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Abstract: Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2),
raises concern regarding their potential adverse effects to humans. While considerable efforts have
been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to
date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover,
agglomerates are of prime importance in occupational exposure scenarios, but their toxicological
relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential
pulmonary effects induced by TiO2 agglomerates of different sizes at the air–liquid interface (ALI),
which is more realistic in terms of inhalation exposure, and compare it to results previously obtained
under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for
this study. Stable stock dispersions of small agglomerates and their respective larger counterparts
of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to
different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity,
glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition
and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI
induces different cellular responses than in submerged systems. We conclude that the agglomeration
state is crucial in the assessment of pulmonary effects of NMs.

Keywords: nanomaterials; titanium dioxide; agglomerates; air-liquid interface; pulmonary toxicity

1. Introduction

Nanotechnology is ubiquitous, brings novel advancements in all aspects of human life
on a daily basis, and has a wide variety of applications, such as in consumer goods,
electronics, communication, environmental treatments and remediations, agriculture,
nanomedicine, water purification, textiles, aerospace industry, and efficient energy sources,
among many others. The field of nanotechnology is one of the fastest expanding markets in
the world and its global value is expected to exceed the USD 125 billion mark by 2024 [1].

Nanomaterials (NMs) are generally defined as a material with at least one dimension
in the nanoscale (1–100 nm) range [2]. While NMs are abundant in nature and produced
by various sources, such as forest fires and volcanic eruptions, they are also intentionally
manufactured by nanotechnologies on a global scale for industrial and commercial pur-
poses. EU recommended a definition for NM solely for regulatory purpose, which states
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that “natural, incidental or manufactured material containing particles, in an unbound
state or as an aggregate or as an agglomerate and where, for 50% or more of the particles
in the number size distribution, one or more external dimensions is in the size range
1 nm–100 nm” [3].

Among the manufactured NMs, titanium dioxide (TiO2) is one of the widely used
NMs in commercial applications and approximately four million tons of TiO2 are produced
annually worldwide [4–6]. Commercial TiO2 NMs come in different crystalline forms such
as anatase and rutile. As TiO2 NMs reflect UV light, they are widely used in cosmetics and
in paints as a UV filter [5] as well as in plastics [7]. TiO2 NMs are also extensively used as
food colourant (food additive E171) [8]. Due to their light dependent properties, TiO2 NMs
are being studied for potential medical and bio-medical applications such as antibacterial
activity, biosensing, drug delivery, and implant applications [9,10]. The production of TiO2
NMs is expected to expand continuously due to their potential in the energy sector and
environmental based applications [11]. This clearly indicates that there is a potential for
human exposure, particularly inhalation, as this is the major route of exposure to TiO2 NMs
in occupational settings and raises concerns about their safety and adverse pulmonary
effects [12].

Toxicological evaluations of TiO2 NMs are often performed using in vivo models such
as mice and rats. Short and long term exposure to TiO2 NMs via inhalation induced pul-
monary inflammation, fibrosis and tumours [6,13–15]. A significant increase in cytotoxicity,
inflammation, oxidative stress, and DNA damage was observed in mice exposed to high
doses (10 mg/kg [16] and ~4 mg/kg [17]) of TiO2 NMs. The studied endpoints are major
key events identified to play essential roles in fibrosis and tumour development [14,18].

In vitro models are often employed as a first screening method, to unveil the mecha-
nisms involved in the induction of adverse effects, and to prioritize NMs for further animal
testing. Traditionally, submerged in vitro cell cultures are widely used to assess the adverse
effects of NMs with a particular focus on the production of reactive oxygen species, which
can be generated specially in case of TiO2 NMs [19]. Submerged exposure to TiO2 NMs in-
duced cytotoxicity, oxidative stress, pro-inflammatory responses, and genotoxicity in lung
derived immortalized cell lines [6]. In submerged exposure systems, the cells are covered
with culture media to which NMs are added. The biomolecules present in the culture media
can adsorb to the surface of the NMs to form a protein corona [20,21]. Such changes to the
surface can potentially prevent the adverse effects of NMs [22], affect the physico-chemical
properties relevant for toxicological assessment (size, surface area, surface composition,
surface charge, and agglomeration, etc.) [23], and also effective density [24], an important
parameter that determines the sedimentation of NMs. However, these modifications of
NMs in cell culture medium often do not reflect the conditions upon inhalation in real life
situations.

Recently, exposure at the air liquid interface (ALI) has been evolving as a potential
alternative to conventional submerged in vitro exposure systems. At the ALI, cells grown
on transwell plates are directly exposed to aerosolized particles and gases, which better
reflects the exposure in vivo via inhalation [25–28]. Previously, we have developed, vali-
dated, and used a fully integrated ALI exposure system for the assessment of toxicological
effects of various NMs and aerosols [29–33].

It is well known that the physicochemical properties of NMs influence their toxic-
ity [34]. Among all the properties, the influence of agglomeration on the toxicity of NMs is
less well studied and poorly understood. In our previous study, we assessed the influence
of TiO2 NM agglomeration on (cyto) toxicity and biological responses [35] using a human
bronchial epithelial (HBE) cell line. However, the entire study was carried out in submerged
exposure conditions. While there is only a limited number of toxicological investigations
addressing adverse effects of TiO2 NMs using ALI exposure systems [31,36,37], the impact
of agglomeration has not been researched. Here, we prepared TiO2 NM agglomerates of
different sizes and performed toxicological studies employing ALI exposure. The aim of
the present work was to investigate the cytotoxicity and biological responses in HBE cells
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after ALI exposure to different doses of TiO2 agglomerates of different sizes and compare
the results to those previously obtained under submerged conditions [35].

2. Materials and Methods
2.1. Preparation of Dispersions and Characterization of TiO2 NMs

Two TiO2 NMs (representative test materials) of different primary sizes were kindly
provided by the European Commission’s Joint Research Centre (JRC, Ispra, Italy). Mean
primary size of TiO2-JRCNM10202a was determined as 17 nm and TiO2-JRCNM10200a
as 117 nm. Therefore, the two NMs are indicated as 17 nm and 117 nm sized TiO2 in
the text. Both TiO2 NMs are pristine and anatase in nature. Detailed physicochemical
characterization of these NMs were provided in a previously published JRC report [38].

Detailed information on the development of the dispersion protocol to obtain two
different agglomeration states (small and large agglomerates) of both TiO2 NMs were
published elsewhere [17,35]. Briefly, to obtain agglomerates of different sizes, particles
were dispersed in different pH conditions (2 and 7), the dispersions were probe sonicated
(7056 J) and stabilized with 1% bovine serum albumin (BSA). After stabilization, the
suspensions at pH 2 were readjusted to pH 7–7.5 by slowly adding sodium hydroxide
solution (NaOH). While the original dispersion protocol was developed to prepare 10 mL
of stock dispersions and intended for submerged exposure, for ALI exposure, the quantity
was scaled up to 120 mL to provide sufficient quantity of dispersions for the aerosolization
of TiO2 agglomerates during the 4 h exposure period. Each dispersion was freshly prepared
before each exposure. Table 1 shows the nomenclature of different dispersions.

Table 1. Nomenclature of TiO2 agglomerate dispersions.

17 nm-SA 17 nm-LA 117 nm-SA 117 nm-LA

Particle type JRCNM10202a JRCNM10202a JRCNM10200a JRCNM10200a
Primary particle diameter 17 nm 17 nm 117 nm 117 nm

Agglomeration state Small
agglomerates

Large
agglomerates

Small
agglomerates

Large
agglomerates

2.2. Cell Culture Maintenance

The human bronchial epithelial cell line (16HBE14o- or HBE) was kindly provided by
Dr. Gruenert (University of California, San Francisco, CA, USA). HBE cells were cultured in
DMEM/F12 supplemented with 5% fetal bovine serum (FBS), 1% penicillin-streptomycin
(P-S) (100 U/mL), 1% L-glutamine (2 mM) and 1% fungizone (2.5 g/mL). All cell culture
supplements were purchased from Invitrogen (Merelbeke, Belgium) unless otherwise
stated. Cells were cultured in T75 flasks at 37 ◦C in a 100% humidified air containing 5%
CO2. Medium was changed every 2 or 3 days and cells were passaged every week (7 days).
Cells from passage 4 to 8 were used for the experiments.

2.3. Air–Liquid Interface Exposure

For ALI exposure, 3.5 × 105 HBE cells/mL were seeded on the apical side of a 6-
well transwell plate (Corning Costar Transwell insert membranes type 3450, culture area
4.67 cm2, pore size 0.4 µm, cat no 10619141, Fischer scientific, Schwerte, Germany) with
1.5 mL of cell culture medium on the basolateral side and incubated overnight at 5% CO2
and at 37 ◦C. Before ALI exposure, the apical and the basolateral media were removed.
Then, cell culture medium was added into the basolateral compartment and the apical side
was left uncovered (no medium). Uncovered cells were exposed to “clean air” (humidified
synthetic air as negative control) or in parallel to airborne TiO2 agglomerates at low dose
without electrostatic deposition and at different levels of electrostatic deposition (400 V,
800 V, and 1200 V) for 4h to facilitate dose–response evaluation of different biological
endpoints. After exposure, the medium at the basal side of the transwell inserts was
collected for LDH analysis.
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2.4. Aerosol Generation and Characterization

Figure 1 shows the layout of the ALI exposure system. For TiO2 aerosol generation, a
setup according to the VDI guideline 3491 (Technical Division Environmental Measurement
Technologies, 2016) was used. The TiO2 dispersions, continuously stirred during the
experiment, were sprayed in a drying reactor with a silica gel fill along the walls using a
two-substance nozzle (model 970, Düsen-Schlick GmbH, Untersiemau/Coburg, Germany).
The dry TiO2 aerosol was regularly characterized for the number size distribution in the
drying reactor using a Scanning Mobility Particle Sizer SMPS + C (Grimm Aerosol GmbH,
Ainring, Germany) and directed to the ALI exposure system, as described by Mülhopt
et al. [30]. In the conditioning reactor of the ALI exposure system, the TiO2 aerosol is
tempered to 37 ◦C and humidified to 85% r. h., and then sampling streams are directed to
the single exposure chambers containing the cell cultures using an exposure flow rate of
100 mL/min. For describing the aerosol state as exposed to the cell cultures, the number
size distribution was also measured by a Scanning Mobility Particle Sizer U-SMPS (Palas
GmbH, Karlsruhe, Germany) sampled in the aerosol conditioning reactor. Every 5 min a
scan was performed; means and standard deviation were calculated from all scans of an
experiment in each channel and corrected regarding sampling losses according to Asbach
et al. [39].

1 
 

 

Figure 1. Experimental setup: generation of airborne TiO2 agglomerates in dry air according to VDI guideline 3491 and
exposure of human lung cells in the Air–Liquid-Interface Exposure System with accompanying measurement of particle
size distribution using Scanning Mobility Particle Sizer (SMPS) at the dry stage in the reactor as well as for the aerosol inside
the exposure system.

2.5. Determination of the Deposited Dose

The deposited cell culture surface dose is reflected by the deposited fraction of the
TiO2 agglomerates exposed as aerosol towards the cells and not easy to determine. For this
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reason, three different methods were applied: the online monitoring of mass dose using
the quartz crystal microbalance QCM (Vitrocell Systems GmbH, Waldkirch, Germany) [29],
the image analysis of exposed TEM grids as presented in [40] and the calculation from the
SMPS measured number size distribution as shown in [30]. The effective density of all
TiO2 agglomerates were used as determined and reported in [35], and did not differ much
between the dispersions ((17nm-SA: 1.55 g/cm3), (17nm-LA: 1.48 g/cm3), (117nm-SA:
1.78 g/cm3), and (17nm-LA: 1.78 g/cm3)).

2.6. Metabolic Activity

Metabolic activity was evaluated as a measure of cell viability using the WST-1 assay
(Merck, Overijse, Belgium). At the end of ALI exposure, cells were washed with HBSS and
incubated with 500 µL of WST1 reagent (diluted in HBSS at the ratio of 1:10) for 45 min.
At the end of incubation, 100 µL was transferred to a 96 well plate and optical density
was recorded at 450 nm. Sample OD values were subtracted from blank OD values and
results were expressed as percentage of negative control cells. Cells exposed to clean air
were treated as negative control and Triton X-100 (0.1%) lysed cells were treated as positive
control (data not shown).

2.7. Membrane Integrity

Lactate dehydrogenase (LDH) activity in the cell culture supernatant was measured
as an indicator of membrane damage. Briefly, 100 µL of cell culture medium collected at
the basal side at the end of ALI exposure were transferred to a 96 well plate and incubated
with LDH mixture (prepared as indicated in the manufacturer’s protocol, Sigma-Aldrich,
Taufkirchen, Germany, cat no 11644793001) and the optical density (OD) was recorded
at 490 nm. Sample OD values were subtracted from blank OD values and results were
expressed as percentage of Triton X-100 (0.1%) lysed cells. Cells exposed to clean air were
treated as negative control.

2.8. Total Glutathione Measurements

Reduced glutathione (GSH) depletion was measured as an indicator of oxidative
stress induction. Briefly, exposed cells were scraped, transferred into Eppendorf tubes and
centrifuged at 150× g for 5 min. Then, the supernatants were discarded and cells were
resuspended in 1 mL of phosphate-buffered saline (PBS). After centrifugation, PBS was
removed and 450 µL of 10 mM hydrochloric acid (HCL) was added to each tube. Cell
lysis was performed by the freeze thawing procedure (15 min freezing, 15 min thawing
for two times) and immediately protein content analysis (by BCA assay) was performed
using 10 µL of the cell lysate. Then, the lysate was resuspended in 6.5% 5-sulfosalicylic acid
(SSA), incubated on ice for 10 min and centrifuged at 20,800× g (14,000 rpm) for 10 min
at 4 ◦C to precipitate the proteins. The supernatants were stored at −80 ◦C for later GSH
determination. GSH was measured using a glutathione detection kit (Enzo life sciences,
Brussels, Belgium). Cells exposed to clean air were treated as negative control.

2.9. DNA Damage

Briefly, at the end of the ALI exposure, the cells were detached with trypsin, cen-
trifuged at 250× g for 5 min, suspended in the storage buffer, composed of sucrose 85.5 g/L,
dimethyl sulfoxide (DMSO) 50 mL/L prepared in citrate buffer (11.8 g/L), pH 7.6, and
immediately frozen at −80 ◦C. DNA strand breaks were measured using the alkaline
comet assay kit (Trevigen, C.No.4250–050-K, Gaithersburg, MD, USA) according to the
manufacturer’s protocol. Fifty cells per gel were measured. Cells exposed to clean air
were treated as negative control and cells treated with methyl methane sulfonate (Merck,
Overijse, Belgium; 100 µM for 1h) served as positive control (data not shown). Results were
expressed as percentage of DNA in the tail. NMs can interfere with the comet assay [41]. To
evaluate this, we mixed TiO2 NMs with clean air exposed cells (negative control) and cells
treated with MMS (positive control), performed the comet assay, and compared the results
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with negative and positive controls prepared without TiO2 NMs. The results indicated that
the TiO2 NMs at high concentrations (100 µg/mL) did not interfere with the assay.

2.10. Statistical Analysis

Two or three independent experiments were performed with six replicates each and
data was presented as mean ± standard deviation (SD). Using GraphPad prism 7.04 for
windows, GraphPad Software (7.04, La Jolla, CA, USA), www.graphpad.com (accssed
on 24 November 2021), the results were analysed with one-way ANOVA followed by a
Dunnett’s multiple comparison test to determine the significance of differences compared
with control.

3. Results
3.1. Size Characterization in Stock Suspensions

We obtained four agglomerate dispersions from two TiO2 NMs of different sizes.
Detailed information on the physicochemical characterization and methods used to char-
acterize the agglomerates in stock dispersions were published elsewhere [17,35]. Using a
standardized TEM technique in our previous study [42], we measured the size of several
thousand agglomerates in each dispersion. The TEM based determination of the diameter
(median feret min) indicated that the size of 17 nm sized TiO2 NMs in their least agglom-
erated form (indicated as 17 nm-SA) was 33 nm, while it was 120 nm for the strongly
agglomerated condition (17 nm-LA). The sizes of small (117 nm-SA) and large agglom-
erates (117 nm-LA) of 117 nm sized TiO2 NMs were 148 and 309 nm, respectively (see
Figure S1 and Table S1). In summary, at low pH agglomeration of TiO2 NMs was modest
whereas at neutral pH strong agglomeration of the small (17 nm) and less pronounced for
the larger (117 nm) TiO2 NM is observed [17,35].

3.2. Aerosol Characterization and Determination of Deposited Dose

The particle number size distributions (Figure 2) showed nearly the same characteris-
tics for 17 nm-SA and 117 nm-LA with modal values xM of 72 and 71 nm, respectively. The
other titania 17 nm-LA and 117 nm-SA were also nearly identical with a size of xM = 144
and 139 nm, respectively. All particle number size distributions have a typical geomet-
ric standard deviation σgeo in the range of 2. These results show a similar trend as our
previously reported TEM sizes (Supplementary Material Figure S1, [35]) for the different
agglomerates in the stock solutions except for 117 nm-LA. Comparing SMPS and primary
TEM data from stock solutions, the aerosol processing may cause differences for the size
determination of 117 nm-LA agglomerates as the aerosol is characterized with the SMPS
under nearly dry conditions, whereas for submerged exposure and subsequent TEM anal-
ysis, the water content and media components might increase the size of agglomerates.
In addition, the SMPS measurements only cover the range of 10 to 800 nm and neglect
possible larger agglomerates.

In Table 2, the summary of all measurements regarding TiO2 aerosol characteristics is
listed. The mass concentration is calculated from the number size distribution of the SMPS
measurements. The QCM was operated without electrostatic deposition delivering the
diffusional doses as listed. Image evaluation of exposed TEM grids provides deposited
surface doses for the 17 nm-LA and 117 nm-SA, both corresponding very well with the
QCM data in the case of diffusional deposition (Supplementary Material, Figure S2). The
enhanced doses for electrostatic deposited agglomerates were evaluated for the 17 nm-LA
and 117 nm-SA from the exposed TEM grids. For these two types of agglomerates, the dose
enhancement factors were determined. In case of 117 nm-SA, deposition enhancement
factors of 5 for 400 V, 12 for 800 V, and 13 for 1200 V were calculated. Similarly, in case
of 17 nm-LA deposition enhancement factors of 4 for 400 V, 9 for 800 V, and 9 for 1200 V
are derived. For both types of agglomerates, the relative increase in deposition becomes
less with the increase of the electrostatic field strength. This saturation behavior has been
also shown earlier [40] and occurs when all charged agglomerates are deposited. In the

www.graphpad.com
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TEM images of 17 nm-SA and 117 nm-LA individual particles could not be unambiguously
identified due to a strong background signal, (Supplementary Material Figure S2), the
doses listed in the summary table were calculated on the basis of the QCM data (measured
at 0 V) multiplied by the enhancement factors derived at the different voltages for the
corresponding particle types 17 nm-LA and 117 nm-SA.
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Table 2. Characteristics of TiO2 aerosols and measured or calculated deposited surface doses on cell cultures.

Material 17 nm-SA 17 nm-LA 117 nm-SA 117 nm-LA

Modal value xM [nm] 72 ± 7 144 ± 12 139 ± 10 71 ± 2
Geometric standard deviation σgeo 2.0 ± 0.04 2.0 ± 0.12 2.0 ± 0.1 2.1 ± 0.04

Total number concentration [#/cm3] 4.0 × 105 ± 7.3 × 104 1.1 × 105 ± 3.1 × 104 1.1 × 105 ± 1.5 × 104 4.25 × 105 ± 2.5 × 104

Mass concentration a cm [mg/m3] 1.6 ± 0.58 1.7 ± 0.45 1.9 ± 0.48 2.0 ± 0.47
Diffusional dose (0 V EF)

QCM-signal [µg/cm2] 3.40 ± 0.89 1.62 ± 0.40 1.88 ± 0.62 2.89 ± 0.49

Diffusional dose (0 V EF)
TEM analysis [µg/cm2] n.a. b 1.78 ± 0.73 1.84 ± 0.58 n.a. b

Increased dose (400 V EF)
TEM analysis [µg/cm2] 12.2 c 6.6 ± 0.82 9.15 ± 1.44 14.4 d

a calculated from SMPS data, b n.a. = not analyzed as particles could not be clearly identified by TEM analysis, c calculated on the basis
of QCM data (0 V EF) multiplied with the corresponding factor for enhanced deposition at the different voltages as determined for the
17 nm-LA, d calculated on the basis of QCM data (µg/cm2, 0 V EF) multiplied with the corresponding factor for enhanced deposition at the
different voltages as determined for the 117 nm-SA.

3.3. Cytotoxicity: Effect on Metabolic Activity and LDH Release

After 4 h exposure to aerosolized TiO2 agglomerates at the ALI, we measured the effect
on cell metabolic activity using the WST-1 assay (Figure 3). Significant loss of metabolic
activity (~20%) was observed in cell cultures exposed to smaller agglomerates of 17 nm
sized TiO2 (17 nm-SA) at the highest dose deposited ~30 µg/cm2 (800 and 1200 V) while
their larger counterparts (17 nm-LA) induced significant increase in metabolic activity
(~25%) at the lowest (~1.6 µg/cm2) and at the highest doses (~16 µg/cm2) deposited.
Although an increasing trend in the metabolic activity can be seen (Figure 3C,D) compared
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to their clean air controls, small (117 nm-SA) and large agglomerates (117 nm-LA) of
117 nm sized TiO2 did not affect the metabolic activity significantly even at the highest
doses deposited (~24 and 38 µg/cm2, respectively). Subsequently, we measured the
LDH activity in the supernatant (basal media) of the cells exposed at the ALI (Figure 4).
Compared to clean air exposed controls, a trend of dose dependent increase in LDH activity
was noticed for all TiO2 agglomerates.

3.4. Oxidative Stress and DNA Damage

We measured GSH depletion as an indicator of oxidative stress induction (Figure 5).
We detected significant and similar decrease of GSH for 17 nm-SA at doses ~12 and
30 µg/cm2 while a slight but statistically significant increase in glutathione was noticed for
17 nm-LA only at the highest dose (~16 µg/cm2) deposited. There was a non-significant
increase of glutathione for both agglomerates of 117 nm sized TiO2 (Figure 5C,D). We
assessed the DNA strand breaks as a measure of DNA damage using the alkaline comet
assay (Figure 6). An increasing trend in DNA damage was noticed for 17 nm-SA and 17
nm-LA which, however, was not significant compared to unexposed controls (Figure 6A,B).
Both SA and LA of 17 nm TiO2 NMs induced significant increase in DNA damage only at
mass doses ~24 and 38 µg/cm2, respectively (Figure 6C,D).
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Figure 3. Effect on metabolic activity of HBE cells after 4 h exposure to TiO2 agglomerates at the
ALI. 17 nm-SA (A), 17 nm-LA (B), 117 nm-SA (C), and 117 nm-LA (D). Data are expressed as
means ± SD from three independent experiments with six replicates each. p < 0.05 (*) and p < 0.01
(**) represent significant difference compared to control (One-way ANOVA followed by Dunnett’s
multiple comparison test).
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Figure 4. LDH activity measured in HBE cell supernatants after 4 h exposure to TiO2 agglomerates
at the ALI. 17 nm-SA (A), 17 nm-LA (B), 117 nm-SA (C), and 117 nm-LA (D). Data are expressed
as means ± SD from three independent experiments with six replicates each. p < 0.05 (*) repre-
sent significant difference compared to control (One-way ANOVA followed by Dunnett’s multiple
comparison test).
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Figure 5. Glutathione levels measured in HBE cells after 4 h exposure to TiO2 agglomerates at the ALI.
17 nm-SA (A), 17 nm-LA (B), 117 nm-SA (C), and 117 nm-LA (D). Data are expressed as means ± SD
from two independent experiments with six replicates each. p < 0.05 (*) represent significant difference
compared to control (One-way ANOVA followed by Dunnett’s multiple comparison test).
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Figure 6. DNA damage measured in HBE cells after 4 h exposure to TiO2 agglomerates at the ALI.
17 nm-SA (A), 17 nm-LA (B), 117 nm-SA (C), and 117 nm-LA (D). Data are expressed as means ±
SD from two independent experiments with six replicates each. p < 0.05 (*) represent significant
difference compared to control (One-way ANOVA followed by Dunnett’s multiple comparison test).

3.5. Summary of Biological Responses

Although there is an overlap of the different deposited doses of the various TiO2
agglomerates, for a convenient comparison, we rather considered the significant lowest
observed adverse effect concentration for each endpoint to determine the toxic potency of
agglomerates (Table 3). Increase in LDH activity and decrease in glutathione was noticed
for 17 nm-SA even at low doses (3.4 and 12.2 µg/cm2, respectively), which could possibly
lead to a decrease in metabolic activity at the higher dose (30 µg/cm2), but no such effects
were noted for other agglomerates. These results indicate that the smaller agglomerates of
nano-sized TiO2 are more potent in terms of cytotoxicity and oxidative stress induction
at the ALI. However, when considering DNA damage at the different deposited doses,
agglomerates of non-nano sized TiO2, small agglomerates in particular, appear to be more
potent compared to agglomerates of nano-sized TiO2.

Table 3. Significant lowest observed adverse effect concentration of different TiO2 agglomerates
observed for different biological endpoints at the ALI. “-“ indicates no significant effect could
be detected.

Dispersions

Highest
Dose

Deposited
(µg/cm2)

Decrease in
Metabolic
Activity
(µg/cm2)

Increase in
LDH

Activity
(µg/cm2)

Decrease in
Glutathione

(µg/cm2)

Increase in
DNA

Damage
(µg/cm2)

17nm-SA 30 30 3.4 12.2 -
17nm-LA 16 - 6.5 - -
117nm-SA 24.5 - 9 - 24.5
117nm-LA 38.5 - 35 - 38.5

Table 4 shows significant lowest observed adverse effect concentrations determined
from our previously published study [35] for different endpoints in HBE cells exposed in
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submerged conditions. None of the agglomerates did induce significant cytotoxic effects at
the tested doses but significant decrease in glutathione was noticed for all the agglomerates
only at the dose of 155 µg/cm2. Large agglomerates of 117 nm-SA induced DNA damage
at the dose of 13 µg/cm2 while other agglomerates induced such effects at the dose ≥
26 µg/cm2, indicating that the large agglomerates of non-nano sized TiO2 are more potent
in terms of DNA damage.

Table 4. Significant lowest observed adverse effect concentration of different TiO2 agglomerates
observed for different biological endpoints at the submerged exposure system (from our previously
published study). “-” indicates no significant effect could be detected.

Dispersions
Highest

Dose Tested
(µg/cm2)

Decrease in
Metabolic
Activity
(µg/cm2)

Increase in
LDH

Activity
(µg/cm2)

Decrease in
Glutathione

(µg/cm2)

Increase in
DNA

Damage
(µg/cm2)

17nm-SA 155 - - 155 52
17nm-LA 155 - - 155 26
117nm-SA 155 - - 155 26
117nm-LA 155 - - 155 13

4. Discussion

Poor correlation of conventional in vitro and in vivo nanotoxicological exposure stud-
ies has been urging the development and validation of models that more closely represent
the physiological responses of inhalation exposure. Compared to conventional submerged
in vitro systems, air–liquid interface (ALI) exposures are shown to better mimic the in-
halation exposure as cell cultures grown at the ALI are exposed to aerosolized particles.
However, a deeper understanding of the behavior of NMs in relation to their physico-
chemical characteristics within the ALI system is essential. In this study, we investigated
the influence of TiO2 NM agglomeration on their deposition and cytotoxic potency in the
ALI system. Our results indicated that dose deposition and their cytotoxic potential are
influenced by TiO2 agglomeration, particularly for nano-sized TiO2.

In the current study, we could deposit in the absence of an EF mass doses of
1.6–3.4 µg/cm2, which could be further enhanced in the presence of an EV to
29.8–38.5 µg/cm2. Hence, in contrast to submerged exposure where the deposited dose of
nano- and non-nano-sized NMs varies drastically, at the ALI similar doses independent of
particle size could be deposited as agglomerates. This allows a more direct comparison of
dose–response relationships without the need of additional modelling as required under
submerged conditions. In a previous study, using the same ALI system, 0.17 µg/cm2 and
nearly 1.14 µg/cm2 was deposited at 0 and 1000 V, respectively, for the same exposure
duration using another non-agglomerated nano TiO2 (NM-105) [31]. This indicates that the
type of TiO2 NMs and their agglomeration state influences the dose which is deposited.

We noticed that the smaller agglomerates of nano-sized TiO2 NMs induced signifi-
cant cytotoxicity and oxidative stress at the ALI at low doses (dose < 13 µg/cm2) while
agglomerates of 17 or 117 nm sized TiO2 NMs induced oxidative stress, but no cytotoxicity,
under submerged exposure conditions only at the highest dose tested (~155 µg/cm2). In
the case of DNA damage, small agglomerates of non-nano sized TiO2 NMs appear to be
more potent at the ALI while large agglomerates of non-nano sized TiO2 NMs were found
to be the most potent in submerged exposure conditions. These results indicate that the
degree of agglomeration influences the potency of TiO2 NMs to damage DNA in HBE cells
differentially at the ALI and in submerged conditions.

Here, we found that the small agglomerates of nano-sized TiO2 NMs (agglomerate
size < 100 nm) are more potent in terms of cytotoxicity and oxidative stress induction at
the ALI compared to submerged exposure conditions. Noël et al. exposed rats to 7 mg/m3

of small (31 nm) and large agglomerates (194 nm) of TiO2 NMs for 6h and noticed a
significant increase in LDH activity and 8-isoprostane concentration in BALF, which are
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markers for cytotoxic and oxidative stress effects, respectively [43]. In another study of
the same group, rats were exposed to 20 mg/m3 of small (29, 28 and 35 nm) and large
(156, 128 and 135 nm, respectively) agglomerates obtained from differently sized TiO2 NMs
(primary size of 5, 20, and 50 nm, respectively) for 6 h [44]. The results indicated that,
only the small agglomerates (size < 100 nm) of 5 nm sized TiO2 NMs caused a significant
increase in cytotoxic effects while the small agglomerates (size < 100 nm) of all TiO2 NMs,
irrespective of primary particle size, induced a significant increase in oxidative damage
compared to larger agglomerates (size > 100 nm), which showed no significant effects for
these endpoints. These in vivo results are in agreement with our recent but also previous
findings [31], indicating that ALI exposure systems are more suitable than submerged
exposure assays to recapitulate adverse effects upon inhalation of NMs. Furthermore,
it is of utmost importance to deposit doses in the range of ng to maximally a few ug
of nanomaterials per cm2 cellular surface area to recapitulate exposure of humans upon
inhalation as outlined previously [25].

Recently, the European Food Safety Authority (EFSA) concluded that the use of TiO2 as
a food additive is no longer considered safe, which highlights the importance to investigate
adverse effects of nano-TiO2, genotoxic effects in particular [45]. In our previous study,
we noticed that the small and large agglomerates of both TiO2 NMs used in this study
induced DNA damage in HBE cell cultures exposed at submerged conditions at a dose
range of <50 µg/cm2 (see Table 3) without inducing a significant increase in cytotoxicity
and oxidative stress [35]. In this study, both agglomerates of 117 nm TiO2 NMs induced
DNA damage at the ALI within this dose range also without inducing a significant increase
in cytotoxicity and oxidative stress. Our previous study and others have shown that the
TiO2 NMs were internalized by bronchial epithelial cells in submerged culture [35,46] and
such internalized NMs can induce primary DNA damage by directly interacting with
DNA, without the induction of cytotoxicity or oxidative stress. In the case of ALI, post
exposure incubation for longer periods (such as 24 h) are needed to verify whether the
induced DNA damage causes a difference in cell viability or oxidative stress. In contrast,
small agglomerates of 17 nm sized TiO2 NMs provoked cytotoxicity and oxidative stress
but no DNA damage at the same doses. This indicates that genotoxic effects of TiO2 NMs
are impacted by their agglomeration state, as non-agglomerated TiO2 NMs of a modal
diameter of 47 nm induced DNA damage already at 1.12 µg/cm2 [31]. Moreover, our
results further suggest that the genotoxicity of submicron sized TiO2 particles or their
agglomerates should be also considered in the future.

5. Conclusions

In this study, we investigated the influence of agglomeration on the deposition and
cytotoxic potency of TiO2 NMs at the ALI. Our results indicate that dose deposition and
the cytotoxic potential are influenced by agglomeration, particularly for nano-sized TiO2
particles. This suggests that the agglomeration state of NMs is crucial in the assessment
of pulmonary effects of NMs. Our findings also show that exposure via the ALI induces
different cellular responses compared to exposure in submerged systems. More attention
should be paid to the methods used to prepare the dispersions of TiO2 NMs, specifically
concerning agglomeration, in order to assess the (nano) effects at the air-liquid interface
and to better predict the hazardous potential of NMs upon inhalation.
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