
mathematics

Article

ABS-Based Direct Method for Solving Complex Systems of
Linear Equations

József Abaffy 1 and Szabina Fodor 2,*

����������
�������

Citation: Abaffy, J.; Fodor, S.

ABS-Based Direct Method for Solving

Complex Systems of Linear

Equations. Mathematics 2021, 9, 2527.

https://doi.org/10.3390/math9192527

Academic Editors: Lorentz Jäntschi

and Daniela Ros, ca

Received: 24 August 2021

Accepted: 3 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Applied Mathematics, Óbuda University, Bécsi út 96/b, 1034 Budapest, Hungary;
jozsef.abaffy@uni-obuda.hu

2 Department of Computer Science, Corvinus University of Budapest, Fővám tér 13-15,
1093 Budapest, Hungary

* Correspondence: szabina.fodor@uni-corvinus.hu; Tel.: +36-1-482-7468

Abstract: Efficient solution of linear systems of equations is one of the central topics of numerical
computation. Linear systems with complex coefficients arise from various physics and quantum
chemistry problems. In this paper, we propose a novel ABS-based algorithm, which is able to solve
complex systems of linear equations. Theoretical analysis is given to highlight the basic features of
our new algorithm. Four variants of our algorithm were also implemented and intensively tested
on randomly generated full and sparse matrices and real-life problems. The results of numerical
experiments reveal that our ABS-based algorithm is able to compute the solution with high accuracy.
The performance of our algorithm was compared with a commercially available software, Matlab’s
mldivide (\) algorithm. Our algorithm outperformed the Matlab algorithm in most cases in terms of
computational accuracy. These results expand the practical usefulness of our algorithm.

Keywords: complex linear system; direct method; ABS class of methods

1. Introduction

The problem of solving systems of linear equations plays a central role in diverse
scientific fields such as signal processing, economics, computer science, and physics [1–5].
Often the problems arising from areas of practical life result in a system of equations with
real coefficients, but there are important applications that lead to the following complex
linear systems:

Ax = b, where A ∈ Cm,n, x ∈ Cn and b ∈ Cm. (1)

Partial differential equations modelling dissipative processes usually involve complex
coefficient functions or complex boundary conditions [6]. Other applications leading to
complex linear systems include the discretization of time-dependent Schrödinger equa-
tions with implicit differential equations [7–9], inverse scattering problems, underwater
acoustics, eddy current calculations [10], diffuse optical tomography [11], numerical calcu-
lations in quantum chromodynamics and numerical conformal mapping [12]. There are
several methods to solve complex systems of linear equations. Moreover, a complex linear
system with n unknowns can be reformulated to a linear system of equations with 2n real
coefficients [13].

There are two basic popular approaches in solving complex linear systems of equations.
The first one is when the preconditioned classical conjugate gradient method is used to
solve the system of equations [14–16]. In most of these cases, the algorithms often do
not work with the original general, i.e., non-Hermitian A coefficient matrix, but with a
modified Hermitian positive definite normal equations

AH Ax = AHb, where AH is the conjugate transpose of the A matrix. (2)

Mathematics 2021, 9, 2527. https://doi.org/10.3390/math9192527 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5459-7912
https://doi.org/10.3390/math9192527
https://doi.org/10.3390/math9192527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192527
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192527?type=check_update&version=2

Mathematics 2021, 9, 2527 2 of 17

The second popular approach is to solve usually non-symmetric linear systems of equa-
tions using one of the generalized CG methods [17,18], such as GMRES ([19] pp. 164–185)
or other approaches based on the Arnoldi or the Lanczos biconjugate algorithms. These
approaches generate an orthogonal basis for the Krylov subspaces associated with A and
an initial vector v1. The usual way to obtain an approximation to the exact solution of (1)
from this basis is to force a biconjugate gradient condition. In both cases, the resulting
iterative methods tend to converge relatively slowly.

Mainly, two factors influence the practical usability of a method: the accuracy of the
solutions and the computation cost of the method. There are two main classes of techniques
for solving linear systems of equations: iterative and direct methods.

Iterative solvers are generally faster on large-scale problems, while direct ones give
more accurate results. Not surprisingly, iterative methods have come to the fore in solving
complex linear systems of equations and many new algorithms have been published in
recent decades [20–22]. However, the robustness and the speed of the convergence of
iterative algorithms significantly depend on the condition number of the coefficient ma-
trices. To avoid convergence problems, robust preconditioners need to be used. In some
cases, problem-specific preconditioners are highly effective, but they are often difficult
to parallelize on modern high performance computing (HPC) platforms [23]. Moreover,
Koric et al. [24] revealed that no iterative preconditioned solver combination could cor-
rectly solve the highly ill-conditioned systems of equations. Therefore, researchers often
have to compromise between accuracy of the solutions and computational effort. Direct
solvers typically do not have these limitations but require much more computational
power to execute. Thus, today’s high performance solutions such as parallel computing
frameworks, may provide new possibilities for direct algorithms and they can be more
suitable choices to ill-conditioned problems.

In this paper, we present a new ABS-based direct method that can solve large-scale
problems. The ABS class of methods was originally introduced by Abaffy, Broyden and
Spedicato (1984) developed to solve linear systems of equations where coefficients of the
equations are real numbers [25]. These algorithms can also be used for various other
purposes such as solving non-linear systems of equations or optimization problems [26–28].
ABS-based algorithms can be easily and effectively parallelised [29,30] which underlines
the practical usefulness of these algorithms.

The remainder of this paper is organized as follows. In Section 2, we present our new
scaled complex ABS algorithm, which can solve complex linear systems of equations and
we prove some of its basic features. We also show a special choice of parameters of our
algorithm, which ensures that the search vectors (pi) are AH A conjugate. We provide a
detailed numerical analysis of four variants of our algorithm in Section 3. Section 4 contains
concluding remarks and a brief description of our plans on the application of the outcomes
of this work.

2. The Scaled Complex ABS (scABS) Algorithm

In this section, we present our new ABS-based algorithm (scABS) that can solve
systems of complex linear problems. Instead of the original system (1) let us consider the
following scaled complex system of linear equations

VH Ax = VHb, where V ∈ Cm,n is an arbitrary, non-singular matrix. (3)

Note that the systems (1) and (3) are equivalent. Thus, if we want our algorithm to
solve the original unscaled system of Equation (1), then by choosing the scaling matrix as
the unit matrix we obtain the desired formulas and values. The sole role of the scaling
matrix V is to provide significant flexibility to the algorithm [25] which allows us to reduce
the computational inaccuracy [31] and also to reduce the computational complexity of the
algorithm [27].

It is also of interest to note that our scaled complex ABS algorithm defines not one
single algorithm, but a class of variants. Each particular variant is determined by the choice

Mathematics 2021, 9, 2527 3 of 17

of the parameters H1, vi, zi, wi. These variants have different properties, e.g., by choosing
H1 = I unit matrix, vi = AHH

i zi, and wi to be a multiple of zi, the ABS algorithm is a
reformulation of the QR algorithm, as we will discuss in Section 2.2.

The state of the complex system of linear equations is checked by the variable
si = Hi AHvi. An important property of our algorithm is that si is zero if, and only if,
the current row of matrix A is a linear combination of the previous rows. It depends on
the value of the right-hand side whether our system is then a linear combination of the
previous equations or even incompatible with them. We use the value of xi to distinguish
between the two cases, namely whether it solves the ith equation or not. If it does, we sim-
ply skip the equation (xi+1 = xi, Hi+1 = Hi), otherwise, we stop the algorithm. The state
of the system is stored in the i f lag variable. If i f lag is zero, then neither linear dependency
nor incompatibility is detected in the algorithm. If the value of i f lag is positive, then a
number of linearly dependent equations are found. If the value of i f lag is negative then
the −i f lagth equation is incompatible with the previous ones.

H1 was selected to be a unit matrix for the sake of simplicity. However, H1 could
theoretically be any arbitrary unimodular nonsingular matrix provided that H1 ∈ Cn,n.

2.1. Basic Properties of the Scaled Complex ABS Algorithm

We consider some fundamental properties of the Hi generated by the scaled complex
ABS (scABS) algorithm (Algorithm 1).

Theorem 1. Given the AHv1,..., AHvm ∈ Cn vectors and the H1 ∈ Cn,n arbitrary nonsingular
matrix, consider the sequence of matrices H2, . . . , Hm+1 generated by (6). The following relations
are true for i = 2, . . . , m + 1:

Hi AHvj = 0, 1 ≤ j < i. (4)

Proof. We proceed by induction. For i = 2, the theorem is true since

H2 = H1 −
H1 AHv1 ∗ wH

1 H1

w̃1
wH

1 H1 AHv1.

H2 AHv1 = H1 AHv1 −
H1 AHv1 ∗ wH

1 H1

w̃1
wH

1 H1 AHv1 ∗ AHv1

= H1 AHv1 −
H1 AHv1 ∗ wH

1 H1 AHv1

w̃1
wH

1 H1 AHv1

= H1 AHv1 −
H1 AHv1 ∗ w̃1

w̃1
= 0.

Assuming that the theorem is true up to i < m, we prove it for i + 1.

Hi+1 = Hi −
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi

Hi+1 AHvj = Hi AHvj −
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi ∗ AHvj

= Hi AHvj −
Hi AHvi ∗ wH

i Hi AHvj

w̃i
wH

i Hi AHvi

= Hi AHvj −
Hi AHvi ∗ w̃i

w̃i
= 0.

Mathematics 2021, 9, 2527 4 of 17

Algorithm 1: Scaled complex ABS (scABS) algorithm.
Input: Set x1 ∈ Cn, H1 = I ∈ Cn,n where I is the unit matrix, i = 1, and i f lag = 0.
Output: Solution to (3) xi ∈ Cn, if the solution exists, otherwise the −i f lagth

equation incompatible with the previous ones.
while (i ≤ m) and (i f lag ≥ 0) do

Compute the scalar τi = vH
i ri ∈ C and the vector si = Hi AHvi, where

ri = Axi − b.
if (si = 0) and (τi = 0) and (i < m) then

/* The ith equation linearly depends on the previous ones. */
pi = 0,
xi+1 = xi,
Hi+1 = Hi,
i f lag = i f lag + 1.

else if (si = 0) and (τi = 0) and (i = m) then
xm is the solution.

else if (si = 0) and (τi 6= 0) then
/* The ith equation is incompatible with the previous ones. */
i f lag = −i.

else
Compute the search direction pi

pi = HH
i zi, (5)

where zi ∈ Cn is arbitrary with the condition zH
i Hi AHvi 6= 0.

xi+1 = xi − αi pi.

Let introduce the notation α̃i as the denominator of αi

α̃i = vH
i Api ∗ vH

i Api,

where vH
i Api is the complex conjugate of vH

i Api vector. Therefore, α̃i is a
real number and the step size αi is given by

αi =
τi
α̃i
∗ vH

i Api.

Update the projection matrix. Compute

Hi+1 = Hi −
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi, (6)

where we use the notion w̃i as denominator of wi. wi ∈ Cn is arbitrary with
the condition

w̃i = wH
i Hi AHvi ∗ wH

i Hi AHvi 6= 0.

i = i + 1

Remark 1. The null space of complex projection matrices Null(Hi) =
{

AHv1, AHv2, . . . , AHvi−1
}

follows immediately from Theorem 1 and it means that Hm+1 = 0

Remark 2. Hi AHvi computed by the scABS algorithm is zero only if AHvi is a linear combination
of AHv1, AHv2, . . . , AHvi−1.

Remark 3. The scaled complex ABS algorithm is well defined.

Mathematics 2021, 9, 2527 5 of 17

Theorem 2. Consider the matrices Hi generated by (6) with the starting H1 is nonsingular. For
i = 1, . . . , m + 1 and 1 ≤ j ≤ i the following relations are true:

Hi H−1
1 Hj = Hi, (7)

Hj H−1
1 Hi = Hi. (8)

Proof. We only prove (7) since the proof for (8) is similar. We proceed by induction. For
i = 1, H1H−1

1 H1 = H1 is trivially true. Assuming now that (7) is true up to the index i, we
have to prove that Hi+1H−1

1 Hj = Hi+1.
For j = i + 1, we have

Hi+1H−1
1 Hi+1 = (Hi −

Hi AHv1 ∗ wH
i Hi

w̃i
wH

i Hi AHvi)H−1
1

∗ (Hi −
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi)

= Hi H−1
1 Hi −

Hi AHvi ∗ wH
i Hi H−1

1 Hi

w̃i
wH

i Hi AHvi

−
Hi H−1

1 Hi AHvi ∗ wH
i Hi

w̃i
wH

i Hi AHvi

+
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi H−1
1 ∗

Hi AHvi ∗ wH
i Hi

w̃i
wH

i Hi AHvi

= Hi H−1
1 Hi − 2 ∗

Hi AHvi ∗ wH
i Hi H−1

1 Hi

w̃i
wH

i Hi AHvi+

Hi AHvi ∗ wH
i Hi

w̃i
H−1

1 ∗
Hi AHvi ∗ wH

i Hi

w̃i
(wH

i Hi AHvi)
2

= Hi − 2 ∗
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi

+
Hi AHvi ∗ w̃i ∗ wH

i Hi

w̃i
2 wH

i Hi AHvi

= Hi −
Hi AHvi ∗ wH

i Hi

w̃i
wH

i Hi AHvi = Hi+1.

For j < i + 1, we have

Hi+1H−1
1 Hj = (Hi −

Hi AHv1 ∗ wH
i Hi

w̃i
wH

i Hi AHvi)H−1
1 Hj

= Hi −
Hi AHv1 ∗ wH

i Hi

w̃i
wH

i Hi AHvi = Hi+1

again by the induction.

Remark 4. If H1 is the unit matrix then Theorem 2 implies that Hi matrices are idempotent, i.e.,
Hi Hi = Hi.

Remark 5. The Hi Hi = Hi feature of our algorithm enables further potential improvement in
computational accuracy of the scaled complex ABS algorithm. We have recently published that
the reprojection of real ABS algorithms, i.e., using pi = HH

i (HH
i zi) projection vectors instead of

pi = HH
i zi, enhances the precision of numerical calculation [30,31], which expands the practical

usefulness of our algorithms.

Mathematics 2021, 9, 2527 6 of 17

Theorem 3. Any vector y ∈ Cn that solves the first i equations of (3) can be formulated as

y = xi+1 + HH
i+1s (9)

where s is a vector in Cn.

Proof. Decompose y ∈ Cn as y = xi+1 + y+. As y solves the first i equations,

AHvjy = bHvj = AHvjxi+1 + AHvjy+, where 1 ≤ j ≤ i. (10)

Thus, AHvjy+ = 0 for 1 ≤ j ≤ i which means that y+⊥{AHv1, .., AHvi} = ⊥Null
(Hi+1), so y+ = HH

i+1r where r ∈ Cn according to the properties of the scaled complex ABS
algorithm. So y+ = HH

i+1r where r ∈ Cn according to the properties of ABS.

y+ = HH
i+1r = HH

i+1 · HH
i+1r = HH

i+1y+ where y+ ∈ Cn. (11)

Remark 6. Referring to the proofs of the original ABS algorithm [26], it can be shown that, for
simplicity, assuming that the A matrix is full rank, Li = VH

i AiPi is a nonsingular lower triangular
matrix where Pi = (p1, . . . , pi), Vi = (v1, . . . , vi) and Ai = (aH

1 , . . . , aH
i) the transpose of the

rows of the matrix A. If i = m, then the following semifactorization of the inverse can be obtained:

A−1 = PL−1VH , where P = Pm, and V = Vm. (12)

This semi-factorization of the inverse of the A matrix may provide an opportunity to develop
an ABS-based preconditioner to accelerate various Krylov subspace methods. For several choices
of the matrix V, the matrix L is diagonal, hence formula (12) gives an explicit factorization of the
inverse of the coefficient matrix A.

Remark 7. Examining the properties of the scaled complex ABS algorithm in terms of practical
usability, we have already mentioned in Remark 4 that the idempotent property of the Hi matrix can
be used to increase the computational accuracy of our algorithm by reprojection stepwise. Broyden

showed [32] that the computation error in the solution is reduced up to 2 orders in ‖ATvi‖2
‖Hi ATvi‖2

for the
real ABS algorithm. If the projection vectors (pi) are re-projected with an additional computational
cost, i.e., pi = HT

i zi = HT
i HT

i zi, a more accurate result can be obtained due to the cancellation
errors in computational accuracy [33,34]. Interestingly, our preliminary results showed that the
scABS algorithm has similar properties. Increasing accuracy in this way will result in a significant
increase in computational costs. One solution to speed up the algorithm may be to parallelize the
processes. In a recent paper [30], we found that for a real ABS algorithm, parallelization yielded a
significant gain in computational speed.

2.2. Special Choice of the Scaling Vector

We consider the following choice of the scaling vector:

vi = Api. (13)

This selection of the scaling vector has many beneficial features such as

• the scaling vectors defined by (13) are mutually orthogonal, i.e.,
vH

i vj = 0 for i > j and vH
i vi 6= 0.

• the search vectors pi are AH A conjugate if A is square and nonsingular matrix.
• the algorithm generates an implicit factorization of A into the product of an orthogonal

and an upper triangular matrix if wi is a multiple of zi and H1 = I (unit matrix). The
algorithm with these selections can be considered as an alternative method of the
classic QR factorization.

Mathematics 2021, 9, 2527 7 of 17

• by the choice of H1 = I, zi = wi = ei, the required number of multiplication is
11
6 n3 +O(n2).

The above statements about of the oscABS algorithm (Algorithm 2) can be easily
verified based on the proofs of Theorem 8.11, Theorem 8.16 and Theorem 8.18 in [25].

Algorithm 2: Orthogonally scaled complex ABS (oscABS) algorithm.
Input: Set x1 ∈ Cn, H1 = I ∈ Cn,n where I is the unit matrix; i = 1 and i f lag = 0.
Output: Solution to (3) xi ∈ Cn, if the solution exists, otherwise the −i f lagth

equation incompatible with the previous ones.
while (i ≤ m) and (i f lag ≥ 0) do

Compute the search direction

pi = HH
i zi, (14)

where zi ∈ Cn is arbitrary with condition AHH
i zi 6= 0.

Compute the scalar τi = (Api)
Hri and the vector si = Hi AH Api.

if (si = 0) and (τi = 0) and (i < m) then
/* The ith equation linearly depends on the previous ones. */
pi = 0,
xi+1 = xi,
Hi+1 = Hi,
i f lag = i f lag + 1.

else if (si = 0) and (τi = 0) and (i = m) then
xm is the solution.

else if (si = 0) and (τi 6= 0) then
/* The ith equation is incompatible with the previous ones. */
i f lag = −i.

else
Update the approximate solution

xi+1 = xi − αi pi.

Let us introduce the notation α̃i as the denominator of αi

α̃i = pH
i AH Api ∗ pH

i AH Api,

where pH
i AH Api is the complex conjugate of pH

i AH Api vector. Therefore,
α̃i is a real number and the step size αi is given by

αi =
τi
α̃i
∗ pH

i AH Api.

Update the projection matrix. Compute

Hi+1 = Hi −
Hi AH Api ∗ wH

i Hi

w̃i
wH

i Hi AH Api, (15)

where we use the notion w̃i as denominator of wi. wi ∈ Cn is arbitrary
vector with the condition

w̃i = wH
i Hi AH Api ∗ wH

i Hi AH Api 6= 0.

i = i + 1

Mathematics 2021, 9, 2527 8 of 17

3. Numerical Experiments

We were also interested in the numerical features of our scaled complex ABS algo-
rithm. To this end, four variants of the orthogonally scaled complex ABS algorithm were
implemented in MatlabR2013b (Mathworks, Inc., USA). The experiments were performed
on a personal computer with Intel Core i7-2600 3.4GHz CPU with integrated graphics,
4 GB RAM running Microsoft Windows 10 Professional and MATLAB version R2013b. No
software other than the operating system tasks, MATLAB and ESET NOD32 antivirus were
running during the experiments.

The four implemented variants of the oscABS algorithm and the Matlab function used
are as follows:

• S3rr: zi and wi are selected such that zi = ri, wi = ri.
• S3ATA: zi and wi are selected such that zi = AHri, wi = AHri.
• S3ee: zi and wi are selected such that zi = ei, wi = ei.
• S3ep: zi and wi are selected such that zi = ei, wi = HH

i pi.
• Matlab: the built-in mldivide (\) function of Matlab.

We evaluated all methods in aspects of accuracy of the computed solution ‖Axn − b‖2,
and execution time in seconds.

3.1. Randomly Generated Problems

In our first numerical experiments, we tested the variants of our algorithm on randomly
generated dense and sparse matrices. These matrices were generated using the rand and
sprand MATLAB functions. In general, we performed 10 separate tests on independent
matrices to obtain each data point in this subsection. The mean values from those results are
depicted in the following figures. The standard variation of the values usually fell within
well below 5% of the mean value (data not shown). The solutions were randomly generated
using the rand function and the right sides of the systems were calculated as the products
of the matrix and the solution. In these experiments, we tested how the performance of our
algorithm was affected by gradually increasing the dimension of the coefficient matrix from
10× 10 to 1500× 1500. As shown in Figure 1, each of the variants of the ABS-based algorithm
was able to solve the systems of equations within 10−10 accuracy, and overall, the S3ee variant
was the most accurate. We did not see a large difference up to 1500 dimensions between the
four variants of the orthogonally scaled complex ABS algorithm.

Our next aim was to compare the performance of the best variant of oscABS algorithm
(S3ee) with a commercially available software able to solve complex linear systems of
equations. We chose the mldivide (\) algorithm of the Matlab software package from
MathWorks, Inc. for that purpose. Note that Matlab’s mldivide algorithm is not one specific
algorithm, but consists of several algorithms, from which it chooses depending on the
property of the matrix A. The mldivide function performs several checks on the coefficient
matrix to determine whether it has some special property (e.g., whether it is sparse or
symmetric) and, knowing this, selects the appropriate matching solver. For example, if
A is full but not a square matrix, then it uses the QR algorithm, if not, then depending
on the properties of A, possibly the Hessenberg, Cholesky, LU, or even the LDL solver.
This means that we compared our algorithm with different solvers, selected to be most
appropriate for the given problem by the Matlab program [35].

The experiments were performed with the randomly generated matrices described above.
Our results are summarized in Figure 2. The S3ee algorithm outperformed Matlab

algorithm in both full rank, indefinit and rank-deficient problems as well. It is clear from
Figure 2 that the difference increases significantly as the dimension increases.

Mathematics 2021, 9, 2527 9 of 17

Figure 1. Comparative analysis of the four variants of the orthogonally scaled complex ABS algorithm
on randomly generated dense complex systems of linear equations.

Figure 2. Comparative analysis of the S3ee implementation of the orthogonally scaled ABS algorithm
and the Matlab mldivide function on randomly generated dense complex systems of linear equations.

Mathematics 2021, 9, 2527 10 of 17

Our next set of experiments focused on the analysis of the computational accuracy
of the algorithms under different matrix densities. These experiments were performed
with uniformly distributed random numbers of the coefficient matrix at different densities.
As shown in Figure 3, the S3ATA implementation calculated the solution most accurately
and the S3rr the least accurately in most cases. The other two implementations of the
orthogonally scaled complex ABS algorithms worked similar to S3ATA (i.e., within the
same order of magnitude). Even at 1500 dimensions, these algorithms were able to calculate
the result with an accuracy of 10−11. It is also worth noting that reducing the density from
100% to 1% resulted in a significant improvement in computational accuracy. The accuracy
increased from 10−11 to 10−13 for the S3ATA, S3ee, and S3ep variants.

Figure 3. Comparative analysis of the four variants of orthogonally scaled complex ABS algorithm
on randomly generated matrices with different densities.

Next, we compared the computational accuracy of our ABS-based algorithm with the
Matlab algorithm on problems of different densities. As shown in Figure 4, the S3ee variant
of orthogonally scaled complex ABS algorithms outperformed the Matlab algorithm again.
It is worth noting that in the case of the Matlab algorithm, the change in matrix density
resulted in a moderate improvement in the accuracy of the computations, as it increased
from 10−11 to 10−12.

In order to gain a deeper understanding of the numerical characteristics of the four
variants of our algorithm, we compared the computational accuracy and execution time
required to solve the 1500-dimensional systems of equations (Figure 5).

Mathematics 2021, 9, 2527 11 of 17

Figure 4. Comparative analysis of the computational accuracy of the ABS-based S3ee algorithm and
the Matlab mldivide (\) algorithm on randomly generated different-density problems.

Figure 5. Numerical properties of the four ABS-based variants and Matlab algorithm for solving
1500-dimensional random systems of equations. Panel (A) shows the computational accuracy. Panel
(B) shows the execution times for our ABS-based variants in seconds. Note that the execution times
of Matlab algorithms are not presented, since the Matlab built-in functions are implemented in C,
which allows the algorithms to run significantly faster than our programs written in Matlab script
regardless of the actual numerical performance of the algorithm.

Figure 5 shows that the numerical properties of the S3ee variant are the best, both
in terms of computational accuracy and execution time. This may be explained by the
fact that no computation is needed for parameter definitions (zi, wi) since the appropriate
unit vectors are used and the lack of computation may also explain the accuracy since
round-off errors do not accumulate. This round-off error may also explain the relatively
poor numerical performance of S3ATA and S3rr.

To obtain a more comprehensive view of the numerical properties of our algorithms,
we also investigated their computational accuracy for large, i.e., more than 5000 dimension
problems. The dimensions of these problems were determined according to Golub and
Van Loan’s suggestion [36] that for each problem, the q value, which is the characteristic

Mathematics 2021, 9, 2527 12 of 17

of the problem, remains substantially below 1. The q = u · k∞(A), where u (The value of
the unit round-off in Matlab is 2−52) is unit round-off and k∞(A) condition number of the
coefficient matrix A in infinity-norm. Our results for the high-dimensional problems are
summarized in Figures S1 and S2 in the Supplementary Material. Our experiments in high
dimensions clearly showed that the different variants of the ABS-based algorithm solved
the random problems significantly more accurately than Matlab solver. This is especially
true in the rank-deficient cases, where for 5000 dimensions the Matlab function was not
able to solve any problem.

3.2. Chosen Test Problems from MATLAB Gallery

Our next experiments compared the computation accuracy of our algorithm on known
complex matrices in the Matlab Gallery. Table 1 summarizes the problems we chose.

Table 1. Summary of test problems chosen from MATLAB Gallery.

Name Description

Symmetric Toeplitz Diagonal-constant matrix
using Matlab toeplitz(r) function where r is the first row.
The vector r was randomly generated in this experiment.

Non-symmetric Toeplitz Diagonal-constant matrix
using Matlab toeplitz(c,r) function where c is first column,
r is the first row of the matrix.
The vector c, and the vector r were generated randomly.

Hankel Symmetric and constant across the anti-diagonals matrix
using Matlab hankel(c) function where c
defines the first column of the matrix.
The c column was generated randomly in this experiment.

Smoke Complex matrix with a ‘smoke ring’ pseudospectrum
using Matlab gallery(‘smoke’,n) function
where n is the dimension of the matrix.

For each matrix, we tested the dimensions between 10–1500. Experiments presented in
Figure 6 revealed that all four variants of the complex ABS algorithm were able to solve the
problems with an accuracy of approximately 10−10 and in most cases the computation error
remained significantly below 10−11. Examining the different variants of the orthogonally
scaled complex ABS algorithm, we found that the S3ee and S3ep algorithms computed the
problems with similar accuracy, with the S3ATA variant being the least accurate except for
the Smoke problem.

Next, we compared the S3ee variant with the Matlab algorithm (see Figure 7). The ABS-
based algorithm slightly outperformed the Matlab algorithm on all but the Smoke matrices.

In order to gain a deeper understanding of the numerical characteristics of the four
variants of our algorithm, we compared the computational accuracy and execution time
required to solve the 1500-dimensional systems of equations (see Figure 8).

For Matlab Gallery problems, the running properties of the algorithms are slightly
different from those seen for randomly generated problems. For the first three matrix
(Symmetric Toeplitz, Non-symmetric Toeplitz, Hankel) problems, we see similar results
as for the randomly generated problems, the ABS-based variants giving more accurate
results than the Matlab algorithm. However, for the fourth, Smoke matrix, for the first time
Matlab’s algorithm gave the most accurate result tested. This fact can be partly explained
by the special structure of the Smoke matrix since the diagonal of the n-dimensional Smoke
matrix consists of the set of all nth roots of unity, and 1’s on its superdiagonal and 1 in the
(n,1) position. It is interesting to note that the Matlab algorithm and the S3ATA variant
behaved very similarly in these problems, both computing the solution with relatively
large errors for the first three problems, but giving the most accurate solutions for the
Smoke matrices. In the case of running speeds, it is clear that the lower computational

Mathematics 2021, 9, 2527 13 of 17

demand of the S3ee variant in the 1500 dimension already resulted in significantly shorter
running times.

Figure 6. Comparative analysis of the four variants of the orthogonally scaled complex ABS algorithm
on selected Matlab Gallery problems.

Figure 7. Comparative analysis of the computational accuracy of the ABS-based S3ee algorithm and
the Matlab mldivide algorithm on selected Matlab gallery problems.

Mathematics 2021, 9, 2527 14 of 17

Figure 8. Numerical properties of the four ABS-based variants and the Matlab algorithm for solving
1500-dimensional Matlab Gallery problems. Panel (A) shows the computational accuracy. Panel (B)
shows the execution times for our ABS-based variants in seconds.

We have also examined the behaviour of our ABS-based variants on large, i.e., more
than 5000 dimensions of selected Matlab Gallery problems. Our results of the ABS-based
variants are summarized in Figure S3, while the comparison of S3ee and Matlab results are
summarized in Figure S4 in Supplementary Materials. For high dimensions, the numerical
properties of the algorithms were very similar to those for low dimensions. Overall, of
the ABS-based variants, the S3ee variant computed the most accurately and all ABS-based
variants gave more accurate results than the Matlab algorithm except for the Smoke problem.

3.3. Real-Life Problems

We also wanted to examine how the four variants of our ABS-based algorithm work
on real-life problems. Our next experiments focused on the performance of the algorithms
on examples from the SuiteSparse matrix collection [37] and from the SWUFE-Math Test
Matrices Library [38]. Table 2 summarizes the matrices we used and their key properties.

Table 2. Summary of used real-life problems. Matrices marked by italic font come from the SWUFE-
Math Test Matrices Library, while non-italicized matrices come from the SuiteSparse matrix collection.

Matrix Name n m Condition Number Application Area

qc324 324 324 7.38 × 104 Electromagnetics
young1c 841 841 9.91 × 102 Acoustics
young2c 841 841 9.91 × 102 Duplicate Acoustics
young4c 841 841 5.55 × 102 Acoustics
dwg961b 961 961 3.35 × 107 Electromagnetics
cube1800_test3 1800 1800 4.98 × 101 Electromagnetics
parallelepipede_test2 2016 2016 8.43 × 101 Electromagnetics
sphere2430_test1 2431 2431 4.32 × 101 Electromagnetics
qc2534 2534 2534 5.19 × 105 Electromagnetics
conf5_0-4x4-14 3072 3072 9.17 × 103 Quantum Chemistry
mplate 5962 5962 4.83 × 1016 Acoustics

The calculation accuracies are outlined in Panel A of Figure 9. It can be stated that each
of the variants of the ABS-based algorithm was able to solve the problems with acceptable
accuracy. For these problems, the S3rr algorithm performed best. It should be noted,
however, that in most cases, the Matlab function calculated the solution most accurately.
This may partly be explained by the fact that Matlab uses different solvers for different
(i.e., sparse, dense) matrices. In addition to the accuracy of the solutions and execution
times, we show the relative 2-norm of the residual vectors in the Panel C to ensure that the
numerical properties of our ABS-based algorithm can be compared with other published
algorithms [38–40] developed to solve linear systems of equations. These comparisons
revealed that our method is significantly more accurate than expected for iterative solutions.
Furthermore, some iterative methods achieved this accuracy of 10−6 only after a relatively
large number of iterations. In the case of the young1c problem, several algorithms needed
nearly 400 steps to achieve an accuracy of 10−6 [38,39], while our algorithm achieved an
accuracy of 10−14 in about twice as many steps.

Mathematics 2021, 9, 2527 15 of 17

Figure 9. Comparative analysis of the performance of the four variants of the orthogonally scaled
complex ABS algorithm and the mldivide (\) algorithm of Matlab on real-life problems. Panel (A)
shows the computational accuracy. Panel (B) shows the execution times for our ABS-based variants
in seconds. Panel (C) shows the relative 2-norm of the residual vector (‖b−Axn‖2

‖b‖2
).

4. Conclusions

In this paper, we presented a new ABS-based algorithm for solving complex linear
systems of equations and we proved some of its basic features. We also showed a special
choice of parameters of our algorithm, which ensures that the search vectors (pi) are AH A
conjugate. A detailed numerical analysis of four variants of the ABS-based orthogonally
scaled algorithm has also been provided. These variants were tested on randomly generated
full and rank deficient, different-density systems of linear equations. Furthermore, the
computational accuracy of the algorithm was tested on real-life problems. These numerical
experiments showed that the ABS-based algorithm solved the problem with acceptable
accuracy in all cases and provided more accurate results than the MATLAB built-in function
in most test cases. These numerical results demonstrate the practical usefulness of the
algorithm in addition to its theoretical significance.

Additionally, a valuable numerical property of our algorithm is that if we want to
compute a complex system of linear equations with several right-hand sides [40], it is not
necessary to recompute the matrix Hi. Instead, it is sufficient to store the vectors pi and
recompute the updates xi, which can significantly reduce the computational cost. and thus
our algorithm can be used effectively to solve such problems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9192527/s1.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Matlab code for the two variants of the complex ABS algorithms
(S3ee, Serr) is available on GitHub, at https://github.com/SzabinaFodor/complexABS (accessed:
2 October 2021).

https://www.mdpi.com/article/10.3390/math9192527/s1
https://www.mdpi.com/article/10.3390/math9192527/s1
https://github.com/SzabinaFodor/complexABS

Mathematics 2021, 9, 2527 16 of 17

Acknowledgments: The authors would like to express their sincere thanks to Attila Mócsai and
the anonymous reviewers for their valuable comments and constructive suggestions that greatly
improved the presentation of our work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AT transpose of the matrix A
A the conjugate of the matrix A

AH = AT conjugate transpose of the matrix A

References
1. Wong, S.S.M. Computational Methods in Physics and Engineering; World Scientific Publishing Co Pte Ltd.: Hackensack, NJ, USA, 1992.
2. Metzler, L.A. Taxes and subsidies in Leontief’s input-output model. Q. J. Econ. 1951, 65, 433–438. [CrossRef]
3. Bar-On, I.; Ryaboy, V. Fast diagonalization of large and dense complex symmetric matrices, with applications to quantum reaction

dynamics. SIAM J. Sci. Comput. 1997, 18, 1412–1435. [CrossRef]
4. Nesemann, J. PT-Symmetric Schrödinger Operators with Unbounded Potentials; Springer: Berlin/Heidelberg, Germany, 2011.
5. Lancaster, P. Inverse spectral problems for semisimple damped vibrating systems. SIAM J. Matrix Anal. Appl. 2007, 29, 279–301.

[CrossRef]
6. Keller, J.B.; Givoli, D. Exact non-reflecting boundary conditions. J. Comput. Phys. 1989, 82, 172–192. [CrossRef]
7. Van Dijk, W.; Toyama, F. Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 2007, 75, 036707.

[CrossRef]
8. Benia, Y.; Ruggieri, M.; Scapellato, A. Exact solutions for a modified Schrödinger equation. Mathematics 2019, 7, 908. [CrossRef]
9. Obaidat, S.; Mesloub, S. A New Explicit Four-Step Symmetric Method for Solving Schrödinger’s Equation. Mathematics 2019,

7, 1124. [CrossRef]
10. Biddlecombe, C.; Heighway, E.; Simkin, J.; Trowbridge, C. Methods for eddy current computation in three dimensions. IEEE

Trans. Magn. 1982, 18, 492–497. [CrossRef]
11. Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41. [CrossRef]
12. Benzi, M.; Bertaccini, D. Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer.

Anal. 2008, 28, 598–618. [CrossRef]
13. Day, D.; Heroux, M.A. Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput. 2001,

23, 480–498. [CrossRef]
14. Gu, X.M.; Clemens, M.; Huang, T.Z.; Li, L. The SCBiCG class of algorithms for complex symmetric linear systems with applications

in several electromagnetic model problems. Comput. Phys. Commun. 2015, 191, 52–64. [CrossRef]
15. Wang, J.; Guo, X.P.; Zhong, H.X. Accelerated GPMHSS method for solving complex systems of linear equations. East Asian J.

Appl. Math. 2017, 7, 143–155. [CrossRef]
16. Li, L.; Huang, T.Z.; Ren, Z.G. A preconditioned COCG method for solving complex symmetric linear systems arising from

scattering problems. J. Electromagn. Waves Appl. 2008, 22, 2023–2034. [CrossRef]
17. Gu, X.M.; Huang, T.Z.; Li, L.; Li, H.B.; Sogabe, T.; Clemens, M. Quasi-minimal residual variants of the COCG and COCR methods

for complex symmetric linear systems in electromagnetic simulations. IEEE Trans. Microw. Theory Tech. 2014, 62, 2859–2867.
[CrossRef]

18. Jacobs, D.A. A generalization of the conjugate-gradient method to solve complex systems. IMA J. Numer. Anal. 1986, 6, 447–452.
[CrossRef]

19. Saad, Y. Iterative Methods for Sparse Linear Systems; SIAM: Philadelphia, PA, USA, 2003.
20. Fischer, B.; Reichel, L. A stable Richardson iteration method for complex linear systems. Numer. Math. 1989, 54, 225–242.

[CrossRef]
21. Bai, Z.Z.; Benzi, M.; Chen, F. Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 2010,

87, 93–111. [CrossRef]
22. Li, X.; Yang, A.L.; Wu, Y.J. Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer. Algorithms

2014, 66, 555–568. [CrossRef]
23. Puzyrev, V.; Koric, S.; Wilkin, S. Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems.

Comput. Geosci. 2016, 89, 79–87. [CrossRef]
24. Koric, S.; Lu, Q.; Guleryuz, E. Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes.

Comput. Struct. 2014, 141, 19–25. [CrossRef]
25. Abaffy, J.; Spedicato, E. ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations; Prentice-Hall, Inc.:

Chichester, UK, 1989.
26. Spedicato, E.; Xia, Z.; Zhang, L. ABS algorithms for linear equations and optimization. J. Comput. Appl. Math. 2000, 124, 155–170.

[CrossRef]

http://doi.org/10.2307/1882224
http://dx.doi.org/10.1137/S1064827594269056
http://dx.doi.org/10.1137/050640187
http://dx.doi.org/10.1016/0021-9991(89)90041-7
http://dx.doi.org/10.1103/PhysRevE.75.036707
http://dx.doi.org/10.3390/math7100908
http://dx.doi.org/10.3390/math7111124
http://dx.doi.org/10.1109/TMAG.1982.1061918
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1093/imanum/drm039
http://dx.doi.org/10.1137/S1064827500372262
http://dx.doi.org/10.1016/j.cpc.2015.01.018
http://dx.doi.org/10.4208/eajam.260816.051216a
http://dx.doi.org/10.1163/156939308787537793
http://dx.doi.org/10.1109/TMTT.2014.2365472
http://dx.doi.org/10.1093/imanum/6.4.447
http://dx.doi.org/10.1007/BF01396976
http://dx.doi.org/10.1007/s00607-010-0077-0
http://dx.doi.org/10.1007/s11075-013-9748-1
http://dx.doi.org/10.1016/j.cageo.2016.01.009
http://dx.doi.org/10.1016/j.compstruc.2014.05.009
http://dx.doi.org/10.1016/S0377-0427(00)00419-2

Mathematics 2021, 9, 2527 17 of 17

27. Fodor, S. Symmetric and non-symmetric ABS methods for solving Diophantine systems of equations. Ann. Oper. Res. 2001,
103, 291–314. [CrossRef]

28. Abaffy, J.; Fodor, S. Solving Integer and Mixed Integer Linear Problems with ABS Method. Acta Polytech. Hung. 2013, 10, 81–98.
[CrossRef]

29. Galántai, A. Parallel ABS projection methods for linear and nonlinear systems with block arrowhead structure. Comput. Math.
Appl. 1999, 38, 11–17. [CrossRef]

30. Fodor, S.; Németh, Z. Numerical analysis of parallel implementation of the reorthogonalized ABS methods. Cent. Eur. J. Oper.
Res. 2019, 27, 437–454. [CrossRef]

31. Abaffy, J.; Fodor, S. Reorthogonalization methods in ABS classes. Acta Polytech. Hung. 2015, 12, 23–41.
32. Broyden, C. On the numerical stability of Huang’s and related methods. J. Optim. Theory Appl. 1985, 47, 401–412. [CrossRef]
33. Hegedüs, C.J. Reorthogonalization Methods Revisited. Acta Polytech. Hung. 2015, 12, 7–26.
34. Parlett, B. The Symmetric Eigenvalue Problem; Republished amended version of original published by Prentice-Hall; SIAM:

Philadelphia, PA, USA; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980; p. 1980.
35. Attaway, D.C. Matlab: A Practical Introduction to Programming and Problem Solving; Butterworth-Heinemann Elsevier Ltd.: Oxford,

UK, 2013.
36. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2012; Volume 3.
37. Davis, T.A.; Hu, Y. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 2011, 38, 1–25. [CrossRef]
38. Gu, X.M.; Carpentieri, B.; Huang, T.Z.; Meng, J. Block variants of the COCG and COCR methods for solving complex symmetric

linear systems with multiple right-hand sides. In Numerical Mathematics and Advanced Applications ENUMATH 2015; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 305–313.

39. Jing, Y.F.; Huang, T.Z.; Zhang, Y.; Li, L.; Cheng, G.H.; Ren, Z.G.; Duan, Y.; Sogabe, T.; Carpentieri, B. Lanczos-type variants of the
COCR method for complex nonsymmetric linear systems. J. Comput. Phys. 2009, 228, 6376–6394. [CrossRef]

40. Zhong, H.X.; Gu, X.M.; Zhang, S.L. A Breakdown-Free Block COCG Method for Complex Symmetric Linear Systems with
Multiple Right-Hand Sides. Symmetry 2019, 11, 1302. [CrossRef]

http://dx.doi.org/10.1023/A:1012971509934
http://dx.doi.org/10.12700/APH.10.07.2013.7.7
http://dx.doi.org/10.1016/S0898-1221(99)00258-8
http://dx.doi.org/10.1007/s10100-018-0557-4
http://dx.doi.org/10.1007/BF00942188
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1016/j.jcp.2009.05.022
http://dx.doi.org/10.3390/sym11101302

	Introduction
	The Scaled Complex ABS (scABS) Algorithm
	Basic Properties of the Scaled Complex ABS Algorithm
	Special Choice of the Scaling Vector

	Numerical Experiments
	Randomly Generated Problems
	Chosen Test Problems from MATLAB Gallery
	Real-Life Problems

	Conclusions
	References

