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Abstract
This paper presents an incremental stereo algorithm designed to calculate a real-time disparity image. The algorithm is 
designed for stereo video sequences and uses previous information to reduce computation time and improve disparity image 
quality. It is based on the semi-global matching stereo algorithm but modified to reuse previous calculation information. 
Storing and reusing this information not only reduces computation time but improves accuracy in a cost filtering scheme. 
Some tests are presented to compare the computation time and results of the algorithm, which show that it can achieve better 
results in terms of quality and time than standard algorithms for some scenarios.
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1 Introduction

Robots and autonomous vehicles use depth maps as one of 
their main information sources for navigation, planning, etc 
[1, 2]. One of the most affordable and powerful sensors is a 
stereo camera. It is a low-cost device that can work indoors 
and outdoors, achieving medium to high accuracy 3D recon-
structions. The main idea behind stereo is to compute the 
disparity as the difference between two images captured 
from different perspectives. It is used to detect obstacles 
in real time, but due to the high computation costs, usually 
is hardware dependent like in ref. [3] where a GPU is used 
to accelerate pedestrian detection. In ref. [4] a SoC FPGA-
based embedded systems is used to achieve real-time stereo.

A stereo camera usually consists of two monocular and 
synchronized cameras with parallel optical axes and aligned 
image planes, which captures the same scene at the same 

time from different points of view. The camera rig geom-
etry is known and the images are rectified to compensate 
for possible misalignments. Stereo cameras can also capture 
video, which must be processed to yield the disparity video 
map. Obtaining depth and distance from a disparity map 
is straightforward if the geometry of the stereo camera is 
known. The algorithm presented in this paper is designed 
to process video from moving stereo cameras in medium 
velocity robots and autonomous cars and it is intended for 
embedded devices with medium power CPUs and limited 
hardware resources. The objective of the algorithm is to 
reduce computation time and improve disparity quality by 
recycling previous information.

There are many algorithms designed to estimate dispar-
ity. Lazaros et al. [5] and Scharstein and Szeliski [6] provide 
a classification and a performance study of different algo-
rithms. Stereo matching has a high computational demand, 
so good disparity needs considerable computation time or a 
very powerful computation system. Stereo algorithms can be 
divided into local matching, which only takes into account 
an area surrounding each point, and global matching, where 
the entire image is considered in a minimization function. 
Global matching techniques are usually more computation-
ally expensive than local matching, but their results are gen-
erally better than local methods.

An intermediate point is the Semi-global matching 
(SGM) algorithm presented by Hirschmüller [7], where 
a semi-global search for the minimum cost of a matching 
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function is used to yield good minimization while reduc-
ing computational costs in comparison to global matching 
techniques. The authors present Mutual Information as a 
cost-matching pixel function, but some other functions can 
be used [8]. SGM has been shown to be one of the most 
applicable algorithms in stereo vision due to its accuracy 
and relatively low computation time. SGM is able to work in 
static tests, and in real scenarios like the KITTI dataset [9]. 
In these tests where different algorithms are compared, SGM 
variants are at or near the top, with reasonable computation 
times. Only machine learning-based algorithms outperforms 
SGM, but this kind of algorithm can only be used with simi-
lar images to the training ones. Thus, many current applica-
tions of stereo cameras use the SGM algorithm. The bibliog-
raphy shows some modifications of the standard SGM, like 
in ref. [10], where the semi-global optimization process of 
the SGM is changed by a scanline optimization, providing 
better results but increasing computation time or in ref. [11] 
the stereo information is combined with cues from urban 
scene to improve the results and solve disparities conflicts.

SGM is not the slowest algorithm, but is far from real 
time in a standard implementation. As a result, many 
researchers have implemented variations of the algorithm 
in an effort to reduce its computation time. Cambuim et al. 
[12] presents an FPGA-based stereo vision system based 
on SGM. This system calculates disparity maps by stream-
ing, which are scalable to several resolutions and disparity 
ranges. This paper also proposes a novel stream-ing archi-
tecture to detect noisy and occluded regions. In ref. [13], 
SGM is implemented in a FPGA, yielding 30 fps in 640x480 
images with a 128-pixel disparity range, but using a FPGA 
with memory limitations implies the use of a modified algo-
rithm to reduce memory usage, as in ref. [14]. However, a 
CPU implementation is more convenient for most applica-
tions; to this end, the algorithm has been modified to reduce 
computation time, usually by taking advantage of parallel-
ism on a multi-core CPU or by using a Single Instruction 
Multiple Data (SIMD) instruction set, as in ref. [15, 16] and, 
where the authors present methods to improve the efficiency 
of SGM on general purpose PCs by relying on fine-grained 
parallelization and multiple cores. The improvements in 
SGM presented in the literature rely on its implementation 
in specific hardware in an effort to reduce computation time 
based on hardware improvements like FPGA, SIMD instruc-
tions, parallel processing, etc. To the authors’ knowledge, 
no algorithm-based modification exists designed for video 
processing that reuses video image information to improve 
computation time independently of the hardware structure, 
as proposed in this paper.

2  Method description

Standard stereo methods are designed to work with a pair of 
static images, not with a dynamic video. The disparity com-
putation of each pair of images starts from zero, with all pre-
vious information being discarded. The fact that the new pair 
of images is very similar to the last one is not used. However, 
this previous information can be reused to improve disparity 
results and reduce computation time. This scheme is repre-
sented in Fig. 1 and it offers some advantages over classical 
static image algorithms in terms of speed and quality.

– The difference between two consecutive images is very 
small if the frame rate is high enough, so part of the com-
putational cost is already paid. The algorithm will reuse 
previously computed data, saving time in a dynamic pro-
gramming scheme.

– A static disparity image exhibits noise due to image 
inconsistency, different illumination, etc. This can be 
filtered by reusing information from the previous frame 
to yield a more robust disparity image. Temporal filters 
made a posteriori over the final disparity image are less 
useful, so the disparity image information is already 
assigned to different discrete values and the uncertainty 
between these values is lost.

The main drawback of this scheme is the amount of mem-
ory necessary to save the previous computation, but for an 
algorithm designed to execute on a standard CPU, where 
a few gigabytes of memory are usually available, it is an 
acceptable cost. The amount of memory necessary to 
execute the algorithm, for a 1-byte gray-scale image, is 
(2 ∗ ImageWidth ∗ ImageHeight ∗ Disparity) ∗ 2bytes . For 
a 640x480 stereo image, the algorithm needs 340 MB of 
memory, including the extra space needed to save the cur-
rent images and temporal data. In a stereo video sequence, 
the difference between two consecutive images depends on 

Fig. 1  Disparity computation based on previous information for a 
moving camera in an autonomous vehicle
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frame rate and ego motion, but it is usually quite small with 
a medium frame rate (our tests show that only 20% of the 
pixels change between two consecutive frames), so the dis-
parity map for 80% of the image is the same as in the previ-
ous frame. The main idea of this algorithm is to reuse part 
of this data.

2.1  Matching cost

The matching cost is the metric used to measure the simi-
larity between two areas of the left and right images. The 
matching cost can be calculated using standard techniques 
presented in previous papers; for example, in ref. [8] the 
authors present a study of the application of different match-
ing cost functions to SGM. In ref. [17] an adaptive stereo 
similarity measure using a weighted combination of different 
measures, in which the weights depend on the local image 
structure is presented. Disparity map accuracy depends on 
the matching cost, but the difference is not significant tak-
ing into account computation time. In this paper, the dis-
similarity presented by Birchfield and Tomasi [18] is used 
as the matching cost. This method has demonstrated good 
results with low computation time, but any other method can 
be used. In the case of Birchfield and Tomasi, dissimilarity 
measures the difference between pixels in the epipolar line 
between the left and right images. It is quite tolerant to noise 
and illumination changes and it is calculated according to 
Eq. (1).

Where p(x, y) is the pixel position in the epipolar line in a 
rectified image, or the equivalent epipolar line in the distor-
tion image function in a non-rectified image and it can be 
pL or pR for the left or right image, and I(p) is the pixel p 
intensity in the image. This dissimilarity d̄ is applied for all 
possible disparities ND between the left and right images.

As Eq. (1) shows, the matching cost of pixel pL only 
depends on its neighborhood, so for stereo video process-
ing, the dissimilarity is applied to every pixel in the image 
for the whole disparity range in each frame. In Eq. (2) Ck , 
with size (W ∗ H ∗ D) (Width, Height, Disparity), represents 
all the matching costs for each pixel for each disparity for 
a frame k in a stereo image pair. The dissimilarity value for 
each pixel pi and each disparity d depends only on pLi and 
pR(i+d) pixels on left and right images.

(1)

I−(p) =
1

2
(I(p) + I(p − 1))

I+(p) =
1

2
(I(p) + I(p + 1))

Imin(p) = min(I−(p), I+(p), I(p))

Imax(p) = max(I−(p), I+(p), I(p))

d̄(pR, pL) = max(0, I(pL) − Imax(pR), Imin(pR) − I(pL))

Using the previous frame matrix Ck−1 , the current Ck can be 
generated by processing only the changes between image 
k − 1 and k. In order to find the changes, the frames are fil-
tered using a bilateral filter [19], which removes noise from 
the image but preserves the edges. Thus, the difference 
between k and k − 1 filtered frames is obtained using a tem-
poral filter. The result is a robust inter-frame pixel change 
detector. Equation (3) shows the spatial filter in each image, 
where Ω is the size of the window filter, which is set to 5 in 
the tests, fr is the range kernel and gs is the spatial kernel, 
both based on a Gaussian function which is adjusted by the 
� parameter, set to 35 in the tests.

The reference frame is the left image. Th() (Eq. 4) is the 
function for the changed left image, where the changed pix-
els are set to 1 for processing. The changes are obtained 
directly from the pixel differences between the current and 
previous left images after filtering (Eq. 4 first row). The 
changes between two consecutive right images are repre-
sented in Th() by its disparity d(pR ). The previous dispar-
ity is available, so it can be used to map right-image pixels 
pR in the left image. Thus, the changed pixels in the right 
image will be projected in the left and CK will be calculated 
for those points (Eq. 4 second row). This does not change 
anything in theory, so if one-pixel changes in the left image, 
it should change in the right as well, but it does fix some 
glitches in the final disparity image. The points with no dis-
parity assigned are recalculated also (Eq. 4 third row).

Equation 4 shows the threshold for obtaining a binary 
function which indicates if that pixel has changed between 
the current and previous frames. The operator T() is 1 if 
its argument is true, and 0 otherwise. In the implementa-
tion, it is important to save the current state of each pixel 
image, including the value for unchanged pixels. In this 
way, small incremental changes in the image, smaller than 
the threshold, will be processed in subsequent frames if 

(2)Ck(pi, d) = d̄(pLi, pR(i+d)) ∀d ∈ ND ∀i

(3)

F(p) =
1

Wp

∑

xi∈Ω

I(xi)fr(||I(xi) − I(p)||)gs(||xi − p||)

Wp =
∑

xi∈Ω

fr(||I(xi) − I(p)||)gs(||xi − p||)

fr(d) = gs(d) = N(d) = e
−

(dx )
2+(dy)

2

2�2

(4)

Th(pL) ∶= T(|I(pL)k − I(pL)k−1| > THRE)

Th(pL + d(pR)) ∶= T(|I(pR)k − I(pR)k−1| > THRE)

Th(pL) ∶= ([d(pL)k−1 = INVALID)

T(x) ∶=

{
x ≠ 0 → T(x) = 1

x = 0 → T(x) = 0
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they change enough from the original one. For example, if 
one pixel changes its value by 1 unit over several frames, 
it will be considered as a changed pixel when the differ-
ence between its current value and the value saved the last 
time Ck was calculated exceeds the threshold. Then, its 
cost Ck will be recalculated and the pixel’s current value 
will be saved.

By applying this technique, the matrix Ck can be con-
structed recursively according to Eq. (5). If the neighbor-
hood of the pixel has not changed, the previous value of Ck−1 
is used, and if the pixel has changed more than the threshold, 
this position is filled according to Eq. (2).

These steps allow generating an equivalent Ck from Ck−1 , but 
with less computation time than calculating it from zero. The 
changed pixels between two consecutive frames are obtained 
as an intermediate step of the algorithm.

2.2  Cost aggregation

The function presented in Eq. (6) is the key step in the SGM 
algorithm. It is an energy function E() over disparity map D. 
By minimizing this energy function, the disparity between 
the left and right images is estimated. A global minimiza-
tion of this 2D energy function is NP-complete for many 
discontinuity-preserving energies [20], so a heuristic method 
is proposed according to Eq. (6). The first term is the sum 
of all the pixel matching costs for the disparities of D. The 
second term is a penalty P1 if the disparity change between 
two consecutive pixels is 1, and a larger penalty P2 if this 
disparity change is greater than 1 in the neighborhood Np of 
pixel p(q). The operator T() is 1 if its argument is true, and 
0 otherwise as defined in Eq. (4).

The key step in the semi-global matching algorithm is the 
search space reduction of Eq. (6). The algorithm does not 
search for matches in the whole search space; rather, it 
reduces the search to 8 or 16 directions where a 1D search is 
performed The results of all the searches are then combined 
to obtain the minimum in every direction. That reduces 
the computational cost from an NP-complete problem, to 
O(WHD) (Width, Height, Disparity), yielding a similar 
result, in most cases, to global matching. Usually, 8 direc-
tions are enough to provide good results with a reasonable 
computation time, although the initial algorithm proposes 
16.

The weight in Eq. (6) includes no penalty if the disparity 
of the next pixel is equal to the previous one. There is a small 
penalty P1 if the disparity changes by only 1 pixel, allowing 

(5)Ck(p, d) ∶= Th(p)(Ck(p, d)) + (1 − Th(p))(Ck−1(p, d))

(6)

E(D) ∶=
∑

p

C(p,D) +
∑

q∈Nx

P1T(|D| = 1) +
∑

q∈Np

P2T(|D| > 1)

for smooth changes, perspective, and curved surfaces, and a 
higher cost P2 if a disparity change greater than 1 is found. 
The algorithm looks for small disparity increases but allows 
for large disparity changes if its cost plus P2 is lower than 
the integration of multiple small disparity costs. This happens 
when a new object or the end of an object is found. These 
discontinuities are usually associated with changes in images.

The cost from a direction r is specified in Eq. (7), where 
r is one of the directions [(1,0), (− 1,0), (0,1), (0,− 1), (1,1), 
(1,− 1), (− 1,1), (− 1,− 1)] and Lr is the cost evaluated recur-
sively from the previous cost and from the matching cost func-
tion in the pixel.

The search is applied to the whole cost function, Ck , but 
some part of this search can be recycled such that only 
changed points between two consecutive images are defined 
in Eq. (4). In this case, if the cost matrix Ck changes, the 
search starts from the changed pixel and continues until the 
exploration line reaches the end of the image or the minimi-
zation reaches the same cost function value, as per Eq. (6), 
for the same pixel in the previous frame. For instance, if a 
uniform textureless area is moving in the image, the only 
change in the cost function Ck would be the first and last 
pixel of this area. The search will start with the first changed 
pixel, and it will finish where the obstacle ends, so the dis-
parity image will be updated properly.

After this step, the minimum cost disparities for each 
pixel are calculated, so the next step is to build the disparity 
map based on the accumulated cost S(p, d) in each direction, 
according to Eq. (8).

2.3  Disparity computation

The disparity image Dlr (disparity image from left to right) is 
calculated by looking for the disparity with the minimum cost 
for each pixel in Eq. (9). Drl (disparity from right to left) can 
also be calculated in the same step by filling the appropriate 
cell in matrix Drl . Drl(p) can be filled multiple times due to 
noise or errors in the selected disparity, occlusions, etc., so the 
minimum one is selected. This procedure can reduce disparity 
errors such that Drl(p) should be similar to Dlr . If this does 
not hold, it indicates a possible error has been detected and p 
should be marked as an invalid disparity, Eq. (10). This is the 
source of unassigned pixels in the disparity image, as shown 
in the results section.

(7)

Lr(p, d) ∶= C(p, d) +min
i
(Lr(p − r, d),

Lr(p − r, d − 1) + P1, Lr(p − r, d + 1) + P1,

min
i
(Lr(p − r, i) + P2) −min

k
Lr(p − r, k)

(8)S(p, d) ∶=
∑

r

Lr(p, d)
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A sub-pixel estimation can be made by matching quadratic 
curves between disparities in the same image row, yielding 
better accuracy in the final disparity image.

As in the previous section, the disparity is only computed 
where the value of S(p, d) is changed, so if the image is 
similar to the previous one, the calculation time would be 
significantly reduced.

2.4  Cost function filtering

One of the advantages of incremental disparity calculations 
is that the cost matrix, used to obtain the previous disparity 
image, is available. This allows the use of recursive filters to 
integrate the previous image costs into the current cost matrix 
to reduce noise. In a stereo disparity image obtained only from 
the two current images, there are many small glitches, noise, 
and empty zones, usually in low-texture image areas, due to the 
fact that the cost matrix in that part of the image is not repre-
sentative. By integrating the cost function of previous frames, 
these noise points can be reduced; previous information can 
help to discriminate the current disparity for each pixel where 
this disparity cost is not clear in the current frame. The result 
is a more stable and accurate disparity map over time and the 
number of pixels marked as invalid is reduced.

The application of a temporal filter between two con-
secutive final static disparity maps can generate poor results 
because very different disparity values can be applied for the 
same pixel in two consecutive frames. This effect happens 
in areas where the disparity is not well defined (areas with 
poor texture). The filter based on the algorithm cost function 
Ck−1,Ck produces better and smoother results and the change 
between disparities in each frame will be smaller without 
increasing the computational cost. Eq. (11) includes the appli-
cation of the temporal filter, where Ckf  represents the filtered 
cost function, and k1, k2 the filtering coefficients. The weights 
of the filter can be selected based on the image frame rate, so 
if the frame rate is high, changes between images should be 
smaller, and the weight of previous Ck−1 should be higher. This 
Cost Function filtering is applied only to the changed pixels 
to reduce computation time. The information from the cost 
function of previous frames is included in Ck−1 , so a historic 
recursive filtering is maintained.

(9)
Dlr(p) ∶= mindS(p, d)

Drl(p) ∶= min(Drl(p),minqS(p − d, q))

(10)Dlr ∶=

{
if |Drl(p) − Dlr(p)| < THRES Dlr

else error

(11)Ckf
∶= k1 ⋅ Ck + k2 ⋅ Ck−1;k1 + k2 ∶= 1

3  Results

The code is programmed in C++ using the GCC 7.5.0 
compiler and OpenCV 3.1.0 as the base library [21]. It 
was tested on an Intel Core i7-4510U in a computer with 
8GB of RAM. There is no reference dataset of execu-
tion time or performance for stereo algorithms in video 
sequences, so the computation time comparison is made 
between a standard SGM (OpenCV optimized SGM using 
SIMD CPU specific instructions) and the video incremen-
tal SGM presented in this paper. The computation time 
for the Incremental SGM depends on the frame rate. If 
the frame rate is low, incremental SGM tends to the same 
time, or a little longer than standard SGM, but maintains 
other advantages like robustness due to temporal cost fil-
tering. If the frame rate is high, meaning changes between 
images are small, incremental video SGM reduces the time 
significantly compared to a standard SGM method.

The tests compare the result of the standard SGM algo-
rithm to the incremental version presented in this paper. 
The incremental version applies a positional filter and 
reuses the previous information for the unchanged pixels. 
It uses a threshold to detect the change between two con-
secutive images. In the case of threshold 0, only the pixel 
with exactly the same value in the two images is reused, 
so the result for an SGM algorithm is not the same as in an 
inc algorithm with threshold 0. The incremental algorithm 
will work better with two similar images, and the computa-
tion time will be significantly reduced. It also works well 
with noisy images, where the cost filtering can improve the 
results. The error in the disparity image will increase with 
the threshold, so a convenient threshold should be selected 
based on the image sequence.

3.1  Synthetic test images

The first test of the algorithm is to compare the results 
between ground truth and disparity images. For this pur-
pose, the synthetic video sets presented by Christian Rich-
ardt from the University of Cambridge in ref. [22] are used. 
The sets are composed of synthetic stereo images in five 
different scenarios with about 100 images in each scenario.

For the experiment, the incremental stereo algorithm 
presented in this paper was compared to a standard semi-
global matching, yielding the results presented in Fig. 2. In 
Fig. 2a, the error is calculated as the sum of the difference 
between ground truth and the algorithm result for every 
pixel in the image divided by the number of pixels. In this 
measurement, pixels without a valid disparity assigned are 
removed. This experiment was conducted with different 
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thresholds in the incremental algorithm. As expected, the 
best results were obtained when the threshold is small, and 
the error grows with the threshold. In Fig. 2a, the error in 
the incremental algorithm is similar to the standard SGM 
algorithm for a threshold of 0. The difference between 
the two algorithms when the threshold is set to 0 is due 
to the positional filter and to the reutilization of previous 
data. The error increases with the threshold; for example, 
for a threshold of 5, the error increases by 0.1 units. The 
results include min and max errors for all the frames in the 
sequence and the average error of all the frames.

Figure 2b show the minimum, maximum and average 
number of pixels where the algorithm cannot find a valid dis-
parity. The number of unassigned pixels is approximately the 
same as in the standard SGM algorithm with a threshold of 
0; however, in Fig. 2b, the spatial filter and change detection 
applied to the stereo image resolve some unassigned pixels, 
yielding better results than the standard SGM algorithm. If 
the threshold increases, so does the number of unassigned 
pixels, as expected. Figure 2c shows the execution time in 
cycles of both algorithms. These times fall as the threshold 
increases, as expected. The street sequence have very large 
changes between images, so the computation time of the 
incremental algorithm is worse than a standard SGM; how-
ever, when the threshold increases, this time difference is 

reduced, and from an adequate threshold of about 5 pixels, 
the incremental algorithm takes less time.

Table 1 shows the tank sequence for the same data set. It 
includes the average processing time, error between ground 
truth and algorithm output, and number of unassigned 
pixels. The behavior of the system is similar to the street 
sequence when the processing time in cycles is higher, but 
as the threshold increases, this time is reduced, and with a 
threshold of 5, it is less than the standard SGM. The error 
and the number of unassigned pixels start from a similar 
value, and increase with the threshold as expected.

As this first test shows, the algorithm can yield fast 
results depending on the image characteristics, and should 
be applied to stereo videos with small differences between 
frames. The number of unassigned pixels and the disparity 
error can also be reduced. These results can be improved 
using temporal cost function filtering, as shown in the next 
sections.

3.2  Real images with ground truth

To test the algorithm with real images, we used the sequence 
of images presented in the Stereo Benchmark Overview of 
the ETH Zürich [23]. It consists of a variety of indoor and 
outdoor scenes using a high-precision laser scanner and 

Fig. 2  Standard and incremental SGM comparison in street sequence. a Error for SGM and inc algorithm. b Number of pixels unassigned. c 
Computation time

Table 1  Tank sequence results Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 88e6 94e6 2.39 2.39 1733.74 1733.52
2 88e6 90e6 2.39 2.51 1733.74 1755.98
4 88e6 89e6 2.39 2.82 1733.74 1883.52
6 88e6 83e6 2.39 3.20 1733.74 2124.16
8 88e6 81e6 2.39 3.67 1733.74 2493.52
10 88e6 76e6 2.39 4.08 1733.74 2785.47
12 88e6 73e6 2.39 4.36 1733.74 3174.29
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captured in both high-resolution DSLR imagery and syn-
chronized low-resolution stereo videos. The disparity ground 
truth images are included in the low-res many-view dataset 
as laser conversion to disparity images. The change between 
two consecutive images is greater than that designed for the 
current algorithm, but the actual images and the ground truth 
are a good test for the incremental algorithm. It is the only 
dataset that the authors were able to find with dense disparity 
images as ground truth for stereo image sequences.

Figure 3 shows the results in the terrains and electro 
sequences. In both, the pixel error is lower when the thresh-
old is small, and it increases with the threshold. In Fig. 3a, 
the incremental algorithm yields better results than the 
standard algorithm even with a threshold of 8 pixels. This 
difference is less in Fig. 3b, but even so, with a small thresh-
old the incremental algorithm provides a better result than 
the standard SGM algorithm. The number of unassigned pix-
els is less in the incremental algorithm for both sequences, 
as shown in Fig. 3c and d. This shows that in real images, 
where actual cameras include some noise, the filter to detect 
changed pixels can reduce the number of unassigned pixels. 
With a threshold of 0, the results are better for both cases, 
so the positional filter, and reusing the previous informa-
tion, can improve the results. The computation time follows 
the expected behavior, as shown in Fig. 3e and f, that as the 
threshold grows, the time is reduced. The execution time 

for small thresholds is higher than the standard algorithm, 
but it decreases as the threshold grows. The algorithm can 
yield better results for shorter computation times than the 
standard algorithm.

Table 2 shows the playground sequence. In this sequence, 
the behavior is similar to the previous one, where the pro-
cessing time is longer for the incremental algorithm with a 
small threshold. With a threshold of 5 or higher, the time 
in the incremental algorithm is reduced. The differences 
between ground truth and the output and the number of 
unassigned pixels are quite similar for both algorithms, and 
remain quite stable when the threshold is changed.

This test shows that the incremental algorithm works bet-
ter for actual images than for synthetic ones. This happens 
because real images have noise and artifacts that the spatial 
filter for detecting changed pixels corrects. The results in 
terms of error and unassigned pixels are also very good.

3.3  Cost filtering

In this section, a weight-level cost filter is included in the 
incremental SGM algorithm. The costs obtained from the 
previous frame are stored and used in the next one, so infor-
mation from the previous frame is included in the next one 
by using Eq. (11). In this case, k1 = k2 = 0.5 are used as 
weights. This helps the algorithm to achieve better disparity 

Fig. 3  Standard and incremental SGM comparison in actual images with ground truth. Error, terrains sequence (a) and electro sequence (b). 
Number of unassigned pixels, electro (c) and terrains (d). Computation time electro (e) and terrains (f)



 Journal of Real-Time Image Processing

1 3

results when it is difficult to discriminate the correct dispar-
ity for a specific pixel. With this technique, some glitches in 
low-texture areas are removed, the final disparity image is 
smoothed, and it exhibits better consistency.

Figure 4 shows the behavior of the algorithm, including 
cost filtering, for the same sequence as Fig. 3. The execu-
tion time for the same sequence is approximately the same 
as when no cost filtering is applied (Fig. 3e, f and 4e, f); 
however, the disparity error between standard SGM and 
incremental SGM changes significantly (Fig. 3a, b and 4a, 
b). The temporal cost filtering function selects better dispari-
ties by using the information from the previous frame when 
this is not clear in the same frame. In the terrains sequence, 
the average disparity error decreases by 0.75 unit, or 

approximately a 25% reduction. In the electro sequence, the 
error reduction depends on the threshold, but with a thresh-
old of 4 pixels, it is also 0.75 units, about a 30% reduction. 
The same thing happens with the number of unassigned pix-
els (Figs. 3c, d and 4c, d). The temporal cost function filter 
used in the incremental algorithm can assign a disparity of 
about 900 pixels more in the terrains and electro sequences 
depending on the threshold.

Table 3 shows the cost filtering playground sequence. The 
processing time is longer; however, the results in unassigned 
pixels are considerably lower. The difference between two 
consecutive frames reduces the algorithm’s performance, 
but the reduction in unassigned pixels compensates for this 
extra time.

Table 2  Playground sequence 
results

Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 83e6 87e6 2.86 2.72 10964.72 10865.20
2 83e6 85e6 2.86 2.75 10964.72 10740.62
4 83e6 83e6 2.86 2.80 10964.72 10714.18
6 83e6 81e6 2.86 2.86 10964.72 10701.87
8 83e6 80e6 2.86 2.97 10964.72 10776.70
10 83e6 79e6 2.86 3.06 10964.72 10886.11
12 83e6 78e6 2.86 3.13 10964.72 10973.11

Fig. 4  Standard and incremental SGM comparison in actual images with ground truth. Error terrains sequence (a) and electro sequence (b). 
Number of unassigned pixels, terrains (c) and electro (d). Computation time, terrains (e) and electro (f)
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The use of low-level cost function filtering between 
frames generates a more accurate disparity map and fewer 
unassigned pixels, with a negligible increase in computation 
time. In the examples shown in Fig. 4 with a threshold of 5 
pixels, a more accurate algorithm in terms of disparity and 
number of unassigned filters is obtained in less time. The 
changes between images in these sequences are quite high, 
so with more suitable images, the algorithm should obtain 
an even lower computation time with better disparity image 
accuracy.

3.4  Real high speed images

The third test was carried out using the sequence of images 
presented by the Heidelberg Collaboratory for Image Pro-
cessing HCI in ref. [24], where two Photonfocus MV1-
D1312-160-CL, which deliver 100 frames per second and 
global shutter technology, are used to acquire the images. 
The sequence does not include ground truth, so error com-
parisons cannot be made. The images are from traffic scenes 
in challenging situations, such as very dark environments, 
snow, rain, reflections, etc.

Figure 5 shows the results of the comparison between 
incremental SGM and standard SGM, indicating that the 
average frame execution time decreases from 2.6e8 cycles 
to 1.8e8 cycles, a 30% time reduction (Fig. 5b), for a thresh-
old of 5 pixels in the Avenue sequence. The number of 
non-matching pixels is reduced for small thresholds and 
it maintains approximately the same value (Fig. 5a) when 
the threshold increases. This experiment shows that time is 
reduced significantly and the disparity map quality is simi-
lar, better than many stereo block matching algorithms.

Figure 6 shows the number of unassigned pixels for the 
flying snow sequence of the HCI dataset. This sequence is 
quite challenging because it depicts a road while it is snow-
ing, so the disparity image contains considerable noise and 
many unclassified pixels. The number of unassigned pixels 
is considerably smaller when using incremental SGM with 
cost filtering, Fig. 6b, than in the standard SGM Fig. 6a. 
The results show that weighting filters yield better results 
than the standard algorithm, with shorter computation times

Table 4 shows the car truck sequence. The filter (filt) 
and not filter (nf) versions of the incremental algorithm are 
shown. The processing time is longer for the filter algorithm, 
but the number of unassigned pixels is reduced considerably. 

Table 3  Cost filtering 
playground sequence results

Time Error Unassigned
Thres SGM Inc SGM Inc SGM Inc

0 83e6 91e6 2.86 2.80 10964.72 9113.44
2 83e6 89e6 2.86 2.82 10964.72 9046.97
4 83e6 87e6 2.86 2.89 10964.72 9057.40
6 83e6 85e6 2.86 2.99 10964.72 9057.35
8 83e6 84e6 2.86 3.05 10964.72 9209.68
10 83e6 82e6 2.86 3.11 10964.72 9238.07
12 83e6 81e6 2.86 3.22 10964.72 9404.78

Fig. 5  Unassigned pixels (a) and execution time (b) avenue sequence
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The execution time is reduced with the threshold, so with a 
threshold of 4, the execution time is shorter than the original 
SGM, and the number of unassigned pixels is reduced.

Figure 7 shows the same disparity image for a standard 
SGM algorithm Fig. 7a and the filtered version of the incre-
mental SGM Fig.  7b in the Flying Snow Sequence. The 
filtered incremental SGM yields smooth surfaces, and many 
pixels in the road are correctly classified compared to stand-
ard SGM. The quality of the disparity maps using the filter 
is better and requires considerably less computation time 
than standard SGM.

3.5  Dynamic threshold adjustment

In an actual implementation, a procedure is needed to 
dynamically adjust the threshold to the image characteris-
tics. In this implementation, the frame processing time is 
used to tune the threshold. The expected behavior of time 
vs threshold is shown in Fig. 6b, where the time is reduced 
exponentially. In this figure, it is clear that the best threshold 
is about 6; a higher threshold does not improve the time sig-
nificantly, but it can reduce disparity image quality.

The adjusting algorithm is shown in algorithm 1. It begins 
with a threshold T set to 1, and it tests different thresholds, con-
tinuously looking for the best time-quality ratio. Even frames 
are computed with a threshold of T + 1 and odd frames with 
T − 1 . After processing the frame, the median processing time 
for the active thresholds is calculated in a time window of 30 
seconds. If the processed frames with a higher threshold give 
a shorter computation time, the T is increased by 1 unit. The 
measurement is made based on the median of at least 3 ele-
ments, to avoid singular point errors. To keep the threshold 
from continuously increasing, the time must be decreased by a 
factor indicated by the user in the PImprovement parameter. The 
user can thus select the ratio between speed and quality. In this 
test, a 5% time reduction is needed to increase T. If the execu-
tion time of T − 1 is less than 5% greater than T + 1 , the thresh-
old is reduced. Figure 8 shows the result, and how the threshold 
and execution time are tuned. According to Figure 5b, the best 
parameter for this example is 6, which is obtained via dynamic 
tuning. The processing time is also reduced as expected. If 
the image characteristics change, the threshold will adapt by 
dynamically adjusting to a new optimal point.

Fig. 6  Unassigned pixels without filter (a) and with filter (b) snow 
sequence

Table 4  Car truck sequence 
results

Time Unasign
SGM Inc Inc SGM Inc Inc

Th nf filt nf filt

0 25e6 26e6 28e6 15548.4 15478.7 14058.8
2 25e6 25e6 26e6 15548.4 15636.1 14065.9
4 25e6 23e6 24e6 15548.4 16296.9 14575.5
6 25e6 22e6 23e6 15548.4 17157.8 15315.7
8 25e6 22e6 22e6 15548.4 17875.9 15863.5
10 25e6 21e6 21e6 15548.4 18989.7 16553.3
12 25e6 21e6 21e6 15548.4 19619.0 17400.7
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Algorithm 1 Dynamic threshold
Require: T, PImprovement

PI ← (1− PImprovement)
if isOdd(frame) then

time ← Compute(frame, T + 1)
t[T + 1, k] ← time

else
time ← Compute(frame, T − 1)
t[T − 1, k] ← time

end if
if mediank(t(T +1, k)) < mediank(t(T − 1, k) ∗PI then

T ← T + 1
else

if mediank(t(T+1, k)) > mediank(t(T−1, k)∗PI then
T ← T − 1

end if
end if

4  Conclusion

This paper presents a stereo SGM that is modified to include 
historical information in the calculation of the disparity image. 
This allows for improved computation speed and improved 

accuracy due to temporal filtering by using the cost from previ-
ous disparity images. Previous cost filtering is applied to obtain 
smoother and more accurate disparity images. This algorithm 
is intended for CPU-based stereo with low computational 
resources and enough memory to save the previous computa-
tion state, such as embedded devices that process information 
at medium frame rates, or for high-power computation CPUs 
for high frame rates in autonomous vehicles.

Some tests are presented to validate the algorithm, includ-
ing execution time, disparity quality and unmatched pixels. 
These tests show that when the change between two consec-
utive frames is small, the computation time for the dispar-
ity image using the incremental SGM can be considerably 
reduced. Cost filtering improves the disparity image quality 
when the image has low texture or noise without increasing 
computation time. The results show the advantages of the 
algorithm and its applicability to many scenarios. The algo-
rithm can be used to improve execution time and disparity 
image quality in scenarios where the change between frames 
is small, yielding a real-time version of the SGM algorithm.
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