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ABSTRACT Streptococcus mitis Nm-65 is a human commensal streptococcal strain of
the mitis group that was isolated from the tooth surface of a patient with Kawasaki dis-
ease. The complete genome sequence of Nm-65 was obtained by means of hybrid as-
sembly, using two next-generation sequencing data sets. The final assembly size was
2,085,837bp, with 2,039 coding sequences.

S treptococcus mitis inhabits the human oral cavity and is considered an opportunis-
tic pathogen of increasing clinical importance (1–5). Strain Nm-65 was isolated

from a patient with Kawasaki disease at Nippon Medical School Hospital (Tokyo, Japan)
in 1988 with the patient’s consent and was used according to ethical guidelines pro-
vided by the Japanese Society for Bacteriology. Identification of Nm-65 was conducted
as described previously (6). Nm-65 was then cultured overnight in brain heart infusion
broth (Becton, Dickinson, Franklin Lakes, NJ, USA) at 37°C (in 5% CO2, 75% N2, and 20%
O2), following inoculation of glycerol stock prepared from the originally passaged sin-
gle colony. Genomic DNA was prepared as described previously (7), and both a short-
read sequencer (454 GS FLX; Roche, Basel, Switzerland) and a long-read sequencer
(MinION; Oxford Nanopore Technologies, Oxford, UK) were used. For 454 GS FLX
sequencing (outsourced to Hokkaido System Science Co., Ltd., Hokkaido, Japan), the
library was constructed using the GS FLX Titanium general library preparation kit
(Roche). Sequencing was then conducted using the GS FLX Titanium SV emPCR kit
(Lib-L) (Roche) and the GS FLX Titanium XLR70 sequencing kit (Roche) (run parameters:
XLR70, 200 cycles). The base-calling software was GS Run Processor v2.3 (Roche). For
MinION sequencing, the library was constructed using a rapid sequencing kit (Oxford
Nanopore Technologies). Sequencing was then conducted using a MinION system with
an R9 MinION flow cell (Oxford Nanopore Technologies). The base-calling software was
MinKNOW v3.3.2 (Oxford Nanopore Technologies), and sequences were assembled
using NanoTools v1.0 software (https://github.com/WorldFusion/nanotools/blob/master/
README.md) (World Fusion Co., Ltd., Tokyo, Japan). Using the acquired sequences (122,996
reads [representing 43,667,782bp] provided by short-read sequencing and 119,632 reads
[with an N50 value of 12.82kb] provided by long-read sequencing), a hybrid assembly was
generated by the Taniguchi Dental Clinic/Oral Microbiome Center (Kagawa, Japan). Low-
quality reads (with a score of #Q15 for short-read sequencing and #Q10 for long-read
sequencing), short reads (#10bp for short-read sequencing and #1,000bp for long-read
sequencing), and adaptor sequences were removed using fastp v0.20.0 software (8) for
short-read sequences and NanoFilt v.2.7.1 software (9) for long-read sequences. The remain-
ing high-quality reads (43,259,318bp [;20.7� coverage] derived from short-read sequenc-
ing and 899,765,713bp [;431.4� coverage] derived from long-read sequencing) were
then assembled using Unicycler v0.4.8 software (10) and were visualized using Bandage
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v0.8.1 software (11) to confirm a closed circular sequence. The assembled sequence was
polished using Pilon v1.23 software (12). For the analyses in this study, all software was
operated using default settings and parameters unless otherwise specified.

The resultant complete Nm-65 genome sequence is 2,085,837bp long and exhibits a
GC content of 40.0%, with 2,039 coding sequences (coding proportion, 87.3%) as pre-
dicted by DFAST (https://dfast.nig.ac.jp), prophage regions as predicted by PHASTER
(https://phaster.ca) (Table 1), and a single CRISPR-Cas system (SMNM65_07910 [GenBank
accession number BCJ10359.1] to SMNM65_08010 [BCJ10369.1]) as predicted by
CRISPRCasFinder (https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index). The genes
encoding cholesterol-dependent cytolysins (CDCs), S. mitis-derived human platelet
aggregation factor (13, 14), and mitilysin (15, 16) are distinct from the prophage
regions and the CRISPR-Cas system. Since the S. mitis type strain does not possess
CDC genes, elucidating the Nm-65 mechanisms for acquiring genes encoding such
virulence factors may improve the understanding of the opportunistic pathogenicity
exhibited by certain S. mitis strains. Such information may be relevant to cryptogenic
infections, including those in the context of Kawasaki disease.

Data availability. This complete genome sequence of S. mitis strain Nm-65 has
been deposited in DDBJ/ENA/GenBank under accession number AP023349. The associ-
ated BioProject and BioSample numbers are PRJDB10372 and SAMD00239187, respec-
tively. Additionally, the SRA accession numbers are DRR243499 and DRR243500.

ACKNOWLEDGMENTS
This research received no specific grant from any funding agency in the public,

commercial, or not-for-profit sectors.
We thank Editage for English editing.

REFERENCES
1. Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. 2014. Parallel

evolution of Streptococcus pneumoniae and Streptococcus mitis to path-
ogenic and mutualistic lifestyles. mBio 5:e01490-14. https://doi.org/10
.1128/mBio.01490-14.

2. Kilian M, Tettelin H. 2019. Identification of virulence-associated proper-
ties by comparative genome analysis of Streptococcus pneumoniae, S.
pseudopneumoniae, S. mitis, three S. oralis subspecies, and S. infantis.
mBio 10:e01985-19. https://doi.org/10.1128/mBio.01985-19.

3. Doern CD, Burnham CA. 2010. It's not easy being green: the viridans
group streptococci, with a focus on pediatric clinical manifestations. J
Clin Microbiol 48:3829–3835. https://doi.org/10.1128/JCM.01563-10.

4. Mitchell J. 2011. Streptococcus mitis: walking the line between commens-
alism and pathogenesis. Mol Oral Microbiol 26:89–98. https://doi.org/10
.1111/j.2041-1014.2010.00601.x.

5. Shelburne SA, Sahasrabhojane P, Saldana M, Yao H, Su X, Horstmann N,
Thompson E, Flores AR. 2014. Streptococcus mitis strains causing severe
clinical disease in cancer patients. Emerg Infect Dis 20:762–771. https://
doi.org/10.3201/eid2005.130953.

6. Kawamura Y, Hou XG, Todome Y, Sultana F, Hirose K, Shu SE, Ezaki T,
Ohkuni H. 1998. Streptococcus peroris sp. nov. and Streptococcus infantis
sp. nov., new members of the Streptococcus mitis group, isolated from
human clinical specimens. Int J Syst Bacteriol 48:921–927. https://doi.org/
10.1099/00207713-48-3-921.

7. Goto T, Nagamune H, Miyazaki A, Kawamura Y, Ohnishi O, Hattori K,
Ohkura K, Miyamoto K, Akimoto S, Ezaki T, Hirota K, Miyake Y, Maeda T,
Kourai H. 2002. Rapid identification of Streptococcus intermedius by PCR

with the ily gene as a species marker gene. J Med Microbiol 51:178–186.
https://doi.org/10.1099/0022-1317-51-2-178.

8. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/
bioinformatics/bty560.

9. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018.
NanoPack: visualizing and processing long-read sequencing data. Bio-
informatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/
bty149.

10. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial
genome assemblies from short and long sequencing reads. PLoS Comput
Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

11. Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualiza-
tion of de novo genome assemblies. Bioinformatics 31:3350–3352. https://
doi.org/10.1093/bioinformatics/btv383.

12. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo
CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated
tool for comprehensive microbial variant detection and genome assem-
bly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal
.pone.0112963.

13. Ohkuni H, Todome Y, Okibayashi F, Watanabe Y, Ohtani N, Ishikawa T,
Asano G, Kotani S. 1997. Purification and partial characterization of a
novel human platelet aggregation factor in the extracellular products
of Streptococcus mitis, strain Nm-65. FEMS Immunol Med Microbiol
17:121–129. https://doi.org/10.1111/j.1574-695X.1997.tb01004.x.

14. Ohkuni H, Nagamune H, Ozaki N, Tabata A, Todome Y, Watanabe Y,

TABLE 1 Predicted prophage regions present in the S. mitis Nm-65 genome

Genome nucleotide position Completeness Scorea
No. of open
reading frames GC content (%) Most similar phage (GenBank accession no.)

22596–62556 Questionable 81 58 40.4 Streptococcus phage PH10 (NC_012756.1)
535758–562399 Incomplete 20 23 40.5 Streptococcus phage Dp-1 (NC_015274.1)
914783–923305 Incomplete 40 8 41.1 Bacillus phage AR9 (NC_031039.1)
aA score of 70 to 90 indicates a questionable result, and a score of,70 indicates an incomplete result.

Tabata et al.

January 2021 Volume 10 Issue 1 e01239-20 mra.asm.org 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

ra
 o

n 
12

 S
ep

te
m

be
r 

20
21

 b
y 

15
0.

59
.1

92
.1

45
.

https://dfast.nig.ac.jp
https://phaster.ca
https://www.ncbi.nlm.nih.gov/protein/BCJ10359.1
https://www.ncbi.nlm.nih.gov/protein/BCJ10369.1
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://www.ncbi.nlm.nih.gov/nuccore/AP023349
https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10372
https://www.ncbi.nlm.nih.gov/biosample/SAMD00239187
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=DRR243499
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=DRR243500
https://doi.org/10.1128/mBio.01490-14
https://doi.org/10.1128/mBio.01490-14
https://doi.org/10.1128/mBio.01985-19
https://doi.org/10.1128/JCM.01563-10
https://doi.org/10.1111/j.2041-1014.2010.00601.x
https://doi.org/10.1111/j.2041-1014.2010.00601.x
https://doi.org/10.3201/eid2005.130953
https://doi.org/10.3201/eid2005.130953
https://doi.org/10.1099/00207713-48-3-921
https://doi.org/10.1099/00207713-48-3-921
https://doi.org/10.1099/0022-1317-51-2-178
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty149
https://doi.org/10.1093/bioinformatics/bty149
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1371/journal.pone.0112963
https://doi.org/10.1371/journal.pone.0112963
https://doi.org/10.1111/j.1574-695X.1997.tb01004.x
https://www.ncbi.nlm.nih.gov/nuccore/NC_012756.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_015274.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_031039.1
https://mra.asm.org


Takahashi H, Ohkura K, Kourai H, Ohtsuka H, Fischetti VA, Zabriskie JB.
2012. Characterization of recombinant Streptococcus mitis-derived human
platelet aggregation factor. APMIS 120:56–71. https://doi.org/10.1111/j
.1600-0463.2011.02813.x.

15. Jefferies J, Nieminen L, Kirkham LA, Johnston C, Smith A, Mitchell TJ.
2007. Identification of a secreted cholesterol-dependent cytolysin

(mitilysin) from Streptococcus mitis. J Bacteriol 189:627–632. https://doi
.org/10.1128/JB.01092-06.

16. Tabata A, Ohkuni H, Hino H, Saigo T, Kodama C, Tang Q, Tomoyasu T,
Fukunaga Y, Itoh Y, Nagamune H. 2020. Cytotoxic property of Streptococcus
mitis strain producing two different types of cholesterol-dependent cytolysins.
Infect Genet Evol 85:104483. https://doi.org/10.1016/j.meegid.2020.104483.

Microbiology Resource Announcement

January 2021 Volume 10 Issue 1 e01239-20 mra.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

ra
 o

n 
12

 S
ep

te
m

be
r 

20
21

 b
y 

15
0.

59
.1

92
.1

45
.

https://doi.org/10.1111/j.1600-0463.2011.02813.x
https://doi.org/10.1111/j.1600-0463.2011.02813.x
https://doi.org/10.1128/JB.01092-06
https://doi.org/10.1128/JB.01092-06
https://doi.org/10.1016/j.meegid.2020.104483
https://mra.asm.org

	Outline placeholder
	Data availability.

	ACKNOWLEDGMENTS
	REFERENCES

