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Conceptual Modeling of Hybrid Polystores

Maxime Gobert B, Loup Meurice, and Anthony Cleve

Namur Digital Institute, University of Namur, Belgium
{firstname.lastname}@unamur.be

Abstract. An increasing number of organisations rely on NoSQL tech-
nologies to manage their mission-critical data. However, those technolo-
gies were not intended to replace relational database management sys-
tems, but rather to complement them. Hence the recent emergence of
heterogeneous database architectures, commonly called hybrid polystores,
that rely on a combination of several, possibly overlapping relational and
NoSQL databases. Unfortunately, there is still a lack of models, methods
and tools for data modeling and manipulation in such architectures. With
the aim to fill this gap, we introduce HyDRa, a conceptual framework to
design and manipulate hybrid polystores. We present the HyDRa textual
modeling language allowing one to specify (1) the conceptual schema of a
polystore, (2) the physical schemas of each of its databases, and (3) a set
of mapping rules to express possibly complex correspondences between
the conceptual schema elements and the physical databases.

Keywords: Hybrid polystores · Conceptual modeling · Framework

1 Introduction

NoSQL technologies have been around for more than a decade, and a large num-
ber of organisations are currently using them to store and manipulate mission-
critical data. Despite their increasing popularity it becomes clear that NoSQL
backends will not replace traditional relational technologies. Each data model
has its own benefits and drawbacks, and is most suitable for specific use cases.
This may encourage developers to build hybrid data-intensive systems, also called
polystores [8, 23, 24]. Such systems rely on a combination of multiple databases
of different models, relational or NoSQL, each one chosen for its best features.

However, NoSQL database modeling is not yet as stable and mature as stan-
dard relational database design. In particular, NoSQL data representation does
not often rely on a unique explicit schema. Even within the same paradigm,
translating conceptual schema elements into physical data structures can be
done in various different ways, depending on the anticipated usage of the data.
Existing design techniques are either based on best practices [1–4] or target single
data models [18, 21]. Some authors proposed to unify the NoSQL data models
into a generic modeling framework [6]. However, since NoSQL design choices
may greatly impact performance [9], it is important that the designer keeps full
control on how data is stored physically, which is not always possible with a
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generic data model. Furthermore, there is still a lack of models, methods, and
tools supporting the design and querying of hybrid polystores, where relational
and NoSQL databases are used in combination.

As a step to fill this gap, we introduce HyDRa (Hybrid Data Representation
and Access), an integrated framework for conceptual modeling and manipulation
of hybrid polystores. We focus on the HyDRa modeling language, as depicted in
Figure 1, allowing one to specify the conceptual schema of a polystore, according
to the Entity-Relationship model, as well as the physical schema of each of its
underlying databases. HyDRa currently supports the relational model and the
four most popular NoSQL data models, i.e., document, key-value, graph and
column-based representations. The language enables the definition of mapping
rules, to express correspondences between the conceptual schema elements and
their physical database counterparts. Those rules enable possibly complex phys-
ical design choices, such as data structure split, data instance partitioning, data
heterogeneity and data duplication.

The remaining of the paper is structured as follows. Section 2 summarizes
the state-of-the-art approaches for NoSQL and hybrid polystore design. Sec-
tion 3 presents and illustrates the HyDRa modeling language. Section 4 gives
concluding remarks and anticipates future work.

Hybrid polystore

models

HyDRa Polystore Schema

Conceptual 
Schema

Physical 
Schemas represent

Mapping 
Rules

Fig. 1. Overview of the HyDRa modeling languages

2 Related Work

Database design for NoSQL applications is still an emerging research area.
Current state-of-the-art approaches mainly consist of technology, data model-
specific [18,20,21] design recommandations or best practices [1–4]. Roy-Hubara
et al [22] made a systematic literature review on NoSQL database design. The
SOS platform [6] provides a common interface to multiple NoSQL systems. It re-
lies on a generic data model and provides automatic translations towards native
backend implementations. BigDAWG [12] is a polystore implementation focus-
ing on query optimization and data placement. NoAM [9] proposes a uniform
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way to design NoSQL systems by abstracting the common features of each data
model and by designing an aggregate identification step. Cabibbo [10] develops
a JPA-based object mapper for multiple NoSQL backends, that enables the dif-
ferent data representation strategies presented in [9]. Herrero et al. [17] define
a 3-step top-down design method from a conceptual model to physical struc-
tures. The logical schema is based on the data types specified in the conceptual
schema, or on the build graph of dependent entities. The logical schemas are
automatically proposed with optimizing performance as main objective. Bjeladi-
novic [8] presents an approach to design hybrid SQL/NoSQL databases. Based
on database measures and requirements, the user is directed towards either a
relational database design or to the NoAM approach.

The TyphonML model [7], which partly inspired HyDRa, also supports con-
ceptual modeling of hybrid polystores, but imposes implicit restrictions on the
way conceptual elements are physically translated in each different native back-
end. In other words, TyphonML does not leave developers the freedom to ex-
plicitly define the mappings between conceptual and physical schema elements
of the polystore, which is at the core of HyDRa.

The approaches discussed above are either (1) design methods for partic-
ular data models, (2) abstraction-based approaches to conceptual modeling of
NoSQL systems, or (3) polystore modeling approaches with limited control over
the conceptual-to-physical mappings and no support to express cross-database
overlapping within the polystore. In this paper, we propose an approach to hybrid
polystore modeling that (1) provides users with a full and fine-grained control
over the mapping between the conceptual schema and the underlying physical
data structures, and (2) supports overlapping between the polystore databases.

3 The HyDRa Polystore Modeling Language

HyDRa polystore model language is composed of five main parts, each having
its specific purpose. Figure 2 provides an abstract syntax of those main parts.
Conceptual schema specifies the domain-specific data model of the complete
system. Physical schema describes the data structures in the underlying physical
databases.Mapping rules is where the mapping rules between conceptual schema
elements and physical schema elements are expressed. Databases declares the
physical databases and their respective configurations.

〈Schema〉 |= 〈ConceptualSchema〉〈PhysicalSchema*〉
〈Mapping Rules〉〈Databases〉

〈PhysicalSchema〉 |= 〈RelationalSchema〉 | 〈DocumentSchema〉 |
〈KeyValueSchema〉 | 〈GraphSchema〉 | 〈ColumnSchema〉

Fig. 2. Abstract syntax of HyDRa language main components
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The remaining of this section illustrates the HyDRa language, based on
the example polystore schema of Figure 3. This schema, based on the IMDB
dataset1, involves three database back-ends: a key-value, a document and a re-
lational database.

3.1 Conceptual schema

The conceptual schema represents the entities the polystore manipulates. As in
standard database engineering methods, during conceptual design, the user spec-
ifies the domain model [11] based on Entity-Relationship model constructions.
The domain is described by means of entity types, attributes, binary relationship
types, conceptual identifiers, n-ary relationship types or relationship types with
attributes. The conceptual schema of our IMDB example is declared in lines 1-36
in Figure 3. Entity types have attributes and declare one of several identifier(s)
in their identifier section. Next we specify the relationship types and the roles
played by the entity types within them. Relationship types can be binary or
n-ary, and can also have attributes.

3.2 Physical schemas

The physical schema section of our model lets the designer specify how data is
actually persisted in native databases. We support the relational data model as
well as the four most popular NoSQL data models [16], namely document, key-
value, column wide and graph-based representations. One of the key advantage of
the physical section is the ability to represent each design technique of each data
model, by providing the designer with full control on physical data structures.
In our running example, this section spreads from line 38 to line 98. Below,
we illustrate the physical data models supported by HyDRa, and how common
design strategies fit in this language.

As Physical Schemas may represent five different types of data models, we
had to define common terms across them to refer to data structures. Below
we define the chosen terms of Physical Structures, Physical Fields as well as
References allowing cross-database referencing.

A Physical Field is the term we use for data units in the corresponding
technology-specific databases: Columns in relational, Fields in document, Prop-
erties in graph, Columns in column-oriented and Value Properties in key-value
data models. For NoSQL complex data types such as arrays or objects fields, we
use a different word by calling them ComplexFields.

A Physical Structure is an abstraction of technology-specific structures able
to receive multiple data units. They contain multiple Physical Fields. Figure 4
describes the specification of this structure in our language. Typical structures
include Table in a relational database, Collection in document database, and
Tablecolumn in column oriented databases. For graph databases Nodes as well as
Edges are considered physical structures. For key-value databases, we introduce
1 https://www.imdb.com/interfaces/

https://www.imdb.com/interfaces/
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1 conceptual schema cs{
2 entity type Actor {
3 id : string ,
4 fullName : string ,
5 yearOfBirth : int ,
6 yearOfDeath : int
7 identifier { id }
8 }
9 entity type Director {

10 id : string ,
11 firstName : string ,
12 lastName : string ,
13 yearOfBirth : int ,
14 yearOfDeath : int
15 identifier { id }
16 }
17 entity type Movie {
18 id : string ,
19 primaryTitle : string ,
20 originalTitle : string ,
21 isAdult : bool ,
22 startYear : int ,
23 runtimeMinutes : int ,
24 averageRating : string ,
25 numVotes : int
26 identifier { id }
27 }
28 relationship type movieDirector {
29 directed_movie [0-N]: Movie ,
30 director [0-N] : Director
31 }
32 relationship type movieActor {
33 character [0-N]: Actor ,
34 movie [0-N] : Movie
35 }
36 }
37

38 physical schemas {
39

40 key value schema movieRedis :
myredis {

41 kvpairs movieKV {
42 key : " movie :"[id],
43 value : attr hash{
44 title ,
45 originalTitle ,
46 isAdult ,
47 startYear ,
48 runtimeMinutes
49 }
50 }
51 }

52

53 document schema IMDB_Mongo : mymongo
, mymongo2 {

54

55 collection actorCollection {
56 fields {
57 id ,
58 name :[ fullname ],
59 birthyear ,
60 deathyear ,
61 movies [0-N]{
62 id ,
63 title ,
64 rating [1]{
65 rate: [rate] "/10" ,
66 numberofvotes
67 }
68 }
69 }
70 }
71 }
72

73 relational schema myRelSchema {
74

75 table directorTable {
76 columns {
77 id ,
78 fullname :
79 [ firstname ]" "[ lastname ],
80 birth ,
81 death
82 }
83 }
84

85 table directed {
86 columns {
87 director_id ,
88 movie_id
89 }
90

91 references {
92 directed_by : director_id ->

directorTable .id
93 has_directed : movie_id ->

movieRedis . movieKV .id
94 movie_info : movie_id ->

IMDB_Mongo . actorCollection . movies .
id

95 }
96 }
97 }
98 }

99

100 mapping rules {
101 cs. Actor (id ,fullName , yearOfBirth , yearOfDeath ) -> IMDB_Mongo . actorCollection

(id ,fullname ,birthyear , deathyear ) ,
102 cs. movieActor .character -> IMDB_Mongo . actorCollection . movies () ,
103 cs. Director (id ,firstName ,lastName , yearOfBirth , yearOfDeath ) -> myRelSchema .

directorTable (id ,firstname ,lastname ,birth , death ),
104 cs. movieDirector . director -> myRelSchema . directed . directed_by ,
105 cs. movieDirector . directed_movie -> myRelSchema . directed . has_directed ,
106 cs. movieDirector . directed_movie -> myRelSchema . directed . movie_info ,
107 cs. Movie (id , primaryTitle ) -> IMDB_Mongo . actorCollection . movies (id , title ) ,
108 cs. Movie ( averageRating , numVotes ) -> IMDB_Mongo . actorCollection . movies .

rating (rate , numberofvotes ) ,
109 cs. Movie (id) -> movieRedis . movieKV (id) ,
110 cs. Movie ( primaryTitle , originalTitle ,isAdult ,startYear , runtimeMinutes ) ->

movieRedis . movieKV .attr(title , originalTitle ,isAdult ,startYear ,
runtimeMinutes )

111 }

Fig. 3. Example of a HyDRa schema, conceptual, physical and mapping rules section.
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the KeyValuePair concept. It reflects a set of key-value pairs sharing the same
pattern of keys and values (see lines 40-51 of Figure 3).

A Reference block expresses a link between two physical fields of physical
structures. In a polystore, a source field could reference a target field declared in a
different database, and relying on a different data model. Therefore HyDRa offers
the possibility to express cross-references between heterogeneous databases.

For instance, lines 91-95 in Figure 3 declare three references. Reference di-
rected_by indicates that physical field director_id values are also stored in the
id field of directedTable. This reference is the expression of a foreign key of the
many-to-many table directed. The other column of this join table, movie_id, is a
multiple hybrid reference, as has_directed targets id in the movieRedis key-value
database and movie_info targets document database IMDB_Mongo.

Relational schemas Relational schemas are composed of tables and columns.
Columns may only contain simple values. Lines 73-97 show the declaration of a
relational schema structures. Following tables declaration are the references dec-
laration. Source fields of the declared references are part of the current relational
schema, however target fields may be in a different structure.

Document schemas Document schemas follow a JSON-like data model. It
consists of key-value pairs organized by documents, each document field may
in turn be a document, allowing embedded structures at certain levels of depth.
Available design methods for document databases are described by MongoDB [1],
the leading technology for this data model. Embedding data structures is referred
to as one to few. Lines 53-71 show a document database schema declaration.
Lines 61-68 show how we can declare such a nested structure, using complex field
movies as an array. If, for design purposes or for technical reasons, embedding
documents is not possible, the user can choose to use referencing values across
collections of documents, this is referred to one to many design. Our model
allows such constructions using reference blocks, as described above.

Key-Value schemas Key-value schemas simply consist of key-value pairs, with
no constructs allowing references between data instances. Querying data in this
model is done only using put and get operations on the key part. This apparent
simplicity may lead to possibly complex schema design problems when deciding
how to organize the data. One needs to carefully design and manage the chosen
key patterns. Design methods [5, 21] and best practices [4] identified two main
patterns. The first one, called Key value per field, creates a key-value pair for
each atomic field. The key is composed of different elements identifying a par-
ticular atomic instance. Examples of key patterns for this design includes EN-
TITY:[identifier]:FIELD. It results in data such as MOVIE:tt0118715:TITLE
as key, and a binary object The Big Lebowski as value. The second design type,
Key Value per object, uses complex data types instead of simple atomic value,
the value contains now multiple fields. This allows the grouping of multiple fields
under the same key. Lines 40-51 illustrate this pattern.
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Column-oriented schemas Column-oriented schemas rely on row identifiers
(rowkey), and each row is composed of groups of key-value pairs (column fami-
lies). Design methods identified in [2,3], such as Row per object representation or
Single cell per object are also supported in the HyDRa language. We refer to the
HyDRa companion website [15] for an illustrative example of a column-based
schema.

Graph schemas Graph schemas represent data as Property graphs. The data
model is composed of Nodes and Edges that may contain Properties. The com-
mon way to design graph databases is described by the leading technology of
graph databases, Neo4j [19]. Nodes usually represent entities and relationships
between data are expressed using edges. Again we refer to our companion web-
site [15] for an illustrative example.

3.3 Mapping Rules

The mapping rules section of an HyDRa polystore schema specifies links be-
tween the conceptual schema elements and the physical structures. Exploiting
the possibly hybrid nature of those mapping rules, the designer can specify com-
plex constructions such as data structure split, data instance partitioning, data
heterogeneity and data duplication (see Section 3.5).

Figure 4 exposes the abstract syntax of mapping rules types and of their
components. The left-hand side of the rule (before the arrow) is the conceptual
component and the right-hand side corresponds to the physical component. Two
types of mapping rules are supported: Entity mapping rules and Role mapping
rules. Mapping rules are in lines 100-111 in the polystore schema of Figure 3.

〈PhysicalStructure〉 |= 〈Table〉 | 〈Collection〉 | 〈TableColumn〉 |
〈Node〉 | 〈Edge〉 | 〈KeyValuePair〉

〈EntityMappingRule〉 |= 〈EntityType〉(〈Attribute+〉)→
〈PhysicalStructure〉(〈PhysicalField+〉)

〈RoleMappingRule〉 |= 〈Role〉→〈Reference〉 | 〈ComplexField〉

Fig. 4. Abstract syntax of HyDRa structures and mapping rules

EntityMappingRule is a type of rule used to map Conceptual Entity types to
Physical Structures. A conceptual entity type can be mapped to one or more
heterogeneous structures. We provide some examples of mapping rules in Figure
3. First, at line 101, entity type Actor and its attributes are mapped to collection
actorCollection in document database schema IMDB_Mongo (schema at lines
53-71). Second, at line 103, entity type Director is mapped to table directorTable,
belonging to relational database schema myRelSchema (lines 73-97). Last, entity
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type Movie is mapped to three physical structures and one complex field (lines
107,108, 109, 110). Line 108 maps attributes averageRating and numVotes to
physical fields contained into a third-level embedded structure rating in the
movies array of actorCollection.

RoleMappingRule is another mapping rule type that maps Roles of Rela-
tionship types to Reference blocks or to ComplexFields. Lines 102, 105 and 106
are examples of such mapping rules for relationship types movieDirector and
movieActor.

3.4 Physical Databases

The physical database section is used to declare the actual databases linked to
the physical schemas, and provide their connection information. Each physical
schema can be linked to one or several declared database(s). Figure 5 shows the
databases declared for the physical schemas of Figure 3.

1 databases {
2 mariadb mydb {
3 host: " localhost "
4 port: 3307
5 dbname : "mydb"
6 }
7 redis myredis {
8 host:" localhost "
9 port :6379

10 }

11 mongodb mymongo {
12 host : " localhost "
13 port: 27100
14 }
15 mongodb mymongo2 {
16 host : " localhost "
17 port: 27000
18 }
19 }

Fig. 5. Databases declaration section

3.5 Benefits of HyDRa

Data duplication & heterogeneity HyDRa allows data duplication at the level
of conceptual objects as well as at the physical schema level. Data duplication
at the level of entity types can be expressed through multiple entity mapping
rules, with the same entity type as left-hand side, but mapping it to several
different physical structures. An example was given above with the mappings of
attribute primaryTitle of Movie entity type (lines 107 and 110) which is mapped
to both a document database and a key-value database. HyDRa also allows one
to duplicate an entire physical schema into several databases. For instance, line
53 in Figure 3 declares that physical schema IMDB_Mongo is stored in both
databases mymongo and mymongo2.

Composed fields The physical fields of an HyDRa schema can have complex
values. This is made possible by means of complex physical field declarations and
related mapping rules. For instance, line 79 of Figure 3 specifies that the value of
column fullname in relational table directorTable results from the concatenation
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of conceptual attributes firstname and lastname. This is expressed using the
entity mapping rule at line 103. As another example, physical field rate at line 65
concatenates the rate conceptual attribute value with the "/10" string constant.

Data structure split Conceptual entity types can be split and stored in multiple
and heterogeneous databases. Multiple entity mapping rules can be expressed
for distinct fragments of a single entity type, e.g., by splitting its attributes
into multiple and possibly heterogeneous databases. For instance, conceptual
entity type Movie is composed of eight attributes, but those attributes are stored
either in the IMDB_Mongo schema or in movieRedis schema, or in both physical
schemas. As expressed by the mapping rules of lines 107, 108, 109 and 110, some
of the movie attributes are subject to data duplication across several physical
schemas, while attributes isAdult, startYear, runtimeMinutes are only present
in the movieRedis schema.

Data instance partitioning Using data instance partitioning, an HyDRa poly-
store schema can map only a subset of the data instances of a given entity type
to a particular physical structure. The data instances are discriminated based
on user-defined conditions on the value of a particular entity type attribute. For
instance, in Listing 1.1, a mapping rule expresses that the instances of entity
type Movie that have an averageRating value greater than 9 must be stored in
the topMovies physical structure.

1 cs. Movie (id , primaryTitle , averageRating , numVotes ) -( averageRating > 9) ->
IMDB_Mongo . topMovies (id ,title ,rate , numberofvotes ),

Listing 1.1. Mapping rule data instance partitioning

4 Conclusion

This paper introduces HyDRa, a conceptual framework for hybrid polystore
modeling and manipulation. It focuses on the HyDRa modeling language, able
to conceptually design hybrid polystores while preserving the possibility to design
data at physical level and exploit the strengths of each native data model. The
conceptual and physical abstraction levels are linked together through a set of
mapping rules, allowing complex features such as data structure and instance
overlapping across heterogenous databases. The use of HyDRa is supported by
an Eclipse plugin, publicly available on GitHub [15]. This plugin includes a
textual editor as well as a conceptual data access API generator.

The HyDRa framework can be used, among others, to build mediated ar-
chitecture from pre-existing inter-related databases, to assist in a database re-
verse engineering context or to express explicit schema for schemaless databases.
Polystore data management still faces various open challenges for the research
community. In particular, specifying polystore schemas and mapping rules still
remains a manual task. As future work, we aim at developing automated schema
inference and mapping rules recommendation approaches. Our current research
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agenda also includes extension of generation of conceptual data manipulation
APIs, the automation of schema evolution, data migration, and query adapta-
tion in hybrid polystores [13,14].

Acknowledgements. This research is supported by the F.R.S.-FNRS and FWO via
the EOS project 30446992 SECO-ASSIST.
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