
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-021-01175-y

ORIGINAL RESEARCH PAPER

Real‑time stereo semi‑global matching for video processing using
previous incremental information

Jonay Toledo1 · Martin Lauer2 · Christoph Stiller2

Received: 25 April 2021 / Accepted: 29 September 2021
© The Author(s) 2021

Abstract
This paper presents an incremental stereo algorithm designed to calculate a real-time disparity image. The algorithm is
designed for stereo video sequences and uses previous information to reduce computation time and improve disparity image
quality. It is based on the semi-global matching stereo algorithm but modified to reuse previous calculation information.
Storing and reusing this information not only reduces computation time but improves accuracy in a cost filtering scheme.
Some tests are presented to compare the computation time and results of the algorithm, which show that it can achieve better
results in terms of quality and time than standard algorithms for some scenarios.

Keywords Stereo vision · Semi-global matching · Video processing · 3D reconstruction · Real time

1 Introduction

Robots and autonomous vehicles use depth maps as one of
their main information sources for navigation, planning, etc
[1, 2]. One of the most affordable and powerful sensors is a
stereo camera. It is a low-cost device that can work indoors
and outdoors, achieving medium to high accuracy 3D recon-
structions. The main idea behind stereo is to compute the
disparity as the difference between two images captured
from different perspectives. It is used to detect obstacles
in real time, but due to the high computation costs, usually
is hardware dependent like in ref. [3] where a GPU is used
to accelerate pedestrian detection. In ref. [4] a SoC FPGA-
based embedded systems is used to achieve real-time stereo.

A stereo camera usually consists of two monocular and
synchronized cameras with parallel optical axes and aligned
image planes, which captures the same scene at the same

time from different points of view. The camera rig geom-
etry is known and the images are rectified to compensate
for possible misalignments. Stereo cameras can also capture
video, which must be processed to yield the disparity video
map. Obtaining depth and distance from a disparity map
is straightforward if the geometry of the stereo camera is
known. The algorithm presented in this paper is designed
to process video from moving stereo cameras in medium
velocity robots and autonomous cars and it is intended for
embedded devices with medium power CPUs and limited
hardware resources. The objective of the algorithm is to
reduce computation time and improve disparity quality by
recycling previous information.

There are many algorithms designed to estimate dispar-
ity. Lazaros et al. [5] and Scharstein and Szeliski [6] provide
a classification and a performance study of different algo-
rithms. Stereo matching has a high computational demand,
so good disparity needs considerable computation time or a
very powerful computation system. Stereo algorithms can be
divided into local matching, which only takes into account
an area surrounding each point, and global matching, where
the entire image is considered in a minimization function.
Global matching techniques are usually more computation-
ally expensive than local matching, but their results are gen-
erally better than local methods.

An intermediate point is the Semi-global matching
(SGM) algorithm presented by Hirschmüller [7], where
a semi-global search for the minimum cost of a matching

 * Jonay Toledo
 jttoledo@ull.es

 Martin Lauer
 martin.lauer@kit.edu

 Christoph Stiller
 stiller@kit.edu

1 University of La Laguna, Canary Island,
San Cristóbal de La Laguna, Spain

2 Karlsruhe Institute of Technology, KIT, Karlsruhe, Germany

http://orcid.org/0000-0003-2789-4799
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01175-y&domain=pdf

 Journal of Real-Time Image Processing

1 3

function is used to yield good minimization while reduc-
ing computational costs in comparison to global matching
techniques. The authors present Mutual Information as a
cost-matching pixel function, but some other functions can
be used [8]. SGM has been shown to be one of the most
applicable algorithms in stereo vision due to its accuracy
and relatively low computation time. SGM is able to work in
static tests, and in real scenarios like the KITTI dataset [9].
In these tests where different algorithms are compared, SGM
variants are at or near the top, with reasonable computation
times. Only machine learning-based algorithms outperforms
SGM, but this kind of algorithm can only be used with simi-
lar images to the training ones. Thus, many current applica-
tions of stereo cameras use the SGM algorithm. The bibliog-
raphy shows some modifications of the standard SGM, like
in ref. [10], where the semi-global optimization process of
the SGM is changed by a scanline optimization, providing
better results but increasing computation time or in ref. [11]
the stereo information is combined with cues from urban
scene to improve the results and solve disparities conflicts.

SGM is not the slowest algorithm, but is far from real
time in a standard implementation. As a result, many
researchers have implemented variations of the algorithm
in an effort to reduce its computation time. Cambuim et al.
[12] presents an FPGA-based stereo vision system based
on SGM. This system calculates disparity maps by stream-
ing, which are scalable to several resolutions and disparity
ranges. This paper also proposes a novel stream-ing archi-
tecture to detect noisy and occluded regions. In ref. [13],
SGM is implemented in a FPGA, yielding 30 fps in 640x480
images with a 128-pixel disparity range, but using a FPGA
with memory limitations implies the use of a modified algo-
rithm to reduce memory usage, as in ref. [14]. However, a
CPU implementation is more convenient for most applica-
tions; to this end, the algorithm has been modified to reduce
computation time, usually by taking advantage of parallel-
ism on a multi-core CPU or by using a Single Instruction
Multiple Data (SIMD) instruction set, as in ref. [15, 16] and,
where the authors present methods to improve the efficiency
of SGM on general purpose PCs by relying on fine-grained
parallelization and multiple cores. The improvements in
SGM presented in the literature rely on its implementation
in specific hardware in an effort to reduce computation time
based on hardware improvements like FPGA, SIMD instruc-
tions, parallel processing, etc. To the authors’ knowledge,
no algorithm-based modification exists designed for video
processing that reuses video image information to improve
computation time independently of the hardware structure,
as proposed in this paper.

2 Method description

Standard stereo methods are designed to work with a pair of
static images, not with a dynamic video. The disparity com-
putation of each pair of images starts from zero, with all pre-
vious information being discarded. The fact that the new pair
of images is very similar to the last one is not used. However,
this previous information can be reused to improve disparity
results and reduce computation time. This scheme is repre-
sented in Fig. 1 and it offers some advantages over classical
static image algorithms in terms of speed and quality.

– The difference between two consecutive images is very
small if the frame rate is high enough, so part of the com-
putational cost is already paid. The algorithm will reuse
previously computed data, saving time in a dynamic pro-
gramming scheme.

– A static disparity image exhibits noise due to image
inconsistency, different illumination, etc. This can be
filtered by reusing information from the previous frame
to yield a more robust disparity image. Temporal filters
made a posteriori over the final disparity image are less
useful, so the disparity image information is already
assigned to different discrete values and the uncertainty
between these values is lost.

The main drawback of this scheme is the amount of mem-
ory necessary to save the previous computation, but for an
algorithm designed to execute on a standard CPU, where
a few gigabytes of memory are usually available, it is an
acceptable cost. The amount of memory necessary to
execute the algorithm, for a 1-byte gray-scale image, is
(2 ∗ ImageWidth ∗ ImageHeight ∗ Disparity) ∗ 2bytes . For
a 640x480 stereo image, the algorithm needs 340 MB of
memory, including the extra space needed to save the cur-
rent images and temporal data. In a stereo video sequence,
the difference between two consecutive images depends on

Fig. 1 Disparity computation based on previous information for a
moving camera in an autonomous vehicle

Journal of Real-Time Image Processing

1 3

frame rate and ego motion, but it is usually quite small with
a medium frame rate (our tests show that only 20% of the
pixels change between two consecutive frames), so the dis-
parity map for 80% of the image is the same as in the previ-
ous frame. The main idea of this algorithm is to reuse part
of this data.

2.1 Matching cost

The matching cost is the metric used to measure the simi-
larity between two areas of the left and right images. The
matching cost can be calculated using standard techniques
presented in previous papers; for example, in ref. [8] the
authors present a study of the application of different match-
ing cost functions to SGM. In ref. [17] an adaptive stereo
similarity measure using a weighted combination of different
measures, in which the weights depend on the local image
structure is presented. Disparity map accuracy depends on
the matching cost, but the difference is not significant tak-
ing into account computation time. In this paper, the dis-
similarity presented by Birchfield and Tomasi [18] is used
as the matching cost. This method has demonstrated good
results with low computation time, but any other method can
be used. In the case of Birchfield and Tomasi, dissimilarity
measures the difference between pixels in the epipolar line
between the left and right images. It is quite tolerant to noise
and illumination changes and it is calculated according to
Eq. (1).

Where p(x, y) is the pixel position in the epipolar line in a
rectified image, or the equivalent epipolar line in the distor-
tion image function in a non-rectified image and it can be
pL or pR for the left or right image, and I(p) is the pixel p
intensity in the image. This dissimilarity d̄ is applied for all
possible disparities ND between the left and right images.

As Eq. (1) shows, the matching cost of pixel pL only
depends on its neighborhood, so for stereo video process-
ing, the dissimilarity is applied to every pixel in the image
for the whole disparity range in each frame. In Eq. (2) Ck ,
with size (W ∗ H ∗ D) (Width, Height, Disparity), represents
all the matching costs for each pixel for each disparity for
a frame k in a stereo image pair. The dissimilarity value for
each pixel pi and each disparity d depends only on pLi and
pR(i+d) pixels on left and right images.

(1)

I−(p) =
1

2
(I(p) + I(p − 1))

I+(p) =
1

2
(I(p) + I(p + 1))

Imin(p) = min(I−(p), I+(p), I(p))

Imax(p) = max(I−(p), I+(p), I(p))

d̄(pR, pL) = max(0, I(pL) − Imax(pR), Imin(pR) − I(pL))

Using the previous frame matrix Ck−1 , the current Ck can be
generated by processing only the changes between image
k − 1 and k. In order to find the changes, the frames are fil-
tered using a bilateral filter [19], which removes noise from
the image but preserves the edges. Thus, the difference
between k and k − 1 filtered frames is obtained using a tem-
poral filter. The result is a robust inter-frame pixel change
detector. Equation (3) shows the spatial filter in each image,
where Ω is the size of the window filter, which is set to 5 in
the tests, fr is the range kernel and gs is the spatial kernel,
both based on a Gaussian function which is adjusted by the
� parameter, set to 35 in the tests.

The reference frame is the left image. Th() (Eq. 4) is the
function for the changed left image, where the changed pix-
els are set to 1 for processing. The changes are obtained
directly from the pixel differences between the current and
previous left images after filtering (Eq. 4 first row). The
changes between two consecutive right images are repre-
sented in Th() by its disparity d(pR). The previous dispar-
ity is available, so it can be used to map right-image pixels
pR in the left image. Thus, the changed pixels in the right
image will be projected in the left and CK will be calculated
for those points (Eq. 4 second row). This does not change
anything in theory, so if one-pixel changes in the left image,
it should change in the right as well, but it does fix some
glitches in the final disparity image. The points with no dis-
parity assigned are recalculated also (Eq. 4 third row).

Equation 4 shows the threshold for obtaining a binary
function which indicates if that pixel has changed between
the current and previous frames. The operator T() is 1 if
its argument is true, and 0 otherwise. In the implementa-
tion, it is important to save the current state of each pixel
image, including the value for unchanged pixels. In this
way, small incremental changes in the image, smaller than
the threshold, will be processed in subsequent frames if

(2)Ck(pi, d) = d̄(pLi, pR(i+d)) ∀d ∈ ND ∀i

(3)

F(p) =
1

Wp

∑

xi∈Ω

I(xi)fr(||I(xi) − I(p)||)gs(||xi − p||)

Wp =
∑

xi∈Ω

fr(||I(xi) − I(p)||)gs(||xi − p||)

fr(d) = gs(d) = N(d) = e
−

(dx)
2+(dy)

2

2�2

(4)

Th(pL) ∶= T(|I(pL)k − I(pL)k−1| > THRE)

Th(pL + d(pR)) ∶= T(|I(pR)k − I(pR)k−1| > THRE)

Th(pL) ∶= ([d(pL)k−1 = INVALID)

T(x) ∶=

{
x ≠ 0 → T(x) = 1

x = 0 → T(x) = 0

 Journal of Real-Time Image Processing

1 3

they change enough from the original one. For example, if
one pixel changes its value by 1 unit over several frames,
it will be considered as a changed pixel when the differ-
ence between its current value and the value saved the last
time Ck was calculated exceeds the threshold. Then, its
cost Ck will be recalculated and the pixel’s current value
will be saved.

By applying this technique, the matrix Ck can be con-
structed recursively according to Eq. (5). If the neighbor-
hood of the pixel has not changed, the previous value of Ck−1
is used, and if the pixel has changed more than the threshold,
this position is filled according to Eq. (2).

These steps allow generating an equivalent Ck from Ck−1 , but
with less computation time than calculating it from zero. The
changed pixels between two consecutive frames are obtained
as an intermediate step of the algorithm.

2.2 Cost aggregation

The function presented in Eq. (6) is the key step in the SGM
algorithm. It is an energy function E() over disparity map D.
By minimizing this energy function, the disparity between
the left and right images is estimated. A global minimiza-
tion of this 2D energy function is NP-complete for many
discontinuity-preserving energies [20], so a heuristic method
is proposed according to Eq. (6). The first term is the sum
of all the pixel matching costs for the disparities of D. The
second term is a penalty P1 if the disparity change between
two consecutive pixels is 1, and a larger penalty P2 if this
disparity change is greater than 1 in the neighborhood Np of
pixel p(q). The operator T() is 1 if its argument is true, and
0 otherwise as defined in Eq. (4).

The key step in the semi-global matching algorithm is the
search space reduction of Eq. (6). The algorithm does not
search for matches in the whole search space; rather, it
reduces the search to 8 or 16 directions where a 1D search is
performed The results of all the searches are then combined
to obtain the minimum in every direction. That reduces
the computational cost from an NP-complete problem, to
O(WHD) (Width, Height, Disparity), yielding a similar
result, in most cases, to global matching. Usually, 8 direc-
tions are enough to provide good results with a reasonable
computation time, although the initial algorithm proposes
16.

The weight in Eq. (6) includes no penalty if the disparity
of the next pixel is equal to the previous one. There is a small
penalty P1 if the disparity changes by only 1 pixel, allowing

(5)Ck(p, d) ∶= Th(p)(Ck(p, d)) + (1 − Th(p))(Ck−1(p, d))

(6)

E(D) ∶=
∑

p

C(p,D) +
∑

q∈Nx

P1T(|D| = 1) +
∑

q∈Np

P2T(|D| > 1)

for smooth changes, perspective, and curved surfaces, and a
higher cost P2 if a disparity change greater than 1 is found.
The algorithm looks for small disparity increases but allows
for large disparity changes if its cost plus P2 is lower than
the integration of multiple small disparity costs. This happens
when a new object or the end of an object is found. These
discontinuities are usually associated with changes in images.

The cost from a direction r is specified in Eq. (7), where
r is one of the directions [(1,0), (− 1,0), (0,1), (0,− 1), (1,1),
(1,− 1), (− 1,1), (− 1,− 1)] and Lr is the cost evaluated recur-
sively from the previous cost and from the matching cost func-
tion in the pixel.

The search is applied to the whole cost function, Ck , but
some part of this search can be recycled such that only
changed points between two consecutive images are defined
in Eq. (4). In this case, if the cost matrix Ck changes, the
search starts from the changed pixel and continues until the
exploration line reaches the end of the image or the minimi-
zation reaches the same cost function value, as per Eq. (6),
for the same pixel in the previous frame. For instance, if a
uniform textureless area is moving in the image, the only
change in the cost function Ck would be the first and last
pixel of this area. The search will start with the first changed
pixel, and it will finish where the obstacle ends, so the dis-
parity image will be updated properly.

After this step, the minimum cost disparities for each
pixel are calculated, so the next step is to build the disparity
map based on the accumulated cost S(p, d) in each direction,
according to Eq. (8).

2.3 Disparity computation

The disparity image Dlr (disparity image from left to right) is
calculated by looking for the disparity with the minimum cost
for each pixel in Eq. (9). Drl (disparity from right to left) can
also be calculated in the same step by filling the appropriate
cell in matrix Drl . Drl(p) can be filled multiple times due to
noise or errors in the selected disparity, occlusions, etc., so the
minimum one is selected. This procedure can reduce disparity
errors such that Drl(p) should be similar to Dlr . If this does
not hold, it indicates a possible error has been detected and p
should be marked as an invalid disparity, Eq. (10). This is the
source of unassigned pixels in the disparity image, as shown
in the results section.

(7)

Lr(p, d) ∶= C(p, d) +min
i
(Lr(p − r, d),

Lr(p − r, d − 1) + P1, Lr(p − r, d + 1) + P1,

min
i
(Lr(p − r, i) + P2) −min

k
Lr(p − r, k)

(8)S(p, d) ∶=
∑

r

Lr(p, d)

Journal of Real-Time Image Processing

1 3

A sub-pixel estimation can be made by matching quadratic
curves between disparities in the same image row, yielding
better accuracy in the final disparity image.

As in the previous section, the disparity is only computed
where the value of S(p, d) is changed, so if the image is
similar to the previous one, the calculation time would be
significantly reduced.

2.4 Cost function filtering

One of the advantages of incremental disparity calculations
is that the cost matrix, used to obtain the previous disparity
image, is available. This allows the use of recursive filters to
integrate the previous image costs into the current cost matrix
to reduce noise. In a stereo disparity image obtained only from
the two current images, there are many small glitches, noise,
and empty zones, usually in low-texture image areas, due to the
fact that the cost matrix in that part of the image is not repre-
sentative. By integrating the cost function of previous frames,
these noise points can be reduced; previous information can
help to discriminate the current disparity for each pixel where
this disparity cost is not clear in the current frame. The result
is a more stable and accurate disparity map over time and the
number of pixels marked as invalid is reduced.

The application of a temporal filter between two con-
secutive final static disparity maps can generate poor results
because very different disparity values can be applied for the
same pixel in two consecutive frames. This effect happens
in areas where the disparity is not well defined (areas with
poor texture). The filter based on the algorithm cost function
Ck−1,Ck produces better and smoother results and the change
between disparities in each frame will be smaller without
increasing the computational cost. Eq. (11) includes the appli-
cation of the temporal filter, where Ckf represents the filtered
cost function, and k1, k2 the filtering coefficients. The weights
of the filter can be selected based on the image frame rate, so
if the frame rate is high, changes between images should be
smaller, and the weight of previous Ck−1 should be higher. This
Cost Function filtering is applied only to the changed pixels
to reduce computation time. The information from the cost
function of previous frames is included in Ck−1 , so a historic
recursive filtering is maintained.

(9)
Dlr(p) ∶= mindS(p, d)

Drl(p) ∶= min(Drl(p),minqS(p − d, q))

(10)Dlr ∶=

{
if |Drl(p) − Dlr(p)| < THRES Dlr

else error

(11)Ckf
∶= k1 ⋅ Ck + k2 ⋅ Ck−1;k1 + k2 ∶= 1

3 Results

The code is programmed in C++ using the GCC 7.5.0
compiler and OpenCV 3.1.0 as the base library [21]. It
was tested on an Intel Core i7-4510U in a computer with
8GB of RAM. There is no reference dataset of execu-
tion time or performance for stereo algorithms in video
sequences, so the computation time comparison is made
between a standard SGM (OpenCV optimized SGM using
SIMD CPU specific instructions) and the video incremen-
tal SGM presented in this paper. The computation time
for the Incremental SGM depends on the frame rate. If
the frame rate is low, incremental SGM tends to the same
time, or a little longer than standard SGM, but maintains
other advantages like robustness due to temporal cost fil-
tering. If the frame rate is high, meaning changes between
images are small, incremental video SGM reduces the time
significantly compared to a standard SGM method.

The tests compare the result of the standard SGM algo-
rithm to the incremental version presented in this paper.
The incremental version applies a positional filter and
reuses the previous information for the unchanged pixels.
It uses a threshold to detect the change between two con-
secutive images. In the case of threshold 0, only the pixel
with exactly the same value in the two images is reused,
so the result for an SGM algorithm is not the same as in an
inc algorithm with threshold 0. The incremental algorithm
will work better with two similar images, and the computa-
tion time will be significantly reduced. It also works well
with noisy images, where the cost filtering can improve the
results. The error in the disparity image will increase with
the threshold, so a convenient threshold should be selected
based on the image sequence.

3.1 Synthetic test images

The first test of the algorithm is to compare the results
between ground truth and disparity images. For this pur-
pose, the synthetic video sets presented by Christian Rich-
ardt from the University of Cambridge in ref. [22] are used.
The sets are composed of synthetic stereo images in five
different scenarios with about 100 images in each scenario.

For the experiment, the incremental stereo algorithm
presented in this paper was compared to a standard semi-
global matching, yielding the results presented in Fig. 2. In
Fig. 2a, the error is calculated as the sum of the difference
between ground truth and the algorithm result for every
pixel in the image divided by the number of pixels. In this
measurement, pixels without a valid disparity assigned are
removed. This experiment was conducted with different

 Journal of Real-Time Image Processing

1 3

thresholds in the incremental algorithm. As expected, the
best results were obtained when the threshold is small, and
the error grows with the threshold. In Fig. 2a, the error in
the incremental algorithm is similar to the standard SGM
algorithm for a threshold of 0. The difference between
the two algorithms when the threshold is set to 0 is due
to the positional filter and to the reutilization of previous
data. The error increases with the threshold; for example,
for a threshold of 5, the error increases by 0.1 units. The
results include min and max errors for all the frames in the
sequence and the average error of all the frames.

Figure 2b show the minimum, maximum and average
number of pixels where the algorithm cannot find a valid dis-
parity. The number of unassigned pixels is approximately the
same as in the standard SGM algorithm with a threshold of
0; however, in Fig. 2b, the spatial filter and change detection
applied to the stereo image resolve some unassigned pixels,
yielding better results than the standard SGM algorithm. If
the threshold increases, so does the number of unassigned
pixels, as expected. Figure 2c shows the execution time in
cycles of both algorithms. These times fall as the threshold
increases, as expected. The street sequence have very large
changes between images, so the computation time of the
incremental algorithm is worse than a standard SGM; how-
ever, when the threshold increases, this time difference is

reduced, and from an adequate threshold of about 5 pixels,
the incremental algorithm takes less time.

Table 1 shows the tank sequence for the same data set. It
includes the average processing time, error between ground
truth and algorithm output, and number of unassigned
pixels. The behavior of the system is similar to the street
sequence when the processing time in cycles is higher, but
as the threshold increases, this time is reduced, and with a
threshold of 5, it is less than the standard SGM. The error
and the number of unassigned pixels start from a similar
value, and increase with the threshold as expected.

As this first test shows, the algorithm can yield fast
results depending on the image characteristics, and should
be applied to stereo videos with small differences between
frames. The number of unassigned pixels and the disparity
error can also be reduced. These results can be improved
using temporal cost function filtering, as shown in the next
sections.

3.2 Real images with ground truth

To test the algorithm with real images, we used the sequence
of images presented in the Stereo Benchmark Overview of
the ETH Zürich [23]. It consists of a variety of indoor and
outdoor scenes using a high-precision laser scanner and

Fig. 2 Standard and incremental SGM comparison in street sequence. a Error for SGM and inc algorithm. b Number of pixels unassigned. c
Computation time

Table 1 Tank sequence results Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 88e6 94e6 2.39 2.39 1733.74 1733.52
2 88e6 90e6 2.39 2.51 1733.74 1755.98
4 88e6 89e6 2.39 2.82 1733.74 1883.52
6 88e6 83e6 2.39 3.20 1733.74 2124.16
8 88e6 81e6 2.39 3.67 1733.74 2493.52
10 88e6 76e6 2.39 4.08 1733.74 2785.47
12 88e6 73e6 2.39 4.36 1733.74 3174.29

Journal of Real-Time Image Processing

1 3

captured in both high-resolution DSLR imagery and syn-
chronized low-resolution stereo videos. The disparity ground
truth images are included in the low-res many-view dataset
as laser conversion to disparity images. The change between
two consecutive images is greater than that designed for the
current algorithm, but the actual images and the ground truth
are a good test for the incremental algorithm. It is the only
dataset that the authors were able to find with dense disparity
images as ground truth for stereo image sequences.

Figure 3 shows the results in the terrains and electro
sequences. In both, the pixel error is lower when the thresh-
old is small, and it increases with the threshold. In Fig. 3a,
the incremental algorithm yields better results than the
standard algorithm even with a threshold of 8 pixels. This
difference is less in Fig. 3b, but even so, with a small thresh-
old the incremental algorithm provides a better result than
the standard SGM algorithm. The number of unassigned pix-
els is less in the incremental algorithm for both sequences,
as shown in Fig. 3c and d. This shows that in real images,
where actual cameras include some noise, the filter to detect
changed pixels can reduce the number of unassigned pixels.
With a threshold of 0, the results are better for both cases,
so the positional filter, and reusing the previous informa-
tion, can improve the results. The computation time follows
the expected behavior, as shown in Fig. 3e and f, that as the
threshold grows, the time is reduced. The execution time

for small thresholds is higher than the standard algorithm,
but it decreases as the threshold grows. The algorithm can
yield better results for shorter computation times than the
standard algorithm.

Table 2 shows the playground sequence. In this sequence,
the behavior is similar to the previous one, where the pro-
cessing time is longer for the incremental algorithm with a
small threshold. With a threshold of 5 or higher, the time
in the incremental algorithm is reduced. The differences
between ground truth and the output and the number of
unassigned pixels are quite similar for both algorithms, and
remain quite stable when the threshold is changed.

This test shows that the incremental algorithm works bet-
ter for actual images than for synthetic ones. This happens
because real images have noise and artifacts that the spatial
filter for detecting changed pixels corrects. The results in
terms of error and unassigned pixels are also very good.

3.3 Cost filtering

In this section, a weight-level cost filter is included in the
incremental SGM algorithm. The costs obtained from the
previous frame are stored and used in the next one, so infor-
mation from the previous frame is included in the next one
by using Eq. (11). In this case, k1 = k2 = 0.5 are used as
weights. This helps the algorithm to achieve better disparity

Fig. 3 Standard and incremental SGM comparison in actual images with ground truth. Error, terrains sequence (a) and electro sequence (b).
Number of unassigned pixels, electro (c) and terrains (d). Computation time electro (e) and terrains (f)

 Journal of Real-Time Image Processing

1 3

results when it is difficult to discriminate the correct dispar-
ity for a specific pixel. With this technique, some glitches in
low-texture areas are removed, the final disparity image is
smoothed, and it exhibits better consistency.

Figure 4 shows the behavior of the algorithm, including
cost filtering, for the same sequence as Fig. 3. The execu-
tion time for the same sequence is approximately the same
as when no cost filtering is applied (Fig. 3e, f and 4e, f);
however, the disparity error between standard SGM and
incremental SGM changes significantly (Fig. 3a, b and 4a,
b). The temporal cost filtering function selects better dispari-
ties by using the information from the previous frame when
this is not clear in the same frame. In the terrains sequence,
the average disparity error decreases by 0.75 unit, or

approximately a 25% reduction. In the electro sequence, the
error reduction depends on the threshold, but with a thresh-
old of 4 pixels, it is also 0.75 units, about a 30% reduction.
The same thing happens with the number of unassigned pix-
els (Figs. 3c, d and 4c, d). The temporal cost function filter
used in the incremental algorithm can assign a disparity of
about 900 pixels more in the terrains and electro sequences
depending on the threshold.

Table 3 shows the cost filtering playground sequence. The
processing time is longer; however, the results in unassigned
pixels are considerably lower. The difference between two
consecutive frames reduces the algorithm’s performance,
but the reduction in unassigned pixels compensates for this
extra time.

Table 2 Playground sequence
results

Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 83e6 87e6 2.86 2.72 10964.72 10865.20
2 83e6 85e6 2.86 2.75 10964.72 10740.62
4 83e6 83e6 2.86 2.80 10964.72 10714.18
6 83e6 81e6 2.86 2.86 10964.72 10701.87
8 83e6 80e6 2.86 2.97 10964.72 10776.70
10 83e6 79e6 2.86 3.06 10964.72 10886.11
12 83e6 78e6 2.86 3.13 10964.72 10973.11

Fig. 4 Standard and incremental SGM comparison in actual images with ground truth. Error terrains sequence (a) and electro sequence (b).
Number of unassigned pixels, terrains (c) and electro (d). Computation time, terrains (e) and electro (f)

Journal of Real-Time Image Processing

1 3

The use of low-level cost function filtering between
frames generates a more accurate disparity map and fewer
unassigned pixels, with a negligible increase in computation
time. In the examples shown in Fig. 4 with a threshold of 5
pixels, a more accurate algorithm in terms of disparity and
number of unassigned filters is obtained in less time. The
changes between images in these sequences are quite high,
so with more suitable images, the algorithm should obtain
an even lower computation time with better disparity image
accuracy.

3.4 Real high speed images

The third test was carried out using the sequence of images
presented by the Heidelberg Collaboratory for Image Pro-
cessing HCI in ref. [24], where two Photonfocus MV1-
D1312-160-CL, which deliver 100 frames per second and
global shutter technology, are used to acquire the images.
The sequence does not include ground truth, so error com-
parisons cannot be made. The images are from traffic scenes
in challenging situations, such as very dark environments,
snow, rain, reflections, etc.

Figure 5 shows the results of the comparison between
incremental SGM and standard SGM, indicating that the
average frame execution time decreases from 2.6e8 cycles
to 1.8e8 cycles, a 30% time reduction (Fig. 5b), for a thresh-
old of 5 pixels in the Avenue sequence. The number of
non-matching pixels is reduced for small thresholds and
it maintains approximately the same value (Fig. 5a) when
the threshold increases. This experiment shows that time is
reduced significantly and the disparity map quality is simi-
lar, better than many stereo block matching algorithms.

Figure 6 shows the number of unassigned pixels for the
flying snow sequence of the HCI dataset. This sequence is
quite challenging because it depicts a road while it is snow-
ing, so the disparity image contains considerable noise and
many unclassified pixels. The number of unassigned pixels
is considerably smaller when using incremental SGM with
cost filtering, Fig. 6b, than in the standard SGM Fig. 6a.
The results show that weighting filters yield better results
than the standard algorithm, with shorter computation times

Table 4 shows the car truck sequence. The filter (filt)
and not filter (nf) versions of the incremental algorithm are
shown. The processing time is longer for the filter algorithm,
but the number of unassigned pixels is reduced considerably.

Table 3 Cost filtering
playground sequence results

Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 83e6 91e6 2.86 2.80 10964.72 9113.44
2 83e6 89e6 2.86 2.82 10964.72 9046.97
4 83e6 87e6 2.86 2.89 10964.72 9057.40
6 83e6 85e6 2.86 2.99 10964.72 9057.35
8 83e6 84e6 2.86 3.05 10964.72 9209.68
10 83e6 82e6 2.86 3.11 10964.72 9238.07
12 83e6 81e6 2.86 3.22 10964.72 9404.78

Fig. 5 Unassigned pixels (a) and execution time (b) avenue sequence

 Journal of Real-Time Image Processing

1 3

The execution time is reduced with the threshold, so with a
threshold of 4, the execution time is shorter than the original
SGM, and the number of unassigned pixels is reduced.

Figure 7 shows the same disparity image for a standard
SGM algorithm Fig. 7a and the filtered version of the incre-
mental SGM Fig. 7b in the Flying Snow Sequence. The
filtered incremental SGM yields smooth surfaces, and many
pixels in the road are correctly classified compared to stand-
ard SGM. The quality of the disparity maps using the filter
is better and requires considerably less computation time
than standard SGM.

3.5 Dynamic threshold adjustment

In an actual implementation, a procedure is needed to
dynamically adjust the threshold to the image characteris-
tics. In this implementation, the frame processing time is
used to tune the threshold. The expected behavior of time
vs threshold is shown in Fig. 6b, where the time is reduced
exponentially. In this figure, it is clear that the best threshold
is about 6; a higher threshold does not improve the time sig-
nificantly, but it can reduce disparity image quality.

The adjusting algorithm is shown in algorithm 1. It begins
with a threshold T set to 1, and it tests different thresholds, con-
tinuously looking for the best time-quality ratio. Even frames
are computed with a threshold of T + 1 and odd frames with
T − 1 . After processing the frame, the median processing time
for the active thresholds is calculated in a time window of 30
seconds. If the processed frames with a higher threshold give
a shorter computation time, the T is increased by 1 unit. The
measurement is made based on the median of at least 3 ele-
ments, to avoid singular point errors. To keep the threshold
from continuously increasing, the time must be decreased by a
factor indicated by the user in the PImprovement parameter. The
user can thus select the ratio between speed and quality. In this
test, a 5% time reduction is needed to increase T. If the execu-
tion time of T − 1 is less than 5% greater than T + 1 , the thresh-
old is reduced. Figure 8 shows the result, and how the threshold
and execution time are tuned. According to Figure 5b, the best
parameter for this example is 6, which is obtained via dynamic
tuning. The processing time is also reduced as expected. If
the image characteristics change, the threshold will adapt by
dynamically adjusting to a new optimal point.

Fig. 6 Unassigned pixels without filter (a) and with filter (b) snow
sequence

Table 4 Car truck sequence
results

Time Unasign
SGM Inc Inc SGM Inc Inc

Th nf filt nf filt

0 25e6 26e6 28e6 15548.4 15478.7 14058.8
2 25e6 25e6 26e6 15548.4 15636.1 14065.9
4 25e6 23e6 24e6 15548.4 16296.9 14575.5
6 25e6 22e6 23e6 15548.4 17157.8 15315.7
8 25e6 22e6 22e6 15548.4 17875.9 15863.5
10 25e6 21e6 21e6 15548.4 18989.7 16553.3
12 25e6 21e6 21e6 15548.4 19619.0 17400.7

Journal of Real-Time Image Processing

1 3

Algorithm 1 Dynamic threshold
Require: T, PImprovement

PI ← (1− PImprovement)
if isOdd(frame) then

time ← Compute(frame, T + 1)
t[T + 1, k] ← time

else
time ← Compute(frame, T − 1)
t[T − 1, k] ← time

end if
if mediank(t(T +1, k)) < mediank(t(T − 1, k) ∗PI then

T ← T + 1
else

if mediank(t(T+1, k)) > mediank(t(T−1, k)∗PI then
T ← T − 1

end if
end if

4 Conclusion

This paper presents a stereo SGM that is modified to include
historical information in the calculation of the disparity image.
This allows for improved computation speed and improved

accuracy due to temporal filtering by using the cost from previ-
ous disparity images. Previous cost filtering is applied to obtain
smoother and more accurate disparity images. This algorithm
is intended for CPU-based stereo with low computational
resources and enough memory to save the previous computa-
tion state, such as embedded devices that process information
at medium frame rates, or for high-power computation CPUs
for high frame rates in autonomous vehicles.

Some tests are presented to validate the algorithm, includ-
ing execution time, disparity quality and unmatched pixels.
These tests show that when the change between two consec-
utive frames is small, the computation time for the dispar-
ity image using the incremental SGM can be considerably
reduced. Cost filtering improves the disparity image quality
when the image has low texture or noise without increasing
computation time. The results show the advantages of the
algorithm and its applicability to many scenarios. The algo-
rithm can be used to improve execution time and disparity
image quality in scenarios where the change between frames
is small, yielding a real-time version of the SGM algorithm.

Acknowledgements The authors gratefully acknowledge the contri-
bution from the Spanish Ministry of Science under “Jose Castillejo”
mobility grants and University of La Laguna under “Movilidad de
excelencia para el PDI de la ULL”.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Morales, N., Toledo, J., Acosta, L., Sánchez-Medina, J.: A com-
bined voxel and particle filter-based approach for fast obstacle
detection and tracking in automotive applications. IEEE Trans.
Intell. Trans. Sys. 18(7), 1824–1834 (2017). https:// doi. org/ 10.
1109/ TITS. 2016. 26167 18

 2. Morales, N., Morell, A., Toledo, J., Acosta, L.: Fast object motion
estimation based on dynamic stixels. Sensors 16(8) (2016). https://
doi. org/ 10. 3390/ s1608 1182. https:// www. mdpi. com/ 1424- 8220/
16/8/ 1182

 3. Li, J., Wu, J., You, Y., Jeon, G.: Parallel binocular stereo-vision-
based gpu accelerated pedestrian detection and distance computa-
tion. J. Real Time Image Process. 17(3), 447–457 (2020)

Fig. 7 a Disparity image for standard SGM and b incremental SGM
with actual images

Fig. 8 Dynamic threshold adjustment for Avenue sequence

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TITS.2016.2616718
https://doi.org/10.1109/TITS.2016.2616718
https://doi.org/10.3390/s16081182
https://doi.org/10.3390/s16081182
https://www.mdpi.com/1424-8220/16/8/1182
https://www.mdpi.com/1424-8220/16/8/1182

 Journal of Real-Time Image Processing

1 3

 4. Perri, S., Frustaci, F., Spagnolo, F., Corsonello, P.: Stereo vision
architecture for heterogeneous systems-on-chip. J. Real Time
Image Process. 17(2), 393–415 (2020)

 5. Lazaros, N., Sirakoulis, G.C., Gasteratos, A.: Review of stereo
vision algorithms: from software to hardware (2008)

 6. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. Int. J. Comput. Vis.
47(1–3), 7–42 (2002)

 7. Hirschmuller, H.: Accurate and efficient stereo processing by
semi-global matching and mutual information. Computer vision
and pattern recognition, 2005. CVPR 2005. IEEE computer soci-
ety conference on 2, 807–814 (2005)

 8. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for
stereo matching. Comput. Vis. Pattern Recogn. (2007)

 9. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3d recon-
struction in real-time. In: 2011 IEEE intelligent vehicles sympo-
sium (IV), IEEE, Baden-Baden, Germany, pp. 963–968 (2011)

 10. Schonberger, J.L., Sinha, S.N., Pollefeys, M.: Learning to fuse
proposals from multiple scanline optimizations in semi-global
matching. In: The European conference on computer vision
(ECCV) (2018)

 11. Hadfield, S., Lebeda, K., Bowden, R.: Stereo reconstruction
using top-down cues. Computer vision and image understanding,
Large-Scale 3D Modeling of Urban Indoor or Outdoor Scenes
from Images and Range Scans. 157, 206 – 222 (2017)

 12. Cambuim, L.F.S., Oliveira, L.A., Barros, E.N.S., Ferreira, A.P.A.:
An fpga-based real-time occlusion robust stereo vision system
using semi-global matching. J. Real Time Image Process. 17(5),
1447–1468 (2020)

 13. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-
time stereo vision system using semi-global matching disparity
estimation: Architecture and FPGA-implementation. Proceed-
ings—2010 International conference on embedded computer sys-
tems: architectures, modeling and simulation, IC-SAMOS 2010,
pp. 93–101 (2010)

 14. Hirschmüller, H., Buder, M., Ernst, I.: Memory efficient semi-
global matching. ISPRS Ann. Photogramm. Remote Sens. Spat.
Inf. Sci. 3, 371–376 (2012)

 15. Facciolo, G., Franchis, C.D., Meinhardt, E.: MGM: a significantly
more global matching for stereovision. BMVC, Swansea (2015)

 16. Spangenberg, R., Langner, T., Adfeldt, S., Rojas, R.: Large scale
semi-global matching on the CPU. In: Intelligent vehicles sym-
posium proceedings, IEEE, pp. 195–201 (2014)

 17. Saygili, G., van der Maaten, L., Hendriks, E.A.: Adaptive stereo
similarity fusion using confidence measures. Comput. Vis. Image
Underst. 135, 95–108 (2015)

 18. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is
insensitive to image sampling. IEEE Trans. Pattern Anal. Mach.
Intell. 20(4), 401–406 (1998)

 19. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color
images. In: Sixth international conference on computer vision
(IEEE Cat. No.98CH36271), pp. 839–846 (1998)

 20. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy mini-
mization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.
23(11), 1222–1239 (2001)

 21. Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools
(2000)

 22. Richardt, C., Orr, D., Davies, I., Criminisi, A., Dodgson, N.A.:
Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-
Bilateral Grid BT (https:// richa rdt. name/ publi catio ns/ dcbgr id/
datas ets/). Springer, Berlin, pp. 510–523 (2010)

 23. Schöps, T., Schönberger, J.L., Galliani, S., Sattler, T., Schindler,
K., Pollefeys, M., Geiger, A.: A multi-view stereo benchmark with
high-resolution images and multi-camera videos, (https:// www.
eth3d. net/ overv iew). In: Conference on computer vision and pat-
tern recognition (CVPR) (2017)

 24. Meister, S., Jähne, B., Kondermann, D.: Outdoor stereo camera
system for the generation of real-world benchmark data sets,
(https:// hci. iwr. uni- heide lberg. de/ bench marks/ Chall enging_
Data_ for_ Stereo_ and_ Optic al_ Flow). Opt. Eng. 51, 21101–21107
(2012)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jonay Toledo is an Associate Professor at University of La Laguna
(ULL), He received his Masterin Computer Science in 2001, Master
in Electronics in 2002 and Ph. D. in Automatic Control in2008. His
current research interests include mobile robots, autonomous vehicles,
automatic controland embedded systems.

Martin Lauer received the Diploma degree in computer science from
Karlsruhe University and thePh.D. degree in computer science from
Osnabrück University in 2004. He was a Post-DoctoralResearcher with
Osnabrück University in the areas of machine learning and autonomous
robots.Since 2008, he has been leading a Research Group with the
Karlsruhe Institute of Technology. Hismain research interests are in the
areas of machine vision, autonomous vehicles, and machinelearning.

Christoph Stiller received Diploma degree in electrical engineering,
in Aachen,Germany, and Trondheim, Norway, and the Ph.D. from
RWTH Aachen University in 1994. In 1995,he joined the Corpo-
rate Research and Advanced Development, Robert Bosch GmbH,
Hildesheim,Germany. In 2001, he became the Chaired Professor with
Karlsruhe Institute of Technology,Germany. He served as the President
of the IEEE Intelligent Transportation Systems Society from2012 to
2013 and the Vice-President since 2006. He served as the Editor-in-
Chief of the IEEEIntelligent Transportation Systems Magazine from
2009 to 2011, and as an Associate Editor of theIEEE Transactions on
Image Processing from 1999 to 2003.

https://richardt.name/publications/dcbgrid/datasets/
https://richardt.name/publications/dcbgrid/datasets/
https://www.eth3d.net/overview
https://www.eth3d.net/overview
https://hci.iwr.uni-heidelberg.de/benchmarks/Challenging_Data_for_Stereo_and_Optical_Flow
https://hci.iwr.uni-heidelberg.de/benchmarks/Challenging_Data_for_Stereo_and_Optical_Flow

	Real-time stereo semi-global matching for video processing using previous incremental information
	Abstract
	1 Introduction
	2 Method description
	2.1 Matching cost
	2.2 Cost aggregation
	2.3 Disparity computation
	2.4 Cost function filtering

	3 Results
	3.1 Synthetic test images
	3.2 Real images with ground truth
	3.3 Cost filtering
	3.4 Real high speed images
	3.5 Dynamic threshold adjustment

	4 Conclusion
	Acknowledgements
	References

