arxiv.org/abs/hep-ph/9801383
http://dx.doi.org/10.1016/0550-3213(92)90165-8
http://dx.doi.org/10.1016/j.cpc.2005.08.005
http://dx.doi.org/10.1103/PhysRevD.49.3499
http://arxiv.org/abs/hep-ph/9309298
http://dx.doi.org/10.1002/prop.2190410402
http://arxiv.org/abs/0709.1075
http://dx.doi.org/10.1103/PhysRevD.88.093003
http://arxiv.org/abs/1308.1242
http://arxiv.org/abs/1308.1242
http://dx.doi.org/10.1016/0550-3213(75)90194-7
http://dx.doi.org/10.1103/PhysRevD.46.5206
http://dx.doi.org/10.1142/4001
http://dx.doi.org/10.1142/4001
https://cds.cern.ch/record/873465
http://arxiv.org/abs/hep-ph/9712464
http://dx.doi.org/10.1016/0370-2693(84)91890-2
http://dx.doi.org/10.1016/0370-2693(84)91890-2
http://dx.doi.org/10.1088/1126-6708/2004/07/036
http://dx.doi.org/10.1016/j.cpc.2008.08.004
http://dx.doi.org/10.1140/epjc/s10052-021-09198-2
http://dx.doi.org/10.1140/epjc/s10052-021-09198-2
http://arxiv.org/abs/2012.15629


References 95

[72] J. R. Ellis, G. Ridolfi, and F. Zwirner, “Radiative corrections to the masses of
supersymmetric Higgs bosons,” Phys. Lett. B 257 (1991) 83–91.

[73] Y. Okada, M. Yamaguchi, and T. Yanagida, “Upper bound of the lightest Higgs boson
mass in the minimal supersymmetric standard model,” Prog. Theor. Phys. 85 (1991)
1–6.

[74] Y. Okada, M. Yamaguchi, and T. Yanagida, “Renormalization group analysis on the
Higgs mass in the softly broken supersymmetric standard model,” Phys. Lett. B 262
(1991) 54–58.

[75] K. Sasaki, M. Carena, and C. Wagner, “Renormalization group analysis of the Higgs
sector in the minimal supersymmetric standard model,”Nucl. Phys. B 381 (1992)
66–86.

[76] P. H. Chankowski, S. Pokorski, and J. Rosiek, “Charged and neutral supersymmetric
Higgs boson masses: Complete one loop analysis,” Phys. Lett. B 274 (1992) 191–198.

[77] A. Brignole, “Radiative corrections to the supersymmetric neutral Higgs boson
masses,” Phys. Lett. B 281 (1992) 284–294.

[78] R. Hempfling and A. H. Hoang, “Two loop radiative corrections to the upper limit of
the lightest Higgs boson mass in the minimal supersymmetric model,” Phys. Lett. B
331 (1994) 99–106, arXiv:hep-ph/9401219.

[79] A. Dabelstein, “The One loop renormalization of the MSSM Higgs sector and its
application to the neutral scalar Higgs masses,” Z. Phys. C 67 (1995) 495–512,
arXiv:hep-ph/9409375.

[80] J. Casas, J. Espinosa, M. Quiros, and A. Riotto, “The Lightest Higgs boson mass in
the minimal supersymmetric standard model,”Nucl. Phys. B 436 (1995) 3–29,
arXiv:hep-ph/9407389. [Erratum: Nucl.Phys.B 439, 466–468 (1995)].

[81] M. Carena, M. Quiros, and C. Wagner, “Effective potential methods and the Higgs
mass spectrum in the MSSM,”Nucl. Phys. B 461 (1996) 407–436,
arXiv:hep-ph/9508343.

[82] M. Carena, J. Espinosa, M. Quiros, and C. Wagner, “Analytical expressions for
radiatively corrected Higgs masses and couplings in the MSSM,” Phys. Lett. B 355
(1995) 209–221, arXiv:hep-ph/9504316.

[83] H. E. Haber, R. Hempfling, and A. H. Hoang, “Approximating the radiatively
corrected Higgs mass in the minimal supersymmetric model,” Z. Phys. C 75 (1997)
539–554, arXiv:hep-ph/9609331.

[84] D. M. Pierce, J. A. Bagger, K. T. Matchev, and R.-j. Zhang, “Precision corrections in
the minimal supersymmetric standard model,”Nucl. Phys. B 491 (1997) 3–67,
arXiv:hep-ph/9606211.

[85] S. Heinemeyer, W. Hollik, and G. Weiglein, “QCD corrections to the masses of the
neutral CP - even Higgs bosons in the MSSM,” Phys. Rev. D 58 (1998) 091701,
arXiv:hep-ph/9803277.

[86] R.-J. Zhang, “Two loop effective potential calculation of the lightest CP even Higgs
boson mass in the MSSM,” Phys. Lett. B 447 (1999) 89–97, arXiv:hep-ph/9808299.

[87] S. Heinemeyer, W. Hollik, and G. Weiglein, “The Masses of the neutral CP - even
Higgs bosons in the MSSM: Accurate analysis at the two loop level,” Eur. Phys. J. C
9 (1999) 343–366, arXiv:hep-ph/9812472.

http://dx.doi.org/10.1016/0370-2693(91)90863-L
http://dx.doi.org/10.1143/ptp/85.1.1
http://dx.doi.org/10.1143/ptp/85.1.1
http://dx.doi.org/10.1016/0370-2693(91)90642-4
http://dx.doi.org/10.1016/0370-2693(91)90642-4
http://dx.doi.org/10.1016/0550-3213(92)90640-W
http://dx.doi.org/10.1016/0550-3213(92)90640-W
http://dx.doi.org/10.1016/0370-2693(92)90522-6
http://dx.doi.org/10.1016/0370-2693(92)91142-V
http://dx.doi.org/10.1016/0370-2693(94)90948-2
http://dx.doi.org/10.1016/0370-2693(94)90948-2
http://arxiv.org/abs/hep-ph/9401219
http://dx.doi.org/10.1007/BF01624592
http://arxiv.org/abs/hep-ph/9409375
http://dx.doi.org/10.1016/0550-3213(94)00508-C
http://arxiv.org/abs/hep-ph/9407389
http://dx.doi.org/10.1016/0550-3213(95)00665-6
http://arxiv.org/abs/hep-ph/9508343
http://dx.doi.org/10.1016/0370-2693(95)00694-G
http://dx.doi.org/10.1016/0370-2693(95)00694-G
http://arxiv.org/abs/hep-ph/9504316
http://dx.doi.org/10.1007/s002880050498
http://dx.doi.org/10.1007/s002880050498
http://arxiv.org/abs/hep-ph/9609331
http://dx.doi.org/10.1016/S0550-3213(96)00683-9
http://arxiv.org/abs/hep-ph/9606211
http://dx.doi.org/10.1103/PhysRevD.58.091701
http://arxiv.org/abs/hep-ph/9803277
http://dx.doi.org/10.1016/S0370-2693(98)01575-5
http://arxiv.org/abs/hep-ph/9808299
http://dx.doi.org/10.1007/s100529900006
http://dx.doi.org/10.1007/s100529900006
http://arxiv.org/abs/hep-ph/9812472


96 References

[88] S. Heinemeyer, W. Hollik, and G. Weiglein, “The Mass of the lightest MSSM Higgs
boson: A Compact analytical expression at the two loop level,” Phys. Lett. B 455
(1999) 179–191, arXiv:hep-ph/9903404.

[89] J. R. Espinosa and R.-J. Zhang, “MSSM lightest CP even Higgs boson mass to
O(alpha(s) alpha(t)): The Effective potential approach,” JHEP 03 (2000) 026,
arXiv:hep-ph/9912236.

[90] J. R. Espinosa and R.-J. Zhang, “Complete two loop dominant corrections to the mass
of the lightest CP even Higgs boson in the minimal supersymmetric standard model,”
Nucl. Phys. B 586 (2000) 3–38, arXiv:hep-ph/0003246.

[91] J. Espinosa and I. Navarro, “Radiative corrections to the Higgs boson mass for a
hierarchical stop spectrum,”Nucl. Phys. B 615 (2001) 82–116,
arXiv:hep-ph/0104047.

[92] A. Brignole, G. Degrassi, P. Slavich, and F. Zwirner, “On the O(alpha(t)**2) two loop
corrections to the neutral Higgs boson masses in the MSSM,”Nucl. Phys. B 631
(2002) 195–218, arXiv:hep-ph/0112177.

[93] G. Degrassi, P. Slavich, and F. Zwirner, “On the neutral Higgs boson masses in the
MSSM for arbitrary stop mixing,”Nucl. Phys. B 611 (2001) 403–422,
arXiv:hep-ph/0105096.

[94] B. Allanach, “SOFTSUSY: a program for calculating supersymmetric spectra,”
Comput. Phys. Commun. 143 (2002) 305–331, arXiv:hep-ph/0104145.

[95] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, “Towards high
precision predictions for the MSSM Higgs sector,” Eur. Phys. J. C 28 (2003) 133–143,
arXiv:hep-ph/0212020.

[96] A. Brignole, G. Degrassi, P. Slavich, and F. Zwirner, “On the two loop sbottom
corrections to the neutral Higgs boson masses in the MSSM,”Nucl. Phys. B 643
(2002) 79–92, arXiv:hep-ph/0206101.

[97] A. Dedes, G. Degrassi, and P. Slavich, “On the two loop Yukawa corrections to the
MSSM Higgs boson masses at large tan beta,”Nucl. Phys. B 672 (2003) 144–162,
arXiv:hep-ph/0305127.

[98] S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “High-precision predictions for
the MSSM Higgs sector at O(alpha(b) alpha(s)),” Eur. Phys. J. C 39 (2005) 465–481,
arXiv:hep-ph/0411114.

[99] B. Allanach, A. Djouadi, J. Kneur, W. Porod, and P. Slavich, “Precise determination
of the neutral Higgs boson masses in the MSSM,” JHEP 09 (2004) 044.

[100] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “The
Higgs Boson Masses and Mixings of the Complex MSSM in the
Feynman-Diagrammatic Approach,” JHEP 02 (2007) 047, arXiv:hep-ph/0611326.

[101] S. P. Martin, “Three-loop corrections to the lightest Higgs scalar boson mass in
supersymmetry,” Phys. Rev. D 75 (2007) 055005, arXiv:hep-ph/0701051.

[102] R. Harlander, P. Kant, L. Mihaila, and M. Steinhauser, “Higgs boson mass in
supersymmetry to three loops,” Phys. Rev. Lett. 100 (2008) 191602, arXiv:0803.0672
[hep-ph].

[103] G. Degrassi and P. Slavich, “On the radiative corrections to the neutral Higgs boson
masses in the NMSSM,”Nucl. Phys. B 825 (2010) 119–150, arXiv:0907.4682
[hep-ph].

http://dx.doi.org/10.1016/S0370-2693(99)00417-7
http://dx.doi.org/10.1016/S0370-2693(99)00417-7
http://arxiv.org/abs/hep-ph/9903404
http://dx.doi.org/10.1088/1126-6708/2000/03/026
http://arxiv.org/abs/hep-ph/9912236
http://dx.doi.org/10.1016/S0550-3213(00)00421-1
http://arxiv.org/abs/hep-ph/0003246
http://dx.doi.org/10.1016/S0550-3213(01)00429-1
http://arxiv.org/abs/hep-ph/0104047
http://dx.doi.org/10.1016/S0550-3213(02)00184-0
http://dx.doi.org/10.1016/S0550-3213(02)00184-0
http://arxiv.org/abs/hep-ph/0112177
http://dx.doi.org/10.1016/S0550-3213(01)00343-1
http://arxiv.org/abs/hep-ph/0105096
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://arxiv.org/abs/hep-ph/0104145
http://dx.doi.org/10.1140/epjc/s2003-01152-2
http://arxiv.org/abs/hep-ph/0212020
http://dx.doi.org/10.1016/S0550-3213(02)00748-4
http://dx.doi.org/10.1016/S0550-3213(02)00748-4
http://arxiv.org/abs/hep-ph/0206101
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.033
http://arxiv.org/abs/hep-ph/0305127
http://dx.doi.org/10.1140/epjc/s2005-02112-6
http://arxiv.org/abs/hep-ph/0411114
http://dx.doi.org/10.1088/1126-6708/2004/09/044
http://dx.doi.org/10.1088/1126-6708/2007/02/047
http://arxiv.org/abs/hep-ph/0611326
http://dx.doi.org/10.1103/PhysRevD.75.055005
http://arxiv.org/abs/hep-ph/0701051
http://dx.doi.org/10.1103/PhysRevLett.101.039901
http://arxiv.org/abs/0803.0672
http://arxiv.org/abs/0803.0672
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.018
http://arxiv.org/abs/0907.4682
http://arxiv.org/abs/0907.4682


References 97

[104] P. Kant, R. Harlander, L. Mihaila, and M. Steinhauser, “Light MSSM Higgs boson
mass to three-loop accuracy,” JHEP 08 (2010) 104, arXiv:1005.5709 [hep-ph].

[105] W. Hollik and S. Paßehr, “Higgs boson masses and mixings in the complex MSSM
with two-loop top-Yukawa-coupling corrections,” JHEP 10 (2014) 171,
arXiv:1409.1687 [hep-ph].

[106] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich, and W. Hollik, “Renormalization
scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson
masses in the MSSM,” Eur. Phys. J. C 75 no. 9, (2015) 424, arXiv:1505.03133
[hep-ph].

[107] R. V. Harlander, J. Klappert, and A. Voigt, “Higgs mass prediction in the MSSM at
three-loop level in a pure DR context,” Eur. Phys. J. C 77 no. 12, (2017) 814,
arXiv:1708.05720 [hep-ph].

[108] S. Paßehr and G. Weiglein, “Two-loop top and bottom Yukawa corrections to the
Higgs-boson masses in the complex MSSM,” Eur. Phys. J. C 78 no. 3, (2018) 222,
arXiv:1705.07909 [hep-ph].

[109] S. Borowka, S. Paßehr, and G. Weiglein, “Complete two-loop QCD contributions to
the lightest Higgs-boson mass in the MSSM with complex parameters,” Eur. Phys. J.
C 78 no. 7, (2018) 576, arXiv:1802.09886 [hep-ph].

[110] A. Fazio and E. Reyes R., “The Lightest Higgs Boson Mass of the MSSM at
Three-Loop Accuracy,”Nucl. Phys. B 942 (2019) 164–183, arXiv:1901.03651
[hep-ph].

[111] N. Bernal, A. Djouadi, and P. Slavich, “The MSSM with heavy scalars,” JHEP 07
(2007) 016.

[112] P. Draper, G. Lee, and C. E. M. Wagner, “Precise estimates of the Higgs mass in heavy
supersymmetry,” Phys. Rev. D 89 no. 5, (2014) 055023, arXiv:1312.5743 [hep-ph].

[113] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “High-Precision
Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric
Standard Model,” Phys. Rev. Lett. 112 no. 14, (2014) 141801, arXiv:1312.4937
[hep-ph].

[114] E. Bagnaschi, G. F. Giudice, P. Slavich, and A. Strumia, “Higgs Mass and Unnatural
Supersymmetry,” JHEP 09 (2014) 092.

[115] J. Pardo Vega and G. Villadoro, “SusyHD: Higgs mass Determination in
Supersymmetry,” JHEP 07 (2015) 159, arXiv:1504.05200 [hep-ph].

[116] G. Lee and C. E. Wagner, “Higgs bosons in heavy supersymmetry with an
intermediate mA,” Phys. Rev. D 92 no. 7, (2015) 075032, arXiv:1508.00576
[hep-ph].

[117] H. Bahl and W. Hollik, “Precise prediction for the light MSSM Higgs boson mass
combining effective field theory and fixed-order calculations,” Eur. Phys. J. C 76
no. 9, (2016) 499, arXiv:1608.01880 [hep-ph].

[118] P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger, and A. Voigt, “Precise Higgs mass
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[210] T. N. Dao, M. Gabelmann, M. Mühlleitner, and H. Rzehak, “Two-Loop
O((αt + αλ + ακ)

2) Corrections to the Higgs Boson Masses in the CP-Violating
NMSSM,” J. High Energ. Phys. (6, 2021) 54, arXiv:2106.06990 [hep-ph].

[211] M. Masip, R. Munoz-Tapia, and A. Pomarol, “Limits on the mass of the lightest Higgs
in supersymmetric models,” Phys. Rev. D 57 (1998) R5340, arXiv:hep-ph/9801437.

[212] J. Ellis, “TikZ-Feynman: Feynman diagrams with TikZ,”Comput. Phys. Commun.
210 (2017) 103–123, arXiv:1601.05437 [hep-ph].

http://dx.doi.org/10.1007/BF01018394
http://dx.doi.org/10.1007/BF01551921
http://dx.doi.org/10.1007/BF01551921
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://dx.doi.org/10.1016/0550-3213(94)90391-3
http://dx.doi.org/10.1007/BF01645676
http://dx.doi.org/10.1007/JHEP09(2021)193
http://arxiv.org/abs/2106.06990
http://dx.doi.org/10.1103/PhysRevD.57.R5340
http://arxiv.org/abs/hep-ph/9801437
http://dx.doi.org/10.1016/j.cpc.2016.08.019
http://dx.doi.org/10.1016/j.cpc.2016.08.019
http://arxiv.org/abs/1601.05437




Acknowledgements

I would like to express my deep gratitude to Prof. Dr. Margarete Mühlleitner, my research
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