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Abstract 

For many years, humans have produced energy from fossil fuels such as oil, coal and natural gas. 

Combustion of these fuels produces a large amount of greenhouse gases that contribute to global 

warming. Other, more environmentally friendly sources of energy exist, such as sunlight and wind. 

However, the production of energy from these sources is intermittent and their development requires 

devices that allow significant storage during the production in order to release it at off-peak production 

times. The performance of the current lithium-ion battery systems does not allow optimum energy 

storage.   

Lithium-oxygen (Li-O2) batteries are one of the most promising energy storage and conversion 

technologies due to their ultra-high energy density (almost ten times higher than current Li-ion 

systems). Despite these promising characteristics, high efficiency Li-O2 batteries development is still 

challenging. Some of these challenges include low round-trip efficiency, poor rechargeability, and high 

polarisation. One way to overcome these challenges is to focus on the cathode. This electrode is the 

site of the electrochemical reactions during cycles; therefore, it is essential to optimise it. 

The objective of this work is to design cathodes for efficient lithium oxygen batteries. Two strategies 

have been used, the first consists of tuning the composition of the cathode in order to modulate the 

reaction kinetics and the second of creating a hierarchical structure in order to increase the diffusion 

within the electrode.   

First, we designed a cathode structure with hierarchical micro/meso/macro porosity based on 

Murray’s law. The hierarchically porous cathode is formed using a bottom-up, layer-by-layer 

evaporation-driven self-assembly process. This specific gradient porous cathode was tested in a non-

aqueous lithium-oxygen battery and exhibited a higher discharge capacity compared with a slurry-

based carbon powder cathode demonstrating the positive impact of this structure on the 

performances.  

Then, a second study focused on the use of 3d transition metals as cathode material, and the relation 

between the electrochemical properties of the material on the performance of the battery was 

established. 

Carbon being a source of degradation in Li-O2 batteries, AB2O4 nanowire arrays carbon-free cathodes 

were synthetised and allowed good Li2O2 formation decomposition, resulting in improved 

performances.  
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I) Battery technology in general  
 

The global need for energy, combined with a desire to be more environmentally friendly, leads to a 

significant increase in electricity consumption, with an average annual increase of 3.4%, 1.2 

percentage higher than the average annual growth of total energy consumption.1 As not all the 

electricity produced can be immediately used, the utilisation of specific devices to store unconsumed 

electricity becomes a key factor in resolving these energy issues.  

Performances of the main devices currently used to store electricity are reported in Figure 1. Fuel cells 

can be defined as high-energy systems, whereas supercapacitors can be referred as high-power 

systems. Batteries offer the best compromise between power and energy density and attract intensive 

research interest.2  

 

Figure 1: Power density and energy density obtained for fuel cells, batteries, capacitors, and ultracapacitors 

A battery is made of two electrodes connected to a current collector. One of them is positively charged 

and called cathode while the other is negatively charged and called anode. Besides, an ionic conductor, 

called electrolyte, ensures the migration of ions between the electrodes. The reaction sites are located 

in the electrodes and once connected externally, chemical reactions take place simultaneously at both 

electrodes, releasing electrons and allowing the user to harvest the current. Chemical reactions are 

reversible and electrons can migrate in both directions depending on the external voltage applied. 

During charging the cathode oxidises, the anode reduces and the cations migrate to the anode. The 

electron current created will flow from the cathode to the anode. During discharge the anode oxidises, 

the cathode reduces and the cations migrate towards the anode. The electron flow will move from 

the cathode to the anode. Figure 2 resumes this phenomenon.  
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Figure 2: Illustration of charging (a) and discharging (b) process in batteries 

Several kinds of batteries are commercially available. The most common among them are listed in 

Table 1 along with some of their characteristics.3-4 It is evident from their properties that lithium 

batteries are the most promising devices. Indeed, their energy density, cycling rate, and voltage are 

much higher, which make them particularly interesting for application in portable devices. 

Table 1: Characteristics of the main commercially available batteries 

Lithium batteries are divided into several sub-categories: lithium-ion, lithium-sulphur, and lithium-

oxygen. Li-ion batteries are widely marketed while Li-S, Li-O2 are still in the development stage.  

Due to their exceptional performance, lithium-ion batteries attract increasing attention and are 

extensively marketed. The main composition of this battery includes a graphite-type carbon anode 

and a LiCoO2 cathode (Figure 3). In this system, the cathode is the main source of lithium.  

Lead, NiCd, NiHM and alkaline batteries energy storage principle is based on metal oxidation and 

reduction reactions, while lithium-ion batteries energy storage process can be based on one of this 

three phenomena: conversion, capacitance, and intercalation.   

The conversion is based on the breaking and creation of new chemical bonds during the insertion and 

extraction of lithium during the cycles. Two types of conversions are currently known and are 

  Lead NiCd NiHM Alcaline Li-ion LiPo 

Cathode PbO2 NiOOH NiOOH MnO2 Li1-xCoO2 Li1-xCoO2 

Anode Pb Cd HM Zn LixC6 LixC6 

Energy density (W.h.kg-1) 30-50 45-80 60-120 80 150-190 150-190 

Voltage (V) 2 1.2 1.2 1.5 3.6 3.6 

Cycling 
200 to 

300 
1500 

300 to 
500 

50 
500 to 
1000 

300 to 
500  

Operating temperature (°C) 
-20 to 

60 
-40 to 

60 
-20 to 60 0 to 65 -20 to 60 0 to 60 

Self-discharge (%/month) 5 20 30 0.3 10 10 
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described in equations 1.1 and 1.2.5 However this kind of battery also suffers from severe problems 

such as high hysteresis, low-rate capability and rapid capacity loss.  

 𝑀’𝑋𝑧  +  𝑦𝐿𝑖   ↔ 𝑀 +  𝑧𝐿𝑖(𝑦/𝑧)𝑋   

 

(1.1) 

 𝑦𝐿𝑖 +  𝑋’ ↔ 𝐿𝑖𝑦𝑋  

 

(1.2) 

M’ = transition metal ions, M = reduced transition metal ions, X = halogen or chalcogenide ions. 

The energy storage of the capacitor is based on the storage of electrostatic charges at the electrode-

electrolyte interface. The ions in the electrolyte are adsorbed and desorbed from the interface of the 

electrode, meaning that no charge transfer reaction occurs. The devices based on this phenomenon 

have a high-power density (10kW/kg) and lifetime, but suffer of a limited energy density (5Wh/kg).6 

Energy storage of currently commercialised lithium-ion battery is based on lithium-cation 

intercalation. During charging, lithium cations are inserted in the graphite electrode, while in 

discharge, the lithium cations move from the graphite into the LiCoO2 electrode. These phenomena 

are illustrated in Figure 3 and resumed in the following two equations:7 

 𝐿𝑖𝐶𝑜𝑂2  ↔
1

2
 𝐿𝑖+ +

1

2
 𝑒− + 𝐿𝑖0.5𝐶𝑜𝑂2  

 

(1.3) 

 𝐶6 + 𝐿𝑖+ +  𝑒− ↔ 𝐿𝑖𝐶6  
 

(1.4) 

Charge/discharge processes are based on the reversible lithium intercalation in the electrodes. 

Charging leads to the oxidation and delithiation of LiCoO2 and to the reduction and lithiation of 

graphite. The opposite reactions occur during discharge.8 The lithiation of the graphite occurs in stages 

such as LiC24, LiC27 and LiC12 via first-order phase transitions reactions.9 Some metastable insoluble LixC6 

can be formed during cycling which can passivate the electrode, thus avoiding any further irreversible 

process.  

The major drawback of this kind of battery comes from the phase transition of LiCoO2 on discharge. 

The original hexagonal phase of LiCoO2 is transformed into monoclinic Li0.5CoO2 and causes a c-axis 

expansion of 2.6% with negligible variation in the a-axis. The transformation of the lattice causes 

mechanical stresses leading to a decrease in the performance of the battery.10 Other important 

challenges of Li-ion batteries is its low power density and low charging rate to meet the high energy 

requirements of modern renewable energy storage systems.  
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Figure 3: Representation of discharging (a) and charging (b) phenomenon in Li-ion batteries 

The drawbacks of Li-ion batteries lead to the research of other kind of Li batteries, for example lithium 

sulphur (Li-S) cells. Their electrochemical process involves the transfer of two electrons per sulphur, 

giving a much higher theoretical energy density (3680 mAh.g-1) compared to Li-ion batteries.11 The 

main components of the battery as shown in Figure 4, comprise a lithium foil, a sulphur electrode, an 

electrolyte and a separator. The main reaction that occurs in the Li-S cell during charge/discharge 

processes is described in the following equation. During the discharge process Li2S is formed via 

lithium intercalation in S8 electrode while during charge process the lithium deintercalated to give 

back S8.  

 𝑆8 + 16 𝐿𝑖 ↔ 8𝐿𝑖2𝑆  
 

(1.5) 

Despite promising results, this kind of battery has several weaknesses. Sulphur and its various 

discharge products have low ionic and electrical conductivity which increase the internal resistance of 

the battery and reduce the energy efficiency of the battery. Moreover, the formation of an insoluble 

insulation layer made of Li2S and Li2S2 on the surface of the sulphur particles during discharge 

contribute to the poor conductivity as it impedes sulphur reduction and limits its use. More 

importantly, lithium-sulphur battery suffers from the shuttle effect caused by polysulfides. Soluble 

polysulfides are produced at the cathode during redox processes and diffuse throughout the separator 

and can react with the anode to form an insoluble sulphide layer (Li2S, Li2S2) retarding the fast access 

to Li, and leading to a rapid decrease in capacity.12  

To resume, lithium-sulphur battery system is difficult to control due to the complex electrochemistry 

of sulphur. System instability leads to the formation of soluble polysulphide by products, resulting in 

inefficient charging process and battery death.13 
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Figure 4: Representation of a traditional Li-S batteries  

Lithium-oxygen battery attracts more and more attention. This battery is based on the reaction 

between lithium cation and oxygen.14 Figure 5 reports the performances of most batteries, and show 

that lithium-oxygen batteries possess the highest energy density compared to other battery systems, 

which is close to that produced by a device based on gasoline combustion.  

 

Figure 5: Graph representing the energy density (practical and theoretical) of different kinds of batteries compared to 
gasoline.15 

Lithium-oxygen are thus considered as the best candidate for a high-efficient and future battery in 

terms of power density and energy density. Their high theoretical energy density increases by 

approximately 10 times compared to the actual performances of lithium-ion batteries.15 This PhD will 

focus on the study of lithium-oxygen batteries and their optimisation via cathode design.  
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II) Lithium-oxygen batteries  
 

Abraham and Jiang described the first lithium oxygen battery in 1996.15 It was made of a lithium disc 

as anode associated with a porous carbon cathode. The connection between electrodes was ensured 

by a polymer electrolyte. Unfortunately, the low rechargeability of the system did not allow its 

immediate development. It was only 10 years later that Ogasawara et al. demonstrated the 

reversibility of this kind of battery.16 Their system consisted of a lithium metal anode, a cathode 

composed of a mixture of porous carbon and MnO2, and an organic solvent-based electrolyte.  

Contrary to currently commercialised lithium-ion batteries, which operate through a mechanism of 

insertion and de-insertion of Li+ ions into the electrodes, this new type of battery uses the reaction 

between Li+ ions and oxygen to store energy. Oxygen is supplied from an external source. The system 

consists of a lithium anode, a non-aqueous electrolyte and a porous carbon cathode.  

The fundamental chemistry of lithium-oxygen batteries involves lithium dissolution and deposition at 

the lithium anode and oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the 

cathode. During the discharge, the reduction of oxygen leads to the formation of lithium superoxide 

LiO2 through a one electron transfer (Equation 2.1). This superoxide can react with another lithium 

cation Li+ and an electron (Equation 2.2) or undergo a dismutation reaction, to form lithium peroxide 

Li2O2 (Equation 2.3). The overall reaction is described in Equation 2.4.17-18 

 𝑂2  + 𝐿𝑖+ + 𝑒−  → 𝐿𝑖𝑂2 
 

(2.1) 

 𝐿𝑖𝑂2  + 𝐿𝑖+ + 𝑒−  → 𝐿𝑖2𝑂2 
 

(2.2) 

 2𝐿𝑖𝑂2  → 𝐿𝑖2𝑂2 +  𝑂2 
 

(2.3) 

 2𝐿𝑖 + 𝑂2  → 𝐿𝑖2𝑂2     ∆𝐺° =  −571,0 𝑘𝐽. 𝑚𝑜𝑙−1    (E° = 2.96 V) (2.4) 
 

To be rechargeable, the Li2O2 previously formed during discharge must be able to be electrochemically 

decomposed into Li+ and O2 during charging. The decomposition of lithium superoxide is based on two 

main reactions involving a one or two-electron process. (Equation 2.5, 2.6, 2.7) 

 𝐿𝑖2𝑂2  →  𝑂2 + 2𝐿𝑖+ + 2𝑒− 
 

(2.5) 

 𝐿𝑖2𝑂2  →  𝐿𝑖𝑂2 + 𝐿𝑖+ + 𝑒− 
 

(2.6) 

 𝐿𝑖𝑂2  →  𝑂2 + 𝐿𝑖+ + 𝑒− (2.7) 
   

Since Li2O2 is an insoluble solid, it is essential to decompose it completely as it could passivate the 

cathode and thus reduce the performance of the battery. Charging and discharging processes are 

summarised in Figure 6. 
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𝑂2  + 𝐿𝑖+ + 𝑒−  → 𝐿𝑖𝑂2 
 

 

𝐿𝑖𝑂2  + 𝐿𝑖+ + 𝑒−  → 𝐿𝑖2𝑂2 
 

𝐿𝑖2𝑂2  →  𝑂2 + 2𝐿𝑖+ + 2𝑒− 
 

2𝐿𝑖𝑂2  → 𝐿𝑖2𝑂2 + 𝑂2 
 

𝐿𝑖2𝑂2  →  𝐿𝑖𝑂2 + 𝐿𝑖+ + 𝑒− 
 

2𝐿𝑖 + 𝑂2  → 𝐿𝑖2𝑂2 𝐿𝑖𝑂2  →  𝑂2 + 𝐿𝑖+ + 𝑒− 
 

Figure 6: Operating principle of a Li-O2 battery during (a) discharge and (b) charge 

In the following section, we present a review of research realised on each part of Li-O2 battery. Firstly, 

we consider the recent developments concerning the cathode and discuss in detail the effects of 

textural properties and chemical composition of the cathode on battery performance. In the second 

part, we focus our attention on the electrolyte which plays a crucial role in Li-O2 battery. Key 

parameters of the electrolyte like solvent, lithium salt and additives will be critically analysed and 

summarised. Some prospective electrolytes will be proposed.  

 

II.1) Cathode  

 

Cathode is the site of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). These 

reactions are directly related to the performance of the battery. It is vital to optimise it in order to 

obtain the best characteristics such as high capacity, power density, high round-trip efficiency and 

high cycling stability. The two important parameters that need to be controlled are the textural 

properties and the chemical composition.   

Cathode textural properties have a huge influence on the performances of the battery. In order to 

optimise the Li2O2 deposition, the oxygen-electrode must establish a close contact between the 

lithium ions, the electrolyte, and the electrons. Li2O2 nucleation is driven by the adsorption of O2 and 

Li+ on the cathode surface; the higher the adsorption, the higher the number of nucleation sites and 

the greater the Li2O2 formation. As a consequence, maximum oxygen diffusion and electrolyte 
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retention will increase the contact between Li+ and O2 and promote Li2O2 nucleation sites on the 

electrode. 

 

Regarding the composition, the ideal material should have high conductivity, the ability to catalyse 

the OER/ORR, and should be inert to the electrolyte. Due to the high probability of generating 

insoluble side products in case of battery instability, it is of prime importance to carefully select the 

right materials to increase this stability and consequently battery performance.  

The aim of this section will be to evaluate the influence of the textural properties and the chemical 

composition of the cathode on the performance of the battery. 

 

II.1.1) Textural properties 

 

Textural properties play a crucial role in maximising the deposition of lithium peroxide. The solid Li2O2 

formed during discharge will cover the electrode surface and occupy the surrounding space. To obtain 

more reaction sites to maximise Li2O2 deposition, a high surface area is required.  

Kim et al.19 tried to understand the role of porosity in a carbon electrode by studying the influence of 

micro and meso porosity. They synthetized two materials via carbonization using a triazine-based 

covalent organic polymer (TCOP). The first material was carbonised for two hours under a nitrogen 

atmosphere at 800°C (C-800), and the second one was physically activated via a carbonisation under 

carbon dioxide at 950°C for one hour (AC-950). The morphology of the obtained particles was analysed 

by scanning electronic microscopy (SEM) and the textural properties by nitrogen physisorption. A 

commercial hexagonally ordered mesoporous carbon (CMK-3) was also used for comparison and the 

results are shown in Figure 7.  

C-800 material contained 96% micro-porosity with a pore size distribution from 0.5 to 1 nm and a 

specific surface area of 1022 m².g-1. AC-950 material possessed both micro (0.5-0.6 nm) and 

mesoporosity (2-9 nm) with a micro/meso ratio of 55:45 and a specific surface area of 2003 m².g-1. 

The commercial mesoporous carbon (5-6 nm) CMK-3 had a specific surface area of 789 m².g- 1 

(Figure 7b-f).  The difference of porosity between C-800 and AC-950 resulted from the carbonization. 

The distinctive pore-size structure of AC-950 was attributed to the destruction and collapse of the 

carbon structure during the physical activation process.  

The effect of the pore size of carbon electrodes on the Li-O2 cell was investigated by monitoring the 

formation of the discharge products at several capacities. Li2O2 discharge products were found to be 

distributed along pore channels that are well-accommodated within the porous cathode. More 

specifically, the discharge products in the AC-950 electrode were distributed in all the porous area, 

while the CMK-3 electrode had a denser distribution of Li2O2 in the porous channels. These 

observations were consistent with the electrochemical tests. The cell discharge capacity was 6003, 

8433, and 9968 mAh.g−1 for C-800, AC950, and CMK-3 respectively at a current density of 200 mA.g−1 

(Figure 7g).  
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This study highlights the importance of modulating the pore size with respect to lithium peroxide 

formation. Mesopores provide a higher lithium peroxide formation compared to micropores, thus 

increasing the performance of the battery.  

 

Figure 7: (a) Illustration of the fabrication of different porous carbon cathodes derived from a triazine-based covalent 
organic polymer (TCOP); (b) N2 adsorption-desorption isotherms and (c) pore size distributions of C-800, AC-950, and 

CMK- 3; SEM microphotographs of (d) C-800, (e) AC-950, and (f)  CMK-3; (f) 1st discharge-charge curves of Li-O2 cells with 
the C-800, AC-950, and CMK-3 electrodes at a current density of 200 mA.g−1. 19 
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Doo et al.20 studied the influence of porosity by comparing three different types of carbon: YP-50F, 

CEP21S and an aerogel. Their properties as determined in their study are described in Table 2.  

Table 2: Results obtained for Doo et al. study, comparison and link between porosity and battery performances. 20 

 Pore Volume 
(cm3.g-1) 

BET surface 
area (m².g-1) 

Pore diameter 
(nm) 

Discharge 
Capacity 
(mAh.g-1) 

Volume ratio 
of Li2O2 in 

carbon pores 

Aerogel 2.53 688 25-40 4155 0.61 
YP-50F 0.55 1908 < 2 264 0.18 
CEP21S 0.85 1195 < 2 124 0.05 

 

The results show that the discharge capacity decreases with increase in specific surface area.  Since 

the formation of lithium peroxide is a surface phenomenon, more lithium peroxide should be formed 

with increase in surface area of electrode, which should result in higher performance of the battery. 

However, this study presented the opposite and showed that the most important parameter is not 

the specific surface area but the size of the pores. Mesopores allowed to optimise the volume ratio of 

Li2O2 in carbon pores compared to the micropores. This ratio increased from 5% for the microporous 

CEP21S to 61% for the mesoporous aerogel, resulting in an increase in capacity from 124 to 

4155 mAh.g-1.  

In order to properly assess the impact of cathode porosity on battery performance it is important to 

evaluate the homogeneity of lithium peroxide formation throughout the electrode. Zhang et al. 21 

studied the formation of lithium peroxide on single-wall carbon nanotube SWNT/CNT buckypapers of 

different thicknesses (19.7 µm, 65.5 µm, 219.2 µm) and the results are shown in figure 8.  

The specific surface area and the pore size distribution of the SWNT/CNT buckypapers were 

determined by N2 physisorption and the specific surface area was determined to be 173 m².g-1 with 

an average pore size of 9nm. The porosity of the SWNT/CNT buckypapers was estimated at 77% and 

the pore size distribution showed a maximum at 3.4 nm and indicated the presence of mesopores of 

all diameters between 2 and 20 nm. (Figure 8a) 

The relation between the discharge capacity and the thickness of the electrode is shown in Figure 8 b. 

Capacity of 2550, 1580 and 350 mAh.g-1 were achieved for 19.7, 65.5, and 219.2 µm electrodes 

respectively. It was observed that the capacity decreased with increase in thickness. This difference in 

performance as a function of cathode thickness was explained by the presence of an oxygen 

concentration gradient. The oxygen concentration was found to be non-uniform inside the O2 

electrode which resulted in a nonuniform deposition of the Li2O2 discharge product. More specifically, 

the porosity near the oxygen side decreased faster than that close to the membrane. The correlation 

between the specific capacitance and the thickness of the electrode can be translated into the fact 

that the discharge product is deposited near the electrode/oxygen interface and in the oxygen 

diffusion road. When the thickness of the O2 electrode is greater than the oxygen diffusion length, 

most of the pore volume is not filled by the discharge medium, therefore the specific capacitance 

decreases. The SEM micrographs of two different surfaces of a cathode of 65.5 µm thickness after 

discharge (fig. 8 d,e)  presented a clear difference of surface morphologies. The surface of the oxygen 

side was fully covered by the discharge product while the membrane side still had a high porosity. This 
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experiment confirmed that it is necessary to create a specific architecture for the cathode in order to 

create an optimal pathway for the oxygen.  

 

Figure 8: (a) N2 isotherm and pore size distribution measured on buckypaper, (b) discharge curves from Li-O2 cells made 
with different electrode thicknesses, (c) SEM image of the buckypaper, SEM images of the oxygen electrode surfaces at 

(d) separator and (e) oxygen sides after discharge. 21 

In order to evaluate the oxygen pathway through the electrode Tan et al.22 designed a gradient porous 

cathode and discussed its impact on the performances of the Li-O2 battery. The gradient porous 

cathode was formed by binding three carbon layers with different pore sizes. The first layer had the 

largest pores (500 nm) and was located on the oxygen side, the layer with the smallest pores (100 nm) 

was on the membrane side and between these two layers there was an intermediate layer with pores 

of 300 nm. The morphology of this electrode as observed by SEM is shown in Figure 9 a-d. 

 

The galvanostatic discharge obtained from the layered electrode is shown in Figure 9 e. In order to 

compare the influence of the porosity gradient, two other cathodes with pores of 100 and 500 nm 

respectively were used for comparison. The discharge capacity obtained with the gradient porous 

cathode was found to be the highest (2120 mAh.g-1) followed by the 100 nm porous film (1713 

mAh.g- 1) and the 500 nm porous film (375 mAh.g-1). This result demonstrated that a porosity gradient 

can increase the performance of the battery. Once the discharge was completed, the electrodes were 

analysed by SEM to verify the homogeneity of the product formation on the electrodes (fig. 9 f,g)   The 

uniform porous cathode exhibited toroid like products on both side of the electrode. However, the 

particle sizes were observed to be larger at the separator side. The increase in size resulted from a 

lower current density. The current density is directly related to the oxygen concentration.23 The lower 
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the oxygen concentration, the lower the current and the larger the particles. The gradient porous 

cathode showed toroidal like products on the oxygen side surface, like those obtained with the 

uniform porous cathode, while at the separator side the particles were smaller. This decrease in size 

revealed the presence of higher oxygen concentration, indicating a more efficient oxygen transport 

provided by the porous gradient. With this study, sufficient evidence was provided to justify that 

creating a pathway for oxygen within the cathode can improve the formation of discharge products 

and increase the performance of the battery.  

 

It has been shown that the textural properties are essential for the improvement of battery 

performances. It is interesting to note that it is the pore size but not the specific surface area that is 

favourable for lithium peroxide depositions and for increased battery performance. However, porosity 

alone cannot ensure an efficient cathode.  It must be controlled in order to exploit the entire cathode 

volume. Pores that are too small can clog the cathode on the oxygen side and prevent its full volume 

from being used. It is important to create a pathway through the electrode in order to increase the 

oxygen concentration on the separator side. This pathway will allow the full volume of the cathode to 

be used and increase the performance of the battery.   

The first chapter of the thesis will thus focus on the design of a structure with hierarchical micro-meso-

macroporosity following Murray's law to optimise the oxygen pathway in the cathode. The 

optimisation of the diffusion of oxygen will maximise the formation of the discharge products and thus 

increase the performance of the battery.   
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Figure 9: SEM image of (a) the cross section of the gradient porous cathode (b) the oxygen-side, (c) middle, and (d) 
separator-side layer, (e) Galvanostatic discharge curves at 0.1 mA/cm2, SEM image of the cathode after discharge (f) 

uniform porous cathode (g) and gradient porous cathode. 22 

 

II.1.2) Chemical composition of the cathode 

 

As previously stated, the oxidation and reduction of oxygen leading to the formation and dissolution 

of lithium peroxide occurs in the cathode. The selection of the cathode material is therefore of prime 

importance. The ideal material should possess a high electrolyte wettability to limit the ionic transfer 

resistance, to exhibit good electrical conductivity, and to have the ability to accelerate the kinetics of 

both ORR and OER processes. Several classes of materials identified in the literature will be discussed 

in this section. 
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II.1.2.a) Carbon materials 

 

Carbon had been widely used as an electrode material in various batteries because of their availability, 

low cost, light and good electrical conductivity. Carbon can be found in different forms in the cathode 

of lithium-oxygen batteries. It can be classified into three main categories: commercial carbon, carbon 

with a specific shape and finally nitrogen-doped carbon. All categories will be discussed in detail in the 

following subsections.  

Commercial carbons are among the widely used materials in lithium oxygen batteries. The most 

employed are the Super P, the Ketjen Black and the CMK-3.16,29,31-32. Gasteiger et al.33 compared 7 

carbon types which are listed in Table 3 along with their characteristics. The external specific surface 

area was calculated by subtracting the volume of the micropores from the total volume.  

Table3: Surface area analysis data of cathodes coated on Al foil.33  

Carbon type Graphitized 
(yes/no) 

Total Specific surface 
area (m².g-1) 

External Specific 
surface area (m².g-1) 

Timcal Super C65 (C) No 50 50 
Tanaka Va-type (VA) Yes 82 82 
Tanaka EA-type (EA) Yes 128 128 

Tanaka V-type (V) No 152 137 
Tanaka BA-type (BA) Yes 193 193 

Tanaka E-type (E) No 533 432 
Tanaka B-type (B) No 1123 513 

Firstly, discharge profiles of batteries made with those electrodes, as presented in Figure 10, show 

that the nature of the carbon does not significantly affect battery performance. The difference in 

capacity comes from the textural properties. The higher the specific surface area, the higher the 

capacity. However, there is a limitation to this study as it only took into account the volume of 

micropores but did not clearly state their sizes. As previously mentioned, pore size has a major impact 

on the performance of the battery.  

 

Figure 10: First Galvanostatic discharge curves for all carbon. 33 

Mao et al.34 compared activated carbon SY TC-03 (AC), Ketjen black, Super P and Vulcan-XC72. Their 

characteristics are listed in Table 4. 
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Table 4: The discharge capacity of various carbon type and their related physical parameters.34 

Carbon type Discharge 
Capacity 
(mAh.g-1) 

Carbon 
Loading 

(mg.cm-3) 

Specific 
surface area 

(m².g-1) 

Average pore 
diameter 

(nm) 

Pore 
Volume 
(cm3.g-1) 

Super P 4255 3.03 259 12.8 10.6 

XC 72 1706 3.54 200 10.9 10.3 

AC 2311 3.28 1759 4.1 10.2 
KB 3374 3.76 1724 6.5 11.7 

Several hypotheses can be made from the data in Table 4. Firstly, Super P carbon, which has the largest 

pores, was found to have the highest capacity. These results are in agreement with the previous 

statements. Carbon KB has smaller pores than Carbon XC 72 but was observed to have a higher 

capacity. This increase in capacity is due to the larger number of pores in Carbon KB compared to XC 

72. Indeed, when comparing the pore volumes, the carbon KB has a higher pore volume which 

indicates the presence of more pores in its structure and therefore a higher capacity. Activated carbon 

(AC) has the smallest pores. However, for the same pore volume, its capacity was found to be higher 

than that of the XC 72 carbon which has larger pores. This increase in capacity may be due to the 

activation process that the AC carbon underwent. During this activation the structure was partly 

destroyed and allowed micropores to be connected to the mesopores allowing better diffusion of 

oxygen within the electrode resulting a higher capacity. 

The textural properties are the most important parameter for this kind of cathode. In this context, 

several carbon forms have emerged in order to achieve the best characteristics. The properties of 

graphene as cathode were investigated. This specific structure possesses a high electron transfer rate, 

large surface area (≈ 2630 m².g-1), high conductivity, and high thermal and chemical stability. 

 Sun et al.35 used a graphene nanosheet as cathode material and showed improved electrochemical 

performance with a capacity of 8705.9 mAh.g-1 compared to 1053.8 mAh.g-1 obtained with a Vulcan 

XC-72 carbon electrode (Figure 11). These results can be explained by the structure of the graphene 

nanosheet which forms an ideal three-phase 3D electrochemical zone that increases the diffusion 

channels of the electrolyte and oxygen, and leads to an increase in the efficiency of the catalytic 

reaction (Figure 12). Moreover, the active edge sites contribute significantly to the higher 

electrocatalytic activity towards ORR. The hypothesis that could explain this reactivity is the presence 

of dangling bonds that are highly reactive towards oxygen. Therefore, the ORR activity will be higher. 
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Figure 11: Discharge–charge performance of lithium-oxygen batteries with Graphene nanosheet, BP-2000, and Vulcan 
XC-72 cathodes at a current density of 75 mA.g-1.35 

 

Figure 12: Structure of the rechargeable Li-oxygen battery based on graphene nanosheet as an O2 electrode (hybrid 
electrolyte). 36 

Zhou et al.36 confirmed that graphene possesses good catalytic performances with regard to ORR. The 

low overpotential comes from both the presence of dangling σ-bonds from sp3 carbon atoms at the 

edges and defects of graphene nanosheet.  

Carbon nanotubes (CNTs) have high chemical and thermal stability, high conductivity, high tensile 

strength and large surface area and could be a good candidate for cathode material.37-38 Dong et al.39 

synthesized a highly ordered and ultra-long carbon nanotube array (vertically aligned carbon 

nanotube VACNT-Ta) by thermal chemical vapour deposition (TCVD) which showed a larger specific 

surface area (206 m².g-1) and fewer surface defects than powder CNTs or commercial VACNTs (80 

m².g- 1) (Figure 13 a).  

First discharge-charge profiles as reported are presented in Figure 13 b. VACNTs-Ta showed a larger 

discharge capacity, better rate capability and cycling stability compared to commercial VACNTs. These 
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electrochemical results were explained by the promotion of ORR and OER reactions due to 

enhancement of the transport of ionic species, electrons and gas. The large surface area of the 

nanotubes led to an increase in the number of active sites and was favourable for the reaction 

between the soluble catalysts in the liquid electrolyte and the formation of Li2O2 on its surface 

(Figure 13 c). Therefore, it considerably reduced charging overpotential and improved energy 

efficiency. Lee et al.40 synthesized a highly oriented CNT sheets that provided an electrical conductivity 

of 389 S.cm- 1 and a mesoporous structure with a specific surface area of 171 m2.g-1. This CNT sheet 

achieved a maximum discharging capacity of 1810 mAh.g-1 which was found to be better than that of 

CNT bucky paper (300 mAh.g-1) and vertically aligned multiwall CNT cathode electrode (∼1000 mAh.g-

1), thereby showing the importance of the organisation of nanotubes. 

 

Figure 13: (a) SEM images of the VACNTs-Ta, (b) First discharge-charge profiles of VACNTs-Ta, VACNTs-SS and CNT-P, (c) 
Scheme of the Li2O2 formation toward the VACNTs-TA .39 

Nanofibers are another widely used form of carbon (CNFs). Lü et al.41 investigated the electrochemical 

performance of the CNF-grafted cathodes that displayed a maximum discharge capacity of 20000 

mAh.g−1 under the current density of 937 mA.g−1. This cathode was able to reach 200 cycles under a 

0.06 mA.cm-2 current density. It is important to note that the current density used is very low to get a 

good cycling performance. In order to increase the performances, Song et al.42 prepared graphitic 

carbon nanofiber web by varying the pyrolysis temperature. Their electrochemical tests, as presented 

in Figure 14, showed that an increase in the degree of graphitization coupled with a decrease in surface 

defects leads to a decrease in polarization and an improvement in cyclability compared to low 

graphitized nanofibers with many surface defects.  

 

Figure 14: Cycling performances of CNF electrodes pyrolyzed at several temperature (a) CNF 1000, (b) CNF 1200 and (c) 
CNF 1400.42 

Jung et al.43 used carbon sphere as cathode material (triple hierarchical porous carbon spheres THPC). 

The fabrication process, the SEM micrographs, and the N2 physisorption isotherms are presented in 

Figure 15 a-d. In order to evaluate its electrochemical performance, a comparison with super P carbon 

was carried out and showed an increase in energy efficiency from 63% to 70%. Discharge capacities, 
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as depicted in Figure 15 e, showed an increase for THPC cathode from 2427 mAh.g-1 to 3891 mAh.g-1 

compared to Super P electrode. Moreover, the end potential of the carbon sphere during charge was 

observed to be 4.15 V, which is 0.33V lower than that of Super P, illustrating a system stabilization. 

This improvement in performance came from the ordered porous carbon structure, optimising the 

diffusion of the oxygen flow as well as the immersion of the electrolyte, while simultaneously offering 

an efficient space for the deposition of Li2O2.  

 

Figure 15: (a) Schematic illustration for fabrication process of triple hierarchical porous carbon spheres (THPC) (b) SEM 
and (c) corresponding TEM images of THPC, (d) , N2 adsorption–desorption isotherms with pore size distribution curve 
for the USS and THPC in the inset (e) Discharge and charge profile at 100 mA.g−1 with a voltage window of 2.0–5.0 V for 

Super P and THPC carbon material.43 

Nitrogen doping of carbon materials leads to a modification of the surface and electronic properties, 

and improves the oxygen reduction reaction catalytic activity of the carbon.44 O2 molecule prefers to 

adsorb on the graphene surface with the two O atoms close to two C atoms along the diagonal of the 

C6 ring. The adsorption of O2 molecules is based on the charge transfer occurring between them and 

the graphene sheet. N atom has one electron more than C atom. As the adsorption is based on the 

charge transfer, nitrogen doping will enhance this phenomenon. For the adsorption of a single O atom 
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on the graphene surface, N-doping increases the adsorption energies, thus promoting interactions 

with oxygen (Figure 16).  

 

Figure 16: (a) The atomic geometry of O2 molecule physically adsorbed on graphene (left) and N-doped graphene (right). 
The grey, red, and blue spheres are C, O, and N atoms, respectively. The numbers are the corresponding marked 

distances in angstrom, (b) Schematic view of O atom adsorbed on graphene (left) and N-doped graphene (right) with the 
local atomic distortions and adsorption energies of O atoms at different sites. 44 
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Xu et al.45 synthesised a hierarchical porous nitrogen doped three-dimensional graphene (N-3DG) by 

combining hydrothermal self-assembly and annealing process (Figure 17 a,b and c) with a surface area 

of 137 m².g-1 and two pore size distributions in the range of 1-80 nm and 80-180 nm (Figure 17 d,e). 

This material exhibited a higher specific capacity and better cycle stability than its undoped 

counterpart. Figure 17 f,g present the cycling performances obtained at a fixed capacity of 500 mAh.g-

1 with a current density of 100 mA g-1 for the nitrogen-doped material and its pure carbon counterpart. 

The N-doped cathode reached 21 cycles with a stable reversible capacity. The initial round-trip, which 

is the percentage of electricity put into storage that is later retrieved, was around 66%. The discharge 

and charge plateaus were about 2.5V and 4.6 V respectively, and after 21 cycles they remained at the 

same potential. The charge voltage plateau corresponds to the OER process and the discharge plateau 

to the ORR process. The theoretical potential for the formation and decomposition of Li2O2 was about 

3V. Experimentally, the higher the charge plateau and the lower the discharge plateau, the more 

degradation will occur in the battery, such as electrolyte decomposition. The difference between the 

two plateaus is called the overpotential and indicates the polarisation of the battery. The non-

nitrogen-doped cathode only cycles 8 times with an initial round trip of 61% and a charge plateau of 

4.4V. The overpotential increases considerably over cycles. After 8 cycles, the discharge plateau 

reaches 2.3V and the charge plateau 5 V, revealing the high polarization of the battery. A high 

polarization leads to some degradations in the battery and to a progressive passivation of the cathode, 

reducing the surface area and therefore the performance of the battery. This study confirms that 

carbon-nitrogen doping increases battery performance through improved ORR catalytic activities. This 

improvement in ORR is reflected in the stabilisation of the charge plateau over the cycles.   

Meng et al.47 synthesised several carbon-based materials with different percentages of nitrogen 

doping (1%, 4%, 6%, 12%). Figure 18 presents their morphology, textural and electrochemical 

properties (Figure 18 a-e). The highest efficiency was observed in the case of the electrode containing 

6% of nitrogen. The cell reached 71 cycles over 420h and possessed a first discharge capacity of 7250 

mAh.g-1 at a 200mA.g-1 current density. The addition of 6% nitrogen improved the OER and ORR 

catalytic activities of the battery, which was reflected in the decrease in overvoltage (Figure 18 g) and 

in the higher cycling stability (Figure 18 h).  However, a 12% nitrogen doping led to a high number of 

active sites that can react with the oxygen of the solvent (Tetraethylene glycol dimethyl ether 

(TEGDME)) and decompose it to form an isolated Li2CO3 film. This hypothesis was confirmed via 

scanning linear sweep voltammetry (LSV) where a specific peak appeared at 4.02 V which 

corresponded to the decomposition of the electrolyte. The study confirmed that adding nitrogen to 

carbon materials can stabilise the system and improve battery performance. However, it was noted 

that the doping should be limited in order to avoid the decomposition of the electrolyte. 
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Figure 17: (a) Schematic illustration of the preparation processes of N-3DG and 3DG, (b) SEM and (c) TEM images of N-
3DG, (d), N2 adsorption-desorption isotherms and (e) the corresponding pore size distribution curve of N-3DG,and  

Cycling performances of Li-O2 batteries with (f) N-dopes and (g) pure carbon electrodes at a current density of 
100 mA g−1 and cut-off capacity of 500 mAh g−1 .45 

https://www.sciencedirect.com/topics/chemistry/behavior-as-electrode
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Figure 18: SEM images of the nitrogen doped carbon (a) NEC1; (b) NEC4; (c) NEC6; (d)NEC12 with insets of selected area 
electron diffraction (SAED) patterns respectively, (e) N2adsorption/desorption isotherms with corresponding pore size 
distribution (inset) of the carbon materials (f) Capacity obtained with the different percentage N-doping electrode at a 

200mA.g-1 current density and a 2.0-4.5V window, (g) Initial discharge-charge curves at a 200mA.g-1 current density for a 
600 mAh.g-1 specific capacity, (h) Cyclic performances of the different N-doped cathodes at a 200mA.g-1 current density 

for a 600 mAh.g-1 specific capacity.47 
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It is obvious that carbon materials had been widely used as cathode materials due to their 

conductivity, surface area, and catalytic activity towards oxygen. All the carbon-based cathodes used 

for Li-O2 batteries in research reports are summarised in Table 5. However, the major drawback that 

limits the applications of these cathodes is the reactivity of carbon with lithium peroxide that gives 

insoluble lithium carbonate (Equations (1.7) and (1.8)). 

Table 5: Capacity reached, morphology and textural properties of the principal carbon-based cathodes for Li-O2 batteries 
applications 

 
Carbon type 

 
Morphology 

 

Discharge 
Capacity 
(mAh.g-1) 

Specific 
surface area 

(m².g-1) 

Average pore 
diameter 

(nm) 

Pore 
Volume 
(cm3.g-1) 

Reference 

Super P nanoparticle 4255 259 12.807 10.6 34 

XC 72 nanoparticle 1706 200 10.942 10.3 34 

AC nanoparticle 2311 1759 4.132 10.2 34 

KB nanoparticle 3374 1724 6.538 11.7 34 

GNS  graphene 15000 186 18 0.83 36 

VACNT-TA  nanotube 4300 206 - - 39 

CNF  nanofiber 20000 - - - 41 

THPC  nanosphere 3891 - 7 - 43 

N doped carbon       

 N-3DG graphene 7300 137 - 0.42 46 

NEC1  nanoparticle 4200 879 - - 47 

NEC4  nanoparticle 6200 950 - - 47 

NEC6  nanoparticle 7250 911 - - 47 

NEC12  nanoparticle 5800 1121 - - 47 

CA spherical 
particle cluster 

16600 754 3.67 - 48 

 

 
𝐿𝑖2𝑂2 + 𝐶 +  

1

2
 𝑂2  →  𝐿𝑖2𝐶𝑂3 

 

(1.7) 

 2 𝐿𝑖2𝑂2 + 𝐶 →  𝐿𝑖2𝐶𝑂3 +  𝐿𝑖2𝑂 
 

(1.8) 

   
Yashina et al.50 investigated the reactivity of carbon as cathode material in lithium-oxygen batteries, 

and showed via in-situ ambient pressure XPS experiments that superoxide radicals formed by oxygen 

reduction favour nucleophilic addition or electron transfer leading to the creation of epoxy groups on 

carbon surface which are then transformed into carbonates. They also demonstrated that carbon 

double bonds or aromatic systems activated by the oxygen superoxide and associated defects 

promote carbonate formation. Figure 19 resumes these phenomena.  
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Figure 19: Chemical transformations of superoxide species. The scheme illustrates chemical processes that are being 
initiated right after ORR 50 

The lithium carbonate formed during the discharge is insoluble and cannot be totally removed during 

the charge. Li2CO3 will accumulate during the cycles and clog the cathode. The consequences on the 

battery performances will be, a reduction by ten to one hundred times of the current density, and an 

increase of the overpotential.31 According to Bruce et al.49, carbon electrodes are stable up to a 

potential of 3.5V; beyond this voltage, the carbon will react with Li2O2 to form Li2CO3 which limits their 

applications. 

Another source of degradation is the reaction between carbon and highly reactive singlet oxygen 

produced during cycling.51 The formation of 1O2 at charging is possible at potential exceeding 3.5 to 

3.9V vs Li/Li+. However, most of 1O2 comes from the superoxide disproportionation with a 1O2 yield of 

~3% in a standard Li-O2 cell.52 The disproportionation of superoxide goes through Li(O2)2Li dimers. The 
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energetic pathway to 3O2 and 1O2 will depend on the cations. The lower the Lewis acidity of the cation, 

the weaker the O2 
- - cation interaction, the more the intermediate will be destabilised. The different 

energy pathways for the formation of lithium peroxide from superoxide are summarised in Figure 20. 

 

Figure 20: Reaction free energy profiles for superoxide disproportionation LiO2 disproportionation with itself, O2
− or HO2 

to Li2O2 and molecular oxygen. 52 

Regarding LiO2 (red pathway). The dimer (3Li2(O2)2Li is slightly stabilised compared to the two 

monomers (LiO2, Li2O2). The formation of Li2O2 and the release of 3O2 is slightly endergonic and the 

precipitation of Li2O2 is illustrated by a strong decrease in energy level. The formation of the (1Li2(O2)2Li 

dimer is higher in energy and will therefore be disfavoured. The energy of this pathway (~1eV) creates 

a higher thermodynamic barrier.  The formation of 1O2 remains possible but is slower explaining the 

low 1O2 yield observed experimentally.  

The most common strategy to limit these degradations is the deactivation of 1O2 to 3O2. Deactivation 

can be achieved via chemical or physical quenching.53  

Chemical quenching involves a reaction between singlet oxygen and a quencher R to form RO2. The 

most famous chemical quencher is 9,10-dimethylanthracene (DMA) which forms, after reaction with 

oxygen endoperoxide (DMA-O2). However, the DMA is quickly completely consumed and cannot 

regulate the entire flow of 1O2. Moreover, the possible formation of insulating intermediate species 

can clog the cathode, leading to a decrease of capacity.  

Physical quenching is preferred since the quencher is not consumed and no insulating products are 

formed. This quenching is based on two mechanisms: energy transfer and charge transfer. In 

electrochemical systems quenchers based on change transfer are the most efficient. The electron 

deficient 1O2 molecule will interact with an electron donor quencher to form a charge transfer 

complex. The detail of the formation and the charge transfer mechanism can be described as follow. 

Firstly 1O2 and R, the quencher, form a singlet complex 1(R1Δ)EC, in which electronic charge is partially 

transferred to the oxygen to form 1(RΔ1)CT. Energy is then released during the intersystem crossing (isc) 

to the triplet complex which dissociates it and gives R and 3O2 (Equation 1.9).54 



Part I Chapter 1 - Introduction 

 

27 
 

 

 R + 1O2 ↔ 1(R1Δ)EC ↔ 1(R1Δ)CT → 3(R3ΔΣ)CT ↔ R + 3O2 (1.9) 
 

Currently azide and amine molecules are used as physical quencher.
 54-55 More recently, Petit et al.54 

used DABCOnium as singlet oxygen quencher for metal-oxygen cells. This molecule possesses a high 

voltage stability and could be suitable for non-aqueous lithium oxygen battery system. However, this 

research area is still in the early stage of development and it is necessary to carry out an in-depth 

study which will clarify the main requirements and characteristics of these molecules and their action 

mechanisms.  

We have seen that carbon-based cathodes are widely used in lithium oxygen batteries. However, we 

believe that it is possible to optimise these cathodes to improve the performance of the battery. Two 

main areas of improvement are being envisaged. The first, as discussed in the previous section, is to 

use one or several forms of carbon to create an optimal pathway for the oxygen. The second is to use 

catalysts that will be integrated into the structure. The nature of these catalysts is multiple and their 

characteristics will be described in the following sections. 

 

II.1.2.b) Noble metals in carbon materials 

 

As mentioned above, superoxide radicals formed during oxygen reduction process lead to the 

formation of insoluble and non-conductive carbonate species, which greatly influence the 

overpotential and thus battery performance. In order to enhance OER/ORR process, to reduce the 

overpotential, and thus to prevent degradation and the formation of carbonate species, some 

catalysts can be added to the carbon matrices. In this section, the performance of precious metals 

such as Pt, Pd, Ru, Au, and Ir will be investigated as catalysts for lithium oxygen batteries.  

Shao-Horn et al.56 studied the catalytic activity of Ru, Au, Pt and Pd on the oxygen reduction reaction 

and proposed two mechanisms depending on the strength of the M-O bond (Figure 21). 

 

Figure 21: ORR mechanism for Li+ containing nonaqueous solvents 56 
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The activities between Li+ and the ORR process on the surface correlates to oxygen adsorption energy 

formed a “volcanic-type” trend (Figure 22 a). The activity increased from graphitic carbon (GC) to Pd 

as the oxygen adsorption energy increased. A further increase in the oxygen adsorption energy on Ru 

resulted in a decrease in the activity. This volcano shape confirmed that the strength of oxygen 

bonding on the catalyst influences the ORR activity. In order to assess catalyst activity, the initial 

discharge voltage profiles were compared in Figure 22 b, and confirmed that the catalytic activity 

decreased in the order:  Pd > Pt > Ru ≈ Au > C. The authors explained these observations by proposing 

a two-step electron reduction mechanism where the catalyst would influence the kinetics of the 

second reduction to form Li2O + O adsorbed.  

 

Figure 22: (a) Potentials at 2 μA.cm-² real as a function of calculated oxygen adsorption energy, ΔEO relative to that of Pt. 
(b) Initial discharge profiles of Pd/C, Pt/C, Ru/C, Au/C, and VC at 100 mAh.g-1.56 

Huguenin et al.57 investigated the role of platinum nanoparticles in the kinetic mechanism of oxygen 

reduction reaction and showed that Pt-nanoparticles influenced the ORR and the OER process. The 

use of Pt-nanoparticles allowed a higher onset potential of the ORR compared to bulk Pt and carbon 

materials and a lower OER potential than carbon. Pt-nanoparticles electrodes produced more Li2O2 

leading to a higher capacity. From a kinetic point of view, the limiting step on discharge is the first 

transfer of electrons to form LiO2. They suggested that for each elemental step, 1.6 electrons per 

reduced oxygen are transferred for Li2O2 formation when a Pt catalyst is used instead of 1 electron 

without a catalyst, indicating a higher energy density (because more electrons can be transferred per 

oxygen molecule) compared to the chemical disproportionation reaction (2LiO2 → Li2O2 + O2) 

Wang et al.58 synthesized a porous nitrogen doped carbon nanofiber-supported palladium composite 

(Pd/PNCNF-2) (Figure 23 a). This material presented favourable catalytic activity towards both the ORR 

and the OER (Figure 23 b-d). The catalytic activity was determined by Linear Sweep Voltammetry (LSV) 

(Figure 23 e,f). For ORR, Pd/PNCNF-2 had the lowest current density at the onset potential, and for 

the OER it had the highest. The increase in current density implied an increase in the number of 

electrons transferred per oxygen molecule and allowed an increase in reaction kinetics. 

Discharge/charge capacities of 10080/9405 mAh.g-1 were reached at a current density of 100 mA.g-1 

with a round-trip efficiency of 64 %, while its palladium-free counterpart achieved only 

2533/1976 mAh.g-1 with a 59 % round-trip efficiency. The consequences of Pd on overpotential was 

tested at a fixed capacity of 1000 mAh.g-1 with a current density of 100 mA.g-1, and revealed a 22.7 % 

decrease and 6.8 % increase of the initial discharge/charge terminal voltages, respectively.  
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Noble metals have proved their good catalytic property on the OER and ORR processes. Considering 

their individual performances, combination of noble metals could lead to better results. Lee et al.59 

deposited some AuPt nanoparticles into hollow mesoporous nitrogen-doped carbon microspheres 

(AuPt/HMCMS). The morphology and textural properties studied by TEM, SEM and N2 physisorption 

(Figure 24 a-e) revealed that the material was a meso/macroporous hollow microspheres. The results 

of the electrochemical tests performed at a current density of 100 mA.g-1 with a 2.2-4.4 V window 

voltage, are presented  Figure 24 f. The AuPt/HMCMS cathode displayed the highest specific capacity 

and the smallest charge–discharge overpotential. Capacity reached 6028 mA h g−1, which was 168% 

and 244% higher than that of the AuPt NPs and HMCMS electrode, respectively. Regarding 

overpotential at 2000 mAh.g-1, AuPt/HMCMS electrode possessed a 1.28 V gap, which was 1.41 V and 

1.88 V lower than that of AuPt NPs and HMCMS respectively. This decrease of overpotential reflected 

the good catalytic efficiency of AuPt/HMCMS electrode. Moreover, Li-O2 cells made of AuPt/HMCMS 

cathode performed 75 cycles at a discharge capacity of 1000 mAh.g-1 without a cut-off charge voltage 

(voltage level at which the charge controller disconnects the load from the battery) exceeding 4.4 V, 

while with the HMCMS cathode, the batteries performed only 9 cycles with cut-off charge voltage up 

to 5.0 V. The good electrochemical performance of the AuPt/HMCMS cathode was explained by the 

duality between the meso/macro porosity and the ORR/OER activities of AuPt nanoparticles (higher 

ORR voltage plateaus and lower OER voltage plateaus). 

A possible way of improving these catalysts is to create a coating, by Chemical Vapor Deposition (CVD), 

on ultra-porous carbons in order to maximise catalyst deposits and enhance the electrochemical 

performance of batteries. 
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Figure 23: (a) SEM micrograph of the Pd/PNCNF-2, (b) Comparison of the initial discharge/charge profiles of the Li-O2 
batteries from 2.35 to 4.35 V for (a) the pure Pd, the pure PNCNF, and the Pd/PNCNF cathodes at 100 mA g-1, (c, d), and 

the corresponding typical discharge/charge profiles. (e) ORR LSV profiles for the samples at a rotation speed of 1600 rpm 
and (f) OER LSV profiles of the different samples. 58 
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Figure 24: (a-c) High resolution TEM images of AuPt/ HMCMS composite, (d,e) High resolution SEM images of AuPt/ 
HMCMS composite an their textural properties (f) First cycle discharge/charge profile obtained with AuPt/HMCMS, AuPt 

NPs and HMCMS electrodes.59 
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II.1.2.c) Noble metal oxides in carbon material 

 

The efficiency of noble metal oxides as a catalyst was also investigated. The most researched were 

iridium oxide (IrO2) and ruthenium oxide (RuO2). Yang et al.60 evaluated the performance of a thin 

layer of iridium oxide on carbon nanoparticles (KB) and compared it with KB mixed with IrO2 

nanoparticles and KB only.  

 

Figure 25: (a) Comparison of discharge capacity for 5 cycles of Li–O2 batteries with pure KB, IrO2+KB, and IrO2/KB at 
0.1 mA.cm−2, (b) OER LSV profiles of the different samples, and discharge–charge profiles at different cycles of the Li–O2 

batteries with (c) pure KB, and (d) IrO2/KB, with a limited capacity of 500 mAh.g−1 at 0.1 mA.cm−2. 60 

The discharge capacities of the first five cycles obtained with pure KB, IrO2+KB mixture, and IrO2/KB 

electrodes at 0.1 mA.cm−2 are presented in Figure 25 a. The decrease of the capacity was observed to 

be important and abrupt for the pure carbon electrode. After only five cycles it tended towards zero 

reflecting its poor performance. The addition of iridium oxide within the carbon matrices allowed 

damping in the decrease of the capacity. After 5 cycles, the capacity reached 1400 mAh.g-1 showing an 

increase in stability provided by IrO2. KB coated with IrO2 reached a discharge capacity of 3400 mAh.g- 1 

after 5 cycles confirming the stabilising effect of IrO2 on the system. The enhancement of the 

cyclability was attributed to the high activity of IrO2 regarding the OER process, which accelerated the 

decomposition of discharge products, thus improving the rechargeability. The catalytic activity 

towards the OER was determined by Linear Sweep Voltammetry (LSV) and the obtained results are 

shown in Figure 25 b. IrO2-based cathode exhibited the highest current density at the onset potential. 

The increase in current density implied an increase in the number of electrons transferred per oxygen 

molecule that allowed an increase in reaction kinetics. Overpotential was been determined by a test 

at a fixed capacity of 500 mAh.g-1 at a current density of 0.1 mA.cm−2. Results obtained for KB and 

IrO2/KB electrodes (Figure 25 c,d), showed an overpotential of 1.24V for KB cathode, 0.97V for the 
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mixed IrO2 + carbon and 0.81V for the IrO2 coated KB electrode. The increase of overpotentials after 

the first cycle for IrO2/KB cathode was explained by the partial coverage by Li2O2 and other undesired 

additional reaction products such as Li2CO3. Regarding cycling stability, iridium oxide coating on the 

KB electrode allowed the battery to achieve an additional 40 cycles. These results confirmed the good 

OER catalytic activity of IrO2 and explained the improvement of the electrochemical performances. 

 

The performance of ruthenium oxide deposited on vertically aligned carbon nanotubes (RuO2/VACNT) 

were studied by Tan et al.61 In this study, CNT, VACNT (Figure 26 a and c) and RuO2/VACNT (Figure 26 

b and d) cathode materials were compared to evaluate their respective impact on performance. The 

morphology and the electrochemical properties of the cathodes are presented in Figure 26.  
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Figure 26: SEM images of (A) the VACNT cathode and (B) the VACNT@RuO2 cathode. SEM images on the cross-sectional 
surfaces of (C) the VACNT cathode and (D) the VACNT@RuO2 cathode. The insets show high-resolution SEM images. (E) 

Comparison of the discharge-charge characteristics at 0.5 mA.cm-² after fully discharged and charged. Comparison of the 
cycling stability at 0.5 mA cm-2with a fixed capacity of 1.0 mAh.cm-2. (F) CNT, (G) VACNT, and (H) 

VACNT@RuO2cathode.61 
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The battery built with CNT cathode exhibited a capacity of 1.99 mAh.cm-2 at a current density of 

0.5 mA.cm-2, and a 1.85 V overpotential. VACNT cell reached a 21.4 mAh.cm-2 capacity, and a 1.72 V 

overpotential. The performance improvement over the CNT cathode was attributed to the increase in 

surface area and pore volume caused by the hierarchical organisation of the nanotubes. The addition 

of RuO2 on VACNT, reduced the overpotential to 1.18 V and also reduced the capacity to 15.4 

mAh.cm- 2 (Figure 26 e). The authors justified the lower capacity of RuO2/VACNT compared to VACNT 

by the different crystallinity and morphology of Li2O2 induced by the oxygen adsorption properties of 

RuO2. RuO2 has a high adsorption of O2 and promotes the growth of thin film defective Li2O2 on the 

cathode surface. The thin film contained Li and O vacancies that were beneficial for the transport of 

lithium and oxygen. The cycling stability of the CNT (Figure 26 f), VACNT (Figure 26 g) and RuO2/VACNT 

(Figure 26 h) cathodes was evaluated at 0.5 mA.cm-2 with a fixed capacity of 1.0 mAh.cm-2.  After 10 

cycles, overpotential increased for the CNT and VACNT, causing the decomposition of both electrolyte 

and electrode on charge. As a consequence, poor cyclability was obtained, 21 cycles for the CNT and 

26 for the VACNT electrode. On the contrary, RuO2/VACNT cathode maintained a low overpotential, 

with a charge plateau lower than 4V. Moreover, it reached 100 cycles without any reduction in cycling 

performance. The decrease in overpotential and the increase in cyclability reflect the excellent 

catalytic activities of RuO2 both for ORR and OER. 

In conclusion, noble metals and their oxides have been widely used in lithium-oxygen batteries. Their 

utilisation has been justified by their good catalytic properties for the OER and ORR processes, 

reducing overpotential and increasing performance during cycling. However, the price of these 

materials remains high, limiting their large-scale use. 

One of the ways to improve these cathodes would be to use a wet ball milling process using porous 

carbon nanoparticles and catalyst precursor salts. The resulting product can be calcined in order to 

obtain the Noble metal oxide/carbon catalyst. This protocol can result in a homogeneous distribution 

of the catalyst on the carbon support and thus can enhance battery performance.  

 

II.1.2.d) Transition metal oxides in carbon material 

 

Metal oxides have a good catalytic activity for the oxygen evolution and reduction reactions. In 
contrast to noble metals, metal oxides are reasonably priced and can be exploited on a larger scale.  

Zhao et. al.  evaluated the catalytic activity of metal oxides such as NiO-RuO2, NiO and RuO2 by mixing 
them with Ketjen Black (KB).62 Their textural properties and results from electrochemical tests are 
shown in Figure 27. The capacity achieved was found to be related to the pore volume. The larger the 
pore volume, the better the diffusion of lithium and oxygen and the higher the capacity. For RuO2 
catalyst, the higher discharge voltage and lower charge voltage resulted from the high electrocatalytic 
activity for the oxygen reduction and evolution reactions. Linear Sweep Voltammetry showed the 
active oxidation potential with respect to the decomposition of side product (Figure 27 b). The onset 
potential of the electrode made of NiO/KB was 3.56 V, and that of NiO-RuO2/KB was 3.55 V. These 
values were consistent with the onset potential of Li2CO3 decomposition and proved that NiO can 
promote the decomposition of side products.24 
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Figure 27: (a) Li-O2 charging-discharging profile with different cathodes: Ketjen Black (KB), NiO-RuO2/KB, NiO/KB and 
RuO2/KB, (b) LSV curves of Ketjen Black (KB), NiO-RuO2/KB, NiO/KB and RuO2/KB cathodes with side products and (c) 

Surface area and pore volume of: Ketjen Black (KB), NiO-RuO2/KB, NiO/KB and RuO2/KB.62 

Iron, cobalt, manganese, titanium and nickel oxides are the most common catalysts used in Li-O2 

battery. The objective of this section will be to evaluate their performance as cathode material. 

Yang et al.63 investigated the performances of NiO via a layered nanosphere structure. SEM/TEM 

(Figure 28 a-g) confirmed the layered nature of the nanosphere and nitrogen physisorption, (Figure 

28 h) the specific surface area of the NiO was estimated to be 27 m2.g-1 and the pore size distribution 

supported the mesoporous and macroporous characteristics of the product. The catalytic activity of 

NiO was studied by LSV and showed considerable activity on the OER compared to a Pt/C electrode 

(Figure 28 i). To estimate battery stability, a test with a limited capacity of 800 mAh.g-1 was performed 

(Figure 28 j,k). Li–O2 batteries made with NiO electrode were able to run for 50 cycles while the one 

with the KB reached only 15 cycles. This improvement in performance was explained not only by the 

OER catalytic activity of NiO but also by its morphology. Li-O2 battery made with the of NiO layered 

nanosphere catalyst showed an increase in capacity from 2600 mAh.g-1 to 3040 mAh.g-1 compared 

with pure KB cathode (Figure 28 l). In the first cycle, the reduction in overpotential led to an efficiency 

of 98.3% which is considerably higher than that of the KB electrode at 54.8%. The catalytic reaction 

mechanism of the layered nanosphere NiO electrocatalyst is illustrated in Figure 28 m.  
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Figure 28: (a) SEM image of NiO. (b) FESEM, (c) TEM and (d) HRTEM images of the layered nanosphere NiO, (e) lattice 
fringes and (f) hysteretic loop. (g) Schematic illustration of the synthesis process of NiO, (h) nitrogen 

adsorption/desorption isotherms and pore-size distribution of NiO, (i) Oxygen evolution reaction curves of NiO and Pt/C 
at a rotation rate of 1600 rpm with a scanning rate of 10 mV s-1 discharge–charge profiles of the Li–O2 batteries with (j) 
NiO catalyst, and (k) KB only, with a limited capacity of 800 mAh.g−1 at 0.1 mA.cm−2 within a 2.0 - 4.2 V voltage range, (l) 
Galvanostatic discharge/charge curves of Li–O2 batteries with a NiO catalyst at a current density of 0.1 mA cm-2 in the 

voltage range of 2.0–4.2 V vs. Li+/Li. (m) Illustration of the catalytic reaction mechanism for the layered nanosphere NiO 
in Li–O2 batteries 63 

Porous titanium dioxide microspheres were synthetized, mixed with carbon nanotubes and tested as 

cathode in Li-O2 batteries.64 Textural properties of the carbon nanotubes and the titanium dioxide 

microsphere are presented in Figure 29 a-d. TiO2 microspheres exhibited a surface area of 55.3 m².g-1 

with a majority of   mesopores ranging from 4 to 30 nm and the carbon nanotube possessed  a surface 

area of 202.4 m².g- 1 with an average pore size of 5nm. The first discharge capacity was 6590 mAh.g-1 

for the TiO2 cathode and 1794 mAh.g-1 for the pure carbon nanotubes cathode. A test at limited 

capacity of 500 mAh.g-1 was performed to investigate the catalytic effect of TiO2 microspheres on the 

OER/ORR process (Figure 29 e). The discharge potential plateau increased by 50 mV and the charge 

potential plateau decreased by 250 mV compared to pure CNT electrodes. Li-O2 battery based on TiO2 

microspheres was able to operate without loss of voltage or capacity for 75 cycles, while the one based 

on CNT could operate only for 10 cycles under the same conditions, which revealed the good stability 

provided by titanium oxide. This stability is assumed to come from the specific structure of the 

microsphere coupled with an increase in the number of electrons transferred per oxygen molecule. 
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Figure 29: (a) SEM and (b) TEM images of TiO2 microspheres, nitrogen adsorption–desorption isotherm of (c) TiO2 
microspheres and (d) CNTs (e) The initial discharge/charge profiles of TiO2 microspheres and pure CNT electrodes under 

the capacity limit of 500 mAh g-1 at 100 mA g-1. 64 

Zhu et al.65 studied the effects of Fe2O3 nanoparticles, by mixing them with Vulcan XC-72 carbon. Their 

results showed that the first discharge capacity and discharge plateau achieved for the XC-72 cathode 

was equal to that of the Fe2O3/XC electrode. When charging, the addition of Fe2O3 reduced the plateau 

by 0.43V, indicating the improvement of the OER induced by the catalytic properties of the oxide. The 

electrocatalytic activity of Fe2O3 toward OER was evaluated by linear sweep voltammetry (LSV) (Figure 

30 a). The cathode containing Fe2O3 exhibited a larger OER current density and lower onset potential 

compared with that of the pure XC cathode, demonstrating that Fe2O3 is an effective OER catalyst. The 

cycling performance of batteries using Fe2O3/XC cathode and its oxide-free counterpart was evaluated 

by testing at a fixed capacity of 500 mAh.g-1 at a current of 200 mA.g-1. Their results are presented in 

Figure 30 b,c. The discharge voltage plateau of XC cathode was 2.6 V and the charge plateau was 4.4 

V, while Fe2O3/XC cathode presented a charge voltage plateau of 4.0 V, 0.4 V less than that of XC-72 

electrode, but had an equivalent discharge plateau of 2.6 V. Regarding cycling performance, Li-O2 

batteries made of XC-72 cathode reached 15 cycles while the one based on Fe2O3/XC performed 39 

cycles reflecting the stability provided by the oxide. It should be noted that the cycles beyond 39 were 

obtained after a battery refresh and cannot be taken into account in a rigorous methodology. This 

study showed that, owing to their activity on the OER process, Fe2O3 nanoparticles enable a reduction 

in overpotential leading to the preservation of the electrolyte, limiting the formation of side products 

and thus increasing the battery's performance.   
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Figure 30: (a) Linear sweep voltammograms of OER in non-aqueous lithium-oxygen batteries with XC and Fe2O3/XC 

cathodes of 1 mVs-1 with and without initial discharge product and Discharge/charge curves in lithium–oxygen battery 
with (b) XC and (c) Fe2O3/XC cathode at 200 mA.g-1 with a fixed capacity. 65 

MnO2 is another metal oxide widely used as a cathode material in lithium-oxygen batteries. Zhang et 

al. synthetised manganese nanoparticles to decorate multi-walled carbon nanotubes 

(MnO2/MWCNTs) (Figure 31 a,b).67  

The ORR and OER activities on MnO2/MWCNTs cathode were examined by Cyclic Voltammetry (CV) 

(Figure 31 c). The MnO2/MWCNT cathode exhibited an ORR onset voltage of 3.12 V, about 270 mV 

higher than that of the pure MWCNTs electrode, indicating higher ORR kinetics. MnO2/ MWCNTs 

cathode also provided a lower OER onset potential and larger OER peak current, revealing a better 

ORR and OER activity induced by MnO2. The first discharge capacity was evaluated at 100 mA.g-1, and 

gave a capacity of  8643 mAh·g−1 for the MnO2/MWCNTs cathode, which was  twice as high as that 

obtained with the pure MWCNTs electrode (4.512 mAh·g−1 ) (Figure 31 d). The cycling stability was 

evaluated at a capacity of 1000 mAh·g−1 under a current density of 200 mA·g−1. The charge/discharge 

potentials of the MnO2/MWCNTs cathode (Figure 31 e,f) were 2.69 and 4.10 V respectively (compared 

to Li/Li+) giving a 65.6% round-trip efficiency. Concerning MWCNTs cathode, the charge/discharge 

potentials were 2.69 and 4.25 V respectively, leading to a 63.3% round-trip efficiency (Figure 31 g,h). 

Regarding cycling stability, battery built with MnO2/MWCNTs cathode reached 90 cycles while the 

MWCNTs electrode reached 28 cycles. The performance improvement was justified not only by the 

electrode structure but also by the enhancement of the catalytic activity by MnO2 which improved the 

OER process and reduced the polarisation, thus accelerating the kinetics of the electrochemical 

reactions. 
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Figure 31: (a) Representative SEM images of 50% α-MnO2/MWCNTs nanocomposite, (b) TEM image of the 50% α-
MnO2/MWCNT nanocomposite, discharge-charge voltage curves of different cycles for the (c) 3D 50% α-MnO2/MWCNTs 
cathode (e) and pristine MWCNTs cathode. Variation of the terminal discharge voltage with the cycle number for (d) the 
3D 50% α-MnO2/MWCNTs hybrid cathode (f) and pristine MWCNTs cathode, (g) CV curves of pure MWCNTs and 50% α-

MnO2/ MWCNT electrodes between 2.0 and 4.5 V at 0.5 mV·s−1.67 

 

Cobalt oxide is also widely used as catalyst for Li-O2 cathode batteries.69-71 The performance of Co3O4 

nanoparticles (Figure 32 a) was investigated by Yan et al. by mixing it with carbon black.69 The first 

charge-discharge profile was performed at 100 mA.g-1 within a 2.0 – 4.3 V voltage window and showed 

a discharge capacity of 2050 mAh.g-1 and 1750 mAh.g-1  for the cell with a pure KB electrode (Figure 32 

b) and that with the Co3O4/KB cathode (Figure 32 c), respectively. To evaluate the cycling stability, the 
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capacity was set at 500 mAh.g-1 at a current density of 100mA.g-1. The cell made with Co3O4/KB 

cathode reached 33 cycles, twice that of the pure carbon electrode which performed only 17 cycles. 

Cyclic voltammetry (CV) confirmed the catalytic activity of Co3O4 (Figure 32 d,e). The initial reduction 

peak of Co3O4/KB and KB cathode were located at the same position, but sharper shape and larger 

peak areas were observed for Co3O4/KB, meaning that a faster ORR kinetics occurred during first 

discharge. For the oxidation peak, a higher oxidation current was noted, which indicated higher 

catalytic activity on OER. The increase of current peaks revealed a higher number of electrons 

transferred per oxygen molecule supplied by the addition of the Co3O4. 

 

Figure 32: (a) SEM micrograph of as-deposited electrodes Co3O4/KB (80%), Charge and discharge profiles of (c) Co3O4/KB 
(80%), (d) pure KB electrodes, CV curve results of initial 3 cycles of (e) Co3O4/KB (80%), (f) KB electrodes at a constant 

scan rate at 0.5 mV s-1 from 2.0 to 4.3 V. 69 

Cerium oxide can also be used as a catalyst in Li-O2 batteries. Chen et al.72 designed a cerium oxide 

embedded on mesoporous carbon nanosheets (CeO2/MC-600) (Figure 33 a-f) that showed a decrease 

in the overpotential by 0.11V and an increase of the capacity at the first discharge from 5261 to 12753 

mAh.g-1 compared with the catalyst-free electrode (Figure 33 g). Moreover, Li-O2 cells made of cerium 

oxide cathode performed 55 cycles at 1000 mAh.g-1 (Figure 33 h) which was five times more than their 

pure carbon counterpart (Figure 33i). The improvement in battery performance was related to the 

morphology of the Li2O2. Batteries with CeOx/MC-600 cathode formed a large amount of Li2O2 

uniformly accumulated in the form of fine nanoparticles whereas pure MC cathodes formed large 

nano-islands of Li2O2. This difference in morphology was explained by the presence of CeO2 which 

facilitated oxygen redox reactions and regulated the nucleation of Li2O2 to form a uniform and fine 

distribution on the catalyst surface. The irregular deposition of Li2O2, passivated the surface of the MC 

electrode and obstructed the electron and mass transfer pathways, which increased the polarisation 
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and the irreversibility of electrochemical reactions. A schematic diagram for the improvement 

mechanism of CeOx/MC-600 for Li-O2 batteries is demonstrated in Figure 33 l.  

 

Figure 33: (a-c) SEM and (d-e) TEM images of CeOx/MC-600 under different magnifications, and (f) TEM micrograph of 
pure MC, (g) first charge/discharge profile tested at 100 mA g-1 for all cathodes, long term cycling performance of 

(h) CeOx/MC- 600 and (i) Pure MC, (j) Schematic diagram for the improvement mechanism of CeOx/MC-600.72 
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All the metal oxide-based cathodes for Li-O2 batteries along with their main characteristics are 

summarised in Table 6.  

Tableau 6: Capacity reached, metal oxide and carbon morphology, and decrease in overpotential compared to pure 
carbon-based cathodes for Li-O2 batteries applications. 

Metal 
Oxide 

Morphology Carbon type Discharge Capacity 
(mAh.g-1) 

Δ 
Overpotential 

(V) 

 
Reference 

RuO2 
 nanoparticle KB 3000 0.54 60 

NiO  nanoparticle KB 3300 0.44 60 

NiO  nanosphere KB 3040 0.025 61 

TiO2 
 microsphere CNT 6590 0.3 62 

Fe2O3 
 nanoparticle XC-72 2000 0.43 63 

Fe2O3 
 nanoparticle CNT - 0.47 64 

MnO2 
 nanoparticle MWCNT 8643 0.15 65 

MnO2 
 nanosheet XC-72 1976 0.34 66 

MnO2 
 coating Hierarchically 

porous 
9200 0.33 67 

MnO2 
 nanoflake graphene 3218 0.07 68 

Co3O4 
 nanoparticle KB 2050 0.4 69 

Co3O4 
 mesoporous 

nanocristal 
paper 8.2 (mAh.cm-2) 0.4 70 

Co3O4 
 Inverse opal KB 6959 0.28 71 

CeO  nanoparticle microporous 12753 0.11 72 

Metal oxides have been widely used as catalysts for carbon-based cathode due to their high catalytic 

activity toward OER/ORR, reasonable price, and their ability to be easily synthesised into various 

morphologies. Although metal oxides have outstanding catalytic properties on OER/ORR, their various 

morphologies, test conditions, and carbon sources used in the experiments make comparisons 

between studies impossible.  It will therefore be essential to compare the metal oxides under the 

same conditions in order to really estimate their properties on battery performance. As this study had 

never been carried out, we propose to carry it out in this work by initially focussing on the 3d metals 

and extending it to 4d metals.  

 

II.1.2.e) Spinel in carbon material 

 

As in the case of noble metals, 3d mixed metal oxides were tested in order to optimise their catalytic 

properties. These combined oxides often possess spinel structure AB2O4. The objective of this section 

is to evaluate their catalytic properties for OER/ORR and their influence on battery performance.  

NiCo2O4 nanotubes consisting of nanoflakes were synthesized through hydrothermal method 

(Figure 34 a,b) by Yu et al.73 Such nanotube exhibited a type II isotherms with a surface area of 

129.0 m².g-1 and pore sizes inferior to 5 nm. (Figure 34 c,d). Battery made with this cathode showed 

an initial discharge capacity of 1979.4 mAh.g-1 which was better than its pure carbon counterpart 

which reached 1100 mAh.g-1 (Figure 34 e). NiCo2O4 reduced the charge voltage from 4.14 to 3.92 V 

revealing its high catalytic activity toward the OER. The cyclability of the battery was evaluated when 
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discharging at a 2.0 V cut off voltage. It showed that the battery using nickel cobaltite was more stable 

and reached 44 cycles while its pure carbon counterpart reached only 20 cycles (Figure 34 f). 

 

Figure 34: (a) SEM images, (b) TEM micrograph, (c) N2 adsorption-desorption isotherms (d) and pore size distribution of 
NiCo2O4 (e) First discharge-charge profiles, 0.05 mA.cm-2 current density, of the Li-O2 cell with NiCo2O4 and Super P 

electrodes. (f) Cycling stability of the Li-O2 cell with the NiCo2O4 and pure carbon cathodes.73 

Sun et al.76 compared the performance of a KB electrode with a CuCo2O4/KB cathode (Figure 35 a,b). 

Textural properties of CuCo2O4 were examined by N2 physisorption and their results are presented in 

Figure 35 c,d. The specific surface area of the mesoporous metal oxides was 97.1 m2.g−1 and the pore 

size distributions showed a narrow distribution centred at 3.4 nm. The electro activity of the 

CuCO2O4/KB electrode was investigated via cyclic voltammetry (CV) (Figure 35 e). The CuCo2O4/KB 

electrode presented a higher cathodic peak voltage, a lower anodic onset potential, and a larger 

cathodic and anodic currents demonstrating the catalytic efficiency of the cathode for the OER and 

ORR processes.  The porous structure of CuCo2O4 allowed high diffusion of lithium and oxygen within 

it and high catalytic activity on the OER/ORR, that led to excellent battery performance. Figure 35 

shows its cycling performance of CuCo2O4 and KB cathodes at a current density of 100 mA.g−1 with a 

capacity of 500 mAh.g−1. For the first cycle (Figure 35 f), the electrode made with the catalyst showed 

a decrease of the overpotential of 0.61V reflecting its good activity with regard to the OER process. 
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Furthermore, CuCo2O4 electrode was found to be stable for 25 cycles with a terminal voltage above 

2.0 V, unlike the KB cathode which performed 7 cycles under the same conditions (Figure 35 g). To 

conclude, the improvement in performance was largely explained by the catalytic activity (OER/ORR) 

and morphology of copper cobaltite. 

 

Figure 35: (a) SEM, (b) TEM, (c) Nitrogen adsorption and desorption isotherms and (d) the corresponding pore size 
distributions of the mesoporous CuCo2O4 (e) CV curves of CuCo2O4/KB and KB carbon-only electrode at a scan rate of 0.1 
mV s−1 (f) First discharge/charge profiles of Li-O2 cells with the CuCo2O4/KB and KB electrodes with a restricting capacity 

of 500 mAh.g− 1 at a constant current density of 100 mA.g− 1 (g) and their cycling stability.76 

Another widely used cobaltite is manganese cobaltite MnCo2O4. Jian et al.77 synthetised mesoporous 
nanospheres with a specific surface area of 14.4 m².g-1 and a pore volume of 0.05 cm3.g-1 (Figure 
36 a,b). A cyclic voltammetry test was performed to investigate the catalytic activity toward ORR and 
OER (Figure 36 c). The peak potential of the MnCo2O4/KB electrode was 75 mV higher than that of the 
pure KB for the ORR. To estimate the activity for OER, Linear sweep voltammetry (LSV) test was carried 
out (Figure 36 d). It presented an onset potential of 3.2 V for MnCo2O4/KB and 3.4 V for pure KB 
electrode. These two tests confirmed the catalytic activity of MnCo2O4 for OER/ORR processes. The 
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full discharge–charge cycle performance of the Li-O2 batteries made of MnCo2O4/KB and pure KB 
cathode were studied for the first 3 cycles at 100 mA.g−1 within a voltage range of 2.2–4.5 V. As shown 
in Figure 36 e,f, in the first discharge, the MnCo2O4/KB electrode achieved a capacity of 8518 mAh.g−1 
while the KB cathode reached only 6403 mAh.g−1. At the second cycle, the retention capacity was 
observed to be 21.3% higher for the cobaltite electrode. However, the capacity decreased rapidly with 
each cycle. This reduction was explained by the accumulation of insulated product Li2O2 collected 
through the cycle. Figure 36 g presents the first discharge/charge profiles obtained with MnCo2O4/KB 
and pure KB cathode at a current density of 100 mA.g−1 at a capacity of 1000 mAh.g−1, and shows an 
increase in the discharge plateau from 2.75 to 2.86 V, and a clear decrease in the charge plateau 
reflecting the catalytic activity of manganese cobaltite with respect to OER and ORR.  

 

Figure 36: (a) SEM of MnCo2O4 nanospheres, (b) Nitrogen adsorption–desorption isotherms of MnCo2O4 nanospheres 
and the pore size distribution (inset), (c) CV curves of MnCo2O4/KB and pure KB (d) and linear scanning voltammograms. 
First three cycles of Li-O2 batteries made with (e) MnCo2O4/KB and (f) pure KB as cathode at the current density of 100 

mA.g−1 within a 2.2–4.5 V voltage windows, and (g) first cycle with a limited capacity of 1000 mAh.g−1 at the current 
density of 100 mA.g−1 for both electrodes.77 
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The last type of cobaltite to be discussed in this section is zinc cobaltite. Liu et al. 78 synthetised 

mesoporous ZnCo2O4 nanoflakes with a specific surface area of 34 m².g-1, and an average pore 

diameter of 10 nm, and tested it as catalyst in Li-O2 batteries (Figure 37 a,b). LSV (Figure 37 c,d) and 

CV (Figure 37 e) tests were performed to investigate the catalytic activity towards ORR and OER of 

ZnCo2O4. The LSV curves of ZnCo2O4 exhibited a higher OER onset potential and a lower ORR onset 

potential compared to the Pt/C reference which confirmed the catalytic activity of ZnCo2O4 for 

OER/ORR processes. Regarding electrochemical performances of the battery, the use of ZnCo2O4 as a 

cathode material increased capacity in the first cycle from 996 mAh.g−1 to 1322 mAh.g−1 compared to 

its pure carbon counterpart. Tested at a fixed capacity of 500 mAh.g−1 the charge and discharge 

potentials reached the values of 2.6V and 4V respectively, representing a round-trip efficiency of 65 

%. Regarding cyclability, this battery performed 30 cycles (Figure 37 f). Another study by Sun et al. 79 

confirmed that ZnCo2O4 reduced the overpotential by 220 mV at the first cycle at a 500 mAh.g-1 

capacity.  

 

Figure 37: (a) SEM and (b) TEM micrographs, LSV profiles of (c) ORR and (d) OER profiles, (e) CV curve of the mesoporous 
ZnCo2O4 and (f) Discharging capacities and corresponding potentials as a function of cycle numbers of the aprotic Li-O2 

battery with mesoporous ZnCo2O4 based cathode.78 

Kim et al.80 synthetised and studied the performance of 3D microporous cobalt ferrite (3DOM CFO) as 

cathode in lithium oxygen batteries. The overall fabrication process of the bifunctional 3DOM CFO 
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catalyst and a conceptual description of the discharging process of the electrode are resumed in Figure 

38 a-d. The morphology of the materials is presented in the figure 38 e-f. The textural properties tested 

by N2 physisorption indicated specific surface areas of 58.1 m².g-1 and 41.3 m².g-1  for 3DOM CFO@140 

and 3DOM CFO @60, respectively (@140 and @60 refer to the size of polystyrene sphere used during 

the synthesis and consequently to the size of the pores in the final materials). In this structure, Li+ and 

O2 could migrate easily into the channels of the 3DOM CFO material and optimise the deposition of 

Li2O2 on the surface of the structure. Electrochemical tests were performed over the first five cycles 

at a current density of 200 mAh.g-1 in a 2.3 – 4.5 V voltage window. CoFe2O4 electrodes properties 

were compared with a KB cathode. The results, as presented in Figure 38 g, show that the addition of 

cobalt ferrite resulted in a stabilization of the battery leading to an increase in capacity. The 

improvement in capacity of the cobalt ferrites was attributed to their specific structure. The larger the 

pore size, the higher the capacity, reflecting a better accessibility to the active sites for the Li+ and the 

O2. Results from tests at a capacity of 500 mAh.g-1 with a current density of 200mA.g-1 are shown in 

Figure 38 h-j. The overpotential was determined at the first cycle and showed values of 1.56 V, 1.51 

V, 1.37 V, and 1.13 V for KB, Cobalt ferrite (CFO) nanoparticle, CFO@60, and CFO@140 electrodes 

respectively, proving the catalytic activity of cobalt ferrites. The lower the overvoltage, the more the 

catalyst was able to improve the kinetics of the OER/ORR. The catalytic activity of cobalt ferrites was 

also reflected in the efficiency. At the first cycle, the efficiency reached 70.5% for the CFO@140 

electrode, and decreased to 65.9%, 63.6%, and 62.8% for the CFO@60, nanoparticle CFO, and KB 

cathodes. Furthermore, with regard to the total number of cycles performed, CFO@140 electrode 

reached 47 cycles, 10 cycles more than that of the CFO@60 cathode and 20 more than that of the KB 

electrode. In summary, this material improved the electrochemical performance of the battery by 

combining a hierarchically ordered structure with catalytic activity on the OER/ORR, optimising Li2O2 

formation/dissociation during discharge/charge processes. 

The last spinel structure that will be discussed in this part is CuCr2O4 (CCO).82 Batteries using CuCr2O4 

(Figure 39 a,b) were tested at a 1000 mAh.g-1 limited capacity and under a 200 mA.g-1 current density 

and it showed that batteries based on CuCr2O4 cathode can charge and discharge for 80 cycles and  

reach 100 cycles while using RGO instead of KB (Figure 39 c). The authors explained this increase in 

performance by the advantages of the spinel structure, and by the synergetic effect between the 

between CCO nanoparticles and reduced graphene oxide (rGO). 

All the spinel-based cathodes for Li-O2 batteries with their main characteristics are summarised in 

Table 7.  
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Table 7:  Capacity reached, spinel and carbon morphology, and decrease in overpotential compared to pure carbon-
based cathodes for Li-O2 batteries applications. 

Spinel Morphology Carbon 
type 

Discharge 
Capacity 
(mAh.g-1) 

Δ Overpotential 
(V) 

 
Reference 

NiCo2O4  Nanotube/nanoflake Super P 1979 0.22 73 

NiCo2O4 
 coating N-rGO 6716 0.26 74 

CuCo2O4 
 Mesoporous 

nanoparticles 
Super P 5288 0.55 75 

CuCo2O4 
 Mesoporous 

nanoparticles 
KB - 0.61 76 

MnCo2O4 
 Mesoporous 

nanospheres 
KB 8518 0.11 77 

ZnCo2O4 
 nanoflakes CNT 1322 - 78 

ZnCo2O4 
 Mesoporous 

nanoparticles 
KB 6024 0.22 79 

CoFe2O4 
 3D microporous 

particles 
KB 9200 0.43 80 

CoFe2O4  nanorod CNT 1355 0.40 81 

CuCr2O4 
 nanoparticles rGO - - 82 
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Figure 38: Illustration of the overall fabrication process for the 3DOM CFO catalysts; (a) PS, (b) cobalt–iron precursor 
impregnated PS, (c) 3DOM CFO. (d) Schematic description of the discharging process of the as-fabricated 3DOM CFO 

catalyst, SEM images of (e) 3DOM CFO@60, and (f) 3DOM CFO@140, (g) Cycling performance of Li–O2 cells with KB, CFO 
NPs, CFO@60, and CFO@140 catalysts for first five cycles at a current rate of 200 mA g−1 with a limited voltage window 

of 2.3 and 4.5 V, (h) discharge–charge curves of Li–O2 cells with KB, CFO@60, and CFO@140 catalysts at a current rate of 
200 mA g−1 with a limited capacity depth of 500 mAh.g−1 for the first cycle, (i) cyclability of the Li–O2 cells and (j) round-

trip efficiency with KB, CFO@60, and CFO@140 catalysts under a limited capacity of 500 mAh.g−1 at a current rate of 200 
mA g−1. 80 
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Figure 39: (a) SEM micrograph, (b) TEM micrograph of CCO@rGO nanocomposites, and (c) Cyclic stability of the LOBs 
with CCO@rGO and CCO cathodes 82 

In this section we have seen that spinel structures have several advantages to be used as cathodes in 

lithium oxygen batteries. Their structure allows them to combine two metals which can improve their 

properties. They have a good activity on the OER/ORR which allowed an increase in performance of 

the batteries. They are cost-effective and their synthesis can be easily scaled up to industrial scale. 

Their morphologies are easily adjustable allowing optimised cathode designs. All these properties 

make spinel a serious candidate to be considered as a catalyst for Li-O2 batteries. In this manuscript, 

we will use cobaltite spinel that will be directly grown onto the support in order to design carbon-free 

electrodes. 

 

II.1.2.f) Other materials in carbon material 

 

The previous subsections highlighted the main cathode materials used for lithium-oxygen batteries. 

Other structures such as perovskites were also tested. Hierarchical mesoporous/macroporous 

perovskite La0.5Sr0.5CoO3–x nanotubes (HPNLSC) are used as an example.83 The morphology and the 

textural properties of HPNLSC were investigated by electronic microscopy and nitrogen physisorption. 

Results showed a meso/macroporous nanotube with a specific surface area of 17.2 m².g-1 (Figure 40 

a-c). The catalytic activity on ORR/OER processes was investigated by CV, which showed that 

compared to a pure KB electrode the HPNLSC/KB cathode exhibited higher onset potential and larger 

peak current density confirming its catalytic activity (Figure 40 d). Figures 40 e,f show the data 

collected over the first five cycles with the HPNLSC and HPNLSC/KB electrodes within a voltage window 

between 2.20 and 4.35 V and at a current density of 0.025 mA.cm- 2. At the first cycle, the discharge 

plateau obtained with HPNLSC/KB was 0.06 V higher than that obtained with KB only. This difference 

increased to 0.33 V with regard to charge potential. As a result, the overpotential decreased from 1.53 

to 1.14 V. The decrease in overpotential confirmed the catalytic activity of HPNLSC previously 

observed by CV. The capacity reached by the HPNLSC/KB electrode was 5799 mAh.g-1 which is much 

higher than the 4041 mAh.g-1 obtained with the KB cathode. The cycling performances of Li−O2 

batteries at a capacity of 500 mAh.g−1 are shown in Figure 40.g.h. The results showed greater stability 

for the battery made with HPNLSC/KB electrode; the latter was able to perform 50 cycles instead of 

13 in the case its pure KB counterpart. The improvement of the Li−O2 batteries performance was 

attributed to the synergistic effect of the high catalytic activity and the stable hierarchical 
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mesoporous/macroporous nanotubular structure of the HPNLSC allowing a higher diffusion of Li+ and 

O2 and consequently optimising Li2O2 formation. 

 

Figure 40: (a) SEM micrograph, (b) TEM micrograph, (c) Nitrogen adsorption−desorption isotherms and pore size 
distribution of HPNLSC, (d) CV curves of HPNLSC/KB and KB electrodes between 2.20 and 4.35 V at 0.1 mV s-1, First five 
discharge–charge curves of Li–O2 cells obtained within a voltage window between 2.20 and 4.35 V, at a current density 

of 0.025 mA.cm-2 and with (e) pure KB (f) HPNLSC/KB electrodes. Cyclic performance of Li−O2 batteries at a current 
density of 0.1 mA.cm−2 with a limit capacity of 500 mAh.g−1 with (g) KB and (h) HPN-LSC/KB electrodes.83 

Carbides were also used as cathode material in lithium-oxygen batteries. The most commonly 

employed was molybdenum carbide. A study involving MoC-Mo2C nanorod grafted on N-doped 
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carbon nanotube (MoC–Mo2C/NCNT) is chosen in this analysis as an illustration.84
 The morphology of 

MoC–Mo2C/NCNT can be observed in Figure 41 a,b. Performances of MoC–Mo2C/NCNT electrode 

were compared with that of Mo2C mixed with carbon graphite (Mo2C@GC) and that of Mo2c grafted 

on carbon nanotubes doped with nitrogen (Mo2C/NCNTs). The specific surface area of these materials 

was found to be 58.1, 112.9, and 79.9 m2g−1 for Mo2C@GC, Mo2C/NCNT and MoC–Mo2C/NCNT, 

respectively. The reaction kinetics were examined by CV between 2.0 and 4.35 V at the scan rate of 

0.1 mV.s−1 (Figure 41 c). The MoC–Mo2C/NCNT catalyst displayed more favourable ORR and OER onset 

potentials and higher ORR and OER peak current density compared to Mo2C@GC and Mo2C/NCNTs 

electrodes. The presence of two cathodic peaks indicated a two-step discharge product formation 

reaction. The cathodic peak at ~ 3.0 V was attributed to the formation of lithium superoxide and the 

other peak observed at around 2.5 V corresponded to the formation of Li2O2. Nyquist plots showed 

lower semicircle (assigned to the charge-transfer resistance) for the MoC-Mo2C/NCNTs electrode, 

indicating a better conductivity of the material. The electrochemical performances were studied via a 

2.0 – 4.35 V voltage windows, at a current density of 200 mA.g−1 (Figure 41 d). Capacities obtained 

were 34862, 26385, and 12148 mAh.g-1 for MoC-Mo2C/NCNTs, Mo2C/NCNTs, and Mo2C@GC 

electrodes respectively. This increase in capacity was attributed to the higher specific surface area of 

the nanotubes and also to the improved catalytic activity induced by MoC.  Tests at a capacity of 500 

mAh.g-1 at a current density of 200 mA.g-1, were done and the results are shown in Figure 41 e,f.  The 

Li–O2 cell made of MoC–Mo2C/NCNTs electrode exhibited the best initial discharge and charge voltage 

plateaus. The discharge potential of the Li–O2 battery with the MoC–Mo2C/NCNT catalyst was lower 

than that of Mo2C/NCNTs by 0.03 V and higher than that of Mo2C@GC by 0.05 V. This difference in 

potential is not significant. The charge potential plateau of MoC–Mo2C/NCNTs was reduced by 0.13 V 

and by 0.17 V compared with Mo2C/NCNTs and Mo2C@GC, resulting in a decrease in polarization and 

thus promoting the reversible reaction. In terms of cycling stability, the battery made with the MoC-

Mo2C/NCNT electrode achieved 164 cycles, which was 72 and 122 cycles more than that of 

Mo2C/NCNTs and Mo2C@GC cathodes showing the great stability provided by the electrochemical and 

textural properties of MoC-Mo2C/NCNT material.   
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Figure 41: (a) SEM and (b) TEM micrographs of the as-synthetised MoC–Mo2C/NCNT, (c) CV curves recorded between 2.0 

and 4.35 V at the scan rate of 0.1 mV.s−1  and (d) Initial charge discharge profile obtained within a 2.0 – 4.35 V voltage 
windows, at a current density of 200 mA.g−1 for Li-O2 battery based on Mo2C/NCNTs, Mo2C/NCNTs, and Mo2C@GC 
electrodes (e) First charge discharge profile and (f) cycling stability obtained with Mo2C/NCNTs, Mo2C/NCNTs, and 

Mo2C@GC electrodes within Li-O2 cells and performed at 500 mAh.g−1 with a current density of 200 mA.g−1.84 

The final class of materials that will be discussed in this section is metal hydroxide. Fellinger et al.85 

used vertically aligned carbon nanosheets grafted with metal hydroxide as electrode material. The 

hydroxides involved are: cobalt (II) hydroxide, and iron (III) hydroxide (Figure 42 a,b). The first full 

discharge/charge profiles were performed at a current density of 75 mA.g−1 (Figure 42 c,e). 

Co(OH)2@CNS achieved the highest capacity 5403 mAh.g−1, followed by Fe(OH)3@CNS which reached 
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3762 mAh.g−1 and pure CNS 1248 mAh.g−1. Testing at a fixed capacity of 1000 mAh.g−1 showed a 

decrease in the charge potential plateau of 0.37 V for Co(OH)2@CNS electrode and 0.51 V for 

Fe(OH)3@CNS compared to the pure CNS electrode. This reduction of charge potentials, reduced side 

reactions and improved cycling stability. Regarding discharge potential, it increased by 0.29 V for 

Co(OH)2@CNS and 0.33 V for Fe(OH)3@CNS compared with  CNS . These results reflected the higher 

catalytic activity of the iron and cobalt hydroxides to the oxygen reduction reaction. Moreover, 

hydroxides facilitated the crystallisation of the lithium peroxide through hydrogen bonds that 

improved the OER.  
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Figure 42: (a) SEM micrograph and (b) TEM micrograph of typical M(OH)2@CNS (M = Co,Fe),  First charge discharge 
profile of Li-O2 cells with (c) CNS@Co(OH)2, (d) CNS@Fe(OH)3, and (e) pure CNS electrode and (f) gas analysis of first 

discharge and charge of Co(OH)2@CNS at 175 mA.g−1 by combined approach using a Baratron pressure transducer to 
investigate gas consumption during discharge and OEMS to analyse gas evolution during charge. Upper panel shows 

potential profile, middle panel absolute gas consumption/evolution, and lower panels gas consumption/evolution rates. 
Dashed lines indicate respective values for 2e−/ O2 and 4 e−/O2.85 
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The cycle stability has only been studied for the Co(OH)2@CNS electrode. It was found to reach 40 

cycles at a capacity of 715 mAh.g−1 at a current density of 150 mA.g−1. The gas evolution during charge 

and discharge was monitored with a Baratron pressure transducer for the Co(OH)2@CNS  electrode, 

as shown in Figure 42 f. During discharge, 25 mbar (≈23 μmol) of O2 was consumed in two regimes 

implying a 3.0 electrons per O2 (average of a 2 and a 4 electron per O2 process) and a 2.2 electrons per 

O2 revealing that Li2O2 is the main discharge product formed. During charge, most of the O2 was 

released before 3.9 V, via a two-electron-per-oxygen process corresponding to the oxidation of Li2O2 

formed during discharge. However, when the voltage exceeded 3.9 V, CO and CO2 resulted from the 

oxidation of the electrolyte. The OER/ORR ratio was calculated for the first cycle on the basis of the 

O2 concentration at the end of the charge (23000 ppm ≈ 9 μmol) and that which was consumed during 

the discharge, this ratio reaches 40% illustrating the use of oxygen in parasitic reactions, such as the 

formation of lithium carbonate, for example. Nevertheless, the author pointed out that all of the 

discharge products (Li2O2/Li2O) might not be fully obtained during charging. To conclude, the use of 

metal hydroxides made it possible to reduce the overpotential. To optimize the performance of this 

battery, a maximum voltage of 3.9 V was necessary to be applied in order to preserve degradation.  

The cathodes based on perovskite, metal carbide, and metal hydroxides used for Li-O2 batteries with 

their main characteristics are summarised in Table 8.  

Table 8: Capacity reached, material nature, carbon morphology, and decrease in overpotential compared to pure 
carbon-based cathodes for Li-O2 batteries applications. 

Material Morphology Carbon 
type 

Discharge 
Capacity 
(mAh.g-1) 

Δ 
Overpotential 

(V) 

 
Reference 

Perovskite  
La0.5Sr0.5CoO3-x  

 
Nanotube 

 
KB 

 
5799 

 
0.39 

 

83 

Carbide 
      

MoC-Mo2C 
 Nanorod N-CNT 34862 0.17 84 

MoC-Mo2C 
 Nanorod Graphite 26385 0.04 84 

Metal hydroxide 
      

Co(OH)2
 Coating Nanosheet 5403 0.37 85 

Fe(OH)3
 Coating Nanosheet 3762 0.51 85 

 

This sub-section highlighted several materials that have been used as catalysts within cathodes for 

applications in Li-O2 batteries. These materials increase the performance of the battery through their 

catalytic activity on the OER and ORR and could be promising. However, their synthesis remains rather 

complicated, and a possible way of optimisation could be to find simpler synthesis methods in order 

to be able to use these materials on a larger scale. 
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II.1.2.g) Mixed materials in carbon material 

 

The previous sections have described the main categories of cathode materials in lithium-oxygen 

batteries. In this section, some mixed materials combining the previous materials will be introduced 

and their performance evaluated.  

The first mixed materials that are to be discussed in this section are noble and transition metal-based 

alloys such as MPt and MPd.  Metin et al. studied these alloys by designing two RGO-MPd (M = Co, Cu, 

Ni)86 and RGO-MPt (M = Co, Cu, Ni)87 electrodes (Figure 43 a-c).  

A test at a fixed capacity of 0.5 mAh.cm-2, at a current density of 0.05 mA.cm-2 was conducted with a 

MPt cathode (Figure 43 d). The overpotential of the MPt catalysts was determined at the second cycle. 

All catalysts displayed a similar 2.8 V discharge plateau. The rGO-CoPt, rGO-CuP and rGO-NiPt charge 

overpotentials were 0.7 V, 0.9 V and 1.2 V respectively. The charging overpotential is defined as the 

voltage gap between the observed charging potential and thermodynamic potential (Erev Li2O2 = 

2.96V). The decrease in charge overpotential was explained by the effect of alloying which increased 

the 5d vacancies of the Pt surface, resulting in an increase of O2 adsorption and a weakening of the O-

O bond. It was also related to the absorption of LiO2. A lower charge overpotential meant that the LiO2 

adsorption strength surface increased as the adsorption strength towards LiO2 decreased. Regarding 

the different cathodes, the lower charge overpotential of the CoPt alloy was attributed to the lower 

electronegativity of Co with respect to Pt resulting in impairment of the metal-oxygen bond due to 

the increased electron density of Pt. In terms of cycling stability, CoPt and CuPt performed 40 cycles, 

but NiPt reached only 25 (Figure 43 e). The full discharge and charge capacity test for the three 

catalysts were performed under a current density of 0.05 mA.cm-2 and showed maximum values of 

9876 mAh.g-1, 9714 mAh.g-1, and 9898 mAh.g-1 for NiPt, CuPt, and CoPt respectively. These 

electrochemical results were in agreement with the previous observations. 
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Figure 43: TEM micrographs of (A) CoPt, (B) NiPt and (C) CuPt alloy NPs; Galvanostatic discharge tests at the limited 
capacity of 0.5 mAh cm-2 , (D) Capacity vs. cell voltage profiles for (A) at the 2nd cycle for the three cathodes (E) Capacity 

vs. number of cycles for the three cathodes. 87 

The next mixed materials that will be discussed in this section are a combination of metal oxides and 

noble metals. Palladium nanoparticles supported onto manganese oxide nanorod (Pd/αMnO2) was 

synthetised and tested as cathode in Li-O2 battery. For comparison purposes, batteries made with 

αMnO2 nanorod only and pure KB cathodes were tested under the same conditions. Textural 

properties and morphology of the material are presented in Figure 44 a,b. Pd deposited on αMnO2 

nanorods possessed higher surface area and pore size than αMnO2 nanorod only. Catalytic 

performances of the materials were determined by LSV and the results are resumed in Figure 44 c. 

The increase of current peaks revealed a higher amount of electron transferred per oxygen molecule: 

3.9, 3.8 and 3.3 electrons for Pt/C, Pd/αMnO2 and MnO2, respectively. The oxidation of Li2O is a one-

step direct four-electron transfer mechanism (2Li2O → 4Li+ + O2 + 4e-). The transfer of 3.8 electrons 

with the Pd/αMnO2 cathode is close to the required 4 electrons and could explain the good 

electrocatalytic activity of this material. Pd/αMnO2 material was tested as cathode at a current density 

of 0.1 mA.cm−2 in the potential range of 2.0 – 4.3 V.88 The first charge discharge profile is shown in 

Figure 44 d. The capacity of the battery containing the Pd/α-MnO2 nanorod electrode was found to 

be 8526 mAh.g-1, which was much higher than that obtained with the palladium-free cathode (3997 
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mAh.g-1), and the pure carbon electrode (2000 mAh.g-1). The lowest overpotential was displayed by 

Pd/α-MnO2 electrode while the highest was that by pure KB cathode. This decrease in overpotential 

confirmed the catalytic effect on the OER and the ORR of the catalyst. The increase in catalytic effects, 

described previously, explains the improved performance during cycles. In order to evaluate the 

stability of the battery built with the Pd/α-MnO2 cathode, a test at 500 mAh.g- 1 capacity was carried 

out, at a current density of 0.1 mA.cm- 2. The results, as presented in Figure 44 e, show that the battery 

was able to reach 35 cycles. However, it should be noted that the battery remained table only for the 

first 20 cycles, after which the potential increased drastically.  

The next mixed material to be discussed is carbon/titanium oxide grafted with bimetallic 

platinum/iridium (Figure 45 a-d).90 Electrochemical data obtained from LSV are resumed in Figure 45 e. 

The calculated electron transfer numbers were 3.9, 3.7, and 3.8 for Pt/C–TiO2, Ir/C–TiO2, and Pt–Ir/C–

TiO2, respectively. These catalysts allowed the transfer of almost four electrons, enabling the complete 

oxidation of Li2O. These electrochemical properties of the catalyst can lead to efficient battery 

performances. The first charge discharge profile was obtained at a current density of 0.1 mA in a 2.0–

4.3 V potential window, and confirmed that the hybrid Pt-Ir/C-TiO2 reached the highest capacity (4375 

mAh.g-1) compared to Pt/C-TiO2 (3856 mAh.g-1), Ir/C-TiO2 (3600 mAh.g-1), and KB electrodes (2150 

mAh.g-1) (Figure 45 f). The overpotential of the electrodes containing the hybrids was observed to be 

lower than that of the carbon electrode affirming their catalytic properties on the OER/ORR. Battery 

stability was tested at a fixed capacity of 500 mAh.g-1 (Figure 45 g-i). Li-O2 batteries with Pt-Ir/C-TiO2 

cathode achieved the highest number of cycles with 35 cycles, 2 cycles more than the Ir/C-TiO2 

cathode and 5 more than those of the Pt/C-TiO2 cathode. 

Kang et al.91 studied the properties of a noble metal/spinel mix as cathode material using NiCo2O4 

nanosheets impregnated with Pd on porous carbon (Figure 46 a). The addition of Pd to the surface of 

the spinel structure created oxygen vacancies which provided interesting electrochemical properties 

for OER/ORR. Electrochemical tests were performed at 200 mA.g-1 between 2.0 and 4.5 V (Figure 46 b) 

and showed an initial discharge capacity of 4000 mAh.g-1 for Pd@NiCo2O4 which was higher than that 

of NiCo2O4 only (3000 mAh.g-1). The discharge voltage plateau was similar for both cathodes at 2.3 V. 

At charge, NiCo2O4 reached 4.2 V while Pd@NiCo2O4 reached 4.0 V indicating better catalytic activity 

for the OER for Pd@NiCo2O4. However, the round-trip efficiency was significantly higher for the 

batteries made with NiCo2O4 electrodes. A test at 1000 mAh.g-1 and at a current density of 200 mA.g-

1 revealed that the Li-O2 cell made with Pd@NiCo2O4 cathode achieved 100 cycles while with NiCo2O4 

electrode it reaches only 10 cycles. The stabilisation was explained by the reduction of the 

overpotential, which helped prevent the degradation within the battery. The stable cycle life and 

voltage of Pd@NiCo2O4 during ORR and OER demonstrated that the surface oxygen vacancy generated 

by Pd decoration facilitated uniform nucleation and growth of Li2O2 around the Pd@NiCo2O4 surface 

during discharge. The Li2O2 formed on the oxygen vacancy of Pd@NiCo2O4 was easily decomposed 

during the charge with a much lower overpotential. A schematic illustration for the surface atomic 

arrangement of Pd@NiCo2O4 is presented in Figure 46 c. 
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Figure 44 : (a) SEM images of Pd-deposited α-MnO2 nanorods, (b) N2 adsorption/desorption isotherm of Pd-deposited α-
MnO2 nanorod-catalysed Li–O2 battery in comparison with α-MnO2 nanorod, (c) LSV curves recorded in the oxygen-

saturated 0.1 M KOH solution at a scan rate of 5 mV s−1 with a disk rotation rate of 1600 rpm. The ORR and OER 
polarization curves were obtained in the potential ranges of 0.3∼−0.8 and 0.3∼1.0 V, respectively (d) First charge 

discharge profile of Li-O2 with Pd/α-MnO2 nanorod, α-MnO2 nanorod, and pure KB electrodes and (e) cycling 
performances of Li-O2 cells made with Pd/α-MnO2 nanorod electrodes at limited capacity of 500 mAh.g−1.88 
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Figure 45: SEM micrographs of (a) C– TiO2 (b) Pt, (c) Ir, and (d) Pt/Ir nanocomposites supported on C– TiO2, (e) 
Electrochemical data obtained from the LSV curves, (f) The first discharge capacity of Pt, Ir, and Pt–Ir/C–TiO2 catalysts in 
comparison with the KB cathode, cycling performance of the (g) Pt/C–TiO2, (h) Ir/C–TiO2, (i) Pt–Ir/C–TiO2-catalyzed Li–O2 

battery limited to 500 mAh g−1. 90 
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Figure 46: (a) SEM micrograph of Pd@NiCo2O4 on carbon foam, (b) Initial deep discharge-charge curve of Pd@NiCo2O4, 
(c) Schematic illustration for the surface atomic arrangement of Pd@NiCo2O4.91 

To put it in a nutshell, many materials were used as cathodes in lithium-oxygen batteries. These 

materials differ not only in their intrinsic properties such as conductivity, catalytic activity with respect 

to OER/ORR processes, morphology or textural properties, but also in their extrinsic properties such 

as price or availability.  The main advantages and disadvantages are resumed in Table 9 below. 

Table 9: Advantages and inconvenient of all the reported cathode materials for lithium-oxygen batteries 

Material Advantage Inconvenient Reference 

Noble metals 
 

Catalytic activity / 
Conductivity 

Price / Availability 51-58 

Carbon 
 
 

Conductivity / 
Availability / Price 

High potential needed 
leading to degradations 

16,29,31-50 

Metal oxides 
 
 

Catalytic activity / 
Availability / Price 

Conductivity 60-72 

Perovskite 
 

Catalytic activity Conductivity 83 

Carbide 
 

Catalytic activity Conductivity 84 

Metal hydroxide Catalytic activity Limited voltage 85 
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II.1.3) Summary 

 

To summarise this section, the cathode is an essential component of lithium oxygen batteries. It is the 

site of the electrochemical reactions that allows the formation and decomposition of lithium peroxide 

during the charge/discharge cycles. This reaction conditions the performance of the battery, which 

makes it important to create an electrode that allows its optimisation. To this end, two ways of 

improvement have been proposed. The first is based on the design of the electrode to allow optimal 

deposition of lithium peroxide on the surface of the cathode. The second is the use of catalytically 

active materials to the OER/ORR process to increase the reaction kinetics of lithium peroxide 

formation and decomposition and thus reduce degradation within the battery.   

In the first part, several examples of high porosity cathodes were discussed and showed that battery 

performance cannot be judged only on the specific surface area of the electrode. The porosity and 

architecture of the cathode must be taken into account. In order to optimise the design of the cathode 

several factors need to be considered. The electrochemically accessible surface is much lower than 

the physical surface area and is dependent on the size and structure of the porosity. For the reaction 

to take place, lithium ions and oxygen must be able to meet on the surface of the cathode. The physical 

nature of these two compounds being different (liquid, gas) it is important that the cathode is 

accessible to both forms and that it does not block the reaction flow. The formation of products during 

the discharge in the cathode pores must not block the diffusion of the reagents. It has been shown 

that pores that are too small, micropores for example, are not suitable for cycling. In order to improve 

upon this, we propose to create a cathode with a hierarchical micro-meso/macro porosity according 

to Murray's law which could allow an optimal diffusion of species within the electrode and thus 

improve the performance of the battery. 

Regarding cathode materials, we have seen that carbon has been widely used because it has good 

conductivity and catalytic activity on oxygen. Moreover, carbon has several morphologies (nanotube, 

nanosheet, nanoparticles, ...) allowing the modulation of specific surface of the cathode and the 

creation of a multitude of diffusion pathways for oxygen and lithium cation. However, carbon is 

unstable in Li-O2 batteries and leads to the formation of side products that can passivate the cathode 

and block the diffusion of species within the electrode. One of the solutions to increase carbon stability 

is to add a catalyst for OER/ORR. The purpose of the catalyst is to reduce the cathode overpotential 

during charge/discharge cycles. Many catalysts have been used, the most common being noble metals 

and metal oxides. These catalysts reduced the overvoltage and improved the performance of the 

battery. Developing highly active and stable catalytic materials such as bi-functional catalysts towards 

both ORR and OER is still challenging. The catalysts shouldn’t decompose the electrolyte. However, 

before looking for new catalysts it would be interesting to have a better understanding of how current 

catalysts work. Fundamental understanding of the reaction mechanisms of Li-oxygen batteries is 

required especially for the mechanisms related to ORR and OER. Based on this fundamental 

knowledge, catalysts could be selected and optimised to increase the performance of the battery.  

However, no studies have been undertaken so far to compare the catalysts under the same conditions 

and to determine their electrochemical properties. In this manuscript we will focus on the study of 3d 

transition metals. The aim will be to relate the electrochemical properties of the catalysts to the 
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performance of the battery. This study could be a good basis for understanding the properties of metal 

oxides as catalysts in oxygen batteries and could provide information on how the catalysts work. As 

mentioned earlier, carbon leads to degradation within the Li-O2 battery. Another way to improve 

battery performances would be to create carbon-free cathodes. In this work, the synthesis, 

characterisation and testing of a carbon-free cathode will be reported and discussed. 

II.2) Electrolyte 
 

The main role of an electrolyte is to ensure the transport of lithium ions between the cathode and the 

anode according to the charge and discharge cycles. In its simplest form, it consists of a solvent and a 

lithium salt. Additives can be added to modify the properties according to requirements needed. There 

are four different types of electrolytes: aqueous, non-aqueous, solid and hybrid. It should be noted 

that the internal structure of the batteries will change depending on the electrolyte selected. These 

configurations are shown in Figure 47.  

 

Figure 47: Composition of batteries related to the electrolytes.18 

Changing the electrolyte will not only influence the composition of the battery but also the 

electrochemical processes taking place in the battery. The reactions, advantages and disadvantages 
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for each electrolyte are listed in Table 10. In this project, we selected a non-aqueous electrolyte 

because it has the advantages of having a high density of thermal energy and a high-recharging 

capacity. However, the main disadvantage of this type of electrolyte is the production of insoluble 

products caused by instability problems, that which is relatively easier to address compared to those 

encountered with other electrolytes.  

Table 10: Comparison of batteries regarding electrolytes types. 

Electrolyte Reaction Advantages Inconvenients Reference 

Aprotic 
 

O2 + 2e- + 2Li+ => Li2O2 

O2 + 4e- + 4Li+ => 2Li2O 

High theoretical energy 
density 

Good recharging ability 

Insoluble product 
created during 

discharge 
Stability problem. 

 

15,16,94 

Aqueous 
 

4Li + O2 + 2H2O = 4 LiOH 

(alkaline electrolyte) 

4Li + O2 + 4H+ =  4Li+ 

+2H2O 

(acid electrolyte) 
 

Soluble products created 
during discharge 

Lack of a conductive Li-
ion membrane. 

Unknown behaviour 
during charging. 

95-97 

Hybrid 
 

4Li + O2 + 2H2O = 4 LiOH 

(alkaline electrolyte) 

4Li + O2 + 4H+ =  4Li+ 

+2H2O 

(acid electrolyte) 
 

Soluble products created 
during discharge. 

Natural SEI on Li while 
using an aprotic 

electrolyte. 

Lack of a conductive Li-
ion membrane. 

Unknown behaviour 
during charging. 

36,98 

Solid 
 

O2 +2e- +2Li+ => Li2O2 Good stability and 
recharging capacity. 
No lithium dendrite 

formation. 

Low conduction of Li+ 
ions. 

Undesirable capacity 
and energy density. 

99,100 

 

II.2.1) Solvent 

 

The choice of organic solvents has a great impact on the performance and life of the battery.101 First 

of all, these solvents must have good ionic conductivity, a high capacity for solubilization of lithium 

salts and oxygen, and a window of electrochemical stability consistent with the applications envisaged. 

Carbonate-based solvents such as propylene carbonate (PC) and ethylene carbonate (EC), were the 

first solvents used in non-aqueous lithium-oxygen batteries. The cycling performance was poor and 

the main discharge products were lithium carbonate and alkylcarbonate, not Li2O2. Freunberger et al. 

propose a possible reaction path to explain the wild range of product formed (Figure 48). 102
 The 

formation of lithium carbonate comes from the reaction between the solvent and the superoxide O2
.-

. The reduction of the dioxygen involves the formation of superoxide, which is a strong reducing agent 

that decomposes the carbonated based solvent. Lithium carbonate is an insoluble and insulating 

compound. It can passivate the cathode preventing electron transfer and inhibiting electrochemical 

reactions. These products are responsible for the poor reversibility. Regarding electrochemical 

performance, the cycle performance is associated with the decomposition of solvents rather than the 

reversible formation and decomposition of Li2O2, resulting in a poor cycling life. 102
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Figure 48: Scheme of discharge reaction explaining the formation of side products: Li Propyl Dicarbonate, Li Formate, 
Li Acetate, Li2CO3, CO2, and H2O. 102 

The instability of carbonate-based solvents led to the search for and use of other solvents. Ether-based 

solvents were tested due to their high stability with respect to superoxide radicals and oxidation 

potentials. The two most commonly used ethers are dimethoxyethane (DME) and tetraethylene glycol 

dimethyl ether (TEGDME). The dominant discharge product in ether-based solvent is Li2O2 and not 

Li2CO3, which leads to improved cycling life compared to carbonate-based solvent. 103 However, upon 

discharge, the ether-based solvents are oxidised at high potential by Li2O2. 104 Although ethers are 

relatively stable against nucleophilic attack, they are prone to autoxidation by oxygen radicals to be 

converted to unstable peroxide species (Figure 49). In addition, some solvents such as TEGDME are 

unstable at high potential (≈4.5V) 105 

 

Figure 49:  Mechanism of side reactions occurring with ether-based electrolytes during Li–air cell discharge. 105 
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Another promising solvent is dimethyl sulfoxide (DMSO), which is relatively stable in the superoxide 

environment.105 However, during the oxygen reduction on carbon electrodes, the solvent undergoes 

oxidation with reactive oxygen species and lithium oxides to form side-products such as LiOH, dimethyl 

sulfone, Li2SO3 and Li2SO4 (Figure 50).107 In addition, the chemical reaction between DMSO and Li2O2 

could decompose DMSO to DMSO2 and form LiOH.  

 

 

Figure 50: Possible degradation Mechanism of DMSO during discharge via either (a) nucleophilic attack by superoxide or 
(b) proton abstraction by superoxide ions followed by the formation of DMSO2 and LiOH 107 

 

Room temperature ionic liquids (RTILs) have various advantages over conventional non-aqueous 

solvents. They possess a wide electrochemical window and high thermal stability, making them 

promising stable candidates for non-aqueous lithium-air batteries. 110 However, the high viscosity of 

RTILs is a big issue, and leads to large transport resistance. Moreover, RTILs have low lithium salt 

solubility and low conductivity, limiting the discharge current density. 108 

The most commonly used solvents are listed in the following Table 11 with their advantages and 

disadvantages. According to the information available in the Table 11, ether-based solvents were 

chosen for this project and more specifically the DME. The DME was preferred to the TEGDME because 

it has a lower viscosity. However, the vapor pressure is higher but since the system is closed, solvent 

evaporation will be limited. 

From a more general point of view, the selection of the solvent is one of the essential means towards  

for improving the electrochemical performance of the nonaqueous Li-O2 battery. The electrolyte must 
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meet certain stability requirements. It must be inactive towards lithium metal and more importantly 

it must be stable in the presence of superoxide radicals. It should also have high oxygen solubility, and 

high diffusivity. Currently, none of the above solvents could meet all of the requirements. Electrolyte 

degradation is mainly caused by superoxide O2
-. Therefore, novel nonaqueous electrolytes need to be 

designed to be stable against nucleophilic attack by the intermediate. This instability could lead to 

safety issues and is a big problem for potential industrialisation. It is important to stabilise these 

solvents. Several ways to improve these solvents can be proposed. The first would be to compose 

mixtures of solvents. The second would be to use redox mediators or soluble catalysts to reduce the 

overpotential and stabilise the electrolyte. The third would be to substitute labile hydrogens, which 

are the starting point for solvent decomposition, with methyl or methoxy groups.  

Table 11: Main solvents used for non-aqueous electrolyte with their advantages and inconvenient 

Solvent Advantages Inconvenients Examples Reference 

Carbonates 
 

High ionic conductivity 
Good viscosity 
High boiling temperature 

Unstable against 
superoxide   
Inflammable  

102 

Ether 
 

Stable to lithium 
Stable at more than 4.5V vs. Li+ 

Some are volatile 
Inflammable 

 

 
 

109 

Ionic liquid 
 

Large stability window 
Stable with respect to formed 
products 

 
High viscosity 

 

 
 

110 

 
Sulfones 

 

 
High ionic conductivity 

 
Unstable against 
superoxide   

 

 

 

 

106,107 

 

II.2.2) Lithium salt 

 

The lithium salt, like the solvent, plays a key role in the electrolyte as it ensures ionic conductivity. A 

lithium salt should be selected following two criteria: it should have a high solubility in solvent and its 

anion must be inert with respect to the solvent and other battery components.18,111,112 In addition, the 

lithium salt influences the solubility of oxygen in the electrolyte.112,113 The most frequently used salts 

are shown in Figure 51. 
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Figure 51: Most frequently used lithium salts in Li-O2 batteries 

LiPF6 (Figure 51 a) was the first lithium salt to be used in Li-O2 batteries.114 However, it decomposes 

when used in Li-O2 batteries, and produces LixPFyOz, POF3 and mainly insoluble LiF, which passivates 

the cathode and reduces performance.115-118 Moreover, the production of HF degrades the other 

components of the battery. The degradation of the LiPF6 salt has two origins: the first is from parasitic 

reactions with superoxide 116 and the second is from reactions with traces of water.117 The degradation 

of LiPF6 leads to the utilisation of other Li-salts. LiTFSI (Figure 51 b) has been widely used in Li-O2 cells, 

but the TFSI anion is unstable vs. ORR and OER in ether and sulfone-based electrolyte solvents.118,119 

LiTf (Figure 51 c) utilisation can lead to high rechargeability battery.120 LiTf possesses a high donor 

number (DN; describing the electron donating properties) of the Tf anion compared to other anions 

and could be favourable for Li-O2 cells as it increases the solubility of LiO2.121,122 The degradation of 

both LiTFSI and LiTf result in the formation of LiF and -CF3. 118,119 LiF always forms when any of the 

fluorinated Li-salts are used. To avoid this degradation, a fluorine-free anion could be used to improve 

the performance. Nasybulin et al.112 evaluated the stability of different lithium salts in TEGDME. They 

analysed the products generated during discharge and showed that each salt decomposes but at 

different levels. LiClO4 (Figure 51 d) exhibits the highest stability, but has lower performance than 

LiTFSI. However, perchlorate is an oxidizer and its use presents severe safety issues. In case of 

malfunction, it can lead to an explosion.   

A key step in the improvement of lithium-oxygen batteries is to design Li-salts which are 

electrochemically stable in presence of oxygen superoxides and peroxides. Once mixed with solvent, 

the electrolyte should provide sufficient ionic conductivity, oxygen solubility, and anodic stability at 

cathode. Fluorinated salts have the best characteristics.  LiTf could be a good option as Li-salt once 

coupled with high DN solvents. However, stability of fluorinated salts in long-term cycling as well as 

its compatibility with Li-metal anode are major problems. One of the solutions is to synthetise a 

fluorine-free anion possessing a high DN property.  

 

Lithium hexafluorophosphate (LiPF
6
) 

 

Lithium bis(trifluoromethanesulfonyl)imide 

(LiTFSI) 

 

 Lithium perchlorate (LiClO
4
) 

 

Lithium trifluoromethanesulfonate 

(LiTf) 

(a) 

(c) (d) 

(b) 
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II.2.3) Additives 

 

As mentioned above, most of the degradation takes place during discharge and comes from the 

reaction between superoxide and battery components such as the solvent or the lithium salt. These 

reactions lead to the formation of side products and drastically reduce the performance of the battery. 

During charge, the electrochemical oxidation of Li2O2 to 2Li+ and O2 is a slow process, and could lead 

to a large overpotential and low energy efficiency.123 Additives can be added to the electrolyte to 

accelerate the kinetics of the reaction, thus increasing the capacity and lifetime of the battery.124,125 

The main additives used are redox mediators, which can be divided into two categories: charge and 

discharge redox mediators.  

Charge redox mediators are the most commonly used additives in lithium-oxygen batteries because 

they facilitate the oxidation of Li2O2. Their oxidation potentials are higher than that of lithium peroxide 

and could be directly oxidise on the electrode. Once oxidised, they will oxidise the lithium peroxide. 

Moreover, charge redox mediators could accelerate the decomposition of Li2O2 by moving into the 

cathode and facilitating the transport of electrons between the lithium peroxide and the cathode. 

The reactions between the redox mediator (RM) and the Li2O2 are illustrated below:  

 2𝑅𝑀 → 2𝑅𝑀+ + 2𝑒− 
 

(1.9) 

  𝐿𝑖2𝑂2 + 2𝑅𝑀+ →  2𝐿𝑖+ +  𝑂2 + 2𝑅𝑀 (1.10) 
 

 

The addition of a mediator reduces the overvoltage during charging. The slow charge transfer between 

the peroxide and the electrode is replaced by the diffusion of the mediator between the electrode 

and Li2O2.123 Chen et al. were able to reduce the charge potential of the battery using 

tetrathiafulvalene (TFF), thereby allowing to keep a constant capacity for 100 cycles.126 During the 

charging process, TTF is oxidized to TTF+ at the surface of the cathode, and during discharging, TTF+ 

oxidized Li2O2, and reformed TTF. It was found that TTF acts as a molecular electron–hole transfer 

agent, which allows efficient oxidation of insoluble Li2O2. Lim et al. were able to increase the number 

of cycles from 90 to 900 while maintaining a charge potential below 3.5 V using LiI127. Iodine could be 

oxidized to I3
− or I2 on the surface of the electrode and then react with Li2O2 to form Li+ and O2 gas with 

the regeneration of I− ions. The charging overpotential is considerably decreased and leads to an 

increase of cycling stability. However, the reaction mechanism of iodide mediator is still unclear.  LiBr 

has been also used and demonstrated that it could suppress the parasitic reaction even with water 

contaminations. However, highly corrosive and reactive Br2 is produced during discharge and could be 

a problem. 128 

Discharge redox mediator could also have significant impact on the capacity and cycling stability of 

the battery. In low DN solvents, the electrochemistry on the cathode surface consists of the reduction 

of redox mediators rather than the generation of Li2O2. Ideally, the redox mediator could promote 

reactions in solution and suppress Li2O2 formation on cathode surface, preventing the creation of an 
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insulating layer and increasing the capacity of the battery. The most widely used discharge redox 

mediator is 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Bergner et al. 129 used the addition of 10 

mM TEMPO in the electrolyte. The charging potentials had a distinct reduction of 500 mV, and the 

cycle life of the battery was doubled from 25 to 50 cycles at the fixed capacity of 1000 mah.gcarbon
- 1. 

However, undesirable reactions accompanied were noticed, a parasitic shuttle to lithium anode 

occurred, resulting in a poor cycle life.  

The main RM are resumed in Table 12 along with their redox reactions and oxidation potentials.  

Table 12: RM formula with their redox reaction and potentials 
Name Structural Formula Redox Reaction Oxidation 

potential 
Reference 

Tetramethylpiperidinyloxyl (TEMPO) 

 

𝑇𝐸𝑀𝑃𝑂− → 𝑇𝐸𝑀𝑃𝑂 + 𝑒− 
𝑇𝐸𝑀𝑃𝑂 → 𝑇𝐸𝑀𝑃𝑂+ + 𝑒− 

E = 2.92 V 
E = 3.76 V  

129,130 

Tetrathiafulvalene (TTF) 

 

𝑇𝑇𝐹 → 𝑇𝑇𝐹+ + 𝑒− 
𝑇𝑇𝐹+ → 𝑇𝑇𝐹2+ + 𝑒− 

E = 3.44 V 
E = 3.75 V 

129,132 

Dimethylphenazine (DMPZ) 

 

 
𝐷𝑀𝑃𝑍 → 𝐷𝑀𝑃𝑍+ + 𝑒− 

𝐷𝑀𝑃𝑍+ → 𝐷𝑀𝑃𝑍2+ + 𝑒− 

 
E = 3.28 V 
E = 3.95 V 

 

133,134 

 
Lithium bromide (LiBr) 

 
LiBr 

𝐵𝑟− →
1

3
 𝐵𝑟3

− +
2

3
𝑒− 

1

3
 𝐵𝑟3

− →
1

2
𝐵𝑟2 +

1

3
𝑒− 

 

E = 3.57 V 
E = 4.05 V 

128,135 

 
Lithium iodide (LiI) 

 
LiI 

𝐼− →
1

3
 𝐼3

− +
2

3
𝑒− 

1

3
 𝐼3

− →
1

2
𝐼2 +

1

3
𝑒− 

 

E = 3.17 V 
E = 3.73 V 

136,137 

 

Redox mediators are key molecules for obtaining a stable battery. RM’s have the potential reduce the 

overpotential and prevent electrolyte degradation. However, RM’s are quite unstable in Li-O2 

batteries. The search for new stable RM may be an interesting line of research and more specifically, 

Organometallic RMs, in which the red-ox active center is a transition metal cation, and is surrounded 

by cyclic organic ligands, may be more stable in Li-O2 cells.  

 

II.2.4) Summary 

 

To conclude, the selection of the electrolyte is essential for improving electrochemical performance 

of nonaqueous Li-O2 system. The main drawback of this type of battery is the presence of superoxide 

that degrades solvent and lithium salts.  In order to obtain an ideal non-aqueous electrolyte for the Li-

O2 battery system, it is necessary that the electrolyte has excellent physicochemical and 

electrochemical stability, especially in the presence of superoxide radicals (O2
-), high oxygen and 

lithium salts solubility, and high diffusivity. The main challenges at the current stage are the search for 

stable solvents and lithium salts. Currently, none of the above electrolytes could meet all the 
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requirements for highly stable Li-O2 batteries. Therefore, novel non-aqueous electrolytes need to be 

synthetised to be stable against nucleophilic attack by the superoxide. In addition, some binary or 

even ternary solvent mixtures could be developed. Also, new sustainable redox mediators or soluble 

catalysts could be explored to reduce the overpotential and stabilize the electrolyte 

 

II.3) Conclusion 
 

To conclude this chapter, we have seen that lithium oxygen batteries are promising devices for energy 

storage. Their high theoretical energy density makes them a prime candidate to become the battery 

of the future. However, these batteries face stability problems that hamper their commercialisation. 

In order to increase the stability of the battery, it is necessary to optimise the different components 

of the battery. The two main components that can improve the Li-O2 battery performances are the 

cathode and the electrolyte. 

The cathode is the site of electrochemical reactions in the battery. These reactions lead to the 

formation and decomposition of lithium peroxide during the charge/discharge cycles and determine 

the performance of the battery. Two approaches have been considered to optimise the cathode. The 

first consists of creating a hierarchical structure to optimise the flow of reagent to maximise the 

formation of Li2O2 and the second is to use catalysts capable of increasing the kinetics of lithium 

peroxide formation and decomposition during the cycles. 

The electrolyte allows the transport of ions and oxygen during cycling. It is important that the 

electrolyte is stable and has good conductivity to be efficient. The main problem with current 

electrolytes is their instability with respect to superoxide radicals (O2
-). The search for an electrolyte 

that is stable with respect to this superoxide is essential. Possible ways of improvement would be to 

create some binary or even ternary solvent mixtures, new sustainable redox mediators or soluble 

catalysts. Unfortunately, due to time constraints, this work will only focus on the optimisation of the 

cathode.  
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The development of lithium-oxygen batteries, which possess higher energy density than lithium-ion 

batteries, have strong scientific and economic interest. Their development could result in higher 

energy storage, making autonomous devices such as electric cars more effective. Despite intensive 

research since the late 1990s, the subject is far from being fully understood. Understanding 

fundamental issues such as the influence of the electrolyte or the cathode structure is a key issue in 

the development of marketable batteries.  

Current lithium oxygen batteries are complex systems and suffer mostly from instability problems. 

These problems affect all the components of the battery. The electrolyte is unstable towards 

superoxide and its degradation leads to the formation of insulating and insoluble products leading to 

a decrease in capacity, cyclability and an increase in the battery's overpotential. The main problem 

with the lithium anode is the formation of dendrites during cycling. Cathodes are mainly made of 

carbon which reacts with lithium peroxide to form insulating lithium carbonate, passivating the 

cathode surface, impeding the electron flow, increasing the overvoltage and degrading other 

components including the electrolyte. 

In order to have a stable, high performance lithium-oxygen battery over a long period it is necessary 

to carry out an in-depth study of each component of the battery. However, working on all the 

components of the battery simultaneously is a monumental task, which is why this work will focus on 

the cathodes. 

The main objective of this PhD is to design cathodes for lithium-oxygen battery applications. The 

cathode is the site of the electrochemical reactions that drive the performance of the battery. Two 

main methods to optimise the cathode are considered. The first is to modulate the architecture of the 

electrode to optimise the formation and decomposition of lithium peroxide on its surface. The second 

-is to use a catalyst to accelerate the kinetics of the OER/ORR reactions, to reduce the overpotential to 

avoid degrading the electrolyte.   

The evolution of the project is based on the observation and evaluation of experimental data and the 

manuscript is composed of three parts: introductions and objective, results and discussion and 

conclusion and outlook. The part of results and discussion summaries all the results obtained and is 

divided into three chapters. 

The first chapter aims to highlight the relationship between the structure of the cathodes and the 

resulting electrochemical performances of lithium-oxygen batteries. This duality will be investigated 

experimentally by using carbon-based materials with a hierarchical porosity following Murray's law.  

The second chapter aims to evaluate the influence of the materials used in the cathodes on the 

performance of the batteries. To do so, results obtained from different cathodes containing various 3d 

metal oxides will be compared in order to evaluate their catalytic properties on the OER/ORR and their 

impact on the electrochemical results. This section will also aim to clarify the role of 3d metal oxides 

as cathode materials and serve as a reference for future cathode development. 

The third chapter will aim to combine the main finding of the first two parts. The result will be a 

judicious mix between an optimised and suitable morphology and an adapted catalytic material 

allowing to optimise the formation and decomposition of lithium peroxide and thus increase the 

performance of the batteries. For this purpose, AB2O4 spinel structures combining two previously 

studied 3d metals will be synthesized and their electrochemical performances investigated. 
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Chapter 3: Electrode design following Murray’s 

law: towards a revolution in Li-O2 batteries? 
 

 

 

 

 

 

 

Abstract:   

In conventional porous cathodes used for non-aqueous lithium oxygen batteries the rate of lithium 

peroxide formation is higher in the oxygen richest region and results in a gradual distribution 

decreasing from the air side to the separator side. This non-uniform distribution of the solid means 

that the pores on the air side are clogged first, making it impossible to exploit the rest of the cathode 

pore volume.  This clogging of the oxygen-side cathode is accompanied by a decrease in discharge 

capacity, terminating the discharge process and resulting in a low discharge capacity. In this work, we 

fabricate a cathode structure with hierarchical micro/meso/macro porosity based on Murray’s law by 

using a bottom-up, layer-by-layer evaporation-driven self-assembly process employing microporous 

nanocrystals as the primary building blocks. 

The hierarchical micro/meso/macro porous cathode enables the capacity of a non-aqueous lithium-

oxygen battery discharging at 150 mA.g-1 to be 514 % higher than that by a uniform slurry based 

cathode and 42 % higher than that by a hierarchical micro/meso/macro porous cathode based on 

carbon nanotube. We suggest that the increased discharge capacity can be mainly attributed to the 

fact that the hierarchical micro/meso/macro porous cathode has a large specific surface area and 

increase the oxygen transport pathways.  
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I) Introduction 
 

Non-aqueous lithium-oxygen batteries are considered as one of the most promising electricity storage 

devices, due to their high theoretical capacity (3.86 × 103mAh.g-1) and energy density (1.14 × 

104Wh.kg-1), which is several times higher than that of Li-ion batteries.1-4 However, the actual 

discharge capacity is far from the theoretical value.5-9 

The principal problem with non-aqueous batteries comes from the main discharge product, lithium 

peroxide. In fact, the fundamental chemistry of lithium-oxygen batteries involves lithium dissolution 

and deposition at the lithium anode and oxygen reduction reaction (ORR) and oxygen evolution 

reaction (OER) at the cathode. During the discharge, the reduction of oxygen leads to the formation of 

lithium superoxide LiO2 through a one electron transfer. This superoxide can react with another lithium 

cation Li+ and an electron or undergo a dismutation reaction, to form lithium peroxide Li2O2. To be 

rechargeable, the Li2O2 previously formed during discharge must be able to be electrochemically 

decomposed into Li+ and O2 during charging. The decomposition of lithium superoxide is based on two 

main reactions involving a one or two-electron process. As Li2O2 is an insulating solid it is essential to 

decompose it as it could passivate the surface of the electrode and will clog the pores of the cathode 

by its accumulation during discharge. 10  

The oxygen concentration in the porous cathode decreases from the oxygen side to the separator side 

during discharge. The formation of lithium peroxide is directly related to the oxygen concentration, 

higher oxygen concentration will result in a higher reaction rate. Therefore, the formation of Li2O2 will 

be higher at the oxygen side, decrease toward the separator side. 11-13 This Li2O2 formation gradient 

means that the porosity on the separator side is not fully exploited as the pores on the oxygen side will 

be blocked first preventing oxygen diffusion afterwards. Thus, the cathode porosity is not fully 

exploited and reduces the capacity of the battery. The control of cathode porosity is of key parameter 

for high performance Li-O2 battery.  

Currently, studies on cathode have focused on carbon structures with mesopores and macropores. 
14- 16 However, these pores are blocked and passivated by the accumulation of Li2O2 during discharge 

and by insoluble side-products, which causes capacity fading. Micropores have often been considered 

unnecessary due to their small size (<2nm), as they cannot store a large amount of Li2O2. 17-18 However, 

micropores can still be useful in a hierarchical structure to optimise oxygen transport. The above-

mentioned issue can be solved by designing a porous cathode with a gradient distribution in pore size. 

This gradient will allow a more even oxygen transport pathway along the electrode thickness. 

In this work, we fabricate a cathode structure with hierarchical micro/meso/macro porosity based on 

the generalised Murray’s law. The hierarchically porous cathode is formed using a bottom-up, layer-

by-layer evaporation-driven self-assembly process employing microporous nanocrystals as the primary 

building blocks under controlled humidity conditions. This specific gradient porous cathode was tested 

in a non-aqueous lithium-oxygen battery and compared with a slurry-based carbon powder cathode. 

Because of the optimized design of the cathode and the efficient formation and decomposition of 

Li2O2, Li–O2 cells exhibited a higher discharge capacity. 
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II) Materials and Methods 
 

 

II.1) Synthesis of metal oxide nanoparticles 

 

ZnO nanoparticles were prepared under an argon atmosphere by a mild temperature organic 

solution reaction.19 In a typically synthesis, 0.002 mol of the zinc acetylacetonate was mixed 

with 0.088 mol of oleylamine and 153mM of triphenylphosphine. The mixture was heated for 

one hour to 80°C, the resulting solution was then quickly heated to 150°C. Once the 

temperature is reached, the temperature was maintained for one hour. After cooling to room 

temperature, excess ethanol was added to the solution to give a precipitate which was isolated 

by centrifugation. Then, the nanoparticles were washed fully with ethanol and isolated by 

centrifugation, before being air-dried at 80°C overnight. Figure 1 resumes the experimental 

procedure.  

 

 
Figure 1 : Experimental conditions of the formation of zinc oxide from zinc acetylacetonate and oleylamine 

 

II.2) Cathode electrode preparation 

 

In order to design the Murray’s material, a 2.5 mg.mL-1 suspension of zinc oxide nanoparticles 

in hexane was used to cover a stainless steel mesh (mesh size: 100*100mm, 26% open area). 

The deposition is carried out under controlled humidity conditions. Once the solvent has 

completely evaporated, previous steps are repeated until 10 mL of suspension has been used. 

The cathode is then dried under vacuum at 100 ◦C for one night before being used in an 

accumulator. The same procedure was used with carbon nanoparticles only was used as 

reference. 

 

A second method to elaborate O2-electrodes is used. A slurry was prepared by mixing the as-

prepared nanoparticles, carbon black, and poly(vinylidene difluoride) (PVDF) with N-methyl-2-

pyrrolidone (NMP) in a 60 : 30 : 10 weight ratio. The obtained slurry was spread on a stainless-

steel mesh (mesh size: 100*100mm, 26% open area) and dried at 120°C under vacuum 

overnight. After that, the steel mesh was cut into several circles of 1.32 cm² each. A slurry with 

pure carbon black, PVDF, in NMP 90: 10 was prepared to provide a reference.  
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II.3) Electrochemical measurements 

 

To perform electrochemical measurements, homemade Li-O2 battery cells were designed 

following Swagelok cells structure (Figure 2). The cell was made of an electrolyte consisting of 

0.25M lithium bis(trifluoromethanesulfonyl)imide in 1,2-Dimethoxyethane, a lithium foil used 

as anode, the as prepared O2 –electrode used as cathode, and a glass fiber separator. The cell 

was assembled in an argon-filled glove box where moisture and oxygen concentrations were 

less than 1 ppm.  

 

 
Figure 2 : Assembly of the different battery elements: (a) lithium disc, (b) glass fibre separator soaked in electrolyte, (c) 

cathode, (d) perforated steel plate, (e) compression spring, (f) top part and (g) assembled battery. 

Once built up, batteries were put under high purity oxygen flux for several seconds, and 

maintained under an O2 atmosphere at a pressure of 1 atm for 10 hours before performing the 

electrochemical measurements. The galvanostatic discharge-charge tests were performed 

thanks to a LANHE CT2001A multi-channel battery tester with a voltage between 2 and 4.7 V 

or 2.2 and 4.4V and at a current rate of 150 mA.g-1. The specific capacities obtained were 

normalized by the carbon weight used in the cathode. 

 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry was performed thanks 

to a Princeton Applied Research, VersaSTAT 3, potentiostat/galvanostat. Galvanostatic charge 
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and discharge tests were carried out between 2 and 4.5V (vs LI/LI+), with a scanning rate of 0.1 

mV.s-1. Impedance response was collected by applying a constant AC voltage of 5mV, with 15 

points per decade, and a scanning frequency between 0.01 and 100000 Hz. 

 

II.4) Materials characterisation 

 

XRD diffractograms of samples were recorded on a PANalytical X’Pert Pro diffractometer 

equipped with a direct optical positioning goniometric system and stuffed with a PIXcel 1D 

detector. The anode is made of copper and the emitted radiation correspond to the Kα ray (λ 

= 1.54184 Å). A 45 kV voltage and 30 mA current supply x-ray tubes. Diffractograms recording 

were done under room temperature, in 2θ configuration, with a step of 0.016711° each 24 

seconds. Data were recorded and analysed thanks to Data Collector and HighScore Plus 

software.  

 

Infrared spectroscopy was used to confirm the elimination of the oleylamine. Acquisitions were 

done between 500 and 4000 cm-1 with a Perkin Elmer Spectrum 65 FT IR Spectrometer. The 

results were treated thanks to Spectrum 10 Spectroscopy Software.  

 

TEM micrographs were obtained using a TEM Tecnai 10 microscope composed of a LaB6 

electron gun, an OSIS Magaview III camera, and configured in imaging mode with an 

accelerating voltage of 80 kV. SEM micrographs were obtained using a SEM JEOL-7500F with 

an accelerating voltage of 15 kV.  

 

The size of nanoparticles was determined using Dynamic Light Scattering analyses (DLS) 

performed with a Nanoplus HD from Particulate systems. The experiments were carried out in 

hexane at 25°C and the laser was set up with a wavelength of 660 nm and a power of 70 mW.  

 

X-Ray photoelectron spectroscopy was used to characterize the discharge products. The 

spectroscope is an Escalab 250 Xi from Thermo Scientific, made of a magnesium anode (Kα ray, 

hv=1253.6Ev). The experiments have been performed at room temperature and under reduced 

pressure.  

 

Nitrogen physisorption analyses were done using an ASAP 2420 from Micromeritics. The 

samples were degassed overnight at 150 °C before the measurement. The pore size distribution 

for the porous nanoparticles was calculated via Horvath-Kawazoe method and the surface area 

via the Brunauere–Emmett–Teller (BET) method.  
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III) Results and discussions 
 

III.1) Murray Material  
 

The porosity of the cathode plays a key role in battery performance. Lithium peroxide is formed on the 

surface of the electrodes during discharge. It was found that the greater the porosity, the more lithium 

peroxide will be formed on the surface of the cathode. Designing a porous cathode with a gradient 

distribution in pore size will allow a more even oxygen transport pathway along the electrode thickness 

and optimise the lithium peroxide formation and will improve the performance of the battery. 20 

The Murray's law, described for the first time in 1926 is a mathematical equation which states that the 

cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughter vessels.  21 

This law makes it possible to create a hierarchical model to optimise flows within a structure.22 This 

law has been adapted to porous materials and gives the following equations (1), (2) .19 Optimising the 

flow of oxygen into the cathode will allow uniform formation of lithium peroxide on its surface and 

should increase the performance of the battery.  

 

 

 

(1) 

 

 

 

(2)  

With h: film thickness, l: wall width and diameter, Dmacro: diameter of macropore, d: diameter of 

nanoparticles, n: average number of micropores, S: specific surface area of all the nanoparticles, 

Smicro: surface area of the micropores, Dmicro: diameter of micropores, Dmeso: diameter of mesopores 

 

This structure is assembled by the Layer-by-Layer Evaporation Induced Self-Assembly (LBL-EISA) 

method.19 LBL-EISA is based on the breath figure phenomenon. This phenomenon is composed of 

several steps (Figure 3). First, a suspension of nanoparticles in an organic solvent is applied to a 

support. The evaporation of the solvent will cool the substrate, condense the water in the atmosphere, 

and push the nanoparticles to the edge of the liquid water. The water will then evaporate and leave a 

surface without nanoparticles. This step is repeated several times to form the final structure containing 

hierarchical porosity. In order to comply with Murray's law derived from porous materials. The 

compound must contain three types of porosity: micro/meso and microporosity and this porosity have 

to be hierarchical. Macoporosity have to be connected to mesoporosity and mesoporosity to 

microporosity. The LBL-EISA allows to obtain a connected meso/macro porosity. Macropores are the 

result of water evaporation and mesopores are the gap between the nanoparticles. To connect 

microporosity to the mesoporosity, the microporosity must be located within the nanoparticles used 

to form the material. If all these conditions are met, the hierarchical structure interconnecting the 

three types of porosity is obtained (Figure 4).  
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Figure 3: Scheme representing the Breath Figure phenomenon 

 

Figure 4: Schematic representing the interconnections between pores in the Murray structure 

To synthetise the building unit microporous nanoparticles, of hierarchically micro-meso-macroporous 

materials which obey the generalised Murray’s law, the thermal decomposition which is often used 

for the preparation of microporous nanoparticles is employed is this study. This method implies 

thermal degradation of a metal-organic precursor in oleylamine. The oleylamine molecule acts as a 

surfactant, as a solvent, but also as a reducing agent. Using this method, Zheng et al. obtained 

microporous cobalt (II) oxide (CoO) nanoparticles from 13 nm to 50 nm.23 They were also able to 

synthesize microporous zinc oxide (ZnO) nanoparticles of 30 nm.19 

Zheng et al.19 used porous zinc oxide nanoparticles to form a structure with hierarchical 

macro/meso/micropores following Murray's law in lithium-ion batteries and showed unprecedent 

performance. Given these outstanding results, an attempt was made to synthetise such material to 

test it in lithium-oxygen batteries. 
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III.2) ZnO nanoparticles synthesis  

  

III.2) Zno synthesis 

  
Nanoparticles are the first building blocks of Murray's structure. They must fulfil three conditions in 

order to maximise this structure. The nanoparticles must contain micropores, be spherical in order to 

maximise the size of the micropores (space between the nanoparticles) and according to Equations 2 

and 3 have a size of 35 nm. 

 

The ZnO nanoparticles were synthesized according to the procedure described in the experimental 

part. Figure 5 presents a suggested mechanism for the formation of zinc oxide, adapted from the 

synthesis of cadmium oxide (CdO).24 Zn(acac)2 is first converted to zinc hydroxide (Zn(OH)2) before 

being dehydrated to form zinc oxide. This dehydration allows the formation of channels by releasing 

water molecules into the solution, which leads to the formation of pores inside the particles.  

 

 

Figure 5: Reaction mechanism for the formation of zinc oxide from zinc acetylacetonate and oleylamine (R = C8H16-CH--
CH-C8H17) 

 

III.2.1) Effect of experimental conditions on the formation of microporous ZnO nanoparticles 
 

To obtain a structure with hierarchical porosity according to Murray's law, the nanoparticles following 

the research of Zheng et al.19 must have a spherical morphology, a size of 35 nm, and possess 
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micropores. The synthesis parameters were modified to study their influence on the structural, 

textural and morphological properties of the nanoparticles in order to select the optimal parameters 

to design the best hierarchically macro/meso/micropores cathode following Murray's law. The 

syntheses are based on a protocol reported in the literature for the synthesis of metal oxide 

nanoparticles from metallo-organic precursors and oleylamine.19,23 This synthesis is a two steps 

process. The first is the formation of zinc hydroxide from zinc acetylacetonate and the second is the 

formation of zinc oxide from the hydroxide.  

 

III.2.1.a) Effect of reaction temperature during zinc hydroxide formation on zinc oxide nanoparticles 

 

The first parameter to be studied is the influence of temperature during zinc hydroxide formation. 

Several temperatures were tested: 80°C, 100°C, 125°C and 150°C. After 30 minutes, the mixture was 

heated at 150°C for one hour to form zinc oxide. 

The crystallinity of the samples was studied by X-ray diffraction. The XRD diffractograms of obtained 

samples depicted in Figure 6 show that the phase obtained for each temperature is the wurtzite phase 

(JCPDS 79-0208). The change in reaction temperature used during the formation of zinc hydroxide does 

not change the crystalline phase of the final zinc oxide. 

 

Figure 6:  Diffractograms of nanoparticles obtained at different reaction temperatures in the formation of zinc hydroxide: 
(a) 80 °C, (b) 100 °C, (c) 125 °C and (d) 150 °C. 

The morphologies of obtained materials were observed using TEM micrographs (Figure 7). 

Nanoparticles present a hexagonal shape for each temperature. This shape is characteristic of the 

wurtzite crystalline phase. The shape of the nanoparticles is the same for all samples, which means 

that the change in temperature does not modify their morphology. The presence of micropores can 

also be observed, they are identified by thin white lines. 

20 30 40 50 60 70 80

d)

c)

b)

(2
0

2
)

(0
0

4
)

(2
0

1
)

(1
1

2
)

(2
0

0
)(1
0

3
)

(1
1
0
)

(1
0
2
)

(1
0
1
)

(0
0
2
)

In
te

n
s
it
y
 (

a
.u

.)

2q (°)

(1
0
0
)

a)



Part II Chapter 3: Electrode design following Murray’s law: towards a revolution in Li-O2 batteries? 

 

95 
 

 

Figure 7: TEM micrographs of nanoparticles obtained at different reaction temperatures in the formation of zinc 
hydroxide: (a) 80 °C, (b) 100 °C, (c) 125 °C and (d) 150 °C. The arrows show micropores. 

In order to confirm the presence of micropores, nitrogen physisorption analysis was performed on 

each sample. The isotherms obtained and the respective pore size distributions are shown in Figure 8.  
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Figure 8: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
at different temperatures during zinc hydroxide formation: (a) 80 °C, (b) 100 °C, (c) 125 °C and (d) 150 °C. 

The isotherms obtained are characteristic of mesoporous materials. These interparticle mesopores are 

induced by the random assembly of nanoparticles. The H3 type hysteresis indicates a slit-like pore 

shape. The specific surface area of the samples is between 14 and 15 m².g-1, the difference between 

different samples is not significant. The pore size distributions obtained by the Horvath-Kawazoe (H-K) 

method confirm the presence of micropores with a diameter of 1.2 nm for each sample, in good 

agreement with the TEM observations. The specific surface area decreases slightly with the rise in 

temperature, therefore temperature of 80°C has been selected for the next step. 

 

III.2.1.b) Effect of reaction time during zinc hydroxide formation on zinc oxide nanoparticles 

 

The reaction time may also have an impact on the morphology of the particles. To perform this study 

different reaction times, 30, 60 and 90 minutes were selected. 

The crystallinity of the sample was studied by X-ray diffraction. The obtained diffractograms (shown in 

Figure 9) demonstrate that the phase obtained for each sample is the wurtzite phase (JCPDS 79-0208), 

The reaction time variation of the zinc hydroxide formation does not change the crystalline phase of 

the final zinc oxide. 
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Figure 9: Diffractograms of nanoparticles obtained at different reaction time of zinc hydroxide formation: (a) 30 min, (b) 
60 min, and (c) 90 min  

The morphologies of nanoparticles were observed using TEM micrographs (Figure 10). All 

nanoparticles have a hexagonal shape, typical of the wurtzite crystalline phase. The shape of the 

nanoparticles is identical for all samples, indicating that reaction time does not modify the 

morphology. The presence of micropores is also observed.  

 

Figure 10: TEM micrographs of nanoparticles obtained at different reaction times of the zinc hydroxide formation: (a) 30 
min, (b) 60 min, and (c) 90 min. The arrows show micropores. 

In order to confirm the presence of micropores, nitrogen physisorption analysis was performed on 

each sample. The isotherms obtained and the respective pore size distributions are shown in Figure 

11.  
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Figure 11: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
at different reaction times of the zinc hydroxide formation: (a) 30 min, (b) 60 min, (c) 90 min 

Isotherms are characteristic of mesoporous materials with a H3 type hysteresis at high relative 

pressure P/P0. All samples present a specific surface area of 14 to 15 m2.g-1, same as the results 

obtained previously. The diameter of the micropores, obtained by the H-K method, is 1.2 nm for all 

three samples. The reaction time for the formation of zinc hydroxide has no influence on the 

morphology of the ZnO nanoparticles. A time of 30 min was chosen for further study. 

 

III.2.1.c) Effect of reaction temperature during zinc hydroxide decomposition on zinc oxide 

nanoparticles 

 

The condition of the first step fixed (80°C, 30min). We need to optimise the conditions of the second 

step of the reaction which is the formation of zinc oxide from zinc hydroxide decomposition. The 

reaction time and temperature conditions will be modified in order to observe their consequences on 

the nanoparticle morphology. Temperatures of 80, 100, 125, and 150°C were tested.   

The crystallinity of the sample was tested by X-ray diffraction. XRD diffractograms of the obtained 

samples are presented in Figure 12 and, show that all the crystalline phase obtained is that of wurtzite 

(JCPDS 79-0208). The temperature variation in the decomposition of zinc hydroxide to form zinc oxide 

does not change the crystalline phase of the final zinc oxide. 
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Figure 12: Diffractograms of nanoparticles obtained at different temperature in the formation of zinc oxide: (a) 80°C, (b) 
100°C, (c) 125°C and (d) 150°C. 

 

Figure 13: TEM micrographs of nanoparticles obtained at different temperature in the formation of zinc oxide: (a) 80°C, 
(b) 100°C, (c) 125°C and (d) 150°C. The arrows show micropores. 

TEM micrographs are given in the Figure 13. Each particle has a hexagonal shape and in its center a 

brighter area, corresponding to the micropores formed during the dehydration of zinc hydroxide. 

Regarding the particle size, nanoparticles synthesised at 80 °C reach 60±4 nm while those produced at 

150 °C 139±10 nm. The higher the temperature, the larger the size of nanoparticles. This temperature-

dependent growth of particles is a well-known phenomenon.25 
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Figure 14: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
at different temperature during zinc oxide formation: (a) 80°C, (b) 100°C, (c) 125°C (d) 150°C 

Isotherms of the obtained samples shown in Figure 14 are characteristic of mesoporous materials. 

Specific surface area increased from 14 to 20 m2.g-1, which is consistent with the change in size of the 

nanoparticles, the largest the nanoparticles the lowest the specific surface. The diameter of the 

micropores obtained by the H-K method is 1.2 nm for all samples. Thus, above results suggest that the 

temperature of the zinc oxide formation has no influence on the micropores dimension. The 

temperature of 150°C was selected for the further study. 

 

III.2.1.d) Effect of reaction time during zinc hydroxide decomposition on zinc oxide nanoparticles 

 

The effect of reaction time during zinc hydroxide decomposition on zinc oxide formation where also 

investigated. The times selected was 30, 40, 50, and 60 min while the temperature was set at 150°C.  

XRD diffractograms are presented in Figure 15, and show that the crystalline phase obtained for each 

sample is the wurtzite phase (JCPDS 79-0208). The variation of time during zinc hydroxide 

decomposition does not change the crystalline phase of the final zinc oxide. 
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Figure 15:  Diffractograms of nanoparticles obtained at different reaction times of the formation of zinc oxide: (a) 30 min, 
(b) 40 min, (c) 50 min and (d) 60 min. 

The morphology of nanoparticles was observed via TEM. As for the previous samples, these 

nanoparticles present thinner, lighter areas, characteristic of intraparticle micropores (Figure 16). The 

particles in Figures 16.a to 16.c show irregular shapes while sample 16.d, synthesized for 60 minutes 

at 150 ◦C, shows hexagonal shaped particles. This reaction time of 60 min allows the nanoparticles to 

grow uniformly, resulting in a homogenisation of their forms. 

 

Figure 16: TEM micrographs of nanoparticles obtained at different reaction times of the formation of zinc oxide: (a) 30 
min, (b) 40 min, (c) 50 min and (d) 60 min 
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The microporosity observed on the micrographs was confirmed via nitrogen physisorption. The 

isotherms are presented in Figure 17 and are characteristic of mesoporous material represented by a 

slit-type H3 pores hysteresis. The surface area of all samples is 16 m².g-1 and the micropores size is 1.2 

nm. These results indicate that the reaction time of the formation of zinc oxide nanoparticles 

influences the shape of the nanoparticles but not their micropore size. Increasing the reaction time, a 

better homogenization of the shape of the nanoparticles can be achieved. A time of 60 minutes was 

selected for the rest of the study.  

 

Figure 17: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
at different reaction times during zinc oxide formation: (a) 30 min, (b) 40 min, (c) 50 min and (d) 60 min 

 

III.2.1.e) Effect of an addition of a capping agent  

 

One of the requirements of nanoparticles is to have a spherical morphology, however most of the 

nanoparticles obtained have a hexagonal morphology. One possibility to achieve a spherical shape 

would be to add a capping agent to control the growth of the nanoparticle.26 A capping agent is an 

amphiphilic molecule with a polar head group and a non-polar hydrocarbon tail. Due to the amphiphilic 

nature, they can change the superficial tension between two surfaces and could enhance the 

compatibility with another phase. The non-polar tail interacts with the medium while the polar head 

interacts with the metal. The capping agent chosen is the triphenylphosphine (TPP). TPP is a Lewis base 

and can bind to a Lewis acid; this interaction is shown in Figure 18. TPP increase the steric hindrance 
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and creates a spherical layer around the nucleation point leading to the formation of spherical 

nanoparticles. 

 

Figure 18: Representation of the interaction between TPP and zinc atoms on the surface of nanoparticles (pink is for P, 
blue for Zn, red for O, black for C, and white for H). 

The TPP concentrations tested are 0, 77, 153 and 229 mM. The crystallinity of the sample was studied 

by X-ray diffraction. The XRD diffractograms are illustrated in Figure 20 and show that the phase 

obtained for each sample is the wurtzite phase (JCPDS 79-0208). The addition of TTP does not change 

the crystalline phase of the final zinc oxide. 

 

Figure 19: Diffractograms of ZnO nanoparticles obtained with different TPP concentration: (a) 0 mM, (b) 77 mM, (c) 153 
mM and (d) 229 mM.  
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The morphology of the nanoparticles can be observed in Figure 20. The micrographs still show 

hexagonal nanoparticles for a TPP concentration of 0 and 77 mM. For a concentration of 153 mM the 

morphology becomes spherical and for 229 mM this morphology remains spherical. The results 

obtained prove that the addition of TPP at a concentration of 153 mM results in spherical rather than 

hexagonal particles, while further increase in the concentration of TPP (229 mM) doesn’t lead to any 

further change in the shape of the nanoparticles. 

 

Figure 20: TEM micrographs of ZnO nanoparticles obtained using different TPP concentration: (a) 0 mM, (b) 77 mM, (c) 
153 mM and (d) 229 mM. 

Nitrogen physisorption was performed in order to determine the porosity of the samples. The 

isotherms obtained and the pore size distributions calculated by the Horvath-Kawazoe method are 

shown in Figure 21. The isotherms are characteristics of mesoporous materials with a characteristic 

hysteresis H3 of slit pores. The diameter of the micropores is 1.2 nm and is identical for all samples. 

The specific surface area is 25 m².g-1 which is higher than all the previously obtained nanoparticles. 

This higher specific surface area could come from the spherical morphology of the nanoparticles. To 

conclude, the addition of triphenylphosphine during synthesis can tune the shape of the nanoparticles 

but has no influence on the textural properties. 
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Figure 21: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
using different TPP concentration: (a) 0 mM, (b) 77 mM, (c) 153 mM and (d) 229 mM. 

 

III.2.1.f) Effect of zinc precursor concentration  

 

One of the key characteristics of nanoparticles for the design of a hierarchical micro/meso/macro 

porous material is the size of the nanoparticles. One way to control the size of the nanoparticles would 

be to vary the precursor/medium ratio. A decrease in the precursor/medium concentration ratio will 

result in greater species isolation due to increased oleylamine and TPP concentration and should lead 

to a decrease in particle size. This phenomenon has already been observed for iron oxide particles by 

Asadi et al.27 They explained this phenomenon by the decrease in the concentration of growth species 

in the reaction medium. At high precursor/medium ratio the concentration of monomer in solution is 

high. The concentration of the available monomers at the interface of the nuclei (the crystal growth 

front) is close to that of the bulk solution. The diffusion distance for monomers is shorter, which leads 

to a higher mass transfer and therefore higher growth rate and thus bigger nanoparticles 

The parameters chosen for this experiment are those previously determined, temperatures of 80°C 

and 150°C for 30 and 60 min respectively.  The precursor concentrations chosen for this study are 

15mM, 20mM, 22mM, 27mM, 33mM, and 42mM. 

 The crystallinity of the sample was studied by X-ray diffraction.  The XRD diffractograms of the 

obtained samples are illustrated in Figure 22 and show that the phase obtained for each sample is the 
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wurtzite phase (JCPDS 79-0208). The variation of zinc precursor concentration does not change the 

crystalline phase of the final zinc oxide. 

 

Figure 22: Diffractograms of ZnO nanoparticles obtained using different zinc precursor concentrations: (a) 42 mM, (b) 33 
mM, (c) 27 mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM.  

The morphology of nanoparticles was observed via TEM. As for the previous samples, these 

nanoparticles present thinner, lighter areas, characteristic of intraparticle micropores (Figure 23). All 

the nanoparticles are spherical. Moreover, the size of these nanoparticles seems decreases with the 

zinc acetylacetonate concentration and could confirms our starting hypothesis.  
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Figure 23: TEM micrographs of ZnO nanoparticles obtained using different zinc precursor concentration: (a) 42 mM, (b) 
33 mM, (c) 27 mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM.  

Dynamic light scattering technique was used to correlate the particle size with the concentration of 

zinc precursors. This correlation is presented in Figure 24, and shows a linear relationship. The particle 

size increases with the zinc precursor concentration, confirming our initial hypothesis.  

 

Figure 24: (a) Evolution of particle size and (b) specific surface area as a function of zinc precursor concentration with 
standard deviations 
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Figure 26. These isotherms are of type IV and have a H3 hysteresis which is characteristic of 

maesoporous materials with "slit-shaped" interparticle pores created by the assembly of the particles. 

The diameter of the micropores is identical for all samples meaning that it does not change with the 

size of the nanoparticles. The specific surface area is related to the concentration of zinc 

acetylacetonate. Figure 25 shows the evolution of the specific surface area as a function of the 

concentration of the zinc precursor. It indicates an increase in specific surface area with the decrease 

in the concentration of Zn(acac)2 which is consistent with previous observations. Indeed, when the 

concentration of zinc precursor decreases, the size of the nanoparticles decreases, and leads to an 

increase in the specific surface area.  
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Figure 25: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO nanoparticles obtained 
using different zinc precursor concentration: a) 42 mM, (b) 33 mM, (c) 27 mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM.  

In this section, all the parameters influencing the properties of zinc oxide nanoparticles during their 

synthesis are summarized in the Table 1. It shows that the time reaction of Zn(OH)2 decomposition and 

the concentration of TPP influence the nanoparticles shape while the temperature reaction of Zn(OH)2 

decomposition and the concentration of Zn(acac)2 influence the nanoparticles size and the specific 
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surface area. The parameters that have been selected for the rest of the study are reported in the 

experimental part.  

Table 1 : Table summarising the influences of the synthesis parameters on the different characteristics of ZnO 
nanoparticles 

 Pore size Nanoparticles 
Shape 

Crystallinity Specific 
surface area 

Nanoparticles 
size 

T° Zn(OH)2 

formation 
X X X X X 

t Zn(OH)2 
formation 

X X X X X 

T° Zn(OH)2 

decomposition 
X X X V V 

t Zn(OH)2 
decomposition 

X V X X X 

[TPP] X V X X X 

[Zn(acac)2] X X X V V 
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III.3) Assembly of the hierarchically micro/meso/macroporous structure following 

Murray’s law 
 

The previous section showed the influence of the parameters on the morphology and the texture of 

ZnO nanoparticles. The next step is to create a nanoparticle suspension and to drop cast it on a support 

to form the final material. The aim of this section will be to perform an assembly of nanoparticles 

according to Murray's law and to determine the main parameters influencing its design. 

 

III.3.1) Effect of the concentration of the suspension on the formation of the hierarchically 

micro/meso/macroporous structure 
 

The hierarchical porous structure is assembled via a Layer-by-Layer Evaporation Induced Self-Assembly 

(LBL-EISA) method. The first challenge to synthetise this kind of material is to obtain homogenous 

layers. Different suspensions of nanoparticles at different concentrations were drop casted and 

analysed by TEM. The concentrations tested were 0.5, 1 and 2.5 mg.L-1, and the resulting micrographs 

are presented in Figure 26.  

 

Figure 26: TEM micrographs of nanoparticle deposits made from suspensions of different concentrations: (a) 0.5 mg.mL-1, 
(b) 1 mg.mL-1, and (c) 2.5 mg.mL-1 
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At a concentration of 0.5 mg.mL-1 the structure does not show well-defined macropores. When the 

concentration is increased to 1 mg.mL-1, pores begin to appear. However, this concentration is still not 

sufficient to achieve to a uniform macropore distribution on the support. By increasing the 

concentration to 2.5 mg.mL-1, the structure presents well-defined macropores with almost complete 

surface coverage. As a result, these micrographs indicate that a minimum concentration of 2.5 mg.mL- 1 

must be used to obtain the final structure. Once the nanoparticle concentration has been determined 

and the monolayer established, the deposits are repeated in order to obtain a thick material.   

Material morphology is characterized by scanning electron microscopy and is shown in Figure 27. All 

samples present a structure with macropore and they seem to be homogeneously distributed in the 

material. However, a first observation leads to the hypothesis that the structure becomes more and 

more homogeneous by increasing the concentration of nanoparticles. This hypothesis is confirmed 

thanks to the pore size distribution (Figure 27). These distributions were obtained from different 

micrographs on an average population of 300 pores.  

As the concentration increases, the standard deviation of the distribution decreases. Therefore, the 

structure formed with a concentration of 2.5 mg.mL-1 shows a pore size distribution with a maximum 

at 2.7 µm while the one made with 5 mg.mL-1 exhibits a maximum at 1.8 µm. The maximum of the 

distribution decreases to 1.1 µm and 0.8 µm when the concentration reaches 7.5 mg.mL-1 and 10 

mg.mL-1 respectively. High concentration of the suspension increases the density of the particles that 

organise themselves around the water droplets formed on the surface during the evaporation of the 

solvent and limits their expansion, resulting in smaller macropores. 
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Figure 27: SEM micrographs and macropore size distribution of porous structure made from suspensions of different 
concentrations: (a) 2.5 mg.mL-1, (b) 5 mg.mL-1, (c) 7.5 mg.mL-1 and (d) 10 mg.mL-1 
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III.3.2) Effect of the relative humidity rate on the hierarchically micro/meso/macroporous 

structure. 
 

The macropores within the structure are caused by the condensation of water from the atmosphere. 

It is important to control the atmospheric relative humidity in order to regulate the size of the 

macropores. Experimentally, several 2.5 mg.ml-1 nanoparticle suspensions were drop casted under 

different humidity levels (60, 70, and 80%). We expect to see a concerted increase in the size of 

macropores with the moisture content. 

 

Figure 28: TEM micrographs of nanoparticle deposits made from a 2.5 mg.mL-1 suspensions at different relative humidity 
levels: (a) 60%, (b) 70%, and (c) 80% 

TEM micrographs of the first deposited layer at (a) 60%, (b) 70%, and (c) 80% are presented in Figure 

28 and show that all sample presents macropores. Moreover, the size of the macropores increase as a 

function of moisture content and confirm the initial expectation.  

Several monolayers were deposited to form the final material. The SEM micrographs and the 

distribution of macropores can be seen in Figure 29. All the samples have macropores. The pore size 

in the bulk material increases with the relative humidity during deposition. The higher the humidity, 

the more water droplets condense, leading to a larger volume and pore size. This phenomenon has 

already been observed for polymer film deposition.28 The distribution of pore sizes is wider with the 

moisture content. The pore size increases gradually from 1.89, 2.70, 3.0, 3.5 to finally 3.8 µm for the 

assembled structure at a humidity of 40, 50, 60, 70 and 80% respectively,   
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Figure 29:SEM micrographs and macropore size distribution of porous structure made from a 2.5 mg.mL-1 suspensions at 
different relative humidity levels: (a,b) 40%, (c,d) 50%, (e,f) 60%, (g,h) 70%, and (I,j) 80% 
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To sum up, this part studied the formation of the hierarchical porous structure following Murray’s law 

based on zinc oxide nanoparticles. It has been shown that the porosity induced by water droplets 

condensation during the evaporation of the solvent could be controlled and depends on several 

factors. 

 Firstly, controlling atmospheric humidity during the deposition of nanoparticles regulate porosity by 

changing the amount of water available for condensation. The higher the relative humidity, the larger 

the size of the pores. 

Secondly, the concentration of the suspension during deposition can be modified to tune the pore size. 

The higher the concentration, the more the expansion of water droplets is restricted. As a 

consequence, the higher the concentration, the smaller the pore size. 

The hierarchical porous structure is obtained, However, due to lack of data it is not possible to conclude 

whether Murray's structure has been obtained. The next step will be to test the hierarchically 

micro/meso/macroporous structure as cathode for lithium oxygen battery applications.  
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IV)  Electrochemical test  
 

IV.1) Cathode with hierarchical micro/meso/macroporous structure  
 

IV.1.1) Cathode based on zinc oxide nanoparticles 
 

A hierarchically micro/meso/macroporous structure has been synthetised following the instructions in 

the experimental part and has been tested as cathode in lithium-oxygen batteries. The 

charge/discharge profiles of the first 4 cycles are shown in Figure 30. The maximum capacity reached 

is 6 mAh.g-1 which is an insufficient performance.  

 

Figure 30: Galvanostatic charge/discharge profiles obtained with a cathode made by porous zinc oxide at 150 mA.g-1 
within a 2-4.5 V voltage window 

To understand that result, the cathode was recovered after the test and analysed by scanning electron 

microscopy. The SEM micrographs before and after testing are reported in figure 31 and show that the 

post-cycle structure is destroyed, explaining the low performance of the battery. Most of the initial 

porosity disappeared to make way for unorganized clusters. This destruction of the structure is due to 

its fragility, which cannot withstand the mechanical stresses generated by the deposit during the 

discharge of lithium peroxide.  

 

Figure 31: SEM micrographs of porous zinc oxide nanoparticle assembly (a) before and (b) after cycling 
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In order to reduce the mechanical fragility of the resulting structure, 10 mg.mL-1 of poly(vinylidene 

difluoride) (PVDF) was added into the suspension during the deposition process. PVDF is a conductive 

polymer that acts as a binder within the structure. The structure and the galvanostatic performances 

obtained are shown in Figure 32. 

 

Figure 32: (a) SEM micrograph of the cathode made by porous zinc oxide nanoparticles assembly combined with PVDF, 
and it’s (b) respective galvanic performance at 150 mA.g-1 within a 2-4.5 V voltage window 

From a morphological point of view, the structure obtained has a poorer organisation and a lower 

macroporosity than the material without binder. The pores size is smaller. This difference in 

morphology is explained by the use of the polymer but also by the use of acetone to dissolve the 

polymer before inserting it into the medium. Acetone is miscible with water, but do not have the same 

volatility as hexane, and thus, could cause these morphological differences.  

The performances obtained with this material are very poor, with a maximum capacity of 8 mAh.g-1. In 

view of the poor performance obtained and the high fragility of the material, deep optimisation should 

be realised.  

As zinc oxide does not have a high conductivity, and as the material do not allow to reach with battery 

performances, the same structure has been tested with carbon nanoparticles. 

 

IV.1.2) Cathode based on carbon nanoparticles 
 

Carbon nanoparticles (Commercial Super P, specific surface area 65 m².g-1, micropore: 0.9 nm) were 

dispersed and assembled according to the same protocol as with zinc oxide nanoparticles. The SEM 

micrographs are presented in Figure 33. The structure has macropores induced by the water 

condensation during the solvent evaporation based on the breath figure process. The visible 

macropores have an average size of 2 µm. 
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Figure 33: SEM micrographs of the cathode made by porous carbon assembly. 

The obtained structure was tested as a cathode in a lithium oxygen battery. To evaluate the impact of 

the hierarchical porosity of the cathode, a non-porous carbon slurry made of carbon nanoparticles 

were made and its results were compared to the porous cathode.  

The galvanostatic charging and discharging profiles on the first tenth cycles of both cathodes are shown 

in Figure 34 a,b. The graphs present the evolution of the capacity on charge (top) and on discharge 

(bottom) as function of the cycle. In the case of the hierarchically micro/meso/macroporous structure, 

the capacity obtained in the second cycle is much higher than that of the first one. The main hypothesis 

that would come from the time needed to reach the optimal diffusion of the electrolyte within the 

cathode. The capacity of the first cycle is 874 mAh.g-1 and that of the second is 2236 mAh.g- 1, which 

corresponds to an increase of 110% and 514% compared to the values obtained with batteries made 

of slurry carbon cathode (416 mAh.g-1). These results show that the porosity of the cathode plays a key 

role in the performance. But more than the porosity itself, it is the interconnection between the three 

types of pores, which increases the diffusion of reactants within the cathode, that improves the 

performance of the battery. 

 

Figure 34: Galvanostatic charge/discharge profiles obtained with (a) a carbon slurry cathode and (b) cathode made by 
carbon nanoparticles assembly at 150 mA.g-1 within a 2-4.7 V voltage window 
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IV.1.3) Cathode based on carbon nanotubes assembly  
 

A hierarchically micro/meso/macroporous structure was assembled with carbon nanotubes (specific 

surface area: 114m².g-1, micropore size: 1.35 nm) using the same method as above. The advantage of 

carbon nanotubes is that they possess a higher conductivity than carbon nanoparticles, however, in 

this configuration, they will not be able to arrange themselves optimally to form an optimal 

hierarchically micro/meso/macroporous structure. The resulting structure is presented in Figure 35, 

and show a fibrous network with large macropores coming from solvent evaporation.  

 

Figure 35: SEM micrographs of the cathode made by carbon nanotube assembly. 

This structure has been tested as a cathode within a lithium-oxygen battery, and the results are 

presented in Figure 36. The galvanostatic charges and discharges show a maximum capacity of 957 

mAh.g-1, which is 42% more than that obtained with the slurry carbon cathode. This increase in 

performance is significant but less than the one achieved with carbon nanoparticles (514 %). This 

difference is probably due to the change in organisation and pore volume from one structure to 

another and confirms the advantage of using spherical nanoparticles to obtain a hierarchical 

micro/meso/macroporous structure. 

 

Figure 36: Galvanostatic charge/discharge profiles obtained with a carbon nanotubes assembly cathode at 150 mA.g-1 
within a 2-4.7 V voltage window 
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IV.1.4) Cathode based on zinc oxide/carbon assembly and slurry 
 

As previously stated, the use of zinc oxide alone as cathode material for lithium-oxygen batteries does 

not provide expected results due to the fragility of zinc oxide assembly. In order to study the catalytic 

capacity of zinc oxide on OER/ORR processes two electrodes were made. The first one were prepared 

via LBL-EISA from a ZnO nanoparticles, carbon black, and poly(vinylidene difluoride) (PVDF) in a 60 : 30 

: 10 weight ratio suspension. The second electrode is a slurry composed of 60% zinc oxide 

nanoparticles, 30% carbon and 10% PVDF.  

The morphology of the cathode synthetised via LBL-EISA were studied by SEM, and the micrograph is 

shown in Figure 37. This structure doesn’t have microporosity. This change in morphology compared 

to electrodes made of pure carbon or zinc oxide is certainly due to the difference in density between 

the two particles. When atmospheric water condenses and evaporates during the blast pattern 

phenomenon, the lighter carbon particles will move faster than the zinc nanoparticles. This difference 

in diffusion between the two nanoparticles could lead to the reduction or even suppression of 

macropores. 

 

Figure 37 : SEM micrographs of the cathode made by a ZnO, C, PVDF, 60 : 30 : 10 weight ratio suspension assembly. 

The resulting charge and discharge profiles obtained with the slurry cathode are presented in Figure 

38. It shows that the addition of zinc oxide provides a 500% increase in capacity for the first cycle, 

reflecting its potential catalytic efficiency for the oxygen evolution and reduction process. One 

hypothesis is that zinc oxide needs a conductive agent (in this case carbon) in order to influence the 

kinetic of the OER/ORR processes. However, these mechanisms remain unclear and require further 

study. 

The increase in overpotential and the decrease in capacity could be attributed to degradations 

occurring during cycling. These degradations lead to the formation of insoluble and insulating product 

that can accumulate on the cathode surface, reducing electron transfer, increasing the overpotential, 

and blocking the pores. As the pores are no longer accessible, the formation of lithium peroxide is 

reduced and leads to a decrease in the capacity.  
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Figure 38: Galvanostatic charge/discharge profiles obtained with a zinc oxide/carbon slurry cathode at 150 mA.g-1 within 
a 2-4.7 V voltage window 

 

In order to check the presence of degradation products, XPS analyses were performed on the zinc 

oxide/carbon slurry cathode at 10 and 100 cycles. The results are shown in Figure 39. The attribution 

of the different peaks on the C1s and O1s spectra is done directly on the figure and confirms the 

presence of lithium carbonate (Li2CO3, C1s ∼ 290,5 eV, O1s ∼ 533 eV). Moreover, the amount of lithium 

carbonate increased between the tenth and the hundredth cycle. This carbonate mainly comes from 

the degradation of the electrolyte. The degradation of the electrolyte is confirmed by the presence of 

the O-C-O (C1s ∼ 286 eV, O1s ∼ 534 eV) and O-C=O bonds (C1s ∼ 288 eV, O1s ∼ 534 eV). The full 

mechanism of electrolyte degradation is presented in Figure 40. Moreover, the presence of lithium 

peroxide (Li2O2 O1s ∼ 531 eV) reveals a non-optimal oxidation process during charging which can 

reflect the limited catalytic activity of zinc oxide.  
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Figure 39: C1s and O1s XPS spectra of (a,b) a zinc oxide/carbon slurry based cathode after 10 cycles, and (c,d) after 100 
cycles at 150 mA.g-1 

 

Figure 40: Mechanism of electrolyte degradation.24 
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Conclusion  
 

In summary, we have designed and fabricated a hierarchically micro/meso/macroporous zinc oxide 

structure. Microporous nanoparticles were synthesized and optimized in order to have a maximum 

control over their morphology, organisation and porosity. Then, they were suspended in an organic 

solvent and deposited layer by layer in order to achieve the desired final structure. This zinc oxide 

structure has been tested as a cathode material in lithium-oxygen batteries but did not give expected 

results due to its high brittleness. 

 The same structure was assembled from carbon nanoparticles and carbon nanotubes and led to an 

increase in capacity at the first cycle of 110% compared to a carbon slurry-based cathode without 

hierarchical structure. These results confirm the importance of the cathode structure evoked during 

the introduction; indeed, the presence of hierarchical porosity leads to an increase in the specific 

surface area and greater diffusion of reagents improving the formation of lithium peroxide and leading 

to a higher capacity.  

Finally, a carbon and zinc oxide slurry-based cathode were prepared in order to increase the 

conductivity and to evaluate the catalytic activity of zinc oxide. Capacity results showed an 

improvement of nearly 500% on the first cycle, revealing the activity of zinc oxide on both oxidation 

and reduction processes. However, the presence of lithium peroxide found by XPS analysis suggests 

that this catalytic activity is limited.  

This work highlighted the impact of Murray's structure on the battery's capacity. This structure led to 

a greater diffusion of electrolyte and oxygen, which increased the amount of lithium peroxide formed 

during discharge. It is now established that the Murray structure has significant advantages when used 

as a cathode in lithium-oxygen batteries. However, the fragility of the Murray’s structure limits its use. 

A possible way to consolidate this structure would be to sinter it. Sintering consists of increasing the 

mechanical properties of the material by densification.28 It can be defined as the consolidation, under 

the action of heat, of a granular structure without its total fusion. However, the densification of the 

structure can lead to a decrease in porosity and should be taken into account with regard to Murray's 

structure.   

The next step of the study will be to evaluate the catalytic activity of metal oxides from 3d metals in 

order to determine their performance within cathodes for lithium oxygen batteries. 

  



Part II Chapter 3: Electrode design following Murray’s law: towards a revolution in Li-O2 batteries? 

 

125 
 

Bibliography  
 

1 Bruce.P.G, Freunberger.S.A, Hardwick.L.J and Tarascon.J.M, Nat. Mater, 2012, 11, 19–29. 

2 Bhatt.M.D, Geaney.H, Nolan.M and O’Dwyer.C, Phys. Chem. Chem. Phys., 2014,16, 12093-12130. 

3 Girishkumar.G et al, J. Phys. Chem. Lett, 2010, 1. 

4 Abraham.K.M and Jiang.Z, J. Electrochem. Soc, 1996, 143,1. 

5 OttakamThotiyl.M.M, Freunberger.S.A, Peng.Z, Bruce.P.G, J.Am.Chem.Soc, 2013, 135, 494–500. 

6 Itkis.D.M, Semenenko.D.A, Kataev.E.Y, Belova.A.I, Neudachina.V.S, Sirotina.A.P, Hävecker.M, 

Teschner.D, Knop-Gericke.A, Dudin.P, Barinov.A, Goodilin.E.A, Shao-Horn.Y, Yashina.L.V, Nano Lett, 

2013, 13, 4697−4701. 

7 Freunberger.S.A, Chen.Y, Peng.Z, Griffin.J.M, Hardwick.L.J, Bardé.F, Novák.P, Bruce.P.G, J. Am. Chem. 

Soc, 2011, 133, 8040–8047. 

8 Balaish.M, Kraytsberg.A, Ein-Eli.Y, Phys Chem Chem Phys, 2014,16, 2801-2822 

9 Younesi.R, Urbonaite.S, Edström.K and Hahlin.M, J. Phys. Chem. C, 2012, 116, 20673–20680. 

10 Johnson.L, Li.C, Liu.Z et al, Nature Chem, 2014, 6, 1091–1099. 

11 Adams.B.D, Radtke.C, Black.R, Trudeau.M.L, Zaghib.K, Nazar.L.F, Energy Environ. Sci, 2013, 6, 1772-

1778. 

12 Li.X, Faghri.A, J. Electrochem. Soc, 2012, 159, A1747-1754.  

13 Shapatsombut.U, Cheng.H, Scott.K, J. Power. Sources, 2013, 227, 243-253. 

14 Xiao.J, Mei.D, Li.X, Xu.W, Wang.D, Graff.G.L, Bennett.W.D, Nie.Z, Saraf.L.V, Aksay.I.A, Liu.J, and 

Zhang.J.G, Nano Lett, 2011, 11, 5071. 

15 Z. Guo.Z, Zhou.D, Dong.X, Qiu.Z, Wang.Y, and Xia.Y, Adv. Mater,2013, 25, 5668. 

16 Park.J.B, Lee.L, Yoon.C.S, and Sun.Y.K, ACS Appl. Mater. Interfaces,2013, 5, 13426. 

17 Younesi.R, Singh.N, Urbonaite.S, and Edström.K, ECS Trans,2010, 25, 121.  

18 Xie.J, Yao.X, Cheng.Q, Madden.I.P, Dornath.P, Chang.C, Fan.W, and Wang.D, Angew. Chem. Int. Ed, 

2015, 54, 4299 

19 Zheng.X, Shen.G, Wang.C, Li.Y, Dunphy.D, Hasan.T, Brinker.C.J, Su.B.L, Nat.Commun, 2017, 8, 1–9. 

20 Jeong.M.G, Kwak.W.J, Islam.M, Park.J, Byon.H.R, Jang.M, Sun.Y.K, Jung.H.G, Journal of The 

Electrochemical Society, 2019, 166, 4, A455-A463.21  

21 Murray.C.D, PNAS, 1926, 12, (3), 207-214 

22 Rosenberg.E, Journal of Theoritical Biology, 2021, 512, 11.563 

23 Zheng.X, Shen.G, Li.Y, Duan.H, Yang.X, Huang.S, Wang.H, Wang.C, Deng.Z, Su.B.L, J. Mater. Chem. 

A, 2013,1, 1394–1400. 

24 Kim.T, Jung.Y.K, Lee.J.K, J. Mater. Chem. C, 2014, 2, 5593–5600. 



Part II Chapter 3: Electrode design following Murray’s law: towards a revolution in Li-O2 batteries? 

 

126 
 

25 Nguyen.T, Thanh.K, Maclean.N, Mahiddine.S, Chem. Rev, 2014, 114, 15, 7610–7630. 

26 Javed.R, Zia.M, Naz.S et al, J Nanobiotechnol, 2020, 18, 172. 

27 Sharifi Dehsari.H, Halda Ribeiro.A, Ersöz.B, Tremel.W, Jakob.G, Asadi.K, CrystEngComm, 2017, 19, 

6694–6702. 

28 Durand.G.R, Bizot.Q, Herbert.N, Quemere.S, Pasturel.M, Zhang.X.H, and Merdrignac-Conanec.O, 

Journal of the American Ceramic Society, 2019, 103, 4, 2328-2339. 

 

Figure Table 
 

Figure 1 : Experimental conditions of the formation of zinc oxide from zinc acetylacetonate and 

oleylamine............................................................................................................................................. 88 

Figure 2 : Assembly of the different battery elements: (a) lithium disc, (b) glass fibre separator 

soaked in electrolyte, (c) cathode, (d) perforated steel plate, (e) compression spring, (f) top part 

and (g) assembled battery. ................................................................................................................... 89 

Figure 3: Scheme representing the Breath Figure phenomenon ........................................................ 92 

Figure 4: Schematic representing the interconnections between pores in the Murray structure .... 92 

Figure 5: Reaction mechanism for the formation of zinc oxide from zinc acetylacetonate and 

oleylamine (R = C8H16-CH--CH-C8H17) .................................................................................................... 93 

Figure 6:  Diffractograms of nanoparticles obtained at different reaction temperatures in the 

formation of zinc hydroxide: (a) 80 °C, (b) 100 °C, (c) 125 °C and (d) 150 °C. ..................................... 94 

Figure 7: TEM micrographs of nanoparticles obtained at different reaction temperatures in the 

formation of zinc hydroxide: (a) 80 °C, (b) 100 °C, (c) 125 °C and (d) 150 °C. The arrows show 

micropores. ........................................................................................................................................... 95 

Figure 8: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained at different temperatures during zinc hydroxide formation: (a) 80 °C, (b) 

100 °C, (c) 125 °C and (d) 150 °C. .......................................................................................................... 96 

Figure 9: Diffractograms of nanoparticles obtained at different reaction time of zinc hydroxide 

formation: (a) 30 min, (b) 60 min, and (c) 90 min ............................................................................... 97 

Figure 10: TEM micrographs of nanoparticles obtained at different reaction times of the zinc 

hydroxide formation: (a) 30 min, (b) 60 min, and (c) 90 min. The arrows show micropores. ........... 97 

Figure 11: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained at different reaction times of the zinc hydroxide formation: (a) 30 min, (b) 

60 min, (c) 90 min ................................................................................................................................. 98 

Figure 12: Diffractograms of nanoparticles obtained at different temperature in the formation of 

zinc oxide: (a) 80°C, (b) 100°C, (c) 125°C and (d) 150°C. ...................................................................... 99 

Figure 13: TEM micrographs of nanoparticles obtained at different temperature in the formation of 

zinc oxide: (a) 80°C, (b) 100°C, (c) 125°C and (d) 150°C. The arrows show micropores. .................... 99 

Figure 14: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained at different temperature during zinc oxide formation: (a) 80°C, (b) 100°C, 

(c) 125°C (d) 150°C .............................................................................................................................. 100 

Figure 15:  Diffractograms of nanoparticles obtained at different reaction times of the formation of 

zinc oxide: (a) 30 min, (b) 40 min, (c) 50 min and (d) 60 min. ........................................................... 101 



Part II Chapter 3: Electrode design following Murray’s law: towards a revolution in Li-O2 batteries? 

 

127 
 

Figure 16: TEM micrographs of nanoparticles obtained at different reaction times of the formation 

of zinc oxide: (a) 30 min, (b) 40 min, (c) 50 min and (d) 60 min ........................................................ 101 

Figure 17: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained at different reaction times during zinc oxide formation: (a) 30 min, (b) 40 

min, (c) 50 min and (d) 60 min ........................................................................................................... 102 

Figure 18: Representation of the interaction between TPP and zinc atoms on the surface of 

nanoparticles (yellow is for P, blue for Zn, red for O, black for C, and white for H). ....................... 103 

Figure 19: Diffractograms of ZnO nanoparticles obtained with different TPP concentration: (a) 0 

mM, (b) 77 mM, (c) 153 mM and (d) 229 mM. .................................................................................. 103 

Figure 20: TEM micrographs of ZnO nanoparticles obtained using different TPP concentration: (a) 0 

mM, (b) 77 mM, (c) 153 mM and (d) 229 mM. .................................................................................. 104 

Figure 21: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained using different TPP concentration: (a) 0 mM, (b) 77 mM, (c) 153 mM and (d) 

229 mM. .............................................................................................................................................. 105 

Figure 22: Diffractograms of ZnO nanoparticles obtained using different zinc precursor 

concentrations: (a) 42 mM, (b) 33 mM, (c) 27 mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM. ........... 106 

Figure 23: TEM micrographs of ZnO nanoparticles obtained using different zinc precursor 

concentration: (a) 42 mM, (b) 33 mM, (c) 27 mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM. ............ 107 

Figure 24: (a) Evolution of particle size and (b) specific surface area as a function of zinc precursor 

concentration with standard deviations ............................................................................................ 107 

Figure 25: Nitrogen adsorption and desorption isotherms and micropore size distribution for ZnO 

nanoparticles obtained using different zinc precursor concentration: a) 42 mM, (b) 33 mM, (c) 27 

mM, (d) 22 mM. (d) 20 mM. and (f) 15 mM. ..................................................................................... 109 

Figure 26: TEM micrographs of nanoparticle deposits made from suspensions of different 

concentrations: (a) 0.5 mg.mL-1, (b) 1 mg.mL-1, and (c) 2.5 mg.mL-1 ................................................. 111 

Figure 27: SEM micrographs and macropore size distribution of porous structure made from 

suspensions of different concentrations: (a) 2.5 mg.mL-1, (b) 5 mg.mL-1, (c) 7.5 mg.mL-1 and (d) 10 

mg.mL-1 ................................................................................................................................................ 113 

Figure 28: TEM micrographs of nanoparticle deposits made from a 2.5 mg.mL-1 suspensions at 

different relative humidity levels: (a) 60%, (b) 70%, and (c) 80% ..................................................... 114 

Figure 29:SEM micrographs and macropore size distribution of porous structure made from a 2.5 

mg.mL-1 suspensions at different relative humidity levels: (a,b) 40%, (c,d) 50%, (e,f) 60%, (g,h) 70%, 

and (I,j) 80% ........................................................................................................................................ 115 

Figure 30: Galvanostatic charge/discharge profiles obtained with a cathode made by porous zinc 

oxide at 150 mA.g-1 within a 2-4.5 V voltage window ....................................................................... 117 

Figure 31: SEM micrographs of porous zinc oxide nanoparticle assembly (a) before and (b) after 

cycling .................................................................................................................................................. 117 

Figure 32: (a) SEM micrograph of the cathode made by porous zinc oxide nanoparticles assembly 

combined with PVDF, and it’s (b) respective galvanic performance at 150 mA.g-1 within a 2-4.5 V 

voltage window .................................................................................................................................. 118 

Figure 33: SEM micrographs of the cathode made by porous carbon assembly. ............................ 119 

Figure 34: Galvanostatic charge/discharge profiles obtained with (a) a carbon slurry cathode and 

(b) cathode made by carbon nanoparticles assembly at 150 mA.g-1 within a 2-4.7 V voltage window

 ............................................................................................................................................................. 119 

Figure 35: SEM micrographs of the cathode made by carbon nanotube assembly. ........................ 120 

Figure 36: Galvanostatic charge/discharge profiles obtained with a carbon nanotubes assembly 

cathode at 150 mA.g-1 within a 2-4.7 V voltage window .................................................................. 120 



Part II Chapter 3: Electrode design following Murray’s law: towards a revolution in Li-O2 batteries? 

 

128 
 

Figure 37 : SEM micrographs of the cathode made by a ZnO, C, PVDF, 60 : 30 : 10 weight ratio 

suspension assembly. ......................................................................................................................... 121 

Figure 38: Galvanostatic charge/discharge profiles obtained with a zinc oxide/carbon slurry 

cathode at 150 mA.g-1 within a 2-4.7 V voltage window .................................................................. 122 

Figure 39: C1s and O1s XPS spectra of (a,b) a zinc oxide/carbon slurry based cathode after 10 

cycles, and (c,d) after 100 cycles at 150 mA.g-1 ................................................................................. 123 

Figure 40: Mechanism of electrolyte degradation.24 ......................................................................... 123 

 



Chapter 4: 3d metal oxides as cathode materials 

for Li-O2 batteries 

 

 

 
 

Abstract:  

The expansion and growth of new energy-intensive industries is leading to the development of new 

devices to ensure optimal storage and distribution of energy sources such as electricity. Li-ion batteries 

have an energy density of (≈400 W.h.kg-1). Under the best of conditions this type of battery is only 

likely to increase this performance by a factor of 2. The use of Li-O2 batteries could allow the capacity 

to be multiplied by 5 to 10 compared to Li-ion. Here, we explore the influence of 3d metal oxides as 

cathode material on the performance of a non-aqueous Li-O2 battery. Of all the metal oxides studied, 

the highest initial capacity was observed with TiO2 (6448 mAh.g-1), the lowest overpotential with 

Co3O4(1.464 V) and the highest cycle number at 500 mAh.g-1 with Mn3O4 (417 cycles).  
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Introduction 
 

Nowadays, the increase in energy consumption, especially electricity consumption, has exploded and 

is mainly due to the intensification and expansion of new resource-demanding industries. The 

explosion of these demands has led to the requirement for new devices to ensure optimal storage and 

distribution of sources.1,2  

Among those, lithium-ion batteries stand out owing to their energy density (≈400 W.h.kg-1), which is 

significantly higher than those of nickel-cadmium batteries (≈60 W.h.kg-1) and lead-acid batteries (≈40 

W.h.kg-1). 3,4 However, the energy density of lithium-ion batteries remains insufficient compared to 

thermal appliances with energy densities equal to 13,000 W.h.kg-1.5 Recently, aprotic lithium-oxygen 

batteries have attracted intensive attention, owing to their high theoretical energy density of 11,680 

W.h.kg-1 surpassing lithium-ion batteries.6-7 This technology is governed by the reversible chemical 

reaction Li + O2 ↔ Li2O2 and, the redox couple is characterized by a high specific energy due to a low 

atomic mass of the both reactants and a potential of 3.0 V.7  

Nevertheless, the practical energy density is still far from the theoretical value.8 The most important 

challenge to overcome on the air electrode is the high polarisation induced by the high activation 

energy needed to produce and oxidise Li2O2 during cycling. Therefore, it is necessary to create a 

chemically stable porous cathode with an efficient conductivity and catalytic activity able to reduce 

the polarisation and the activation energy of oxygen reduction (ORR) and/or evolution (OER). 6 

Carbon materials have been widely used in these cathodes mainly for their light weight, low cost and 

good electrical conductivity.9-13 Unfortunately, the catalytic activity of carbon materials regarding the 

OER/ORR processes is low and can be the origin of many degradations within the battery leading to 

the formation of insoluble species such as lithium carbonate. The latter will passivate the cathode and 

obstruct the electron flow leading to an increase in voltage, and consequently, to an elevation of the 

overvoltage which will degrade the electrolyte during charging.14-16    

The stabilization of the cathode is thus of prime importance. It is necessary to investigate the 

relationship between catalytic activity and electric conduction in the electrocatalytic processes. 

Transition metal oxides have attracted interest as a catalyst for their low cost and outstanding catalytic 

activity. 17-18  

Bruce et al. studied the catalytic effect of several metal oxides on the electrochemical properties of 

the battery (Fe2O3, NiO, Fe3O4, NiO, Co3O4 and CuO). They found that these oxides assist the reduction 

of O2 to O2
2− and its subsequent oxidation. This catalytic effect leads to the reduction of overpotential 

and maximise the capacity of the battery.  Consequently, they have shown that the use of 2.5% 

manganese dioxide in a carbon matrix decreases the charging voltage of 0.5 V and increased the 

retention of capacity on cycling. This study also illustrated that iron oxide Fe3O4 allows a good capacity 

retention and that cobalt oxide Co3O4 allows the best compromise between discharge capacity and 

retention on cycling. 19 

Recent study by Kim et al investigated via cyclic voltammetry the effect of carbon nanotubes-bridged 

hollow Fe2O3 nanoparticles (H-Fe2O3/ CNT) on the specific electrochemical reactions of Li−O2 cells. 

Redox and currents peaks of H-Fe2O3/ CNT are much higher than those of carbon black (KB) electrode 

indicating that OER and ORR processes are more reversible, confirming the good catalytic activity of 
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the hollow Fe2O3 nanoparticles. As regards battery performance, the activity of the catalyst leads to a 

decrease of the overpotential at charge of 0.47 V. 20   

10 wt% vanadium oxide were introduced within a black carbon matrix by Yoon et al, and a maximum 

capacity of 2,260 mA h g-1 can be achieved. Moreover, the overpotential has decreased compared to 

the pure carbon reference electrode, revealing the catalytic efficiency of V2O5 for the reaction between 

Li+ and O2.
21 The incorporation of 30 wt% titanium dioxide in form of microspheres into carbon 

nanotubes can increase capacity from 1794 to 6590 mAh g-1 with a reduction of the overpotential by 

0.25 V. 22 Although metal oxides show clearly very promising results, it is very difficult to draw an 

evident comparison as the experimental conditions are different. No comprehensive study on the 

relationship between physicochemical behaviour of metal oxides and their performances as electrode 

materials in Li-O2 batteries were done.  

In this work, we propose to investigate the behaviour of 3d transition metal oxides (MOx = Cr2O3, Cu2O, 

CuO, CoO, Co3O4, Fe3O4, Fe2O3, MnO, MnO2, Mn2O3, Mn3O4, NiO, Sc2O3, TiO2, VO2, V2O5 and ZnO) as 

cathode materials. The combination of the catalytic function for the oxygen evolution and the oxygen 

reduction reaction and the electric conduction resulting in the electrocatalytic effect in the Li-O2 cell is 

evaluated. Of all the metal oxides studied, the highest initial capacity was observed with TiO2 (6448 

mAh.g-1), the lowest overpotential with Co3O4(1.559 V) and the highest cycle number at 500 mAh.g-1 

with Mn3O4 (417 cycles). This study aims to screen a number of 3d metal oxides as cathode material 

to establish which ones give promising performance, and can be used as a basis for further 

investigation. Amongst these investigations several suggestions can emerge: the first one would be to 

select a 3d metal oxide regarding their electrochemical characteristics according to the desired 

experimental conditions. Secondly, it would be worthwhile to modify the shape of the catalysts to 

maximise the formation and decomposition of lithium peroxide. Finally, it would be interesting to 

create a metal oxide coating on a hierarchical carbon base to enhance the electrochemical reaction 

during the charge-discharge cycles to improve the performance of the battery. 
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Results and discussion 
 

3d metal oxides have been prepared by different processes taken and adapted from the literature such 

as mild temperature organic solution reaction and sol-gel process. The details of these syntheses are 

described in the experimental part and the reaction mechanisms of the synthesis are available in the 

supporting information (Figure S1). Moreover, the absence of organic impurities coming from the mild 

reaction mixture in the final nanoparticles has been confirmed by infrared analysis (Figure S2).  

The crystallinity and crystalline phase of obtained materials were studied by X-ray diffraction. The 

diffractograms are shown in Figure 1 and confirm that all the obtained 3d metal oxides are well 

crystalline. These metal oxides can be divided into six main categories according to their geometrical 

systems which are summarised in Table 1.  

The morphology of the obtained particles was studied by transmission electronic microscopy (TEM) 

(Figure 2). All particles are nano-sized. Most of them have spherical shapes except for Mn3O4 

(Figure 2k) and V2O5 (Figure 2p), which have a cubical shape. The average size of nanoparticles was 

determined by statistical counting on a population of 300 and is reported in Table 1. Micropores are 

observable within CoO (Figure 2a) and ZnO nanoparticles (Figure 2b). Nitrogen physisorption analysis 

was performed (Figure S3) and confirmed the presence of micropores. The isotherms obtained are 

characteristic of mesoporous materials. These mesopores are induced by the random assembly of 

nanoparticles. The H3 type hysteresis indicates a slit-like pore shape. The specific surface area for each 

metal oxide, was determined via Brunauer, Emmett and Teller (BET) method and summarised in 

Table 1.  

Physical properties of 3d metal oxides such as morphology, particle size, surface area could impact the 

performances of the battery. As the formation of lithium peroxide during discharge takes place on the 

surface of the cathode. It will be interesting to try to link the capacities obtained with each battery to 

the specific surface of the nanoparticles. 
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Figure 1: Powder X-ray diffraction pattern of the as synthesized CoO, Co3O4, Cr2O3, Cu2O, CuO, Fe3O4, Fe2O3, MnO, MnO2, 
Mn2O3, Mn3O4, NiO, Sc2O3, TiO2, VO2, V2O5 and ZnO (blue) with their references (black). 
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Figure 2: Bright-field TEM micrographs demonstrating morphology and particle size distribution of the as-synthetized 

metal oxide nanoparticles CoO, Co3O4, Cr2O3, Cu2O, CuO, Fe3O4, Fe2O3, MnO, MnO2, Mn2O3, Mn3O4, NiO, Sc2O3, TiO2, VO2, 

V2O5, ZnO. 

 

Table 1: Summary of all crystalline system, space group, nanoparticle and micropore size, and specific surface area of the 
as synthetised metal oxides. 

Metal 

Oxide 
System 

Space 

Group 

Nanoparticle size 

(nm) 

Micropores size 

(nm) 

Specific Surface 

Area (m².g-1) 

Sc2O3 Cubic Ia-3 81  18 

TiO2 Tetragonal I41/amd 232  49 

VO2 Monoclinic C2/m 400  14 

V2O5 Orthorhombic Pmn2 400  13 

Cr2O3 Trigonal R-3c 28  38 

MnO Cubic Fm-3m 76  20 

MnO2 Tetragonal I4/m 75  51 

Mn2O3 Orthorhombic Pbca 144  10 

Mn3O4 Tetragonal I41/amd 55  22 

Fe2O3 Tetragonal P41212 12  133 

Fe3O4 Cubic Fd-3m 75  8 

CoO Cubic Fm-3m 55 1.89 18 

Co3O4 Cubic F-43m 19  42 

NiO Cubic Fm-3m 5  71 

Cu2O Cubic Pn.3n 75  16 

CuO Monoclinic C2/c 17  62 

ZnO Hexagonal P63mc 95 1.49 16 

 

 

 

(ZnO) 
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Electrochemical studies  
 

The catalytic activity of metal oxides on OER/ORR process is a key to improve the performance of 

lithium oxygen batteries. In aprotic Li-O2 batteries, MOx/Carbon materials do not act as a conventional 

electrocatalyst to lower the activation energy through electron transfer. They act as a promoter to 

improve the surface transport of LixO2 species, by reducing their binding energy during electrochemical 

processes. Luntz et al. 23 were the first to observe this phenomenon and it was confirmed a few years 

later by Nazar et al. 24 Metal oxides have fewer dangling bonds and thus have less affinity for 

superoxide than carbon. This property will increase the mass surface transport of LixO2 species and 

hence the reaction kinetics at the electrode surface. During the reduction process, LixO2 is formed on 

the surface of the carbon, and the mobility of this peroxide is enhanced by the presence of MOx, which 

improves the kinetics of formation of Li2O2. 

Specific electrochemical reactions of Li−O2 cells, involving 3d metal oxides and carbon super P (SP) 

(reference sample) electrodes, were examined by cyclic voltammetry (CV). The results obtained are 

reported in Figure 3.  Cyclic voltammograms are generally described into two parts: the reduction peak, 

also known as the result of the ORR process, and the oxidation peak being that of the OER process. 

The current of the two first oxidation and reduction is reported in Table 2.  

Table 2: First two oxidation and reduction current observed for all 3d metal oxides used as cathode in Li-O2 batteries. 

  
ORR 1st peak 

(A.g-1) 
ORR 2nd peak 

(A.g-1) 
OER 1st peak 

(A.g- 1) 
OER  2nd peak 

(A.g-1) 

CoO -3.12 -2.80 10.1 9.72 

Co3O4 -2.39 -2.12 2.19 2.01 

Cr2O3 -1.06 -0.68 1.22 0.66 

Cu2O -1.63 -1.23 1.44 0.76 

CuO -4.75 -3.24 3.55 3.01 

Fe3O4 -2.56 -2.51 0.77 0.76 

Fe2O3 -3.04 -2.32 1.08 0.90 

MnO -3.16 -2.79 0.94 0.72 

MnO2 -2.25 -2.01 2.29 2.28 

Mn2O3 -2.44 -1.83 1.22 0.96 

Mn3O4 -1.59 -1.56 1.96 1.95 

NiO -1.96 -1.67 1.95 1.52 

Sc2O3 -3.22 -2.35 0.96 0.95 

TiO2 -3.69 -2.60 1.19 0.87 

VO2 -3.11 -2.50 0.86 0.58 

V2O5 -1.87 -1.75 0.91 0.53 

ZnO - - 0.04 0.04 

C -2.50 -1.09 1.80 0.89 

 

The initial reduction peak of MOx and SP cathodes is located at the same position indicating an 

identical electrochemical reaction (2 Li+ + O2 + 2e- => Li2O2). The lower the current, the higher the 

kinetics of the oxygen reduction reaction.  A lower reduction current is observed for Sc2O3, Fe3O4, 

Fe2O3, TiO2, VO2, CoO, CuO, and MnO, electrodes which reflects a faster ORR kinetics over SP cathode. 

The lowest current is observed with the CuO electrode indicating its fastest ORR kinetic. Cr2O3 
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electrode has a higher current than the reference throughout the test, indicative of a slower kinetic 

for the oxygen evolution reaction. 

The maximum oxidation peak observed for MOx and SP cathodes is located around 4V and refer to the 

Li2O2 => 2Li+ + 2 e- + O2 electrochemical reaction. Initially, NiO, CoO, CuO, MnO2, Mn2O3, and Co3O4 

electrodes exhibit a sharper and larger peak area which shows a faster OER kinetics over SP cathode. 

It is interesting to note that the peak obtained with the CoO electrode is significantly higher than that 

of the other MOx cathodes, illustrating a high influence on the OER kinetic of CoO. From the second 

cycle, almost all MOx cathode exhibit a higher current than the SP cathode and confirm their faster 

OER kinetics over SP cathode induced by the MOx catalyst. Cyclic voltammograms of the electrode 

made by ZnO (Figure 3q) has no oxidation and reduction peaks. It does not have positive effect on the 

OER/ORR kinetics. On the contrary, the addition of CoO and CuO in the Super P carbon matrix allowed 

to increase the kinetics of the oxygen evolution and reduction reaction. This increase in kinetics leads 

to a better formation and decomposition of lithium peroxide and consequently increase the 

reversibility of the process.  
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Figure 3: Cyclic voltammograms obtained from CoO, Co3O4, Cr2O3, Cu2O, CuO, Fe3O4, Fe2O3, MnO, MnO2, Mn2O3, Mn3O4, 

NiO, Sc2O3, TiO2, VO2, V2O5, ZnO, and pure C based electrodes in lithium-oxygen batteries application. 

The electrocatalytic effect of the MOx on the electrochemical properties of a Li-O2 cell was evaluated 

under a fixed cut-off capacity of 500 mAh.g-1 at a current density of 150 mA.g-1 and shown in Figure 4. 

For comparison, a battery was built with a pure carbon electrode. However, the battery made by pure 

carbon cannot achieve the targeted capacity of 500 mAh.g-1.  

The typical profile shows a discharge plateau reached after a smooth decrease in potential, and two 

plateaus above 4V on charge. The first charge plateau corresponds to the decomposition of bulk Li2O2, 

and matches potential observed with cyclic voltammetry. The second plateau corresponds to the 

decomposition of lithium carbonate resulting from the reaction between Li2O2 and carbon, and from 

the degradation of the electrolyte.25 These phenomena were first observed by McCloskey et al.26 and 

subsequently confirmed by Tarascon et al.27  

The charge and discharge profile of vanadium (Figure 4 c,d) and manganese (Figure 4 f-i) oxide-based 

electrodes are atypical compared to traditional profiles. Several plateaus are observed during 

discharge and charge and correspond to the formation and decomposition of intermediates between 

metal oxide and lithium.28-30 For examples, regarding V2O5-based electrode (Figure 4d) the first species 

to appear on discharge is α-LixV2O5 (x < 0.01) which turn into ε-LixV2O5 (0.35 < x < 0.7) phase after 

further lithiation and then into δ-LixV2O5 (x = 1) phase and finally into γ-LixV2O5 (1 < x < 2).28-29 For Mn3O4 

(Figure 4i) the discharge slop can be divided in 2 regions with an inflexion point at ~2.70 V. The first 

segment corresponds to the lithiation of the oxide leading to the formation of LiMn3O4 and the second 

part corresponds to the gradual transformation of LiMn3O4 into MnO2.30 This lithiation of manganese 

and vanadium oxides largely explains the number of cycles achieved, as these side reactions actively 

participate in the electrochemical reactions within the battery. 

The number of cycles reached reflects the cycling stability of the battery (Figure 5a). The Li-O2 cell 

made with Mn3O4 and TiO2 can reach 416 and 350 cycles, respectively at a capacity of 500 mAh.g-1. 

This exceptional stability could come from the high catalytic activity toward ORR process for TiO2 and 

from the catalytic activity coupled to the lithiation process for Mn3O4. The catalytic activity of metal 

oxides on the reaction kinetics of lithium peroxide formation and decomposition was previously 
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determined by CV. The higher the resulting current, the greater the electron transfer to the oxygen 

and the higher the reaction kinetics. This increase in kinetics leads to a better formation and 

decomposition of lithium peroxide and consequently increase the reversibility of the process leading 

to a higher number of cycles. Batteries made with Cr2O3 and ZnO reached only 11 and 10 cycles 

respectively and confirm their poor catalytic activity for the OER/ORR previously observed by CV. 

The charge and discharge plateau and the overpotential were evaluated for the 4th cycle at a capacity 

of 200 mAh.g-1. The fourth cycle was chosen to give sufficient time for the system to stabilize. The 

results are presented in Figure 5 b,c, and d. Charge voltage plateau is linked to the OER and the 

discharge voltage plateau to the ORR. The higher the voltage of the discharge plateau is, the more 

effective the catalyst is.  Likewise, the lower the voltage of the charge plateau, the more effective the 

catalyst is. A maximum discharge voltage of 2.827 V for CoO, and a minimum charge voltage plateau 

of 3.962 V for Co3O4 are observed. These results confirm the data collected with CV. Moreover, all MOx 

overpotentials match the CV values (Figure 5d).  

  

  

  

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle 5th cycle

10th cycle 25th cycle

50th cycle 90th cycle

(Sc2O3) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
150th cycle 200th cycle
250th cycle 300th cycle
350th cycle

(TiO2) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle 5th cycle

10th cycle 25th cycle

50th cycle 100th cycle

150th cycle 200th cycle

250th cycle 271st cycle

(VO2) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle 3rd cycle
5th cycle 10th cycle 25th cycle
50th cycle 100th cycle 150th cycle
200th cycle 218th cycle

(V2O5) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
an

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle 5th cycle

10th cycle 11th cycle

(Cr2O3) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
150th cycle 200th cycle
250th cycle 278th cycle

(MnO) 



Part II Chapter 4: 3d metal oxides as cathode materials for Li-O2 batteries 

 

141 
 

  

  

  

  

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
150th cycle 200th cycle
250th cycle 300th cycle
317th cycle

(MnO2) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
150th cycle 200th cycle
250th cycle 256th cycle

(Mn2O3) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
150th cycle 200th cycle
250th cycle 300th cycle
350th cycle 400th cycle
417th cycle

(Mn3O4) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle 5th cycle

10th cycle 25th cycle

50th cycle 100th cycle

150th cycle 200th cycle

240th cycle

(Fe2O3) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 74th cycle

(Fe3O4) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rdcycle 5th cycle
10th cycle 25th cycle
50th cycle 100th cycle
148th cycle

(CoO) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 5th cycle
10th cycle 25th cycle
50th cycle 75th cycle

(Co3O4) 

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle 4th cycle

5th cycle 10th cycle

25th cycle 50th cycle

100th cycle 150th cycle

172th cycle

(NiO) 



Part II Chapter 4: 3d metal oxides as cathode materials for Li-O2 batteries 

 

142 
 

  

 

 

 

Figure 4: Cycling performances of Li-O2 batteries with Sc2O3, TiO2, VO2, V2O5, Cr2O3, MnO, MnO2, Mn2O3, Mn3O4, Fe2O3, 
Fe3O4, CoO, Co3O4, NiO, Cu2O, CuO, and  ZnO at the current density of 150 mA.g−1 and capacity fixed at 500 mAh.g−1 
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Figure 5: (a) number of cycles reached by each metal oxides while cycling at a specific capacity of 500 mAh.g-1 at a 
current density of 150 mA.g-1 and their respective (b) charge potential, (c) discharge potential, (d) overpotential for the 

4th cycle at a capacity of 200 mAh.g-1 

The charge-discharge cycles at open capacity were measured over 100 cycles, under an oxygen 

pressure of 1 atm and at a current density of 150 mA.g-1. The potential window has been set according 

to the previously tested cyclic stability. Two windows emerged, first ranging from 2.0 to 4.7 V and 

second from 2.2 to 4.4V.  The charge-discharge cycles profiles and associated efficiencies of all Li-O2 

batteries made with MOx/SP cathodes are reported in Figure S4.  

Figure 6a shows the first discharge capacity of Li-O2 cells built with 3d MOx and SP electrodes. The 

specific capacity of all 3d MOx is 3.5 ~ 14.9 times higher than those of SP demonstrating the positive 

impact of MOx on battery performance. Importantly, TiO2 and NiO electrodes have exceptional 

capacities reaching 6447 and 6090 mAh.g-1 respectively. This impressive initial capacity is explained by 

the high catalytic activity of TiO2 and NiO on the oxygen reduction reaction. 

The electrocatalytic activity of 3d MOx cathodes can also be estimated from the overpotential 

(Figure 6b). The overpotential represents the voltage between the charge-discharge plateau 

characteristic of the OER and ORR process respectively. The charge and discharge plateau values are 

available in Figure S5. All MOx electrodes overpotentials are generally lower than that of the SP 

cathode, confirming the enhancement of the electrocatalytic activity of the Li-O2 battery. Three MOx 

electrodes have excellent overpotentials, 1.581, 1.596, and 1.559V for CuO, CoO, and Co3O4 

respectively, which represents a decrease of 0.65V compared to that of SP cathode. These data are in 

agreement with the results obtained in the CV. Indeed, CoO, CuO and Co3O4 have the highest kinetics 

for oxygen reduction and evolution reactions, leading thus to the lowest overpotentials. 
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In order to evaluate long-term performance, capacity of the 100th cycle has been determined and 

reported in Figure 6c. Batteries made with CoO and Co3O4 cathodes can reach a capacity of 397 and 

472 mAh.g-1, respectively with an efficiency close to 100%, confirming their high stability and all 

previous data on their catalytic activities. These results demonstrated that the use of MOx cathodes 

reduces overvoltage in the lithium-oxygen batteries due to their high catalytic activities for the OER 

and ORR, resulting in improved performances, especially in capacity.   

 

 

 

Figure 6: (a) First discharge capacity (b) overpotential and (c) capacity of the hundredth cycle obtained for all metal 
oxides at 150 mA.g-1 within a 2-4.7 V or 2.2-4.4 V voltage window. 

Other than these chemical properties of 3d MOx, physical properties such as morphology, particle size, 

surface area, should be taken into account. Figure 7 links the first discharge capacity to the specific 

surface of the nanoparticles. The capacity was normalised by the weight of metal oxide and then 

divided by the specific surface area to give a capacity per metal oxide surface. Vanadium and 

manganese-based oxides have the highest capacity. Comparing with figure 6a it can be seen that these 
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oxides already have a high capacity when normalised by their mass only. This high capacity is partly 

explained by the lithiation phenomena already discussed above. 

 

Figure 7:  First discharge capacity obtained for all metal oxides at 150 mA.g-1 within a 2-4.7 V or 2.2-4.4 V voltage 
window. 

Another important parameter, often underestimated, to be considered, is the internal resistance of 

the battery. For this purpose, an impedance analysis was carried out and the results were processed 

in the form of a Nyquist diagram depicted in Figure 8 a,b. Most of the resistance in Li-O2 batteries 

comes from the insulating lithium peroxide produced during discharge and the conductivity of the 

cathode. In order to consider only the resistance of lithium peroxide without possible insulation of sub-

products resulting from the degradation during cycles, measurements were taken after the first 

discharge. The semicircle of the Nyquist curve expresses the charge-transfer resistance. Higher charge-

transfer resistance leads to a slower charge-transfer kinetics. The charge-transfer resistance has been 

calculated and summarized in Figure 8c.  

Carbon electrode is used as a reference and exhibits an internal resistance of 1138 kohms.g-1. 

Surprisingly, the use of Cr2O3, Mn2O3, and MnO2 electrodes leads to a higher internal resistance value 

of 1556, 1322, and 1814 kohms.g-1, respectively. The higher internal resistance induced by these oxides 

could lead to a rapid decrease of capacity during cycling as it will drive up the voltage and cause 

degradations, such as that of the electrolyte. 

Fe2O3 (360 kohms.g-1), NiO (312 kohms.g-1), MnO (255 kohms.g-1), and CoO (286 kohms.g-1) electrodes 

reduce their internal resistance within the battery by almost four times compared to the carbon 

cathode. This significant decrease in internal resistance could reflect a stabilization of the system 

potentially leading to an increase in the number of cycles during cycling, and help to prevent the 

degradations within the battery, thus limiting the formation of side products. 

It is worth noting that the origins of the internal resistance of Li-O2 batteries are multiple. The 

measured resistance considers the whole cell, including the lithium anode, the electrolyte, and the 

cathode. The main cathode related parameters influencing the resistance are: the conductivity of the 

3d metal oxides, and the shape and thickness of the deposited lithium peroxide. As a consequence, it 

is not obvious to identify the individual impact of each parameter on the final resistance.   
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Figure 8: Experimental Nyquist plot for (a) pure carbon, Cr2O3, Fe3O4, Fe2O3, NiO, Sc2O3, TiO2, VO2, V2O5, ZnO, and (b) pure 
carbon, CoO, Co3O4, Cu2O, CuO, MnO, MnO2, Mn2O3, Mn3O4 based electrodes in lithium-oxygen batteries after the first 

discharge and (c) their resulting internal resistances. 

To investigate the possible degradations and the chemical species present at the end of 100th cycle, 

XPS analyses were carried out. C1s and O1s spectra of each metal oxide and their respective 

deconvolutions are shown in Figure 9 and Figure S6.  

The analysis of C1s spectra evidences the presence of lithium carbonate in all samples reflecting the 

reaction between carbon and lithium. In addition, the presence of CF3, C-O-C, and O-C=O bonds 

confirms the hypothesis of electrolyte degradations. These degradations leading to the formation of 

side products passivating the cathode have already been highlighted by Carboni et al 31 and partly 

explains the decrease in battery performance over the cycles. A qualitative analysis of the amount of 

lithium carbonate is made by calculating the ratio between the peak area of the C-C and CO3 bonds. 

Results are shown in Table 3. The smaller the ratio, the more LiCO3 is present. The evolution of the 

different ratios follows that of the maximum number of cycles obtained in Figure 5a. This result is 

consistent with the fact that the more cycles the batteries do, the more lithium carbonate is created. 

This is confirmed with ZnO which has the lowest amount of carbonate but also cycles the least. 

Furthermore, the analysis of the O1s spectra reveals the presence of lithium peroxide in some 

cathodes, indicating a non-optimal dissolution of lithium peroxide during charging and will also 

contribute to the passivation of the cathode and therefore to the drop in performance. Reducing the 

formation of these reaction products would be a major subject of research in order to obtain an ultra-

efficient lithium-oxygen battery.  
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Figure 9: C1s and O1s XPS spectra of (a,b) MnO2, and (c,d) CoO obtained after 100 cycles at 150 mA.g-1 

 

 
Figure 10: XPS post cycling C-C/CO3 bonds ratio of all 3d metal oxide used as cathode in Li-O2 battery 

 

The relationship between the oxidation stage of the 3d metal centres and the electrochemical 

performance can be established using the previous results for V, Fe, Cu and Co atoms.  

The maximum capacity achieved increases with the number of oxidations of the metal centre (Figure 

6 a). It increases from 4320 to 4543, 2845 to 3488, 1783 to 5551 and 1515 to 2147 mAh.g-1 for the 

V2O5/VO2, Fe3O4/Fe2O3, CuO/Cu2O and Co3O4/CoO, respectively. The increase in discharge capacity 

reflects the ability of the cathode to form Li2O2. The higher it is, the more Li2O2 is formed. Therefore, 

increasing the number of 3d metal oxide oxidations improves the ORR process and increases the 

capacity of the battery in a fixed window of potential.  

Number of cycles and the capacity reached after 100 cycles increase inversely to the degree of 

oxidation of 3d metal oxide (Figure 5a and 6c). Regarding the number of cycles, V2O5/VO2, CuO/Cu2O 

and Co3O4/CoO reach 218-271, 71-197, and 75-148 cycles, respectively. However, iron atoms do not 

follow this tendency, its number of cycles increases from 74 to 240 cycles from Fe3O4 to Fe2O3. For 

capacity, V2O5/VO2, CuO/Cu2O and Fe2O3/Fe3O4 reach 58-139, 11-42 and 61-99 mAh.g-1 respectively. 

(a) (b) 

(d) (c) 
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The two cobalt oxides have the two highest capacities but do not follow the previous trend. Co3O4 

reaches 472 and CoO 397 mAh.g-1. 

Manganese-based oxides were excluded from this study due to the lithiation occurring during the 

charge-discharge cycles, making it impossible to find consistent correlations between the species. 

Nevertheless, it is noted that Mn3O4 gives some excellent results. 

The variation of electrochemical properties according to the degree of oxidation of the 3d transition 

metal oxides can be a very interesting property to modulate the characteristics of the battery 

depending on its desired specifications.  

The crystal system of the 3d metal oxides also seems to have an effect on the electrochemical 

performance of the battery. Cubic systems have the lowest first discharge capacity at fixed potential 

but the highest hundredth capacity.  

The effect of crystallographic structure on the electrochemical performance of the battery have 

already been investigated by Cheng et al.32 They synthetised diverse crystallographic forms of 

manganese dioxide MnO2 (α, β, γ) and showed that the organisation of the [MnO6] octahedron 

according to the crystal system led to the formation of various tunnels. α-MnO2, possess (2x2) and 

(1x1) tunnels surrounded by double binding octahedral chains. β-MnO2 is made of (1x1) tunnels 

separated by single chains and γ-MnO2 consists of (1x1) and (1x2) tunnels enveloped in double chains. 

The catalytic activity of the different crystalline forms of MnO2 on ORR were tested by LSV and followed 

the order: α- > β- > γ-MnO2.  The increase in catalytic activity as a function of the crystal system is 

explained by the modulation of oxygen diffusion within the tunnels formed by the [MnO6] octahedra 

creating more nucleation sites and allowing more lithium peroxide to be formed and consequently 

increasing the capacity of the battery. 
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Conclusion  
 

3d metal oxides (MOx) were used as cathode material in lithium-oxygen batteries. The MOx 

electrodes demonstrated significant improvement in the round-trip efficiency and specific 

capacity over the carbon cathode. The electrocatalytic properties of these MOx cathodes were 

determined. They promote the catalytic activities of OER and ORR processes and lead to a 

decrease of the overpotential, and an increase of the specific capacity. All 3d MOx electrodes 

have improved the performance of the battery.  

 

Among the most significant improvements, it has been shown that the use of Co3O4 electrode 

reduces overpotential to 1.464 V, TiO2 increases capacity to 6448 mAh.g-1 and Mn3O4 increases 

cycling stability to 417 cycles at 500 mAh.g-1 

 

These results have demonstrated that the Li-O2 batteries with 3d metal oxides cathodes offer 

characteristics that lead to concrete performance improvements. This area of research could 

create excellent opportunities for the development of practical Li-O2 batteries. However, the 

deterioration of the electrolyte remains important. It would be interesting to modify the 

electrolyte in order to increase the stability and thus exploit the battery's capacities to the 

maximum. Another improvement that could be envisaged following this study would be to mix 

several oxides in order to combine their electrochemical characteristics. These composites 

could reduce the overvoltage and increase the capacity of the batteries.   
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Experimental 
 

Synthesis of 3d metal oxide nanoparticles 
 

 

The Cu2O, CoO, Fe3O4, MnO, NiO, and ZnO nanoparticles were prepared under an argon 

atmosphere by a mild temperature organic solution reaction. 33 In a typically synthesis, 0.002 

mol of the considered metal acetylcetonate was mixed with 0.088 mol of oleylamine. The 

mixture was heated for one hour to different temperatures depending on the metal nature 

(200, 80, 200, 260, 80 and 80°C for Co, Cu, Fe, Mn, Ni, and Zn, respectively). The resulting 

solution was then quickly heated to higher temperature, depending on the nature of the metal 

(240, 150, 300, 280, 180 and 150°C for Co, Cu, Fe, Mn, Ni and Zn respectively). This temperature 

was maintained for one hour. After cooling to room temperature, excess ethanol was added to 

the solution, leading to the formation of a precipitate which was isolated by centrifugation. 

Then, the nanoparticles were washed fully with ethanol and recovered by centrifugation, 

before being air-dried at 80°C overnight.  

 

Co3O4 nanoparticles were obtained by a co-precipitation method. 0.005 mol of CoCl2 were 

mixed with 0.5g of Poly ethylene glycol.34 Then, 0.0075 mol of ammonium carbonate were 

added dropwise under vigorous agitation. The resulting mixture is heated to 80°C for 6h. The 

violet powder thus obtained is completely washed with water and ethanol and dried at 80°C 

overnight, followed by a calcination at 400°C for 3 hours.   

 

Cr2O3 nanoparticles were prepared using an equimolar mixture of 0.0015 mol of Cr2(SO4)3 and 

urea in 52.5 mL of water. Then the pH of the solution was adjusted to 10 using a 4M NaOH 

solution. The mixture is then sealed in a 60mL Teflon lined stainless steel autoclave for 

hydrothermal treatment at 180°C for 24h. Once over, the powder was recovered, fully washed 

with water and ethanol, dried overnight at 80°C before being calcined at 600°C for 1 hour.35  

 

CuO nanoparticles were synthetized at room temperature by mixing 0.024 mol of CuCl2 with 

0.0528 mol of NaOH in ethanol under sonication for 1h. The obtained black precipitate was 

recovered and fully washed with water and ethanol, dried overnight at 80°C before being 

calcined at 180°C for 150 minutes. 36 

 

The synthesis of Fe2O3 nanoparticles was achieved by mixing 0.006 mol of FeCl2 and 0.012 mol 

of FeCl3 salts in acidified water. Then, 100ml of a NaOH 1M solution was added dropwise until 

a precipitate occurred. The solid was recovered, wash with water and ethanol, and dried 

overnight at 80°C before being used for battery tests. 37 

 

MnO2 nanoparticles were prepared by adding 0.0019 mol of Mn(CH3CO2)2 in 100 mL KMnO4 1N 

followed by heating at 60°C for 3h. The obtained nanoparticles were then fully washed with 

water and ethanol, dried overnight at 80°C, and calcined at 450°C for 5 h. 38 
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Mn2O3 nanoparticles were synthetized by adding 0.02 mol of MnCl2 with 0.037 mol of NH4HCO3 

in 18 mL of water. The suspension was stirred for 30 min and then heated at 80°C for another 

30 min. The resulting white powder is then wash several times with water and ethanol and 

dried overnight at 80°C before being calcined at 700°C for 1h.39 

 

The synthesis of Mn3O4 nanoparticles was performed by adding 0.0015 mol of Mn(CH3CO2)2 

,7.5*10-4 mol of  n-butylamine, 0.0012 mol of KOH in a mixture made of 7.5 ml of water and 

37.5 mL of ethanol. The mixture is then transferred in a 60mL Teflon lined stainless steel 

autoclave which was maintained at 180°C for 4h. The product obtained was washed several 

times with water and ethanol and then dried overnight at 80°C before being characterized. 40 

 

Sc2O3 nanoparticles were obtained via a simple sol-gel method. In a typical synthesis, 0.0015 

mol of Sc(NO3)3, and 0.0215 mol of citric acid was added to a solution containing 5mL of H2O 

and 10mL of ethanol. The mixture was then stirred at 80°C for 1h until a gel formed. The gel 

was dried in an oven at 120°C to form a powder which was calcined at 600°C for 2h. 41 

 

TiO2 nanoparticles were synthetized via the decomposition of titanium butoxide in DMSO. 

1.466*10-5 mol of titanium butoxide was added to 7.040*10-4 of DMSO before being heated at 

190°C for 2h. After cooling naturally to room temperature, the nanoparticles were fully washed 

with ethanol and dried at 80°C overnight before being calcined at 450°C for 2h. 42 

 

VO2 nanoparticles were generated by mixing 9.50*10-4 mol of Citric acid and 0.011 mol of 

NH4VO3 in a 50 mL mixture made of ethanol:H2O (1:1) for 24h. The mixture was then placed in 

an oven at 110°C for 12 h until the solvent has evaporated completely. After cooling, the solid 

was then calcined under argon at 500°C for 8h. 43 

 

V2O5 nanoparticles were obtained by mixing 0.004 mol of NH4VO3 with 1.73*10-4 mol of Sodium 

Lauryl Sulphate in 100ml of ethanol/H2O (1:1). The pH of the mixture was adjusted to 2 using 

nitric acid and this mixture was refluxed for 2 hours. After cooling naturally to room 

temperature, the solid was fully washed with water and ethanol before drying at 80°C 

overnight and then calcined at 400°C for 2h, and then at 600°C for another 2h. 44 

 

Materials characterisation 
 

X-ray diffractograms of the samples were recorded on a PANalytical X’Pert Pro diffractometer 

equipped with a direct optical positioning goniometric system and stuffed with a PIXcel 1D 

detector. The anode is made of copper and the emitted radiation correspond to the Kα ray (λ 

= 1.54184 Å). A 45 kV voltage and 30 mA current supply x-ray tubes. Diffractograms were 

recorded under room temperature, in 2θ configuration, with a step of 0.016711° each 24 

seconds. Data were analysed using Data Collector and HighScore Plus software.  

 

Infrared spectroscopy was used to confirm the complete elimination of the oleylamine from 

the synthesised samples. The spectra were recorded between 500 and 4000 cm-1 with a Perkin 

Elmer Spectrum 65 FT IR Spectrometer. Data were analysed using Spectrum 10 Spectroscopy 

Software.  
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TEM micrographs were obtained using a TEM Tecnai 10 microscope composed of a LaB6 

electron gun, an OSIS Magaview III camera, and configured in imaging mode with an 

accelerating voltage of 80 kV.  

 

X-Ray photoelectron spectroscopy was used to analyse the chemical composition of the 

discharged products after cycling test. The spectroscope is an Escalab 250 Xi from Thermo 

Scientific, made of a magnesium anode (Kα ray, hv=1253.6Ev). The experiments were 

performed at room temperature and under reduced pressure.  

 

Nitrogen physisorption analyses were done using an ASAP 2420 from Micromeritics. The 

samples were degassed overnight at 150 °C before the measurement. The pore size distribution 

for the porous nanoparticles was calculated via Horvath-Kawazoe method, and the specific 

surface area via Brunauer, Emmet and Teller (BET) method.  

 

 

Electrochemical measurements 
 

In order to elaborate the O2-electrode, a slurry was prepared by mixing the as-prepared 

nanoparticles, carbon black (KB, 99.9+%, Alfa Aesar), and poly(vinylidene difluoride) (PVDF, 

MW≈275, Sigma Aldrich,) with N-methyl-2-pyrrolidone (NMP, >99%, Sigma Aldrich,) in a 60 : 30 

: 10 weight ratio. The slurry was spread on a stainless steel mesh (mesh size: 100*100mm, 26% 

open area) and dried at 120°C under vacuum overnight. After that, the steel mesh was cut into 

several circles of 1.32 cm² each. A slurry of carbon black, PVDF, in NMP 90 : 10 was also 

prepared using same protocol and used as a reference electrode.  

 

To perform electrochemical measurements, homemade Li-O2 were designed following 

Swagelok cells structure. The cell was made of an electrolyte consisting of 0.25M lithium 

bis(trifluoromethanesulfonyl)imide (LITFSI, ≥99% Sigma-Aldrich) in 1,2-Dimethoxyethane 

(DME, 99+%, Alfa Aesar), a lithium foil, used as reference and counter electrode, the as 

prepared O2 –electrode used as cathode, and a glass fiber separator. The cell was assembled in 

an argon-filled glove box where moisture and oxygen concentrations were less than 1 ppm.  

The obtain batteries were put under high purity oxygen flux (99.999%) for several seconds, they 

were then maintained under an O2 atmosphere at a pressure of 1 atm for 10 hours before the 

electrochemical measurements were performed.  

 

The galvanostatic discharge-charge tests were performed using a LANHE CT2001A multi-

channel battery tester with a voltage between 2 and 4.7 V or 2.2 and 4.4V and at a current rate 

of 150mA.g-1. The specific capacities obtained were normalized by the carbon weight used in 

the cathode. 

 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed via a 

Princeton Applied Research, VersaSTAT 3, potentiostat/galvanostat. Galvanostatic charge and 

discharge tests were carried out between 2 and 4.5V (vs LI/LI+), with a scanning rate of 0.1 
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mV.s- 1. Impedance response was collected, after first discharge, by applying a constant AC 

voltage of 5mV, with 15 points per decade, and a scanning frequency between 0.01 and 100000 

Hz. 
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Supplementary Information 
 

ZnO analogous for CoO, NiO, Cu2O, MnO, and Fe3O4 

 

MnO2  

KMnO4 + Mn(CH3CO2)2  ➔ CH3COOK  + 2 MnO2 + CH3COOH 

 

Mn2O3 

MnCl2 + (NH4)HCO3  ➔ MnCO3+ NH4Cl + HCl 

2 MnCO3 + 0.5O2  ➔ Mn2O3 + 2 CO2 

 

Mn3O4 

Mn(CH3CO2)2 + 2KOH  ➔ Mn(OH)2 + 2 CH3COOK 

3Mn(OH)2 + 0.5 O2  ➔ Mn3O4 + 3 H2O   

 

VO2 

2 NH4VO3 + C6H8O7 + 5.5 O2  ➔ 2 VO2 + 6 CO2 + 8 H2O + N2   

 

V2O5 
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2 NH4VO3 + 2 HNO3  ➔ 2 NH4NO3 + V2O5 + H2O 

 

Fe2O3 

2 FeCl3 + FeCl2 + 8 NaOH + 0.5 O2  ➔ 3/2 Fe2O3 + 8 NaCl + 4 H2O 

 

Co3O4 

CoCl2 + (NH4)2CO3  ➔ CoCO3+ 2 NH4Cl 

3 CoCO3 + 0.5 O2  ➔ Co3O4 + 3 CO2 

 

Cr2O3 

Cr2(SO4)3 + 6 NaOH  ➔ 2 Cr(OH)3 + 3 Na2SO4 

2 Cr(OH)3  ➔ Cr2O3 + 3 H2O 

 

CuO 

CuCl2 + 2NaOH ➔ Cu(OH)2 + 2 NaCl 

Cu(OH)2 ➔ CuO + H2O   

 

Sc2O3 

Sc(NO3)3 + C6H8O7  ➔  Sc(C6H5O7)+ 3 HNO3 

2 Sc(C6H5O7) + 9 O2  ➔  Sc2O3 + 5 H2O + 12 CO2 

 

TiO2 

 

Ti(OH)4  ➔  TiO2 + 2H2O  

 

Fig S1: Reaction mechanism leading to the formation of each metal oxides 
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Fig S2: FTIR of the as synthetized ZnO,  CoO,  NiO, Cu2O, MnO, Fe3O4, MnO2, Mn2O3, Mn3O4, VO2, V2O5, 

Fe2O3, Co3O4, Cr2O3, CuO, Sc2O3 and TiO2 nanoparticles. (Arrows show the theoretical position of the 

peaks for the oleylamine) 
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Fig S3: Nitrogen physisorption of the as synthetized (a) ZnO, (c) CoO, (e) NiO, (f) Cu2O, (g)MnO, 
(h) Fe3O4, (i) MnO2, (j) Mn2O3, (k) Mn3O4, (l) VO2, (m) V2O5, (n) Fe2O3, (o) Co3O4, (p) Cr2O3, (q) 
CuO, (r) Sc2O3 and (s) TiO2 nanoparticles and pore size distribution calculated via Horvath-
Kawazoe method for (b) ZnO, and (d) CoO 
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Fig S4: Cycling profile over 100 cycles and the associated efficiency within a 2.0 - 4.7 V voltage windows 

for C,  ZnO,  NiO, Fe3O4, Fe2O3, VO2, V2O5, Cr2O3, Sc2O3, TiO2, and within a 2.2 – 4.4 V windows voltage 

for C, Cu2O, CuO, CoO, Co3O4, MnO, MnO2, Mn2O3, Mn3O4 and the evolution of their respective 

capacities 
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Fig S5: (a) charge and (b) discharge potential plateau for all metal oxides at 150 mA.g-1 within a 2-4.7 

V or 2.2-4.4 V voltage window 
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Figure S6: C1s (left) and O1s (right) XPS spectra of Sc2O3, TiO2, VO2, V2O5, Cr2O3, MnO, Mn2O3, Mn3O4, 

Fe2O3, Fe3O4, Co3O4, NiO, Cu2O, CuO, and ZnO obtained after 100 cycles at 150 mA.g-1 
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Chapter 5: Carbon free MCo2O4 (M = Mn, Ni, Zn) 

Nano-grass-like cathode: toward the Garden of 
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Abstract:   

The development of an oxygen electrode containing a stable, low-cost catalyst, allowing high 

electrochemical performance to be achieved, is a major challenge in view of current energy and 

environmental constraints. In this study, a carbon-free, three-dimensional network structured material 

composed of MCo2O4 (M = Mn, Ni, Zn) nanowires grown on Ni foam were synthesized via a 

hydrothermal method followed by a heat treatment. The specific network structure, when applied as 

cathode for lithium-oxygen battery, enables the surface of the nanowires to be highly accessible to 

reactants and facilitates the transport of electrons during the charge/discharge processes. The battery 

made with the MnCo2O4 electrode has the best performance. This work suggests the potential of 

carbon-free MnCo2O4@Ni as oxygen-electrodes for lithium-oxygen batteries. it reaches a maximum 

capacity of 2110.8 mAh.g-1 and can perform seven cycles when the capacity is limited to 1000 mAh.g- 1. 

This work suggests the great potential of the carbon-free MCo2O4@Ni (M = Mn, Ni, Zn) as oxygen 

electrodes for lithium–oxygen batteries. 
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Introduction  
 

Energy issues are one of the biggest challenges of the 21st century. The decreasing accessibility of fossil 

fuels, and political environmental regulations such as the “Paris Agreements” are pushing to limit the 

production of greenhouse gases to use alternative energy from renewable sources, more respectful of 

the environment. 1,2 As a result, there is a growing need and interest in safe, reliable high-energy 

density storage systems for wireless device applications and for storing energy produced by renewable 

and intermittent energy sources.  

Among these systems lithium-ion batteries standing out for their electrochemical characteristics 

attract increasing attention and are widely used. However, the rapid growth of all-electric, energy-

hungry systems is driving the development of new batteries with higher specific energies. A second 

generation of batteries called metal-air batteries, especially lithium-air batteries, are gaining more and 

more attention and are increasingly being developed. Their highly theoretical specific energy of 3505 

Wh.kg- 1 which is 10 times higher than that of commercially available lithium-ion batteries puts them 

in the position of outsiders.3 

The most commonly employed configuration for lithium-oxygen batteries includes a non-aqueous 

electrolyte. In this system, during discharge the oxygen is reduced and reacts with the lithium cation 

Li+ to form the insoluble compound Li2O2. During charge, the previously formed Li2O2 decomposes 

through oxidation to give back lithium cations and oxygen. The reaction can be summarised as follows: 

2Li + O2 ↔ Li2O2. Such reactions provide high storage capacity and high energy density.4       

Unfortunately, these high-potential batteries are subject to many limitations. The most current ones 

are its short life cycle and low energy density. 5 As the cathode is the site of the oxidation and reduction 

reactions of lithium peroxide, it is important to look for the best parameters in order to reach high 

capacity, power density, high round-trip efficiency and long cycling life. The two main parameters 

which need to be controlled are the morphology and the composition. A suitable morphology will 

optimise the formation of lithium peroxide on the electrode surface. The greater the formation of 

lithium peroxide, the greater the capacity. The oxidation and reduction reaction of lithium peroxide 

take place in the cathode. The addition of materials that are stable and accelerate the kinetics of the 

oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) during the charge/discharge 

processes will reduce the overvoltage and limit possible degradation. 

Carbon has already been widely used as a cathode material due to their availability, price, weight, large 

specific surface area and conductivity. 6-9 However, carbon cathode material has strong drawbacks as 

it is not stable for voltages exceeding 3.5V, that results in the formation of lithium carbonate which 

leads to severe charge/discharge polarisation. 10 Moreover, lithium carbonate formed during the 

discharge is insoluble, and thus could not be totally removed during the charge and will clog the 

cathode. As a result, current density could be reduced by ten to one hundred times, leading to a severe 

increase of the overpotential, with a consequent decrease in the battery performance.11 A study 

performed by Yashina et al. 12 investigate the reactivity of carbon as cathode material in lithium-oxygen 

batteries, using in situ ambient pressure XPS experiments. They showed that superoxide radicals 

formed by oxygen reduction promoted nucleophilic addition or electron transfer leading to epoxy-

groups on carbon which then are transformed into carbonates. They also demonstrated that carbon 
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double bonds or aromatic systems activated by the oxygen superoxide and associated defects boosted 

the carbonate formation. 

Precious metals such as Pt, Pd, Ru, Au, Ir and their oxides have been studied as catalysts to stabilise 

carbon electrodes and increase battery performance and has demonstrated that they promote the 

reversible formation/decomposition of Li2O2 and thus improve charging and cycling performance.13-16 

However, the high cost of noble metals limits their use in cathode material. Metal oxides have also 

been widely used as catalysts and have the advantage of being less expensive and have shown an 

improvement in the electrochemical properties and consequently in the general properties of the 

battery.17 These catalysts have proven their high effectiveness, allowing a better understanding on the 

relationship between their physicochemical properties and their electrochemical performances as 

cathode materials in Li-O2 batteries. However, the prevention of the formation of lithium carbonate 

from carbon still remains a great challenge.  

The shape of the catalytic converter will also be a key parameter, as the microstructure of the catalyst 

will largely influence the performance of the battery.18 Mass transfer at gas-liquid-solid interfaces and 

low electrode kinetics can lead to an increase in an overpotential and a drop in battery capacity and 

cyclability. It is therefore necessary to create a specific structure to optimise the slow kinetics of the 

oxygen reduction reaction and the oxygen evolution reaction.19,20 Lee et al.21 evaluated different 

shapes of carbon-free cobalt oxide cathodes for lithium–oxygen batteries. They synthetised the 

electrodes via an electrodeposition–conversion process and obtain three main morphologies: 

nanosheet, nanoneedle, and nanoflower. Experimental capacity reached 1127 mAh.g-1 for the 

nanosheet 1930 mAh.g-1 for the nanoflower and 2280 mAh.g-1 for the nanoneedle demonstrating that 

nanoneedle possess a significant advantage over other types of structures. 

In this study, we present a carbon-free electrode design based on the spinel structure to overcome the 

carbon-induced problems of Li-O2 battery cathodes. The structure chosen for this study is the AB2O4 

spinel structure and will be mainly based on MCo2O4 (M = Mn, Ni, Zn) cobaltite metals. The choice of 

these materials is justified by their good catalytic activity and good conductivity.21-28 NiCo2O4, for 

instance, is already well known for its bifunctional electrocatalytic activities toward ORR and oxygen 

evolution reaction (OER) and has been widely used in supercapacitors, Li-ion batteries and recently in 

Li-S and Na-air batteries.21-28 Carbon free, porous nano-grass-like MCo2O4 (M = Mn, Ni, Zn) nanowire 

arrays were directly grown on nickel foam using a facile hydrothermal method and were used as 

oxygen electrodes to investigate the influence of their compositions and morphologies on the 

performance of the battery. The MnCo2O4@Ni electrode has the best performance, it reaches a 

maximum capacity of 2110.8 mAh.g-1 and can perform seven cycles when the capacity is limited to 

1000 mAh.g-1. This performance is explained by the three-dimensional network structure and the 

catalytic activity of the material on the OER/ORR. 
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Results and Discussions  
 

MCo2O4 (M=Ni, Mn, Zn) synthesis  
 

The detailed synthesis of spinel is reported in the experimental part. A schematic overview of the 

electrode fabrication process is shown in Figure 1.  

 

Figure 1: Schematic illustration of the synthesis of the MCo2O4 cathodes. 

Under hydrothermal conditions, the pH is adjusted by the amount of urea added to the medium. The 

hydrolysis of the urea allows the growth of a very dense nanowire array of MCo2(OH)6 precursor to 

grow in grass form on the nickel foam. Their annealing under air enables the formation of the final 

spinel structure to be obtained. The following equations describe the synthesis mechanism: 

 CO(NH2)2 + H2O → 2NH3 + CO2 

 

(1.1) 

 NH3 + H2O → NH4+ + OH− (1.2) 
   

 M2+ + 2 Co2+ + 6 OH−  → MCo2(OH)6 

 
(1.3) 

  MCo2(OH)6 + 0.5 O2 → MCo2O4 + 3 H2O  (1.4) 

   
It should be noted that all the nanowires were formed on the surface of the nickel foam by the addition 

of NH4F during the synthesis. F- provided by NH4F can activate the initial nucleation, improving the 

adhesion of the substrate to the precursor and facilitate growth. 29  

NiO and Co3O4 nanowires array on Ni foam were also prepared as reference samples.  

 

Crystalline phase and morphology 
 

The crystalline phase of the MCo2O4 (M=Ni, Mn, Zn), and two reference samples NiO and Co3O4 was 

analysed by XRD and the diffractograms are shown in Figure 2 and Figure S1. All of the diffraction peaks 

can be indexed in those of the reference JCPDS files. All materials have a spinel crystalline structure 

while NiO adopts a NaCl type structure. It is worth noting that a small amount of ZnO is present in the 

ZnCo2O4 sample. The impurity ZnO can come from the high reactivity of zinc in basic solution leading 

to the formation of zinc hydroxide which after annealing forms zinc oxide.17  
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Figure 2 : Powder X-ray diffraction pattern of the as synthesized NiCo2O4, MnCo2O4, and ZnCo2O4, with their references.  

The morphology of MCo2O4 (M=Ni, Mn, Zn), NiO and Co3O4 on the nickel foam was analysed by SEM 

and is shown in Figure 3 and Figure S2. All electrodes present a well dense nanowire arrays, where the 

nanowires grow vertically and uniformly on the surface of the nickel foam. However, some differences 

can be observed between the samples. The nickel oxide-based nanowire array has the smallest length 

of nanowire. ZnCo2O4 nanowire array with the thinnest and longest nanowire. This specific shape leads 

to a superior entanglement of the nanowire. Co3O4, NiCo2O4 and MnCo2O4 have the same nanowire 

shape. In terms of size, the Co3O4 nanowire is the tallest, followed by MnCo2O4 and NiCo2O4. 
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Figure 3: SEM micrographs demonstrating morphology of the as synthetized (a) NiCo2O4, (b) MnCo2O4, (c) ZnCo2O4 on 

nickel foam 

Transmission electron microscopy was used to study the morphology of the nanoparticles. 

Micrographs are presented in Figure 4 and Figure S3. It shows that all the samples are made up of rod 

assemblies to give a kebab shape. These rods are formed by a succession of nanoparticles having an 

elongated shape and connected by their vertices. NiO has the smallest rods (77 nm), followed by 

MnCo2O4 (246 nm), ZnCo2O4 (420 nm), Co3O4 (875 nm) and NiCo2O4 (973 nm). A nitrogen physisorption 

analysis has been carried out to determine the specific surface area and the pore size distribution and 
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are available in the supplementary information (Figure S4). The specific surface area is 16, 34, 19, 39, 

19 m².g-1 for Co3O4, NiO, NiCo2O4, MnCo2O4 and ZnCo2O4 respectively. The average pore size is 0.97 nm 

for Co3O4, NiO, MnCo2O4 and ZnCo2O4 and 0.95 nm for NiCo2O4. The average crystallite size, average 

pore size and specific surface area for each material is summarised in Table 1. 

Table 1 : Summary of the length, width, specific surface area and average pore size of all nanoparticles. 

Material Length Nanoparticles size 

(nm) 

Width Nanoparticles size 

(nm) 

Specific surface 

area (m².g-1) 

Average pore 

size (nm) 

Co3O4 875 47 16 0.97 

NiO 77 31 34 0.97 

NiCo2O4 973 33 19 0.95 

MnCo2O4 246 23 39 0.97 

ZnCo2O4 420 21 19 0.97 
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Figure 4 : Bright-field TEM micrographs demonstrating morphology and particle size of the as synthetized (a) NiCo2O4, (b) 

MnCo2O4, (c) ZnCo2O4. 

Electrochemical studies 
 

The catalytic activity of all nanowire arrays on OER/ORR process was examined by cyclic voltammetry 

(CV). The results obtained are reported in Figure 5 and Figure S5. All cyclic voltammograms appear 

similarity. The higher the current, the more electrons are transferred per oxygen molecule and the 

higher the reaction kinetics. It displays one reduction peak corresponding to the ORR (formation of 

Li2O2) and two oxidation peaks related to the OER (decomposition of Li2O2). The first peak at ∼3.3 V 

can be attributed to the decomposition of nonstoichiometric Li2−xO2, and the second peak at ∼3.96 V 

indicates the decomposition of dense Li2O2 film.30-31 Over the first five cycles, the MnCo2O4 electrode 

shows the highest ORR/OER current density and largest integration areas during the cathodic and 

anodic scans, indicating that the MnCo2O4 cathode has the best electrocatalytic activity over other 

electrodes (Figure 5b). On the contrary, NiO cathode exhibits the lowest ORR/OER current and the 

smallest integration areas reflecting its low electrocatalytic activity (Figure S5b). NiCo2O4, ZnCo2O4, and 

Co3O4, have an initial oxidation current of about 0.0006 A and a reduction current of 0.0006 A for 

NiCo2O4 and Co3O4 and 0.0004V for ZnCo2O4. Over the five cycles the potential decreases, reflecting a 

decrease in electron transfer. This decrease in current may be due to the creation of insolent species 

on the cathode surface, preventing electrode flow. 

 
Figure 5: Cyclic voltammograms obtained from, (a) NiCo2O4, (b) MnCo2O4, and (c) ZnCo2O4 nanowire arrays electrodes in 

lithium-oxygen battery application. 

The EIS analysis results for each electrode is shown in Figure 6. The Nyquist plots can be divided into 

two parts: the semicircle in the high frequency region is associated to the charge transfer resistance 

and the line in the low frequency region is related to the ion diffusion in the electrodes. Higher charge-

transfer resistance leads to slower charge-transfer kinetics. The charge-transfer resistance has been 
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calculated. NiCo2O4, ZnCo2O4, Co3O4 and NiO electrodes have the smallest semicircle, which means that 

they have the lowest charge transfer resistance (311, 346, 425 and 642 ohms, respectively). This lower 

charge transfer resistance may reflect the good conductivity of the compounds but also their low 

catalytic activity leading to the formation of a small amount of insulating Li2O2. MnCo2O4 electrode has 

the highest charge transfer resistance (2229 ohms) which can express its low conductivity and/or high 

catalytic efficiency to the ORR leading to the formation of a thick layer of insulating Li2O2 that impedes 

the electron flow. 

 
Figure 6:  Experimental Nyquist plot for Co3O4, NiO, NiCo2O4, MnCo2O4, and ZnCo2O4 electrodes in lithium-oxygen 

batteries. 

The performance of batteries built with Co3O4, NiO or MCo2O4 (M=Ni, Mn, Zn) cathodes has been 

evaluated via charge-discharge cycles within a cut-off voltage window of 2.3 to 4.3 V. The applied 

voltage was determined according to the protocol of Park et al 30 who demonstrated that to achieve 

optimal deposition and dissolution of lithium peroxide on the nanowires, a voltage of 0.1 mA.cm-² must 

be applied during charging and 0.3 mA.cm-² during discharge. This higher voltage compensates for a 

higher surface-charge density, which is electrochemically more active on the top of the nanowire array 

than on the bottom. This difference in surface-charge density results, at low discharge rate, in the 

formation of crystalline Li2O2 at the top of the nanowires, which blocks the access to the bottom of the 

nanowires and can even clump or break them. At higher discharge rate, Li2O2 precipitates at the top 

region of the nanowire, forming a film of smaller and less crystalline discharge products. The film 

deposited at the top of the film allows the lower part of the nanotube network to be usable and form 

Li2O2. The phenomenon is illustrated in Figure 7. 
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Figure 7: A schematic illustration of the structural evolution of the Co3O4 NW array with the low and high discharge 
rates. 31 

The first hundred full discharge and charge profiles are shown in Figure 8, and the associated efficiency 

in Figure S6. The first cycle capacity reached with NiO, Co3O4, NiCo2O4, ZnCo2O4, MnCo2O4 are 30.1, 

400.4, 61.5, 766.4 and 2110.8 mAh.g-1 respectively. The NiO electrode has the lowest capacity. This 

poor performance can be explained by the low catalytic activity on the OER and ORR observed during 

cyclic voltammetry, but also by its charge transfer resistance probably due to the resistivity of NiO. The 

NiCo2O4 electrode also exhibits a low capacity. This result is surprising as the electrode has similar 

characteristics to the Co3O4 electrode regarding morphology, catalytic activity on the OER/ORR and 

internal resistance, while its capacity obtained is 6.5 times lower. The good capacity reached by 

ZnCo2O4 can be explained by its catalytic properties according to the OER/ORR, by its low internal 

resistance but also by its morphology. In fact, ZnCo2O4 nano-grass electrode have the thinnest nano-

needles, thus potentially allowing more lithium peroxide to be deposited. The highest capacity is 

achieved with the MnCo2O4 electrode. This result agrees with the results obtained by CV. The high 

resistance observed by EIS could be explained by the formation of a thick layer of insulating lithium 

peroxide.  

From the second cycle, the capacities of all cathodes sharply decrease. The only electrode that retains 

a good capacity in spite of its high decrease is the MnCo2O4 cathode. The slower decrease in capacity 

is consistent with the results obtained in CV. The catalytic activity on the OER remains constant 

compared to the other electrodes, whose activity significantly decreases. 
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Figure 8 : Cycling profile over 100 cycles within a 2.2 - 4.4 V voltage windows for (a) Co3O4, (b) NiO, (c) NiCo2O4, (d) 
MnCo2O4, and (e) ZnCo2O4 electrode in lithium-oxygen batteries. 

The cycling performance of the NiO, Co3O4, and MCo2O4 (M=Ni, Mn, Zn) nanowire cathodes were 

further examined with a limited capacity of 1000 mAh.g−1. The full charge/discharge cycling profiles 

are shown in Figure 9. The NiO-based electrode did not reach the limit capacity of 1000mAh.g-1, which 

is consistent with the results previously obtained. This electrode has a low catalytic activity on the 

OER/ORR, making it unsuitable for Li-O2 battery applications. Cells made with, NiCo2O4, Co3O4, 

ZnCo2O4, and MnCo2O4 reached 2, 2, 3, and 7 cycles respectively. The MnCo2O4 electrode achieves the 

highest number of cycles. This data is consistent with the obtained results, which show that this 

cathode has the highest catalytic activity according to EOR/ORR and allows the highest capacity to be 

achieved in a limited window potential. However, the number of cycles reached is low and does not 

meet the desired expectations for Li-O2 batteries. 

The charge profiles highlight two plateaus. The potential values of the two plates match the values 

found in CV and are ∼3.3 V and ∼4.0 V. The first plateau can be attributed to the decomposition of 

nonstoichiometric Li2−xO2, and the second one refers to the decomposition of dense Li2O2 film. All 
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cathodes have a maximum charge potential less than or equal to 4.0 V reflecting their good catalytic 

activity on the OER. However, the charge potential of the MCo2O4 based electrode is above 4 V from 

the third cycle and for a capacity higher than 850 mAh.g-1. The discharge potential decreases drastically 

from the second cycle onwards for all electrodes indicating a low catalytic activity of the materials for 

ORR.  

 

 

Figure 9 : Cycling performances of Li-O2 batteries made with (a) Co3O4, (b) NiCo2O4, (c) MnCo2O4, and (d) ZnCo2O4 
electrode at a fixed capacity of 1000 mAh.g−1 

XPS analyses were carried out in order to evaluate the consequences of the potential drop during 

discharge. C1s and O1s spectra of each MCo2O4 (M=Ni, Mn, Zn) nanowire cathode and their respective 

deconvolutions are shown in Figure 10. 

The XPS spectra of all cathodes show peaks corresponding to carbonate (≈ 292 eV), O-C=O (≈ 288 eV) 

and C-O-C (≈ 286 eV) bonds. The presence of these species confirms that degradation has taken place 

during the cycles. The appearance of C-C bonds and the increased peak air between the species for the 

MnCo2O4 electrode means that more degradation has occurred. Figure 10 b,d,e show the C1s XPS 

spectrum of MCo2O4 (M=Ni, Mn, Zn) nanowire cathodes, in which the fitting peak at ∼ 529 eV is typical 

of metal–oxygen bonds, whereas the peak at ∼ 532 eV is ascribed to oxygen defects with low oxygen 

coordination sites. The absence of the peak at 534 eV, corresponding to carbonates, could mean that 

degradation is minimal in these batteries. Consequently, the decrease in battery performance with 

MCo2O4 (M=Ni, Mn, Zn) cathodes could be mainly due to the low catalytic activity of the materials on 

the ORR, leading to a slight deposit of Li2O2. 

1

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400 600 800 1000

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle

2nd cycle

(a) 

1

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400 600 800 1000

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

(b) 

1

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400 600 800 1000

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle
3rd cycle 4th cycle
5th cycle 6th cycle
7th cycle

(c) 

1

1,5

2

2,5

3

3,5

4

4,5

5

0 200 400 600 800 1000

P
o

te
n

ti
al

 (
V

)

Capacity (mAh.g-1)

1st cycle 2nd cycle

3rd cycle

(d) 



Part II Chapter 5: Carbon free MCo2O4 (M = Mn, Ni, Zn) Nano-grass-like cathode: toward the 
Garden of Eden of the Li-O2 battery?   

 

182 
 

 

Figure 10 : C1s and O1s XPS spectra of (a,b) ) MnCo2O4, (c,d) NiCo2O4, (e,f) ZnCo2O4, obtained after 100 cycles. 
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Conclusion  
 

MCo2O4 (M=Ni, Mn, Zn) nanowire grown in situ on the nickel foam were successfully synthetised using 

a facile hydrothermal process followed by a calcination treatment, and were directly served as carbon-

free cathode for Li-O2 batteries.  

This unique three-dimensional network structure of these electrodes facilitates electronic 

transmission between the nanowire and the nickel foam. It also allows easier diffusion of ions and 

oxygen, ensuring a faster electrochemical reaction. The homogeneous distribution of the nanowires 

on the support and the large open spaces between them would promise an abundant deposit of Li2O2. 

This study shows that it is possible to control the synthesis of spinel-based nanowires on nickel foam 

to produce carbon-free cathode catalysts with good OER catalytic performance. As a cathode for Li-O2 

batteries, the MCo2O4 (M=Ni, Mn, Zn) exhibits good catalytic activity on the oxygen evolution reaction. 

However, a low catalytic activity on the ORR leads to a strong decrease of the discharge potential 

during cycles leading to low cyclability. The battery made with the MnCo2O4 electrode has the best 

performance, it reaches a maximum capacity of 2110.8 mAh.g-1 and can perform seven cycles when 

the capacity is limited to 1000 mAh.g-1. This performance could be improved by coupling MCo2O4 

(M=Ni, Mn, Zn) with another material with good catalytic activity on the ORR. 

A perspective to this study could be the use of oxides containing three 3d metals. A parallel with the 

lithium manganese cobalt oxides (NCM) currently used in lithium oxygen batteries can be drawn. The 

first step would be to delithiate the material in order to use it directly as a cathode. In this context 

Solmaz et al33 have used a manganese cobalt oxides electrode in lithium metal-ion batteries and have 

shown an initial capacity of 1000 mAh.g-1 and 330 mAh.g-1 after 100 cycles. These results are 

encouraging and it would be worthwhile trying to use this type of electrode in lithium-oxygen batteries 

in the future. 

 

  



Part II Chapter 5: Carbon free MCo2O4 (M = Mn, Ni, Zn) Nano-grass-like cathode: toward the 
Garden of Eden of the Li-O2 battery?   

 

184 
 

 

Experimental 
 

Cobalt (II) nitrate hexahydrate [Co(NO3)2 . 6 H2O, >98%, Roth], Nickel (II) nitrate hexahydrate 

[Ni(NO3)2 . 6 H2O, >99%, Roth], Manganese (II) nitrate tetrahydrate [Mn(NO3)2 . 4 H2O, >98%, 

Roth], Zinc nitrate hexahydrate [Zn(NO3)2 . 6 H2O, >98%, Roth], Ammonium fluoride [NH4F, 

98+%, ACS reagent, ACROS Organics], Urea [CH₄N₂O, 99%, ACROS Organics], Acetone (Fischer, 

> 95%), Hydrochloric Acid (Fisher, 37%), and ethanol (≥96%, VWR), were used as purchased. 

 

MCo2O4 (M = Mn, Ni, Zn) electrodes synthesis 
 
 

A nickel foam disc with a surface area of 1.32 cm² was used as a current collector and was pre-

treated to remove possible surface oxides and grease. The foam was immersed in several 

successive baths (acetone, HCl 3M, H2O, and ethanol) under sonication for 15 minutes each 

and then dried overnight at 60°C. The prepared nickel foam was then placed in Teflon-lined 

stainless-steel autoclaves. 1.4 mmol of metal (Mn, Ni, Zn) nitrates and 2.8 mmol of cobalt 

nitrate were dispersed in a solution made of 40 mL of deionized water and 7.2 mL of ethanol. 

Once solubilised, 2.9 mmol NH4F and 8.7 mmol urea were added, the precursor solutions were 

stirred for 15 minutes and then transferred into the autoclaves where the prepared nickel foam 

was placed and kept at 120 °C for 9 h. After cooling to room temperature naturally, the 

electrodes were washed, under sonication, in three successive baths of distilled water followed 

by one made of ethanol and then dried at 80 °C for 12 h. After drying, the electrode undergoes 

a heat treatment at 550°C for 3.5 hours to obtain the desired MCo2O4 (M = Mn, Ni, Zn). 

 

For comparative purposes, two metal oxides, Co3O4 and NiO, have been synthesized according 

to the above protocol. The only difference is an autoclave reaction time of 24 hours instead of 

9 hours for nickel oxide. 

 

Materials characterisation 
 

X-ray diffractograms of the samples were recorded on a PANalytical X’Pert Pro diffractometer 

equipped with a direct optical positioning goniometric system and stuffed with a PIXcel 1D 

detector. The anode is made of copper and the emitted radiation correspond to the Kα ray (λ 

= 1.54184 Å). A 45 kV voltage and 30 mA current supply x-ray tubes. Diffractograms were record 

under room temperature, in 2θ configuration, with a step of 0.016711° each 24 seconds. Data 

were analysed using Data Collector and HighScore Plus software.  

 

TEM micrographs were obtained using a TEM Tecnai 10 microscope composed of a LaB6 

electron gun, an OSIS Magaview III camera, and configured in imaging mode with an 

accelerating voltage of 80 kV.  
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SEM micrographs were obtained using a Field Emission SEM JEOL 7500-F microscope 

configured in SEI mode with an accelerating voltage of 20 kV.  

 

X-Ray photoelectron spectroscopy was used to analyse the chemical composition of the 

discharge products after cycling test. The spectroscope is an Escalab 250 Xi from Thermo 

Scientific, made of a magnesium anode (Kα ray, hv=1253.6Ev). The experiments were 

performed at room temperature and under reduced pressure.  

 

Nitrogen physisorption analyses were done using an ASAP 2420 from Micromeritics. The 

samples were degassed overnight at 150 °C before the measurement. The pore size distribution 

for the porous nanoparticles was calculated via Horvath-Kawazoe method and specific surface 

area via Brunauer-Emmett-Teller (BET) method.  

 

 
 

Electrochemical measurements 
 

Homemade Li-O2 cells were designed following Swagelok cells structure. The cell was made of 

an electrolyte consisting of 1M lithium bis(trifluoromethanesulfonyl)imide (LITFSI, ≥99% Sigma-

Aldrich) in 1,2-Dimethoxyethane (DME, 99+%, Alfa Aesar), a lithium foil, used as reference and 

counter electrode, the as prepared O2 –electrode used as cathode, and a glass fiber separator. 

The cell was assembled in an argon-filled glove box where moisture and oxygen concentrations 

were less than 1 ppm.  The pbtained batteries were put under high purity oxygen flux (99.999%) 

for several seconds, they were then maintained under an O2 atmosphere at a pressure of 1 atm 

for 10 hours before the electrochemical measurements were performed.  

 

The galvanostatic discharge-charge tests were performed using a LANHE CT2001A multi-

channel battery tester with a voltage between 2.2 and 4.4V and at a current rate of 0.1mA.cm- 1 

for the charge and 0.3 mA.cm-1 for the discharge. The specific capacities obtained were 

normalized by the material weight grafted onto the cathode. 

 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry was performed using a 

Princeton Applied Research, VersaSTAT 3, potentiostat/galvanostat. Galvanostatic charge and 

discharge tests were carried out between 2 and 4.5V (vs LI/LI+), with a scanning rate of 0.1 mV.s-

1. Impedance response was collected after the first discharge by applying a constant AC voltage 

of 5mV, with 15 points per decade, and a scanning frequency between 0.01 and 100000 Hz. 
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Supplementary Information 
 

 

 

Figure S1: Powder X-ray diffraction pattern of the as synthesized NiO, and Co3O4 with their references.  

  
Figure S2: SEM micrographs demonstrating morphology of the as synthetized (a) Co3O4, (b) NiO 
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Figure S3: Bright-field TEM micrographs demonstrating morphology and particle size of the as synthetized (a) Co3O4, (b) 

NiO 
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Figure S4: Nitrogen physisorption and pore size distribution of the as synthetized (a) Co3O4, (b) NiO, (c) NiCo2O4, (d) 

MnCo2O4, (e) ZnCo2O4. 

 

 

Figure S5: Cyclic voltammograms obtained from (a) Co3O4, (b) NiO, nanowire arrays electrodes in lithium-oxygen battery 

application. 
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Figure S6: Li-O2 battery capacity evolution over 100 cycles (left) and the associated efficiency (right) within a 2.2 - 4.4 V 

voltage windows for (a) Co3O4, (b) NiO, (c) NiCo2O4, (d) MnCo2O4, (e) ZnCo2O4 cathode 
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The main objective of this PhD was to design cathode materials for lithium-oxygen battery applications. 

The results are summarized into three chapters. 

The first chapter focused on the relationship between the structure of the cathodes and the resulting 

electrochemical performances of lithium-oxygen batteries. Cathodes with a network of interconnected 

macro-meso-micro pores following Murray’s law design was synthesized. Three materials have been 

developed, one based on zinc oxide nanoparticles alone and the others combined with carbon 

nanoparticles and have been tested as cathodes in Li-O2 batteries. The zinc oxide hierarchical macro-

meso-micro porous material alone did not provide convincing results due to its high brittleness and 

lack of conductivity. The hierarchical porous structure assembled with carbon nanoparticles and 

carbon nanotubes led to an increase in capacity on the first cycle of 110% (2236 mAh.g-1) and 42% (957 

mAh.g-1) respectively compared to a carbon slurry-based cathode. This increase of performances is 

explained by the presence of a hierarchical porosity leading to an increase in the specific surface area 

and greater diffusion of reagents improving the formation of lithium peroxide and leading to a higher 

capacity. However, the reactivity of the carbon leads to the formation of lithium carbonates passivating 

the cathode, increasing the overpotential and leading to the degradation of the system.  

The next step in this project was the addition of materials with catalytic activity on the OER/ORR to 

reduce the overpotential in order to preserve the degradation within the battery. 3d metal oxides 

(MOx) have been used as catalysts in Super P carbon cathodes in lithium-oxygen batteries. For the first 

time, a comprehensive and comparative study on all of the 3d metal oxides was realised. MOx 

cathodes promote the catalytic activities of OER and ORR processes and lead to a decrease of the 

overpotential, and an increase of the specific capacity. The MOx electrodes also demonstrated 

significant improvement in the round-trip efficiency and specific capacity over the pure carbon 

cathode. Among the most significant improvements, it has been shown that the use of Co3O4 electrode 

reduces overpotential to 1.464 V, TiO2 increases capacity to 6448 mAh.g-1 and Mn3O4 increases the 

number of cycles at 500 mAh.g-1 to 417 cycles. The effect of the oxidation state of a same metal on 

their performance in Li-O2 battery has been deeply studied. This first comprehensive leads to 

important information on the understanding of OER and ORR behaviour of all these 3d metal oxides 

and will be the good guideline for the selection of the optimal cathode materials for advanced Li-O2 

batteries. However, previously observed degradations are still present in this system configuration and 

reduce performance during charge/discharge cycles. The main side reaction product formed is lithium 

carbonate. In order to minimise its generation, the next step of the study was to create carbon-free 

cathodes. 

In order to obtain carbon-free cathodes, MCo2O4 (M=Ni, Mn, Zn) dense nanowire array was grown on 

a nickel foam using a facile hydrothermal process followed by a calcination treatment. Spinel nanowire 

has been selected because they combine a morphology allowing an optimal deposition of lithium 

peroxide and possess a good catalytic activity on the OER allowing an optimised dissolution during 

charging. Experimentally, the MCo2O4 (M=Ni, Mn, Zn) exhibits good catalytic activity on the oxygen 

evolution reaction. The battery made with the MnCo2O4 electrode has the best performance, it reaches 

a maximum capacity of 2110.8 mAh.g-1 and can perform seven cycles when the capacity is limited to 

1000 mAh.g-1.  However, a low catalytic activity on the ORR leads to a strong decrease of the discharge 

potential leading to low cyclability. This performance could be improved by coupling MCo2O4 (M=Ni, 

Mn, Zn) with another material with a good catalytic activity on the ORR. 
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To conclude, this manuscript has shown that several approaches can be considered to optimise the 

cathodes and improve the battery performance. Firstly, the morphology of the cathode must be 

judiciously selected in order to optimise the deposition of Li2O2 during discharge. The second 

optimization path is to modify the composition of the cathode materials in order to improve the 

catalytic activities on the OER and ORR. This improvement of the catalytic processes will allow an 

optimal formation and degradation of the Li2O2 leading to an enhancement of the battery 

overpotential, preserving the potential degradation.  

In the future, it will be essential to better understand the mechanisms that occur within Li-O2 batteries 

during charge and discharge. To do this, two axes can be explored. The first would be to analyse the 

gas flow at the exit of the battery during the cycles by a Gas Chromatography-Mass Spectrometry 

(GCMS) connected to a high precision manometer. This analysis could provide a better understanding 

of the interactions between the cathode surface and the oxygen. The second would be to follow the 

evolution of the products formed during the charge/discharge cycles. An in situ XPS analysis could give 

very interesting results.   

For cathodes, a possible approach following our work would be to create a hierarchical porous carbon 

network and to coat it homogeneously with metal oxides. The coating methods could be either by 

chemical vapor deposition (CVD) or by immersion followed by calcination under air of precursor salt. 

More concretely, our study could be completed by modifying the electrolyte. The electrolyte used 

throughout this study is of its most common composition. The performance obtained could be 

significantly improved by changing the solvent or by adding additives such as redox mediators.  
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1) X-ray diffraction (XRD)  
 

1.1) Principle 
 

X-ray diffraction is a non-destructive characterization technique based on the diffraction phenomenon 

that results from an interaction between an electromagnetic wave and a crystalline structure. There 

are two main kinds of X-ray diffraction methods: one performed on a single crystal and the other on 

a powder. A powder is defined as a random organisation of several crystallite.  The analysis of single 

crystal allows to find the crystalline structure, and the powder the identification of the phases. 

Typically, a monochromatic X-ray wave, with a wavelength λ, and an angle of incidence θ, will interact 

with a crystalline structure composed of several grid planes (hkl) spaced at a distance d. The 

interactions between the planes and the X-ray wave will be alternately constructive or destructive 

with respect to the direction in space (Fig.1), and will induce variations in the intensity of the photon 

flux. These changes in intensity as a function of the direction in space are the basis of the diffraction 

phenomenon. The directions of the constructive interferences can be determinate by the Bragg’s law: 

 2dhkl sinθ = n λ (n: integer) (A.1) 

   

 

Figure 1: Scheme of the diffraction phenomenon 

 

Figure 2: scheme of a θ -2 θ XRD diffractometer configuration 
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Usually a diffractometer consists of an X-ray tube, Soller slits, a monochromator and a detector. 

Several configurations are possible; the most common is the Brag-Brantano.  Two angle configurations 

are available: θ-θ where the sample remains fixed and the detector and tube move simultaneously at 

an angle θ, and 2θ-θ where the tube remains fixed and the detector and the sample move respectively 

at an angle θ and 2θ (Fig.2). 

 

1.2) Measuring conditions 
 

Sample diffractograms were recorded on a PANalytical X’Pert Pro diffractometer equipped with a 

direct optical positioning goniometric system and equipped with a PIXcel 1D detector. The anode is 

made of copper and the emitted radiation corresponds to the Kα ray (λ = 1.54184 Å). A 45 kV voltage 

and 30 mA current supply x-ray tubes. The diffractograms were recorded at room temperature, 

between 5° and 80° in 2θ configuration, with a step of 0.016711° each 24 seconds. Data were recorded 

and analysed using Data Collector and HighScore Plus software.   

 

Figure 3: Photograph of the DRX diffractometer 

 

1.3) Data treatments 
 

The main application of X-ray powder diffraction is the identification of crystalline phases. Moreover, 

a qualitative study can be carried out if the material is composed of several phases. By searching the 

position and intensity of the peaks and comparing them with a database, the phases can be identified.  

The first step is an automatic search for peaks using software that corrects the background noise, 

smoothes the curve and removes the Kα2 radiation from the copper. Once the signal is corrected, the 

software adjusts the position of the peaks. The next step compares the diffractograms obtained with 

a database (COD or ICDD files). The software identifies the different species thanks to the positions of 

the most intense peaks, and gives the characteristics of the recognised phases.    
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1.4) Size of the crystallites 
 

The approximative size of the crystallites can be found using XRD diffractograms and the Scherrer 

equation (A.2). The equation links the Full-Width Half-Maximum (FWHM) of the diffractograms peaks 

to the size of the crystallites. However, this equation cannot be used to determine crystallite sizes 

higher than 100 nm.  

 
𝑇 =

𝐾𝜆

𝛥(2𝜃)𝑐𝑜𝑠𝜃
 

(A.2) 

𝛥(2𝜃) correspond to the FWHM of the Bragg peaks 

T is the size of the crystallite 

K is a dimensionless shape factor 

 

2) Fourier Transform Infrared Spectroscopy (FTIR) 
 

2.1)  Principle 
 

Infrared spectroscopy is the study of electromagnetic radiation scattered, absorbed or diffused by 

molecules. It provides information on the structure of molecules and particularly on the nature of the 

bond. Experimentally, when IR rays pass through a sample, some of them are absorbed and others are 

transmitted. If the order of the wavelength of the incident beam is close to the vibrational energy of 

the molecule, it will absorb some of the radiation and induce a decrease in intensity. The resulting 

signal represents the molecular fingerprint of the molecule, then a Fourier transform converts the 

output of the detector into an interpretable spectrum. Each molecule has a different spectrum and is 

explained by the different forces within the molecules, and by the different masses and 

electronegativity of the atoms. The identification of a compound can be done by spectrum analysis.  

The IR spectrum link a transmittance for each wavelength. The transmittance is the ratio of the 

incoming intensity to the transmitted intensity. This relation is 𝑇 =  
𝐼

𝐼0
 and represent the fraction of 

the light intensity, that goes through the powder.  It can be related to the absorbance thanks to this 

relation: A = -log(T). In this thesis, this method is used to detect the presence of impurity in 

compounds. 

 

2.2) Measuring conditions 
  

Experimentally, the analyses were performed between 500 and 4000 cm-1 with a Perkin Elmer 

Spectrum 65 FT IR Spectrometer. The sample was placed directly onto the powder carrier and the 

results were processed using Spectrum 10 spectroscopy software from PerkinElmer. 
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Figure 4: Photograph of the FTIR spectrophotometer 

 

3) Transmission Electron Microscopy (TEM) 
 

3.1) Principle 
 

The transmission electron microscope is a device used for a qualitative study of the nanoparticles. It 

is based on the electrons diffraction. The Figure 5 shows the schematic diagram of the TEM principle; 

it consists of an electron gun, a nitrogen cooling system, a vacuum pump, an optical column containing 

magnetic lenses, a sample holder and an electron detector.  Experimentally, the electron gun produces 

an electron beam and a system of magnetic lenses deflect or focuses the beam onto the sample. The 

diffracted image can be seen on a fluorescent screen or detected with a CCD camera. Two modes are 

available: diffraction and image. The first one, uses the wave behaviour of electrons. When they hit 

the crystalized nanoparticles, the main electron beam is diffracted into several smaller ones and is 

recombined through magnetic lenses to form a diffracted pattern. For the second, the electron beam 

passes through the sample, depending on its properties such as thickness, nature, or density, the 

electrons will be more or less absorbed. By placing a detector in this plane, an image of the irradiated 

area can be observed by transparency. In these studies, only the image mode was used, giving 

information on the structure, size, and shape of the particles. 

 

Figure 5: scheme of a TEM configuration 

Electron gun
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Magnetic lenses

Sample
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3.2) Samples Preparation and measuring conditions 
 

The samples need to be very thin, as the electrons have to pass through it, their thickness must be on 

an average of few nanometers. In this study, only nanoparticles were studied under this microscope. 

First, nanoparticles are suspended in ethanol and then drop cast on a copper carbon coated grid for 

analysis. The samples were analyzed using a Tecnai 10 TEM microscope composed of a LaB6 electron 

gun, an OSIS Magaview III camera, and used in imaging mode with an accelerating voltage of 80 kV. 

 

Figure 6: Photograph of a Tecnai 10 microscope 

 

4) Scanning Electron Microscopy (SEM)  

 

4.1) Principle 
 

The main use of a scanning electron microscope is to observe the morphology, especially the 

microstructure and texture of compounds. Figure 7 shows the schematic diagram of a SEM. An 

electron gun, some apertures, condenser lenses, a stigmator, deflection coils and a sample holder 

make up the microscope. Then a detector collects the signals to display the image. 

In practise, an electron gun creates an electron beam with a specific kinetic energy and scans the 

surface of the sample.  The beam interacts with the surface causing a dissipation of kinetic energy and 

leads to the creation of several signals from several types of electrons. 

• Secondary electrons: Torn from matter by incident or backscattered electrons, their energies 

are small. The main use of this kind of electrons is in the production of SEM images, especially 

to show morphology and topography. 

• Backscattered electrons: Their energies are close to that of the incident electron. Their main 

use is to illustrate compositional contrasts in multiphase samples. The brightness of the 

sample varies according to the heaviness of the atom. This phenomenon is often referenced 

as chemical contrast. 

• Diffracted backscattered electrons: used to determine crystal structure, and the orientations 

of minerals. 

• Auger electrons: Got a low energy, used for elementary surface analyses 
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• Photons X: used for elemental analysis (EDS) and continuous X-rays 

• Visible light (Visible Photon): they are at the origin of the cathodoluminescence phenomenon. 

It is based on a complex function of composition, lattice structure and superimposed strain or 

damage on the structure of the material. 

 

Figure 7: scheme of the SEM configuration 

 

4.2) Samples Preparation 
 

A Jeol JSM-7500F Field Emission Scanning Electron Microscope analysed the sample. This microscope 

is a field emission one, it allowed to obtain the same resolution as a traditional microscope (with a 

filament as electron source) but with a lower voltage of 7-9 kV instead of 20-40kV. Moreover, the 

“charge effects” are considerably reduced. The detector was configured to detect secondary and 

backscattered electrons. It will provide information on morphology and chemical contrast. Regarding 

the sample preparation and to reduce the charge effects, the samples were metalized with gold before 

being observed.  

 

Figure 8 : Photograph of a Jeol JSM-7500F microscope 
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5) X-ray Photoelectron spectroscopy (XPS) 
 

5.1) Principle 
 

X-Ray photoelectron spectrometry is a none destructive surface analysis method. It can perform 

analyses at depth from 1 to 5 or 10 nm maximum depending on the model.  It gauge the photoelectron 

spectra induced by X-ray photons. The device is made of an X-ray source, an irradiation chamber, an 

ion gun, a charge neutralizer, pumps, an electron analyzer and a detector. A simplified scheme of the 

apparatus is shown below (Fig.9). 

 

Figure 9: Scheme representing an XPS device 

In practise, a sample is subjected to X-ray radiation with a well-defined wavelength, and emits a 

photoelectron. Photoelectrons have specific energies proper to each element; thanks to this property, 

it is possible to determine the composition of the sample. To perform a qualitative analysis; the 

element must have a concentration higher than 0.1%, whereas a quantitative analysis can be 

performed if 5% of the element is present. The specificity of X-ray Photoelectron spectroscopy is that 

the ejected electrons are core electrons. These electrons have a specific and constant kinetic energy. 

As a result, the atom become an ion.  

The photoemission obeys to conservation energy’s law. The kinetic energy is measured and each 

incident X-photon has the same energy. When the X-photon interact with the atom, one part of his 

energy will be used to break the bind between the nucleus and the electron, and the other part will 

be transfer to the electron as kinetic energy. The equation written below calculate the kinetic energy.  

𝐸𝐾 = 𝐸𝐵 − ℎ𝜈 

h: Planck constant (J.s) 

ν: Radiation frequency (s-1) 

EB: Binding energy (J) 

EK: Kinetic energy (J) 

 

Unfortunately, this equation is not complete and can not completely describe the energy’s transfer in 

this phenomenon. To do so, the Fermi level need to be considered, and the equation become:  

Sample
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𝐸𝐾 = ℎ𝜈 − 𝜑 − 𝐸𝐵
𝐹 

ϕ: Work function (J) 

𝐸𝐵
𝐹: Binding energy relative to Fermi level (J) 

 

The analysis of the emitted core electron gives an information of the nature of the element whereas 

the oxidation state is given by the shifts of XPS peaks. These shifts come from the energy variations 

between the valence shell. All these characteristics are resume in the scheme below (Fig.10). 

 

Figure 10: Physic principle of XPS 

 

5.2) Measuring conditions  
 

X-Ray photoelectron spectroscopy were performed to characterize the discharge products on the 

electrode. The spectroscope is an Escalab 250 Xi from Thermo Scientific, made of a magnesium anode 

(Kα ray, hv=1253.6Ev). The experiments have been performed at room temperature and under 

reduced pressure. The samples were prepared in a glove box filled with argon and transferred to the 

spectrometer in an airtight plastic bag due to the lack of a transport module. 

 

 

Figure 11: Photograph of the XPS spectrophotometer 
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6) Porosity measurement  

 

6.1) Principle 
 

In these studies, the determination of the specific surface characterises the contact area between the 

electrolyte and the cathode. Indeed, an increase in the surface leads to a higher lithium-ion transfer 

and to better capacity. The experiments were made on powder, and the unity of the specific surface 

area is in m².g-1.  

The specific surface area is determined by physical adsorption of nitrogen on the surface of the sample 

and by calculating the amount of adsorbate gas to form a monolayer. This phenomenon occurs, when 

the surface is exposed a gas close to his condensation point. The temperature of the experiment is the 

one of liquid nitrogen. In addition, the gas is linked to the surface thanks to Van der Wall’s interactions.  

Consequently, the vapor quantity adsorbed at the solid surface depend of three main factors: the 

temperature, the pressure, and the interactions between the gas and the surface. The temperature 

being fixed, the adsorbed gas volume depends only of the pressure, and absorption isotherms V=f(P) 

could be drawn. The specific surface area can be determined directly thanks to these isotherms via 

two kind of measurements: the multi-point and the single measurements. 

 

6.2) Multi-point measurements 
 

In this method, data will be treated according to the Brunauer, Emmett and Teller (BET) adsorption 

isotherm equation.   

1

𝑉𝑎( 
𝑃0
𝑃 − 1)

=  
𝐶 − 1

𝑉𝑚𝐶
∗  

𝑃

𝑃0
+  

1

𝑉𝑚𝐶
 

 

P: pressure of absorbed gas in equilibrium with the surface (Pa) 

P0: saturated pressure of adsorbate gas (Pa) 

Va: gas volume adsorbate in STP conditions (cm³) 

Vm: volume of the monolayer adsorbed at the surface in STP conditions (cm³) 

C: constant related to the adsorption enthalpy between the gas and the surface. 

 

To measure the specific surface area, at least 3 points are recorded for a relative pressure (P/P0) from 

0.05 to 0.3. This interval is chosen because the isotherm should tend to a linear line. Regarding to the 

equation, the slope correspond to 
(𝐶−1)

𝑉𝑚𝐶
 and the intercept to  

1

𝑉𝑚𝐶 
 . Thanks to these data, Vm is 

calculated as  
1

(𝑠𝑙𝑜𝑝𝑒+𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
, and C as   

𝑠𝑙𝑜𝑝𝑒

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
+ 1.  
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Once the calculation of Vm done, the specific surface area (SBET) can be determinate thanks to the 

equation wrote below:  

𝑆𝐵𝐸𝑇 =  
𝑉𝑚𝑁𝐴𝐴𝑁

𝑉0
 

SBET: specific surface area (m².g-1) 

NA: Avogadro number (6.0221 * 1023 mol-1) 

V0: molar volume of the gas in STP conditions 

AN: occupancy area by a nitrogen molecule 

 

6.3) Single point measurement 
 

Usually, three points are needed to calculate the specific surface area, but if the BET straight line goes 

through the origin, it can be resume in one point. Consequently, the constant 1/C approached zero. 

The point chosen for the measure is the 0.3 relative pressure as it gave the best match comparing to 

the multi-point method. By this method, the equation for calculating Vm become:  

𝑉𝑚 = 𝑉𝑎(1 −
𝑃

𝑃0
) 

The single-point method could be used indirectly for a series of very similar powder samples of a given 

material for which the material constant C is assumed invariant. 

 

6.4) Samples Preparation and measuring conditions  
 

The analysis was done via an ASAP 2420 from Micromeritics, in a multi point configuration. The 

samples were degassed under vacuum at 150°C for eight hours before being analysed with nitrogen.  

After degassing, the samples are immersed in a Dewar filled with liquid nitrogen. The surface adsorbs 

the nitrogen, and its concentration in the atmosphere decreases. The samples are then removed from 

the dewar vessel, the temperature rise and the adsorbed nitrogen is released. This difference of 

nitrogen in the atmosphere is recorded and transcribed on several graphs (Isotherm, 

Adsorption/Desorption: dV/dw dV/dlog(w) dA/dw dA/dlog(w) Pore Volume ...).  

For the studies, the analyses consist in measuring the volume V of nitrogen adsorbed after put a 

defined amount of nitrogen. The specific surface area is determined after 10 measurements between 

the linear adsorption ranges from 0.05 to 0.3 for P/P0. Using V the volume of adsorbed nitrogen, the 

volume Vm is calculated using software according to the BET equation, and the total surface area of 

the sample is found. The surface area is then divided by the mass of the sample and gives the specific 

surface area. 
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Figure 12: Photograph of the physisorption device 
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7) Accumulator design 
 

 

Swagelok cells were designed during this thesis to test the synthesized cathodes. Figure 1 shows a 

schematic of the Swagelok cell used in the tests. It consists of two 316L stainless steel disks with the 

following components in their centres: a lithium disk, an electrolyte-impregnated fiberglass separator, 

the cathode, a perforated steel plate, and a spacer. The two steel discs are separated by a nylon disc 

to isolate them and prevent short circuits. Nitrile O-rings are placed on each side of this nylon disc to 

ensure gas tightness inside the assembly. Nylon pieces are also used to insulate the screws, holding 

the steel discs together. In order to ensure the connection between the cell and the analysis terminal 

two screws are embedded in the steel discs. 

In order to put the accumulator under oxygen the upper disc was drilled and valves were installed. A 

needle valve is used for the oxygen input to the system, while a simple valve is used for the oxygen 

output. After the system has been purged for 15 seconds, a balloon filled with O2 (6N) is attached to 

the inlet valve before opening it. The outlet valve remains closed at all times after purging. 

  



Annexes 

 
 

207 
 

 

 

Figure 13: Cross sectional views (a) compact and (b) exploded of the homemade Swagelok cell 

assembly used for cathode 


