
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

MDE4BBIS: A Framework to Incorporate Model-Driven Engineering in the Development
of Blockchain-Based Information Systems
Amaral de Sousa, Victor; Burnay, Corentin

Published in:
2021 3rd International Conference on Blockchain Computing and Applications, BCCA 2021

DOI:
10.1109/bcca53669.2021.9657015

Publication date:
2021

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Amaral de Sousa, V & Burnay, C 2021, MDE4BBIS: A Framework to Incorporate Model-Driven Engineering in
the Development of Blockchain-Based Information Systems. in M Alsmirat, M Aloqaily, Y Jararweh, Ö Özkasap
& Ö Gürcan (eds), 2021 3rd International Conference on Blockchain Computing and Applications, BCCA 2021.
2021 3rd International Conference on Blockchain Computing and Applications, BCCA 2021, IEEE, Tartu,
Estonia, pp. 195-200, IEEE International Conference on Blockchain Computing and Applications, Tartu, Estonia,
15/11/21. https://doi.org/10.1109/bcca53669.2021.9657015

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2022

https://doi.org/10.1109/bcca53669.2021.9657015
https://researchportal.unamur.be/en/publications/1de38f4e-a8d9-4a4f-be3b-1fca253bc093
https://doi.org/10.1109/bcca53669.2021.9657015

MDE4BBIS: A Framework to Incorporate
Model-Driven Engineering in the Development of

Blockchain-Based Information Systems
Victor Amaral de Sousa
PReCISE Research Center

Namur Digital Institute
University of Namur

Namur, Belgium
Email: victor.amaral@unamur.be

Corentin Burnay
PReCISE Research Center

Namur Digital Institute
University of Namur

Namur, Belgium
Email: corentin.burnay@unamur.be

Abstract—Model-driven engineering is a promising software
development methodology that has been investigated in the con-
text of blockchain-based information systems development. Many
approaches propose to specify and generate individual compo-
nents part of such systems’ architectures using this methodology.
In this paper, we provide a high-level overview of the different
types of components that can be generated using model-driven
engineering, and of the potential benefits that it could bring.
We organize these findings in a framework called MDE4BBIS,
which can help identifying opportunities to leverage model-driven
engineering for different architectural layers in blockchain-based
information systems, and promotes an integrated approach.

Index Terms—blockchain, model-driven engineering, model-
driven development, framework

I. INTRODUCTION

In 2008, Bitcoin was introduced as a decentralized digital
currency by Satoshi Nakamoto. The underlying technology
used to record and validate transactions in an immutable, de-
centralized and distributed manner is referred to as blockchain
technology. More recent platforms such as Ethereum added an
additional layer to support smart contracts. These are software
that can be deployed and executed on blockchain networks to
implement business logic and manage transactions to the un-
derlying database. Blockchain technology and smart contracts
offer new opportunities and disruptive potential in a wide range
of domains and industries. They are however complex and
emerging technologies, which makes their development and
the development of systems interacting with them particularly
challenging. In the remainder of this paper, we refer to such
systems as Blockchain-Based Information Systems (BBISs),
and focus on platforms supporting smart contracts.

Model-Driven Engineering (MDE) is a software develop-
ment methodology that allows generating models or executable
software code from models used as input. The use of MDE for
the development of BBISs has been investigated from different
perspectives in various studies. For instance, [1] presents an
approach to generate smart contracts handling asset registries
and business processes from Business Process Model and
Notation (BPMN) and asset registry models.

Existing work has investigated the use of MDE for the
development of specific components of BBISs (e.g. smart
contracts). However, to the best of our knowledge, there are no
studies providing an overview of the different components that
can be generated using MDE in the development of BBISs and
of the overall benefits that it can bring. Such an overview could
help organizations and researchers identifying opportunities to
leverage MDE to improve their BBISs development.

To bridge this gap, we have reviewed existing work on the
use of MDE for the development of BBISs. In particular, we
have identified the types of artefacts generated as output of
the approaches and the overall benefits that were brought by
MDE in this context (section II).

Based on this analysis, we propose a first version of the
Model-Driven Engineering for Blockchain-Based Information
Systems (MDE4BBIS) framework (section III). It depicts a
typical BBIS architecture and shows which components can
be generated using MDE for the different architectural layers.
This allows identifying opportunities to use MDE in the
development of BBISs. To illustrate the use of the framework,
we applied it to the case of B-MERODE, an approach to
generate smart contracts supporting business processes [2].

This research allowed the identification of a number of
future research directions. These concerns are discussed in
section IV, which is followed by the general conclusions of
the paper in section V.

II. THE ROLE OF MDE IN THE DEVELOPMENT OF BBISS

The idea of using MDE in the development of BBISs is not
new and has been proposed and applied in different areas. In
this section, we provide an overview and summary of existing
approaches and doing so, identify the types of artefacts that
are generated as output of the MDE process and the resulting
benefits. The results are summarized in Table I.

A. Smart Contracts

A first domain that is worth mentioning is Business Pro-
cess Management (BPM). Blockchain technology and smart

contracts offer a number of opportunities and challenges for
BPM, including the possibility to enforce, verify and automate
the execution of business processes [3]. Solutions have been
developed following these ideas, such as [1], [2], [4], [5]. In
these contributions, new Domain-Specific Languages (DSLs)
or well-recognized modeling languages such as Unified Mod-
eling Language (UML) and BPMN are used (as input) for the
generation of smart contracts that will enforce the modeled
processes, and/or allow their monitoring and auditing.

The solutions discussed so far typically focus, in varying
degrees, on the data being used in the process, on the parties
involved in the process and on the sequence of activities that
need to be executed. However, they put less emphasis on
the automation of complex activities (part of such processes)
using smart contracts. This is where other contributions come
into play. For instance, [6] proposes to generate (parts of)
smart contracts to enforce institutional rules that are captured
using a human-readable format. Other examples include [7]
which proposes to generate smart contracts enforcing rules
specified in regulatory documents based on a format that
allows to formalize the rules, along with domain knowledge
and ontologies. Ontologies are also used in [8], which presents
an executable formalization of the Resource-Event-Agent on-
tology that could be used to support economic transactions
on blockchain-based systems. Besides this, [9] proposes to
generate smart contracts acting as digital twins for the use of
and interactions among cyper-physical system elements. A last
example closer to the BPM discipline is [10], which proposes
to generate smart contracts implementing decisions based on
models created using the Decision Modeling Notation (DMN).

Overall, existing approaches demonstrate that models can
be used to represent business logic (in various forms) and
to generate smart contracts code implementing it. This can
facilitate the specification and understanding of smart contracts
and make them accessible to a broader audience [2], [4]–
[6], [11]. This is a valuable element considering that do-
main experts and business analysts play a key role in the
smart contracts development process. Also, considering that
blockchain solutions typically involve multiple collaborating
parties, if agreements are to be represented as smart contracts,
it is key for all engaging entities to understand the contractual
obligations that are implemented as smart contracts [6].

Once the business requirements have been described and
modeled, they must be translated into smart contracts code.
This task must be carried on carefully, and it is key to ensure
that the implemented smart contracts are correct before they
are deployed [2], [5], [9]. In this regard, using MDE to
generate smart contracts can bring benefits in multiple areas.

First, before generating code based on models, the models
themselves can be verified, and checking models is easier than
checking code [5]. In some cases, verification can be done
formally and automatically (e.g [2]). Once the models are
checked, they can be used as basis for the implementation
of the smart contracts. It is critical to have high-quality and
correct implementations, especially considering the immutable
character of smart contracts. A second benefit of MDE is that it

can implement best practices for the smart contracts code and
thereby reduce programming errors, other defects and their
related costs [2], [5]–[7]. As a third benefit, it can also be
used to optimize the resources that are required for smart
contracts to run on blockchain infrastructures [12], which is a
key consideration on platforms on which fees have to be paid
depending upon resource utilization (e.g. Ethereum). On top
of that, MDE in this context can also help avoiding common
errors and ensuring protection against known attacks and
vulnerabilities [11]. It can also be used to facilitate simulation
of smart contracts, to ensure not only that their implementation
is correct, but that the business logic is correctly specified,
and that the business requirements are met [4], [5]. Finally,
MDE facilitates reusability, which helps limiting redundant
development effort [7]. This is particularly relevant consider-
ing the lack of people with adequate knowledge and skills,
and the steep learning curve to follow for smart contracts and
blockchain technology, as mentioned in [2].

B. Deployment Artefacts and Off-Chain Components

In other contributions, MDE is not used for the generation of
smart contracts, but for other components of a BBIS. Among
others, [13] proposed an approach to generate the configuration
files required for the deployment of blockchain platforms
based on models capturing the essence of a deployment design
(e.g. blockchain platform, consensus algorithm, number of
nodes). Other approaches propose the generation of off-chain
components allowing interaction with smart contracts and/or
the generation of testing code or testing applications for
(generated) smart contracts (e.g. [4]).

Smart contracts play an essential role in most BBISs.
However, they require a running infrastructure for their de-
ployment and execution, and connectors together with end-
user applications for their use. By generating these components
using MDE, we can further accelerate and facilitate the testing
and deployment of BBISs as less manual and technical work
is required for each iteration.

In particular, there is a lack of modeling means for the
deployment of BBISs, that [13] addresses. This is particularly
relevant in the blockchain context as there are multiple de-
ployment environments, and as multiple blockchain platforms
are sometimes compared for the deployment of a solution.
Using MDE to generate deployment files from deployment
models could help targeting multiple platforms while ensuring
consistency between the deployment models and the actual
deployment [13].

TABLE I
ROLE OF MDE IN THE DEVELOPMENT OF BBISS: SUMMARY

Input Model Type Generated Artefacts Studies
Technical design model Deployment artefacts [13], [14]
Business logic model Smart contracts [2], [4]–[7], [9]
Business logic model Blockchain connectors [4], [11], [13]
Business logic model End-user applications [4]

Complementary to this approach, creating blockchain net-
work technical design models as input for the generation of
network simulators can facilitate the testing and evaluation
of various (possibly new) designs [14]. It can also facilitate
sharing and reusability of design models, along with their
evaluation results in the research community [14]. Finally,
it will allow cost- and time-effective study of blockchain
networks in various operational scenarios [14].

Using models as input to generate (parts of) BBISs using
MDE allows early and easier (possibly automated) testing and
prototyping, which, in turn, improves software quality as well
as cost- and time-efficiency. By making BBISs development
and testing faster, cheaper, easier and more accessible, MDE
can help foster adoption of blockchain technology [2], [5], [6].

III. THE MDE4BBIS FRAMEWORK

In the previous section, the role of MDE in the development
of BBISs has been discussed, and 3 groups of artefacts were
identified: artefacts for (technical) blockchain deployment,
smart contracts and off-chain components.

On this basis, we propose a first version of the Model-
Driven Engineering for Blockchain-Based Information Sys-
tems (MDE4BBIS) framework, which shows how MDE ap-
proaches could be integrated for the specification and imple-
mentation of end-to-end BBISs.

Such a framework could help organizations identifying
opportunities to further integrate MDE practices in their BBISs
development initiatives to leverage its benefits. While the
framework can suggest opportunities, these would still need
to be evaluated separately, considering the specificities of the
application context and its particular challenges.

A. Framework Description

The framework that we propose is depicted on Fig. 1. Its
structure is derived from [15]. The authors present 3 differ-
ent model layers, with automated transformations between
them. The first layer that we consider consists in platform-
independent models representing analysis and design of the
system. The second layer is made of platform-specific models
that are described as more detailed design models. Finally,
the last layer is made of implementation and runtime models
(executable code being such a model). Based on this, we
organize the framework around a 3-steps process: (1) the
modeling that consists in creating the platform-independent
models, (2) transformation of these models into platform-
specific models and finally, (3) the execution of functional
components (referring to the implementation-specific models).

The first step consists in capturing various requirements
(possibly relating to various components of BBISs) in a (set
of) model(s) that are platform-independent. In section II, we
discussed different types of models. Business logic models (A)
help capturing business-oriented requirements, in two main
forms: process models (A*) or activity models (A**). The
former allow capturing details about different components
of business processes (e.g. data structures and/or activity
sequences) while the latter focus on the representation of

specific activities that can be part of such processes (e.g. a
specific decision that is part of a process). We assume that
the data models are (either implicitly of explicitly) described
as part of the process and activity models. Complementary
to business logic models, technical design models (B) allow
capturing requirements related to the blockchain (technical)
infrastructure (e.g. number of nodes and consensus algorithm).
We chose to classify such models as platform-independent,
since they are not always targeting one specific blockchain
platform, but rather allow building, configuring and deploying
a variety of such platforms. In case where the goal is to capture
the platform requirements by focusing on one specific case
(e.g. Corda or Hyperledger Fabric), then the models capturing
these details should be considered as platform-specific.

Once a first set of models is available, it can be trans-
formed if necessary into other models, that can be platform-
independent or platform-specific. Finally, the intermediary (or
base models) can be transformed into functional components
of the BBIS being designed. The intermediary models that
are used along with the model-to-model or model-to-code
transformation rules are out of the scope of the present paper.

In Fig. 1, we depict typical components present in the
architecture of a BBIS. First we have a set of off-chain
components that include end-user applications (1) and the
blockchain connector (2), allowing interaction between end-
user applications and smart contracts (3). The smart contracts
are deployed on a running blockchain infrastructure (4), and
both are grouped as on-chain components.

In the framework, we identified at a conceptual level the
types of models can be used to generate different components
in the BBIS architecture. From business logic models, existing
approaches generate (parts of) end-user applications (A1),
blockchain connectors (A2) and smart contracts (A3). Finally,
from technical design models, it is possible to generate running
blockchain infrastructures (B4).

While these possibilities offer a number of potential bene-
fits, the integration of multiple approaches is seldom discussed
in existing work, but could further increase the benefits,
considering the relationships and dependencies between the el-
ements considered in the traditional architecture. Starting from
business logic models, different components can be generated.
However, without integration between the approaches, it is
likely that the models used for the different artefacts will be
expressed in different, non-integrated languages. Furthermore,
it is also likely that additional (manual) effort will be required
to connect the different components together. In this context,
using a language that allows, using different views, to model
and generate implementations for multiple components that
are integrated together, could further increase the benefits of
the MDE approach.

Similarly, as suggested in [13], multiple benefits could
be drawn from the integration of MDE approaches for the
deployment of blockchain infrastructures and the generation
of smart contracts. Indeed, the two can sometimes be linked
together. For instance, when modeling cross-organizational
business processes to be supported by blockchain technology,

1. End-User Application

2. Blockchain Connector

3. Smart Contract

4. Blockchain Infrastructure

O
ff-Chain

O
n-ChainB. Blockchain Technical

Design Model

A. Business
Logic Model

A*. Process
Model

A**. Activity
Model

Intermediary
Model

Intermediary
Model

A1

A2

A3

B4

TransformationModeling Running

Platform-Independent Model Platform-Specific Model Functional System Component
Partially Covered

Not Covered

Covered

Legend
(only for framework demonstration)

Fig. 1. MDE4BBIS Framework Overview

it is common to identify the different types of participants in
the business collaboration (e.g. [2]). This could be used as
input to define certain network topologies for the underlying
blockchain architecture (e.g. x validation nodes by participant).
Overall, the more components can be described using appro-
priate and integrated models, the easier it will be to create
and maintain these models and to generate blockchain-based
solutions as efficiently and easily as possible.

B. Framework Demonstration

In [2], we propose a conceptual (and graphical) modeling
language, B-MERODE, that can be used to specify blockchain-
supported cross-organizational business processes. The lan-
guage follows a consistency by construction approach for the
models, for which a number of properties can be formally
and automatically verified. In the proposed framework, B-
MERODE allows to create platform-independent business
logic models that are then verified and transformed into
smart contracts (A3). At the moment, the smart contracts are
generated to run on the Hyperledger Fabric platform and all
the generated smart contracts offer a common interface.

In the remainder of this section, we apply the MDE4BBIS
framework to the case of B-MERODE to demonstrate how it
can be used (see Fig. 1 for a high-level representation).

While B-MERODE allows modeling overall processes and
supporting their execution on the blockchain, complex deci-
sions that could be automated through smart contracts cannot
always be represented using the available constructs. There-
fore, it would be interesting to evaluate to which extent activity
models (A**) could be incorporated in the approach to allow
the execution of business processes and the automation of
particular activities (e.g. using DMN models).

Once smart contracts have been generated, they still need
to be deployed onto running blockchain infrastructures, which
must be configured and set up manually. By using tech-
nical design models, it would be possible to generate the
configuration files that are required, and to automatically
deploy running infrastructures (B4). Furthermore, in a context
where blockchain is used to support business processes, some
elements that are needed in the infrastructure could be defined
based on the existing models that are used in B-MERODE.

For instance, when describing a process using this language,
the different types of participants need to be identified, as
they have different permissions. Based on this, it would be
possible to generate deployment and configuration files with,
for instance, a certain number of nodes per participant (or
participant type), and an initial number of participants of each
type. This would further facilitate the deployment and testing
of solutions generated using B-MERODE, which currently
requires a manual setup of the infrastructure.

Assuming that the technical infrastructure and smart con-
tracts are available, we still need to test the system and to
develop end-user applications and connectors for them to
use the smart contracts. In the current state, B-MERODE
does not generate end-user applications (A1) or blockchain
connectors (A2). With the information available in the models,
and considering how generated smart contracts are structured,
it would be possible to either use template-based blockchain
connectors, or to generate connectors that would allow in-
voking smart contracts. Regarding end-user applications, it is
worth mentioning that B-MERODE is based on MERODE
[16], an enterprise information systems engineering method
that is not originally focused on blockchain technology. Using
the MERODE language and tools, it is possible to generate
working application prototypes [16], testing suites [17] and
user interfaces [18]. However, not all of these possibilities
have yet been incorporated for the generation of blockchain-
based information systems. By performing such an integration,
it would be possible, starting from a set of models, to generate
smart contracts and end-user applications allowing interaction
with the generated smart contracts.

By integrating the different perspectives (A1, A2, A3, B4),
it would be possible to generate end-to-end working prototypes
of BBISs, which would allow fully leveraging the benefits of
a MDE approach. It would also be possible to deploy a same
set of smart contracts on various blockchain network technical
designs to have design-specific evaluations.

IV. DISCUSSION

In this paper, we reviewed the literature to identify the
role that MDE could play in the development of BBISs, and
the benefits that it could bring. To do so, we did not follow

a systematic procedure. Therefore, we cannot claim that the
framework is exhaustive. It provides however a first overview
and could be used as a starting point for further and more
systematic research.

The discussion held in this paper is kept at a conceptual
and high-level to allow the identification of general research
directions, that may either be domain-specific or more generic.
For instance, questions such as which components of business
processes should be captured and how they can be translated
into smart contracts are relevant from a BPM perspective,
and would have specific answers. Questions such as how to
generate blockchain network deployment files from models are
however more generic considerations. In both cases, answering
these questions in various domains would constitute a lead for
further research.

In this paper, we have adopted a single-chain view of BBISs.
However, as mentioned in [19], more and more solutions
are relying on multiple blockchain platforms as part of their
infrastructure. MDE can also bring benefits in this area.

An additional consideration is the fact that this paper offers
rather positive view on MDE as a solution to solve multiple
challenges in the development of BBISs. However, incorpo-
rating MDE in the development process brings on a number
of issues and challenges on its own, which are not discussed
in this paper. Studies on the challenges in the incorporation
of MDE in specific domains or for particular components also
constitute a general lead for further research.

Finally, in the presentation of the framework, we discussed
the interactions and integration between models at different
architectural levels. It would be interesting to investigate such
interactions and integration across and within various domains.
For instance, [6] proposes to generate elements of smart
contracts to enforce institutional agreements. The verification
and enforcement of such agreements, on a more global level,
is embedded in business processes involving multiple parties.
Investigating how this approach could be combined with a
solution generating smart contracts to execute business pro-
cesses and automate particular process activities could yield
interesting results.

V. CONCLUSIONS

In this paper, we have provided a first overview of the role
that MDE could play in the development of BBISs, and of the
potential benefits that it could bring.

Based on this, we proposed a first attempt to structure and
identify opportunities to use MDE in the development process
in the form of a framework called MDE4BBIS. This frame-
work identifies the elements of a typical BBIS architecture
that can be generated from different sets of models. It also
discusses the interest of integrating different models together
in other to further leverage the benefits that MDE can bring
at different individual levels. A high-level example of how the
framework can be used was presented as demonstration.

Overall, MDE can facilitate the understanding, specification,
implementation, testing, validation and deployment of BBISs,
while being more cost- and time-efficient than fully manual

development, and leading to higher-quality solutions. Such
benefits would ultimately foster adoption of blockchain tech-
nology and lead to more robust systems. Integrating MDE at
multiple architectural levels in the development process would
help further leveraging the benefits of MDE.

As further research leads, we propose to use this study as
a starting point for a systematic research in order to have a
more comprehensive and representative framework. We also
propose to assess the benefits, and in particular the challenges
(that were not discussed in the present paper) of using MDE at
different architectural levels, in specific domains. It would also
be interesting to investigate how research in different domains
could be integrated in a broader MDE perspective. Finally, this
study was conducted with a single-chain view, while modern
multi-chain solutions might also benefit from MDE.

REFERENCES

[1] Q. Lu, A. B. Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu, M. Sta-
ples, L. Zhu, and R. Jeffery, “Integrated model-driven engineering of
blockchain applications for business processes and asset management,”
Software: Practice and Experience, vol. 51, no. 5, pp. 1059–1079, 2021.

[2] V. Amaral de Sousa, C. Burnay, and M. Snoeck, “B-merode: A model-
driven engineering and artifact-centric approach to generate blockchain-
based information systems,” in Advanced Information Systems Engineer-
ing, S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, Eds. Cham:
Springer International Publishing, 2020, pp. 117–133.

[3] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas,
F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal,
L. Garcı́a-Bañuelos, G. Governatori, R. Hull, M. L. Rosa, H. Leopold,
F. Leymann, J. Recker, M. Reichert, H. A. Reijers, S. Rinderle-Ma,
A. Solti, M. Rosemann, S. Schulte, M. P. Singh, T. Slaats, M. Staples,
B. Weber, M. Weidlich, M. Weske, X. Xu, and L. Zhu, “Blockchains for
Business Process Management - Challenges and Opportunities,” ACM
Transactions on Management Information Systems (TMIS), vol. 9, no. 1,
pp. 1–16, 2018.

[4] M. Skotnica, J. Klicpera, and R. Pergl, “Towards model-driven smart
contract systems - code generation and improving expressivity of smart
contract modeling,” Czech Technical University, Tech. Rep., 2020.

[5] N. Sánchez-Gómez, L. Morales-Trujillo, and J. Torres-Valderrama, “To-
wards an approach for applying early testing to smart contracts,” in
WEBIST 2019 - Proceedings of the 15th International Conference on
Web Information Systems and Technologies, 2019, pp. 445–453.

[6] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” in 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W),
2016, pp. 210–215.

[7] O. Choudhury, M. Dhuliawala;, N. Fay, N. Rudolph, I. Sylla, N. Fairoza,
D. Gruen, and A. Das, “Auto-translation of Regulatory Documents into
Smart Contracts,” in IEEE Blockchain Initiative, 9 2018, pp. 1–5.

[8] W. P. R. Laurier, S. Horiuchi, and M. Snoeck, “An executable axioma-
tization of the REA2 ontology,” Journal of Information Systems, 2021.

[9] P. Garamvölgyi, I. Kocsis, B. Gehl, and A. Klenik, “Towards Model-
Driven Engineering of Smart Contracts for Cyber-Physical Systems,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2018, pp. 134–139.

[10] S. Haarmann, K. Batoulis, A. Nikaj, and M. Weske, “DMN Decision
Execution on the Ethereum Blockchain,” in Advanced Information
Systems Engineering, 2018, pp. 327–341.

[11] X. Xu, I. Weber, M. Staples, and I. Weber, Architecture for Blockchain
Applications. Springer, Cam, 2019.

[12] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Op-
timized execution of business processes on blockchain,” in Business
Process Management, J. Carmona, G. Engels, and A. Kumar, Eds.
Cham: Springer International Publishing, 2017, pp. 130–146.

[13] T. Górski and J. Bednarski, “Applying Model-Driven Engineering to
Distributed Ledger Deployment,” IEEE Access, vol. 8, pp. 118 245–
118 261, 2020.

[14] S. Liaskos, T. Anand, and N. Alimohammadi, “Architecting blockchain
network simulators: a model-driven perspective,” in 2020 IEEE Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC), vol. 00,
2020, pp. 1–3.

[15] A. Metzger, “Introduction,” in Model-Driven Software Development,
S. Beydeda, M. Book, and V. Gruhn, Eds. Berlin, Heidelberg: Springer,
2005, ch. 1, pp. 1–16.

[16] M. Snoeck, Enterprise Information Systems Engineering, The MERODE
Approach. Cham: Springer International Publishing, 2014.

[17] B. Marı́n, S. Alarcón, G. Giachetti, and M. Snoeck, “Tescav: An
approach for learning model-based testing and coverage in practice,” in
Research Challenges in Information Science, F. Dalpiaz, J. Zdravkovic,
and P. Loucopoulos, Eds. Cham: Springer International Publishing,
2020, pp. 302–317.

[18] J. Ruiz, G. Sedrakyan, and M. Snoeck, “Generating user interface
from conceptual, presentation and user models with jmermaid in a
learning approach,” in Proceedings of the XVI International Conference
on Human Computer Interaction, ser. Interacción ’15. New York, NY,
USA: Association for Computing Machinery, 2015.

[19] G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov, “Smart Contract Invocation Protocol (SCIP): A Protocol
for the Uniform Integration of Heterogeneous Blockchain Smart Con-
tracts,” in Advanced Information Systems Engineering. Cham: Springer
International Publishing, 2020, pp. 134–149.

	Introduction
	The Role of MDE in the development of BBISs
	Smart Contracts
	Deployment Artefacts and Off-Chain Components

	The MDE4BBIS Framework
	Framework Description
	Framework Demonstration

	Discussion
	Conclusions
	References

