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Abstract
We prove a complex formulation of the real interpolation method, showing that the 
real and complex interpolation methods are not inherently real or complex. Using 
this complex formulation, we prove Stein interpolation for the real interpolation 
method. We apply this theorem to interpolate weighted Lp-spaces and the sectorial-
ity of closed operators with the real interpolation method.
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1  Introduction

In [25] Stein proved a convexity principle for the interpolation of analytic operator 
families on Lp-spaces. An important special case of [25, Theorem 1] states that an 
analytic family of linear operators {T(z)}

z∈�
 which satisfies

for any simple function f and p0, p1, q0, q1 ∈ [1,∞] also satisfies

‖T(j + it)f‖Lpj (S) ≤ Mj ‖f‖Lqj (S), t ∈ ℝ, j = 0, 1

‖T(�)f‖Lp(S) ≤ M1−�
0

M�
1
‖f‖Lq(S),
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where � ∈ (0, 1) , 1
p
=

1−�

p0
+

�

p1
 and 1

q
=

1−�

q0
+

�

q1
 . After the development of the com-

plex interpolation method by Calderón [4], this theorem was generalized to general 
interpolation couples of (quasi)-Banach spaces, see e.g. [6, 8, 28]. In [26] Stein 
interpolation was proved for the so-called �-interpolation method, using the complex 
formulation of the �-interpolation method in [17].

The main goal of this paper is to develop Stein interpolation for the real interpo-
lation method. Since Stein interpolation is inherently tied to complex function the-
ory, this requires a complex formulation of the real interpolation method. In [5, 22] 
Cwikel and Peetre developed a real formulation of the complex interpolation method 
modelled after the Lions–Peetre mean method for real interpolation [20]. Our first 
main result is a complex formulation of the Lions–Peetre mean method. Combined 
with the result of Cwikel and Peetre this shows that the real and complex interpola-
tion methods are not inherently real or complex. These interpolation methods are 
rather living on opposite sides of the Fourier transform. In [19] we push this view-
point further by introducing an abstract framework, containing the real and complex 
interpolation methods and which has both a real and a complex formulation.

To state the complex formulation of the Lions–Peetre mean method, define the 
strip

For a Banach space X let H (�;X) be the space of all continuous functions 
f ∶ � → X which are analytic on � and let H 1(�;X) be the subspace of all 
f ∈ H (�;X) which satisfy

For f ∈ H 1(�;X) we define

For g ∈ L1(ℝ;X) we use the Fourier transform and its inverse

which yields a factor 2� in the Fourier inversion formula. For an interpolation cou-
ple of Banach spaces (X0,X1) , � ∈ (0, 1) and p ∈ [1,∞] we denote the real interpola-
tion spaces by (X0,X1)�,p (see Sect. 2 for definitions). By ≲a,b,… we mean that there is 
a constant C > 0 depending on a, b,… such that inequality holds.

Theorem  1.1  Let (X0,X1) be an interpolation couple of Banach spaces, let 
p0, p1 ∈ [1,∞] and let � ∈ (0, 1) . Set 1

p
=

1−�

p0
+

�

p1
 and define

where the infimum is taken over all f ∈ H 1(�;X0 + X1) with f (�) = x . Then we 
have

𝕊 ∶= {z ∈ ℂ ∶ 0 < Re (z) < 1}.

sup
s∈[0,1]

‖t ↦ f (s + it)‖L1(ℝ;X) < ∞.

fj(t) ∶= f (j + it), t ∈ ℝ, j = 0, 1.

�g(𝜉) ∶= ∫
ℝ

g(t)e−it𝜉dt, ǧ(t) ∶= ∫
ℝ

g(𝜉)eit𝜉d𝜉,

‖x‖(c)
(X0,X1)�,p0,p1

∶= inf max
j=0,1

���f̂j
���Lpj (ℝ;Xj)

, x ∈ X0 + X1,
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Theorem 1.1 is a direct consequence of Theorem 3.2 and the equivalence of 
the real and Lions–Peetre mean methods. Note that it only yields an equivalent 
norm for x ∈ X0 ∩ X1 . One can not directly extend this to all x ∈ (X0,X1)�,p using 
density, since

is not a Banach space. One can circumvent this issue by considering appropriate 
spaces of distributions, which is further explored in [19, Section 4]. In applications 
the norm equivalence for x ∈ X0 ∩ X1 usually suffices, avoiding the additional tech-
nicalities that distribution theory brings.

The idea to use analytic functions for the real interpolation method is not new. 
Implicitly it goes back to the work of Lions and Peetre [20, Section 1.4] (see also 
[21]). An elementary version of Theorem 1.1 was used by Zafran [29] to study 
the spectrum of bounded linear operators on interpolation spaces (cf. [29, Lemma 
2.2] and Proposition  3.1 below). Moreover Cwikel, Kalton, Milman and Roch-
berg [7] build a unified theory for a class of interpolation methods, containing the 
real interpolation method, in which they systematically use analytic functions to 
prove commutator estimates.

Our complex formulation of the real interpolation method in Theorem 1.1 is 
analogous to the formulation of the complex interpolation method, which enables 
us to prove the announced version of Stein interpolation for the real interpolation 
method.

Theorem  1.2  Let (X0,X1) and (Y0, Y1) be interpolation couples of Banach spaces 
and let X̆ be a dense subspace of X0 ∩ X1 . Let p0, p1, q0, q1 ∈ [1,∞] , set

and suppose p < ∞ . Let {T(z)}
z∈�

 be a family of linear operators from X̆ to Y0 + Y1 
such that 

	 (i)	 T(⋅)x ∈ H (�; Y0 + Y1) for all x ∈ X̆.
	 (ii)	 Tjx ∶= T(j + i⋅)x ∈ L∞(ℝ;Yj) for all x ∈ X̆ and 

 for some Mj > 0 and j = 0, 1.
Then T(�) is bounded from (X0,X1)�,p to (Y0, Y1)�,q for any � ∈ (0, 1) with

‖x‖(X0,X1)𝜃,p
≲𝜃 ‖x‖

(c)

(X0,X1)𝜃,p0,p1
, x ∈ X0 + X1,

‖x‖(X0,X1)𝜃,p
≳𝜃 ‖x‖

(c)

(X0,X1)𝜃,p0,p1
, x ∈ X0 ∩ X1.

(X0,X1)
(c)

𝜃,p0,p1
∶=

�
x ∈ X0 + X1 ∶ ‖x‖(c)

(X0,X1)𝜃,p0,p1
< ∞

�

1

p
=

1 − �

p0
+

�

p1
,

1

q
=

1 − �

q0
+

�

q1
,

����

�
Tj
�f
�∨����Lqj (ℝ; Yj)

≤ Mj ‖f‖Lpj (ℝ;Xj), f ∈ C∞
c
(ℝ)⊗ X̆.
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Theorem  1.2 is a direct consequence of Theorem  4.1, the equivalence of the 
real and Lions–Peetre mean methods and the density of X0 ∩ X1 in (X0,X1)�,p when 
p < ∞ . Assumption (ii) in Theorem 1.2 is a Fourier multiplier condition, whereas 
the corresponding assumption in Stein interpolation for the complex interpolation 
method can be seen as a pointwise multiplier condition. This difference is due to 
the previously observed fact that the real and complex interpolation methods live on 
opposite sides of the Fourier transform.

The Fourier multiplier condition  (ii) in Theorem  1.2 can in various situa-
tion be reduced to a simpler condition on m. Indeed, let 1 ≤ p ≤ q ≤ ∞ . For 
m ∶ ℝ → L(X, Y) one has

under either of the following conditions:

•	 Smoothness:  p = q and m ∈ C2(ℝ;L(X, Y)) with for some 𝜀 > 0

since in this case m̌ ∈ L1(ℝ;L(X, Y)) (see [1, Corollary 4.4]). Note that if Tj in 
Theorem  1.2 is of polynomial growth at infinity, the assumed decay is easily 
obtained by multiplying T(z) with e(z−�)2.

•	 Banach space geometry:    X has Fourier type p and Y has Fourier type q′ and 
m ∶ ℝ → L(X, Y) is strongly measurable in the strong operator topology with 
� ↦ ‖m(�)‖L(X,Y) ∈ Lr(ℝ) for 1

r
=

1

p
−

1

q
 , see [24, Proposition 3.9]. One can 

weaken the assumption on m to the weak space Lr,∞(ℝ) under a Fourier type 
p0 > p assumption on X and a Fourier type q0 < q′ assumption on Y, see [24, 
Theorem 3.12]. Further results under type and cotype, rather than Fourier type, 
can also be found in [24].

We will give two applications of Theorem 1.2. Firstly we will deduce interpolation 
for weighted, vector-valued Lp-spaces from the unweighted case in Proposition 5.1, 
for which the Fourier multiplier condition can be checked using Fubini’s theorem. 
Secondly we will interpolate the angle of ( R-)sectorial operators in Proposition 5.2, 
for which the Fourier multiplier condition can be checked using a simpler version of 
the smoothness condition noted above. As a consequence we will improve a result of 
Fackler [10] on the interpolation of ( R-)analytic semigroups.

This article is organized as follows: In Sect. 2 we prove some preliminary approx-
imation results for the Lions–Peetre mean method. In Sect. 3 we will give a complex 
formulation of the Lions–Peetre interpolation method and in Sect. 4 we will prove 
Stein interpolation for the Lions–Peetre interpolation method. Finally, in Sect. 5, we 
will deduce the announced applications.

‖T(𝜃)‖(X0,X1)𝜃,p→(Y0,Y1)𝜃,q
≲𝜃 M

1−𝜃
0

M𝜃
1
.

����

�
m�f

�∨����Lq(ℝ; Y)
≲ ‖f‖Lp(ℝ;X), f ∈ Lp(ℝ;X),

‖‖‖‖
dn

dtn
m(𝜉)

‖‖‖‖L(X,Y)
≲

1

1 + |𝜉|n+𝜀
𝜉 ∈ ℝ, n = 0, 1, 2,
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2 � The Lions–Peetre mean method

For a general background on interpolation theory we refer to [3, 18, 27]. For an 
interpolation couple of Banach spaces (X0,X1) , t > 0 and x ∈ X0 + X1 the K-func-
tional is given by

and for � ∈ (0, 1) and p ∈ [1,∞] the real interpolation space (X0,X1)�,p is given as 
all x ∈ X0 + X1 such that

In [20] Lions and Peetre introduced their mean methods. For p0, p1 ∈ [1,∞] they 
defined (X0,X1)�,p0,p1 as the space of all x ∈ X0 + X1 such that

where the infimum is taken over all strongly measurable f ∶ ℝ → X0 ∩ X1 with 
∫
ℝ
f (t)dt = x . Note that ∫

ℝ
f (t)dt converges as a Bochner integral in X0 + X1 by the 

Lpj-bounds. Lions and Peetre showed that

isomorphically when 1
p
=

1−�

p0
+

�

p1
 , so the Lions–Peetre mean method is a reformu-

lation of the real interpolation method.
In the upcoming sections we will need to be able to restrict to smooth functions 

in the definition of the Lions–Peetre mean method, for which we will prove the fol-
lowing lemma. For a Banach space X we denote the X-valued Schwartz functions by 
S(ℝ;X).

Lemma 2.1  Let (X0,X1) be an interpolation couple of Banach spaces, let 
p0, p1 ∈ [1,∞] and let � ∈ (0, 1) . 

	 (i)	 For x ∈ X0 + X1 we have 

 where the infimum is taken over f ∈ S(ℝ;X0 + X1) with ∫
ℝ
f (t)dt = x.

	 (ii)	 Let X̆ be a dense subset of X0 ∩ X1 . For x ∈ X̆ we have 

 where the infimum is taken over f ∈ C∞
c
(ℝ)⊗ X̆ with ∫

ℝ
f (t)dt = x.

K
(
t, x,X0,X1

)
= inf

{
‖‖x0‖‖X0

+ t‖‖x1‖‖X1
∶ x = x0 + x1

}

‖x‖(X0 ,X1)𝜃,p
∶=

���t ↦ t−𝜃K
�
t, x,X0,X1

����Lp
�
ℝ,

dt

t

� < ∞.

‖x‖(X0 ,X1)𝜃,p0,p1
∶= infmax

j=0,1

���t ↦ et(j−𝜃)f (t)
���Lpj(ℝ;Xj)

< ∞,

(
X0, X1

)
�,p

=

(
X0,X1

)
�,p0,p1

‖x‖(X0,X1)�,p0,p1
≂ infmax

j=0,1

���t ↦ et(j−�)f (t)
���Lpj(ℝ;Xj)

,

‖x‖(X0,X1)�,p0,p1
≂� infmax

j=0,1

���t ↦ et(j−�)f (t)
���Lpj (ℝ;Xj)

,
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Proof  The inequality “ ≤ ” follows in both cases directly from the definition of 
the Lions–Peetre mean method. Take x ∈ (X0,X1)�,p0,p1 of norm one and let 
f ∶ ℝ → X0 ∩ X1 be strongly measurable such that ∫

ℝ
f (t)dt = x and

For (i) define

and let � ∈ C∞
c
(ℝ) with ∫

ℝ
�(t)dt = 1 , supp𝜑 ⊆ [0, 1] and ‖�‖L∞(ℝ) ≤ 2 . Setting

we have

and ∫
ℝ
f̃ (t)dt = x . Moreover

so f̃ ∈ S(ℝ;X0 + X1) , which proves (i).
For  (ii) assume additionally that we have x ∈ X̆ . Take n ∈ ℕ such that 

‖x‖X0∩X1
≤ n and define

By Hölder’s inequality we have

so in particular y+ ∈ X0 ∩ X1 . Therefore, g+ ∶= � [n−1,n] ⊗ y+ satisfies

Analogously, g− ∶= � [−n,−n+1] ⊗ ∫ −n

−∞
f (t)dt satisfies the same estimate, so defining 

g ∶= f � [−n,n] + g+ + g− we have ∫
ℝ
g(t)dt = x and

max
j=0,1

‖‖‖t ↦ et(j−�)f (t)
‖‖‖Lpj(ℝ;Xj)

≤ 2.

xk ∶= ∫
k+1

k

f (t)dt, k ∈ ℤ

�f (t) ∶=
∑

k∈ℤ

xk ⊗𝜑(t − k), t ∈ ℝ,

max
j=0,1

‖‖‖t ↦ et(j−𝜃)�f (t)
‖‖‖Lpj (ℝ;Xj)

≲ max
j=0,1

‖‖‖t ↦ et(j−𝜃)f (t)
‖‖‖Lpj (ℝ;Xj)

≤ 2

‖‖xk‖‖X0+X1
≲ min {ek𝜃 , e−k(1−𝜃)}, k ∈ ℤ,

y+ ∶= ∫
∞

n

f (t)dt = x − ∫
n

−∞

f (t)dt

��y+��X0
≤ ‖x‖X0

+ �
n

−∞

‖f (t)‖X0
dt ≤ n +

2

(�p�
0
)1∕p

�
0

⋅ en� ≤ n +
2

�
⋅ en�

��y+��X1
≤ �

∞

n

‖f (t)‖X1
dt ≤ 1

((1 − �)p�
1
)1∕p

�
1

⋅ e−n(1−�) ≤ 1

1 − �
⋅ e−n(1−�).

max
j=0,1

‖‖‖t ↦ et(j−𝜃)g+(t)
‖‖‖Lpj (ℝ;Xj)

≲𝜃 1.

max
j=0,1

‖‖‖t ↦ et(j−𝜃)g(t)
‖‖‖Lpj (ℝ;Xj)

≲𝜃 1.
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Similar to the proof of (i) define

and set

As before we have

Let (zk)n−1k=−n
⊆ X̆ be such that ‖‖yk − zk

‖‖X0∩X1
≤ e−n and define

with � as before. Then we have

so h ∶= �h + 𝜑⊗ z is a function in C∞
c
(ℝ)⊗ X̆ and ∫

ℝ
h(t)dt = x . Moreover, since 

‖‖‖g̃ − h̃
‖‖‖L∞(ℝ;X0∩X1)

≤ 2e−n and ‖z‖X0∩X1
≤ 1 by construction, we have

which finishes the proof. 	�  ◻

3 � A complex formulation of the Lion–Peetre mean method

We now turn to the complex formulation of the Lions–Peetre mean method, and 
thus of the real interpolation method. Let X be a Banach space. In addition to the 
spaces H (�;X) and H 1(�;X) defined in the introduction, we will use spaces of 
holomorphic functions which are not necessarily continuous on the boundary. Let 
H (�;X) be the space of all analytic functions f ∶ � → X and let H 1(�;X) be the 
subspace of all f ∈ H (�;X) which satisfy

For f ∈ H (�;X) we define

yk ∶= �
k+1

k

g(t)dt, −n ≤ k ≤ n − 1

�g(t) ∶=

n−1∑

k=−n

yk ⊗𝜑(t − k), t ∈ ℝ.

‖‖‖t ↦ et(j−𝜃)�g(t)
‖‖‖Lpj (ℝ;Xj)

≲ max
j=0,1

‖‖‖t ↦ et(j−𝜃)g(t)
‖‖‖Lpj (ℝ;Xj)

≲𝜃 1.

�h(t) ∶=

n−1∑

k=−n

zk ⊗𝜑(t − k), t ∈ ℝ

z ∶=

n−1∑

k=−n

yk − zk = x −

n−1∑

k=−n

zk ∈ X̆,

max
j=0,1

‖‖‖t ↦ et(j−𝜃)h(t)
‖‖‖Lpj (ℝ;Xj)

≲𝜃 1

sup
s∈(0,1)

‖t ↦ f (s + it)‖L1(ℝ;X) < ∞.
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and for f ∈ H 1(�;X) the limits fj ∶= lims→j fs exist in L1(ℝ;X) (see e.g. [2, 23]). 
Note that these limits coincide with the pointwise limit if f ∈ H 1(�;X).

Our first complex formulation is a simple reformulation of the Lions-Peetre 
mean method using the Fourier transform of f�.

Proposition 3.1  Let (X0,X1) be an interpolation couple of Banach spaces, let 
p0, p1 ∈ [1,∞] and let � ∈ (0, 1) . For x ∈ X0 + X1 we have

where the infimum is taken over all f ∈ H (�;X0 + X1) with f (�) = x and 
f� ∈ L1(ℝ;X0 + X1).

Proof  First let x ∈ X0 + X1 be such that there is an f ∈ H (�;X0 + X1) with 
f (�) = x , f� ∈ L1(ℝ;X0 + X1) and

Since f̂� ∈ L1(ℝ;X0 + X1) by Hölder’s inequality, we have by Fourier inversion (see 
[14, Proposition 2.4.5])

with convergence in X0 + X1 . Thus using g =
f̂�

2�
 in the definition of the norm of 

(X0,X1)�,p0,p1 we have

Taking the infimum over all such f yields the inequality “ ≲”.
Conversely take x ∈ (X0,X1)�,p0,p1 and let f ∈ S(ℝ;X0 + X1) be such that 

∫
ℝ
f (t)dt = x and

Then, using Hölder’s inequality, we note that

is absolutely convergent in X0 + X1 for any z ∈ � and thus g ∈ H (�;X0 + X1) . 
Moreover

fs(t) ∶= f (s + it), t ∈ ℝ, s ∈ (0, 1)

‖x‖(X0 ,X1)�,p0,p1
≂ inf max

j=0,1

���t ↦ et(j−�) f̂�(t)
���Lpj (ℝ;Xj)

,

t ↦ et(j−�) f̂�(t) ∈ Lpj (ℝ;Xj), j = 0, 1.

1

2� ∫
ℝ

f̂�(t)dt = f�(0) = x

‖x‖(X0,X1)�,p0,p1
≤ 1

2�
max
j=0,1

���t ↦ et(j−�) f̂�(t)
���Lpj (ℝ;Xj)

.

t ↦ et(j−�)f (t) ∈ Lpj (ℝ;Xj), j = 0, 1.

g(z) ∶= ∫
ℝ

f (t)e(z−�)tdt, z ∈ 𝕊

g𝜃 = 2𝜋 f̌ ∈ S(ℝ;X0 + X1) ⊆ L1(ℝ;X0 + X1)
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and g(�) = x . Taking the infimum over all such f yields the inequality “ ≳ ” by 
Lemma 2.1(i). 	�  ◻

To reformulate Proposition  3.1 further in the spirit of the complex interpo-
lation method, we will use that t ↦ et(j−�) f̂�(t) is independent of � ∈ (0, 1) for 
f ∈ H 1(�;X0 + X1) . Combined with the approximation in Lemma  2.1(ii) this 
yields our complex formulation of the Lions–Peetre mean method.

Theorem  3.2  Let (X0,X1) be an interpolation couple of Banach spaces, let 
p0, p1 ∈ [1,∞] and let � ∈ (0, 1) . We have

where the infimum is taken over all f ∈ H 1(�;X0 + X1) with f (�) = x . Further-
more, if X̆ is a dense subspace of X0 ∩ X1 , we have

where the infimum is taken over all f ∈ H 1(�;X0 + X1) such that f (�) = x and 
(s, t) ↦ �fs(t) ∈ C∞

c
([0, 1] ×ℝ)⊗ X̆.

Proof  Let x ∈ X0 + X1 and take f ∈ H 1(�;X0 + X1) such that f (�) = x . For 
s ∈ (0, 1) and n ∈ ℕ define

and note that for 0 < s1 < s2 < 1 we have by the Cauchy–Goursat theorem

By [15, Lemma H.1.4] the right hand-side tends to zero for n → ∞ , so

Using the L1-convergence of fs → fj for j = 0, 1 , we deduce

By Proposition 3.1 (and an inspection of the proof for the constant) this implies

so taking the infimum over all such f yields the first claim.
For the second claim take x ∈ X̆ and let g ∈ C∞

c
(ℝ)⊗ X̆ with ∫

ℝ
g(t)dt = x . For

‖x‖(X0,X1)�,p0,p1
≤ 1

2�
inf max

j=0,1

��� f̂j
���Lpj (ℝ;Xj)

, x ∈ X0 + X1,

‖x‖(X0,X1)𝜃,p0,p1
≳𝜃 inf max

j=0,1

���
�fj
���Lpj (ℝ;Xj)

, x ∈ X̆,

gs,n(�) ∶= ∫
n

−n

f (s + it)e−(s+it)�dt, � ∈ ℝ

gs1,n(�) − gs2,n(�) =
∑

�=±1

� ∫
s2

s1

f (s + i�n)e−(s+i�n)�ds, � ∈ ℝ.

e−s1� f̂s1(�) = e−s2� f̂s2(�), � ∈ ℝ.

f̂j(�) = e(j−�)� f̂�(�), � ∈ ℝ.

‖x‖(X0,X1)�,p0,p1
≤ 1

2�
max
j=0,1

���f̂j
���Lpj (ℝ;Xj)

,
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we have f ∈ H 1(�;X0 + X1) , f (�) = x and

Moreover f̂j(t) = 2� et(j−�)g(t) for t ∈ ℝ by Fourier inversion (see [14, Proposition 
2.4.5]), so

Taking the infimum over all such f proves the second claim by Lemma 2.1(ii). 	�  ◻

Remark 3.3  As discussed in the introduction, Theorem  3.2 can be extended to a 
norm equivalence for all x ∈ (X0,X1)�,p0,p1 using appropriate spaces of distributions, 
which will be further explored in [19].

4 � Stein interpolation

Using the complex formulation from the previous section we can now prove Stein 
interpolation for the Lions–Peetre method, and thus for the real interpolation 
method.

Theorem  4.1  Let (X0,X1) and (Y0, Y1) be interpolation couples of Banach spaces 
and let X̆ be a dense subspace of X0 ∩ X1 . Let p0, p1, q0, q1 ∈ [1,∞] . Let {T(z)}

z∈�
 

be a family of linear operators from X̆ to Y0 + Y1 such that 

	 (i)	 T(⋅)x ∈ H (�;Y0 + Y1) for all x ∈ X̆.
	 (ii)	 Tjx ∶= T(j + i⋅)x ∈ L∞(ℝ;Yj) for all x ∈ X̆ and 

 for some Mj > 0 and j = 0, 1.
Then we have T(𝜃)X̆ ⊆ (Y0, Y1)𝜃,q0,q1 for any � ∈ (0, 1) with

Proof  Let x ∈ X̆ . By Theorem  3.2 we can find an f ∈ H 1(�;X0 + X1) such that 
f (�) = x , (s, t) ↦ �fs(t) ∈ C∞

c
([0, 1] ×ℝ)⊗ X̆ and

f (z) ∶= ∫
ℝ

e�(z−�)g(�)d�, z ∈ 𝕊

(s, t) ↦ �fs(t) ∈ C∞
c
([0, 1] ×ℝ)⊗ X̆.

max
j=0,1

‖‖‖f̂j
‖‖‖Lpj(ℝ;Xj)

= 2� max
j=0,1

‖‖‖t ↦ et(j−�)g(t)
‖‖‖Lpj (ℝ;Xj)

.

���
�
Tj�g

�∨���Lqj(ℝ; Yj)
≤ Mj ‖g‖Lpj (ℝ;Xj), g ∈ C∞

c
(ℝ)⊗ X̆.

‖T(𝜃)x‖(Y0,Y1)𝜃,q0,q1 ≲𝜃 M
1−𝜃
0

M𝜃
1
‖x‖(X0,X1)𝜃,p0,p1

, x ∈ X̆.

max
j=0,1

���
�fj
���Lpj (ℝ;Xj)

≲𝜃 ‖x‖(X0,X1)𝜃,p0,p1
.
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Note that f ∈ H 1(�)⊗ X̆ , so h(z) ∶=
(

M0

M1

)z−�

T(z)f (z) is well-defined for z ∈ � . 
Then h(�) = T(�)x and by assumptions  (i),  (ii) and Hadamard’s three lines lemma 
we have h ∈ H 1(�;Y0 + Y1) . Therefore, using assumption  (ii) with g =

1

2𝜋
f̌j and 

Theorem 3.2, we have

which finishes the proof. 	�  ◻

Remark 4.2 

	 (i)	 When (p0, p1) ≠ (∞,∞) in Theorem 4.1, we can extend T(�) to a bounded oper-
ator from (X0,X1)�,p0,p1 to (Y0, Y1)�,q0,q1 by density. For the case (p0, p1) = (∞,∞) 
one could first extend the complex formulation to any x ∈ (X0,X1)�,p0,p1 (see 
also Remark 3.3) to avoid a density argument.

	 (ii)	 When pj = qj , the boundedness assumption on Tj(⋅)x in Theorem 4.1 follows 
from the assumption that Tj is an Lpj (ℝ;Xj)-Fourier multiplier for j = 0, 1 (see 
[14, Theorem 5.3.15]). When pj ≠ qj one can have Fourier multipliers which 
are not bounded, see e.g. [13, 24]. One can relax the boundedness assumption 
on Tj(⋅)x in Theorem 4.1, as long as one ensures that h ∈ H 1(�; Y0 + Y1) and 
hs → hj for s → j in L1(ℝ;Y0 + Y1) for j = 0, 1.

	 (iii)	 The implicit constant in the conclusion of Theorem 4.1 is an artefact of the 
approximation in Lemma 2.1. One could circumvent this approximation by 
going to a suitable class of distributions rather than functions, which we leave 
to the interested reader.

5 � Applications

As a first, simple application of Theorem 4.1, we will deduce the interpolation of 
weighted Lp-spaces under the real interpolation method from the unweighted case. 
For complex interpolation this argument is standard and for the �-interpolation 
method this can be found in [26, Theorem 3.2], but for real interpolation one usually 
employs different arguments (see e.g. [18, Theorem IV.2.11]).

Let X be a Banach space and let (S,�) be a measure space. A measurable function 
w ∶ S → (0,∞) is called a weight and for p ∈ [1,∞) we define Lpw(S;X) as the space 
of all f ∈ L0(S;X) such that fw ∈ Lp(S;X) with norm

��T𝜃x��(Y0,Y1)𝜃,q0,q1
≤ max

j=0,1

���
�hj
���Lqj (ℝ; Yj)

= max
j=0,1

�
M0

M1

�j−𝜃
���
�Tjfj

���Lqj (ℝ; Yj)

≤ 1

2𝜋
max
j=0,1

�
M0

M1

�j−𝜃

Mj
���
�fj
���Lpj(ℝ;Xj)

≲𝜃 M
1−𝜃
0

M𝜃
1
‖x‖(X0,X1)𝜃,p0,p1

,
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Proposition 5.1  Let (X0,X1) be an interpolation couple of Banach spaces, let (S,�) 
be a measure space and let � ∈ (0, 1) . Take p0, p1 ∈ [1,∞] with (p0, p1) ≠ (∞,∞) 
and let w0,w1 ∶ S → (0,∞) be weights. Set 1

p
=

1−�

p0
+

�

p1
 and let w = w1−�

0
w�
1
 . Then 

we have

Proof  Set X̆ ∶= L
p0
w0
(S;X0) ∩ L

p1
w1
(S;X1) and for z ∈ � define

by

Then T(⋅)x ∈ H (�;Lp0 (S;X0) + Lp1 (S;X1)) is bounded for all x ∈ X̆ . Using Fubini’s 
theorem, we have for f ∈ C∞

c
(ℝ)⊗ X̆

for j = 0, 1 . Therefore, by Theorem 1.2,

is bounded. Since it is clearly injective and

by [14, Theorem 2.2.10], this proves the embedding ” ↪ ”. The converse embedding 
is proven similarly. 	�  ◻

In Proposition  5.1 we were able to check the Fourier multiplier assumption in 
Theorem 1.2 using Fubini’s theorem. In general, one needs to use a Fourier mul-
tiplier theorem to check this assumption. One could for example use the operator-
valued Mihlin multiplier theorem (see [14, Theorem 5.3.18]), but this leads to unde-
sirable restrictions on the involved Banach spaces in applications. Fortunately, we 
can often use the flexibility in our choice for {T(z)}

z∈�
 to simplify the Fourier multi-

plier assumption in Theorem 4.1 considerably for smooth Tj . As an example we will 
interpolate the angle of ( R-)sectoriality of a ( R-)sectorial operator using the real 
interpolation method, which for the complex interpolation method was done in [16, 

‖f‖Lpw(S;X) ∶= ‖fw‖Lp(S;X).

(
L
p0
w0

(
S;X0

)
, Lp1

w1

(
S;X1

))

�,p
= Lp

w

(
S;
(
X0,X1

)
�,p

)
.

T(z) ∶ X̆ → Lp0 (S;X0) + Lp1
(
S;X1

)

T(z)x(s) ∶= w0(s)
1−zw1(s)

z
⋅ x(s), s ∈ S.

���(Tjf̂ )
∨���Lpj (ℝ; Lpj (S;Xj))

=
�����
(s, t) ↦ f

�
t − log

�
w0(s)

w1(s)

�
, s

������Lpjwj(S; Lpj (ℝ;Xj))

= ‖f‖
L
pj

�
ℝ; L

pj
wj
(S;Xj)

�

T(�) ∶
(
L
p0
w0
(S;X0), L

p1
w1
(S;X1)

)

�,p
→

(
Lp0 (S;X0), L

p1
(
S;X1

))
�,p

(
Lp0 (S;X0), L

p1 (S;X1)
)
�,p

= Lp(S; (X0,X1)�,p)
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Corollary 3.9]. This result will allow us to improve a result of Fackler [10] on the 
extrapolation of the analyticity of a semigroup on the real interpolation scale.

Let X be a Banach space, let A be a closed operator on X and for � ∈ (0,∞) we 
define the sector

We say that A is sectorial if there is a � ∈ (0,�) such that

and we denote the infimum over all such � by �(A) . We say that A is R-sectorial if 
there is a � ∈ (0,�) such that

where R(Γ) denotes the R-bound of an operator family Γ ⊆ L(X) (see [15, Chap-
ter 8]. We denote the infimum over all such � by �R(A) . For an introduction to ( R-)
sectorial operators we refer to [15, Chapter 10] and the references therein.

Proposition 5.2  Let (X0,X1) be an interpolation couple of Banach spaces and 
p ∈ [1,∞) . Let A� be a closed operator on (X0,X1)�,p for all � ∈ [0, 1] such that the 
following consistency assumption is satisfied:

For � ∈ (0, 1) we have: 

	 (i)	 If A0 and A1 are sectorial, then A� is sectorial with 

	 (ii)	 If X0 and X1 have nontrivial type and A0 and A1 are R-sectorial, then A� is R
-sectorial with 

Proof  Take 𝜔(Aj) < 𝜎j < 𝜋 for j = 0, 1 and let � ∈ (0, 1) . Fix s > 0 and for z ∈ � 
define T(z) ∶ X0 ∩ X1 → X0 + X1 by

By the consistency assumption and the analyticity of zR(z,Aj) on Xj for j = 0, 1 we 
have T(⋅)x ∈ H (�;X0 + X1) for any x ∈ X0 ∩ X1 . Define

Σ𝜎 ∶= {z ∈ ℂ ⧵ {0} ∶ |arg(z)| < 𝜎}.

sup
z∈ℂ⧵Σ𝜎

‖zR(z,A)‖ < ∞,

R({zR(z,A) ∶ z ∈ ℂ ⧵ Σ𝜎}) < ∞,

R
(
z,A�

)
x = R

(
z,A��

)
x, x ∈ X0 ∩ X1, �, �

� ∈ [0, 1], z ∈ �
(
A�

)
∩ �

(
A��

)
.

�(A�) ≤ (1 − �)�(A0) + ��(A1).

�R

(
A�

) ≤ (1 − �)�R(A0) + ��R(A1).

T(z)x ∶= e(z−�)
2

⋅ sei(�0+(�1−�0)z)R(sei(�0+(�1−�0)z),A�)x.

fj(t) ∶= sei(�0+(�1−�0)(j+it)), t ∈ ℝ, j = 0, 1.
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Then we have for n ∈ {0, 1, 2} and t ∈ ℝ

with Cj > 0 independent of s, t, �0, �1 . Therefore, setting

we obtain

Defining kj ∶= Ťj , we have

We conclude that Tj, kj ∈ L1(ℝ;L(Xj)) , so we have by Fourier inversion and Young’s 
inequality for f ∈ S(ℝ;Xj)

Thus, using the consistency assumption, we conclude that {T(z)}
z∈�

 satisfies the 
assumptions of Theorem 1.2, so we deduce for x ∈ X0 ∩ X1 that

An analogous statement holds when �j is replaced by −�j , so we conclude that A� is 
sectorial with

Taking �j abitrary close to �(Aj) for j = 0, 1 finishes the proof of (i).
For  (ii) let X be a Banach space and let (�n)∞n=1 be a sequence of independent 

Rademacher variables on a probability space (Ω,ℙ) . Let �(X) be the Banach space of 
sequences (xk)∞k=1 such that 

∑∞

k=1
�kxk converges in L2(Ω;X) , endowed with the norm

‖‖‖‖
dn

dtn
fj(t)R(fj(t),Aj)

‖‖‖‖L(Xj)

≤ |�1 − �0|n
n∑

k=0

‖‖‖fj(t)
kR(fj(t),Aj)

k‖‖‖L(Xj)

≤ Cj

Tj(t) ∶= e(j+it−�)
2

fj(t)R(fj(t),Aj), t ∈ ℝ,

‖‖‖‖
t ↦

dn

dtn
Tj(t)

‖‖‖‖L1(ℝ;L(Xj))
≲ Cj

n∑

k=0
∫
ℝ

|t|ke(j−𝜃)2−t2dt ≲ Cj.

‖‖‖kj
‖‖‖L1(ℝ;L(Xj))

≤ ‖‖‖‖
t ↦

1

1 + t2

‖‖‖‖L1(ℝ)
‖‖‖t ↦

(
1 + t2

)
kj(t)

‖‖‖L∞(ℝ;L(Xj))

≲
‖‖‖Tj

‖‖‖L1(ℝ;L(Xj))
+
‖‖‖‖
t ↦

d2

dt2
Tj(t)

‖‖‖‖L1(ℝ;L(Xj))
≲ Cj.

����

�
Tj
�f
�∨����Lp(ℝ;Xj)

=
���kj ∗ f

���Lp(ℝ;Xj)
≲ Cj ‖f‖Lp(ℝ;Xj).

���se
(1−𝜃)𝜎0+𝜃𝜎1)R(se(1−𝜃)𝜎0+𝜃𝜎1 ,A𝜃)

���(X0,X1)𝜃,p→(X0,X1)𝜃,p

= ‖T(𝜃)‖(X0,X1)𝜃,p→(X0,X1)𝜃,p
≲𝜃 C

1−𝜃
0

C𝜃
1
.

�
(
A�

) ≤ (1 − �)�0 + ��1.
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We note that a closed operator B on X is R-sectorial if and only if

defines a sectorial operator on �(X) . Moreover we have �R(B) = �(B̃). There-
fore,  (ii) follows from  (i) and the isomorphism

see [15, Proposition 6.3.1, Theorems 7.4.16 and 7.4.23]. 	�  ◻

Remark 5.3  In [12] Haak, Haase and Kunstmann interpolate the R-sectoriality of A 
on X0 with the R-boundedness of {R(𝜆,A), 𝜆 > 0} on X1 . Using Stein interpolation 
for the complex interpolation method on the analytic operator family �zR(�,A) , one 
obtains the R-boundedness of

on [X0,X1]� . The conditions for Stein interpolation for the complex interpolation 
method, which are pointwise multiplier conditions, are easily checked using rand-
omization (see [15, Proposition 6.1.11]). However, when one tries to apply Theo-
rem 1.2 for the real interpolation method, the Fourier multiplier conditions turn �it 
into a translation operator. It is well known that the family of translation operators 
is not R-bounded on Lp(ℝ;X) (see [15, Proposition 8.1.16]) and thus the argument 
fails for real interpolation. This provides some intuition on why the counterexample 
provided in [12, Example 6.13] works.

Let (S(t))t≥0 be a semigroup of bounded operators on X. We say that (S(t))t≥0 is a 
C0-semigroup if

We define the generator of a C0-semigroup (S(t))t≥0 as the closed operator 
Ax ∶= limt↓0

S(t)x−x

t
 with as domain the set of all x ∈ X for which this limit exists.

We say that(S(t))t≥0 is analytic if for some � ∈ (0,
�

2
) the function t ↦ S(t)x 

extends analytically to Σ� for all x ∈ X and call supremum over such � the angle 
of analyticity. We say that (S(t))t≥0 is R-analytic if it is analytic and there is a 
�� ∈ (0, �] such that

‖‖(xn)
∞
k=1

‖‖�(X) ∶=
‖‖‖‖‖

∞∑

k=1

�kxk

‖‖‖‖‖L2(Ω;X)
.

B̃(xk)
∞
k=1

∶= (Bxk)
∞
k=1

D(B̃) ∶=
{
(xk)

∞
k=1

∈ �(D(B))
}

(
�
(
X0

)
, �
(
X1

))
�,p

= �
((

X0,X1

)
�,p

)
,

{𝜆1−𝜃R(𝜆,A), 𝜆 > 0}

lim
t↓0

‖S(t)x − x‖X = 0, x ∈ X.

R
(
{T(z) ∶ z ∈ Σ𝜎 , |z| ≤ 1}

)
< ∞
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and we call the supremum over such � the angle of R-analyticity. We say that 
(S(t))t≥0 is a bounded ( R-)analytic semigroup if it is ( R-)analytic and {S(z) ∶ z ∈ Σ�} 
is ( R-)bounded for all � smaller than the angle of ( R -) analyticity.

It is well-known that a densely defined ( R-)sectorial operator A on a Banach 
space X with 𝜔(A) < 𝜋

2
 generates a bounded ( R-)analytic C0-semigroup (e−tA)t≥0 

of angle �
2
− �(A) and vice versa that the negative generator of a bounded ( R-)

analytic C0-semigroup is a densely defined ( R-)sectorial operator (see [9, The-
orem  4.6] and [15, Proposition 10.3.3]). Therefore, Proposition  5.2 yields new 
information on ( R-)analytic semigroups on the real interpolation scale. In par-
ticular, we can quantify the angle of ( R-)analyticity in a result of Fackler [10] 
(see also [11]).

Corollary 5.4  Let (X0,X1) be an interpolation couple of Banach spaces and let 
(S(t))t≥0 be a semigroup on X0 + X1 which leaves both X1 and X2 invariant. Fix 
� ∈ (0, 1) and p ∈ [1,∞) . 

	 (i)	 If (S(t))t≥0 is an analytic C0-semigroup of angle � ∈ (0,
�

2
) on X0 and 

{S(t) ∶ t ∈ (0, 1)} is uniformly bounded on X1 , then (S(t))t≥0 is an analytic C0

-semigroup of angle at least (1 − �)� on (X0,X1)�,p.
	 (ii)	 If X0 and X1 have nontrivial type, (S(t))t≥0 is a R-analytic C0-semigroup of 

angle � ∈ (0,
�

2
) on X0 and {S(t) ∶ t ∈ (0, 1)} is R-bounded on X1 , then (S(t))t≥0 

is an R-analytic C0-semigroup of angle at least (1 − �)� on (X0,X1)�,p.

Proof  Take � ∈ (�, 1) and set Y1 ∶= (X0,X1)�,p . By [10, Theorem 3.3] we know that 
(S(t))t≥0 is an analytic C0-semigroup on Y1 . Let 𝜔 > 0 be such that S̃(t) ∶= e−�tS(t) 
is a bounded analytic C0-semigroup on both X0 and Y1 and note that the angles of 
analyticity of (S(t))t≥0 and (S̃(t))t≥0 on both X0 and Y1 are equal. Let A0 and A1 be the 
generators of (S̃(t))t≥0 on X0 and Y1 respectively, which by [9, Theorem 4.6] are sec-
torial operators with

For �� ∈ (0, 1) we note that (S̃(t))t≥0 is a C0-semigroup on (X0, Y1)��,p and we denote 
its generator by A�′ . Then (A�� )��∈[0,1] satisfies the assumptions of Proposition 5.2, so 
we obtain that A�′ is sectorial on (X0, Y1)��,p with

and thus by [9, Theorem 4.6] we know that (S̃(t))t≥0 is a bounded analytic C0-semi-
group on (X0, Y1)��,p of angle at least (1 − ��)� . It follows that (S(t))t≥0 is an analytic 
C0-semigroup on (X0, Y1)��,p of angle at least (1 − ��)� and thus, using reiteration for 
real interpolation [3, Theorem 3.5.3] and taking � arbitrary close to 1,  (i) follows. 
Moreover (ii) follows from (i) by a similar argument as the one we used for Proposi-
tion 5.2(ii). 	�  ◻

�
(
Aj

) ≤ �

2
− (1 − j)�, j = 0, 1.

�
(
A��

) ≤ �

2
− (1 − ��)�
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