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Abstract 

 

This report discusses the phenomenological approach proposed to estimate the 

contribution of direct processes to the emission of α-particles in nucleon induced 

reactions. Using available measured energy distributions, the values of the 

parameters required for the calculations are obtained. The analysis was performed 

using the TALYS code. 
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1. Introduction 

 

The modelling of α-particle energy distributions in nucleon induced reactions at 

intermediate primary energies remains a challenge, and it is too early to talk about a 

final solution. With caution, one can only say about the relative success of modeling 

the equilibrium and pre-equilibrium α-emission. The calculation or estimation of the 

contribution of direct processes in α-particle spectra is a special task that cannot be 

easy solved for most nuclei because of the lack of experimental data and complexity 

of theoretical analysis. 

 A paragon for calculating the spectra of α-particles produced in direct 

interactions is the works of Gadioli et al. [1-3], which combine the application of a 

rigorous theoretical approach with the use of detailed measured α-spectra. For most 

targets, the use of such a method, for obvious reasons, seems difficult. 

 In this work the question is raised whether it is possible to describe the hard 

part of the α-particle spectra using a less rigorous approach than that used in 

Refs.[1-3], but which, to a certain extent, would give acceptable or close results. 

Such a method would have to be more suitable for mass calculations and for 

improving the quality of predictions of existing models and codes. With a certain 

degree of caution this question is answered positively. 

 The phenomenological approach discussed and proposed in this work does not 

claim to be rigorous, but its use provides some advantages and increases, to a 

certain extent, the agreement between measured and predicted data.  

 The proposed method of calculation is used within the TALYS code [4,5] and, 

naturally, will profit from a combination of models already implemented in the code. 

 The approach is discussed in Section 2. Section 3 presents a comparison of the 

calculated and measured α-particle spectra and the discussion. 

 

 

2. Brief description of method of calculation 

 

The TALYS code implements the Kalbach model [6] for calculating the pre-

equilibrium emission spectra of complex particles. The use of the model does not 

imply an explicit consideration of direct processes. The present work shows that the 

situation can be improved to some extent. 
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 The simplest attempt to describe direct processes in some way without 

resorting to a rigorous theory is to use the approach from Refs.[7,8]. In spite of its 

formulation for a hybrid model [9], and as a possible phenomenological solution, it 

does not lead to contradictions when using the exciton model [10] to simulate the 

whole pre-equilibrium emission. Using results of Refs.[7,8] approach, the contribution 

of direct processes to α-particle emission can be estimated as follows 

 
𝑑𝜎𝐷

𝑑𝜀𝛼
 ~ 𝛽1 𝑒𝑥𝑝(−𝛽2(𝑈 − 𝛽3)2) 

𝜆𝛼
𝑒 (𝜀𝛼)

𝜆𝛼
𝑒 (𝜀𝛼) + 𝜆𝛼

+(𝜀𝛼)
 𝑔𝛼, (1) 

where 𝜆𝛼
𝑒 (𝜀𝛼) and  𝜆𝛼

+(𝜀𝛼) are emission and absorption rates of α-particles, which are 

calculated similarly to Ref.[7,8], βi are parameters, other symbols are conventional. 

 There are three parameters in Eq.(1), the sensitivity of the calculations to which 

and which importance, can be checked by comparing the measured and calculated 

α-particle spectra.  

 In the TALYS code, the Kalbach continuum α-particle spectrum is “mapped” on 

discrete states, which aptly simulates the effect of real resolution of measurements. 

The study shows that the change of normalization coefficient of one of the 

corresponding values “fac1” or “fac2” in the TALYS subroutine “Spectra” together 

with the use of Eq.(1), can further improve the agreement with the experimental data.  

 The routines providing calculations using Eq.(1) from Refs.[11,12] were added 

to the TALYS code [4,5].  

 The next Section discusses the comparison of calculated α-particle spectra with 

experimental data, the use of parameters, and the problems associated with 

calculations. 

 

 

3. Results and discussion 

 

The available measured energy distributions of α-particles in neutron induced 

reactions for 38 target nuclei and in proton induced reactions for 43 target nuclei from 

12C to 238U [1,3,13-72] have been analysed. 

 Not all experimental data, or rather a smaller part of them, are suitable for 

studying the contribution of direct processes to the α-particle energy distributions. 

Such a study requires detailed information about the hard part of the spectra, which 

was not always obtained in the measurements.  
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 The parameters were chosen to achieve the best visible agreement with the 

experimental data. If possible, the parameters were taken to be the same for different 

targets or, practically, were not used, as in the case of the β3 parameter. 

 The study shows that in most cases, when suitable experimental information is 

available, the use of discussed phenomenological model for calculations significantly 

improves the agreement between the calculated and measured data.  

 Figures 1-68 show examples of calculated α-particle energy distributions 

together with measured data. The results for neutron induced reactions are shown in 

Figs.1-51 and for proton induced reactions in Figs.52-68. 

 The resulting value of the β2 parameter for all reactions except (n,xα) on 95Mo, 

142,143,144Nd, and 144,149Sm was taken equal to 0.3, assuming that subroutines from 

Refs.[11,12] are used for calculations with Eq.(1). The β3 value is equal to zero for all 

considered reactions except n+60,61,62,63Ni. The value of β1 varies from 10-5 to 10-2 

with a general trend that heavier target nuclei have lower β1 values.  

 The normalization coefficient Cf for “fac2” ranges from 1 (no changes), to 10. 

The number of cases of coefficient value 2 is 25%, value 5 is 47%, and 10 is 10%. 

 All parameters βi and Cf were treated as independent of incident nucleon 

energy. 

 The results indicate the principal possibility of using the discussed 

phenomenological approach to improve the agreement between the calculated and 

experimental α-particle energy distributions. In most cases, as mentioned above, it is 

necessary to know only the values of β1 and Cf parameters. Of course, in the 

absence of necessary experimental information, it is possible to use global or 

systematic values of these parameters. 

 Obviously, the use of discussed method cannot replace the rigorous theoretical 

calculations of the α-particle spectra. However, even in this case the experimental 

information is necessary to obtain the absolute values of the spectra [1]. 

 The described approach can apparently be extended to describe the emission 

of other complex particles using the models implemented in the TALYS code. 

 Hopefully, new measurements of α-particle spectra will provide more 

information necessary to improve and refine this approach, and will create the 

possibility of a detailed theoretical analysis of the spectra. 
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Fig.1 Comparison between experimental α-particle energy distributions and 

calculations using the TALYS code [4,5] without (blue line) and using (red 
line) the discussed phenomenological model for the estimation of contribution 
of direct processes to the α-particle emission for the n+12C reaction at the 
primary neutron energy equal to 50 MeV. 

 

 
Fig.2 The same as in Fig.1 but for the n+12C reaction at En=62.7 MeV. 
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Fig.3 The same as in Fig.1 but for the n+12C reaction at En=95.6 MeV. 
 

 

 

 
Fig.4 The same as in Fig.1 but for the n+16O reaction at En=37.5 MeV. 
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Fig.5 The same as in Fig.1 but for the n+16O reaction at En=62.7 MeV. 

 

 

 

 
Fig.6 The same as in Fig.1 but for the n+16O reaction at En=95.6 MeV. 
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Fig.7 The same as in Fig.1 but for the n+27Al reaction at En=31.5 MeV. 

 

 

 

 
Fig.8 The same as in Fig.1 but for the n+27Al reaction at En=45 MeV. 
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Fig.9 The same as in Fig.1 but for the n+27Al reaction at En=62.7 MeV. 
 

 

 

 
Fig.10 The same as in Fig.1 but for the n+28Si reaction at En=21 MeV. 
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Fig.11 The same as in Fig.1 but for the n+28Si reaction at En=34 MeV. 

 

 

 

 
Fig.12 The same as in Fig.1 but for the n+28Si reaction at En=95.6 MeV. 
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Fig.13 The same as in Fig.1 but for the n+50Cr reaction at En=14.8 MeV. 
 

 

 

 
Fig.14 The same as in Fig.1 but for the n+Fe reaction at En=14.1 MeV. 
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Fig.15 The same as in Fig.1 but for the n+Fe reaction at En=41 MeV. 
 

 

 

 
Fig.16 The same as in Fig.1 but for the n+Fe reaction at En=45 MeV. 
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Fig.17 The same as in Fig.1 but for the n+Fe reaction at En=49 MeV. 
 

 

 

 
Fig.18 The same as in Fig.1 but for the n+Fe reaction at En=53.5 MeV. 
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Fig.19 The same as in Fig.1 but for the n+54Fe reaction at En=14.8 MeV. 
 

 

 

 
Fig.20 The same as in Fig.1 but for the n+56Fe reaction at En=14.8 MeV. 
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Fig.21 The same as in Fig.1 but for the n+59Co reaction at En=37.5 MeV. 
 

 

 

 
Fig.22 The same as in Fig.1 but for the n+59Co reaction at En=53.5 MeV. 
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Fig.23 The same as in Fig.1 but for the n+58Ni reaction at En=14.8 MeV. 
 

 

 

 
Fig.24 The same as in Fig.1 but for the n+60Ni reaction at En=14.1 MeV. 
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Fig.25 The same as in Fig.1 but for the n+65Cu reaction at En=14.8 MeV. 
 

 

 

 
Fig.26 The same as in Fig.1 but for the n+89Y reaction at En=14.8 MeV. 
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Fig.27 The same as in Fig.1 but for the n+90Zr reaction at En=14.3 MeV. 
 

 

 

 
Fig.28 The same as in Fig.1 but for the n+90Zr reaction at En=18.1 MeV. 
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Fig.29 The same as in Fig.1 but for the n+91Zr reaction at En=14.3 MeV. 
 

 

 

 
Fig.30 The same as in Fig.1 but for the n+91Zr reaction at En=18.1 MeV. 
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Fig.31 The same as in Fig.1 but for the n+92Mo reaction at En=14.8 MeV. 
 

 

 

 
Fig.32 The same as in Fig.1 but for the n+96Mo reaction at En=14.8 MeV. 
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Fig.33 The same as in Fig.1 but for the n+142Nd reaction at En=14.3 MeV. 
 

 

 

 
Fig.34 The same as in Fig.1 but for the n+142Nd reaction at En=18.1 MeV. 
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Fig.35 The same as in Fig.1 but for the n+143Nd reaction at En=12.3 MeV. 
 

 

 

 
Fig.36 The same as in Fig.1 but for the n+143Nd reaction at En=14.1 MeV. 
 

 



22 

 

 
Fig.37 The same as in Fig.1 but for the n+143Nd reaction at En=18.2 MeV. 
 

 

 

 
Fig.38 The same as in Fig.1 but for the n+143Nd reaction at En=20.6 MeV. 
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Fig.39 The same as in Fig.1 but for the n+144Nd reaction at En=14.3 MeV. 
 

 

 

 
Fig.40 The same as in Fig.1 but for the n+144Nd reaction at En=18.1 MeV. 
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Fig.41 The same as in Fig.1 but for the n+144Sm reaction at En=14.3 MeV. 
 

 

 

 
Fig.42 The same as in Fig.1 but for the n+144Sm reaction at En=18.1 MeV. 
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Fig.43 The same as in Fig.1 but for the n+147Sm reaction at En=12.4 MeV. 
 

 

 

 
Fig.44 The same as in Fig.1 but for the n+147Sm reaction at En=14.1 MeV. 
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Fig.45 The same as in Fig.1 but for the n+147Sm reaction at En=18.2 MeV. 
 

 

 

 
Fig.46 The same as in Fig.1 but for the n+147Sm reaction at En=19.5 MeV. 
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Fig.47 The same as in Fig.1 but for the n+149Sm reaction at En=12.3 MeV. 
 

 

 

 
Fig.48 The same as in Fig.1 but for the n+149Sm reaction at En=14.1 MeV. 
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Fig.49 The same as in Fig.1 but for the n+149Sm reaction at En=18.2 MeV. 
 

 

 

 
Fig.50 The same as in Fig.1 but for the n+238U reaction at En=37.5 MeV. 
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Fig.51 The same as in Fig.1 but for the n+238U reaction at En=62.7 MeV. 
 

 

 

 
Fig.52 The same as in Fig.1 but for the p+12C reaction at Ep=61 MeV. 
 

 



30 

 

 
Fig.53 The same as in Fig.1 but for the p+16O reaction at Ep=61 MeV. 
 

 

 

 
Fig.54 The same as in Fig.1 but for the p+27Al reaction at Ep=61.7 MeV. 
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Fig.55 The same as in Fig.1 but for the p+28Si reaction at Ep=26 MeV. 
 

 

 

 
Fig.56 The same as in Fig.1 but for the p+54Fe reaction at Ep=28.8 MeV. 
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Fig.57 The same as in Fig.1 but for the p+54Fe reaction at Ep=61.5 MeV. 
 

 

 

 
Fig.58 The same as in Fig.1 but for the p+56Fe reaction at Ep=61.5 MeV. 
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Fig.59 The same as in Fig.1 but for the p+93Nb reaction at Ep=24.6 MeV. 
 

 

 

 
Fig.60 The same as in Fig.1 but for the p+96Mo reaction at Ep=18 MeV. 
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Fig.61 The same as in Fig.1 but for the p+98Mo reaction at Ep=18 MeV. 
 

 

 

 
Fig.62 The same as in Fig.1 but for the p+106Pd reaction at Ep=18 MeV. 
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Fig.63 The same as in Fig.1 but for the p+112Cd reaction at Ep=18 MeV. 
 

 

 

 
Fig.64 The same as in Fig.1 but for the p+118Sn reaction at Ep=18 MeV. 
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Fig.65 The same as in Fig.1 but for the p+118C reaction at Ep=44.3 MeV. 
 

 

 

 
Fig.66 The same as in Fig.1 but for the p+120Sn reaction at Ep=18 MeV. 
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Fig.67 The same as in Fig.1 but for the p+120Sn reaction at Ep=61.5 MeV. 
 

 

 

 
Fig.68 The same as in Fig.1 but for the p+128Te reaction at Ep=18 MeV. 
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4. Conclusion 

 

In this work, a simple phenomenological model is proposed for calculating the 

contribution of direct processes to the production of α-particles in reactions induced 

by nucleons. The calculated and experimental data for 38 target nuclei irradiated by 

neutrons and 44 target nuclei from 12C to 238U irradiated by protons are compared. 

The study shows that relative good agreement with the experimental data, in most 

cases, can be achieved using only two parameters. It is hoped that the proposed 

method will improve the quality of mass calculations of the spectra of α-particles. 
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