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ABSTRACT Local feature descriptors play a fundamental and important role in facial expression
recognition. This paper presents a new descriptor, Center-Symmetric Local Signal Magnitude Pattern
(CS-LSMP), which is used for extracting texture features from facial images. CS-LSMP operator takes
signal and magnitude information of local regions into account compared to conventional LBP-based
operators. Additionally, due to the limitation of single feature extraction method and in order to make full
advantages of different features, this paper employs CS-LSMP operator to extract features fromOrientational
Magnitude Feature Maps (OMFMs), Positive-and-Negative Magnitude Feature Maps (PNMFMs), Gabor
FeatureMaps (GFMs) and facial patches (eyebrows-eyes, mouths) for obtaining fused features. Unlike HOG,
which only retains horizontal and vertical magnitudes, our work generates Orientational Magnitude Feature
Maps (OMFMs) by expanding multi-orientations. This paper build two distinct feature maps by dividing
local magnitudes into two groups, i.e., positive and negative magnitude feature maps. The generated Gabor
Feature Maps (GFMs) are also grouped to reduce the computational complexity. Experiments on the JAFFE
and CK+ facial expression datasets showed that the proposed framework achieved significant improvement
and outperformed some state-of-the-art methods.

INDEX TERMS Facial expression recognition, center-symmetric local signal magnitude pattern, local
representation, feature fusion.

I. INTRODUCTION
Facial expressions are important aspect of behavior and
nonverbal communication for people to express their inner
feelings. Indeed, expression can be represented by appear-
ance changes on the face and plays an essential role in human
interactions. Recently, as one of themost representative appli-
cations of affective computing, facial expression recogni-
tion (FER) [1], [2], [48] has received considerable attention in
various fields, such as human-computer interaction, medical
treatment and intelligent control [3], [4].

In terms of features, FER system used to be divided into
two categories: geometric-feature-based [5] and appearance-
feature-based methods [6]. Geometric-feature-based method
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extracts shape information and locations of main facial com-
ponents and encodes region of interest (ROI), like eyes,
mouths, noses, etc. Geometric-feature-based describes facial
images using a few features but the recognition result is
not satisfying since it is difficult to detect under appear-
ance changes. Whereas, appearance-feature-based method
extracts facial texture caused by expression changes and
represents facial images by using image filters which are
applied on the holistic or local regions. In this category, there
are some holistic methods: Principal Component Analysis
(PCA) [7], Information Discriminant Analysis (IDA) [8],
Linear Discriminant Analysis (LDA) [9], and local
approaches, such as Scale-Invariant Feature Transform
(SIFT) [10], Local Binary Pattern (LBP) [11] and its vari-
ants: Center-Symmetric Local Binary Pattern (CS-LBP) [12],
Local Ternary Pattern (LTP) [13], Local Directional Ternary
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Pattern (LDTP) [14], Local Phase Quantization (LPQ) [15],
Local Gabor Binary Pattern (LGBP) [16], Completed Local
Mapped Pattern (CLMP) [40], Completed Local Binary Pat-
tern (CLBP) [41] and so on. However, in many current pattern
recognition systems and some complex tasks [38], [39],
the drawbacks of single feature has revealed gradually. It is
often the case that no single class of feature is rich enough
to capture all of the dominant information. Finding and
combining complementary feature sets has thus become an
active research topic and also makes great achievements
[17], [18], [38]. In recent years, with the wide spread of neural
networks, deep learning as an end-to-end tools has been
applied in FER [19]–[21], but it comes with some evident
drawbacks: large demand for training samples, easy to over-
fit for neural networks, the poor generalization ability of
models, high requirements of hardware etc. Reference [48]
introduces almost relevant work of FER from all aspect,
including facial expression datasets, conventional feature
extraction methods and deep neural networks etc.

Ojala et al. [11] first introduced LBP method in 2002 and
it is a valid descriptor for extracting texture features and
classification, and also has some excellent properties such as
rotation invariance, robustness against monotonic gray level
transformation and easy to encode. Whereas LBP simply
compares the numerical values between peripheral pixels and
central pixel, and does not focus on the specific difference
of peripheral pixels, which result in losing some details
in the image. Since Ojala’s work, a vast number of LBP
variants has been proposed and continued to be developed.
CS-LBP, as one of the representative variants of LBP and
SIFT descriptor, reduces feature dimensionality and time
complexity greatly. But CS-LBP neglects central pixels and
must choose the appropriate threshold from experiments.
In addition, HOG [22] maintains an attractive invariance in
both geometric and optical deformation of images. It was
used in pedestrian detection widely. However, HOG also
fails to take the central points into account in the calcula-
tion process of requiring the horizontal gradient and vertical
gradient, and all the cells are the same size, which makes
HOG lacking variability and flexibility. On the other hand, for
the two algorithms of CLMP [40] and CLBP [41], the local
grayscale differences are decomposed into three complemen-
tary components: the signal (S), the magnitude (M) and the
center (C), which ignores the internal relationship among the
three components. The thresholdCI in CLBP, the threshold τI
and curve slope β in CLMP are hard to determine.
In order to solve the aforementioned problems, this paper

proposes modified versions, Center-Symmetric Local Signal
Magnitude Pattern (CS-LSMP), Orientational Magnitude
Feature Maps (OMFMs) and Positive-and-Negative Magni-
tude Feature Maps (PNMFMs). The CS-LSMP represents
the local magnitude differences between the neighboring
pixels and central pixel, and also combines their signal
information. Then the local differences are compared with the
average magnitude in order to reflect the distinction among
pixels. The OMFMs are collection of feature maps from

different orientations, increasing gradient magnitude of diag-
onal orientations and also pay attention to the central pixels.
The PNMFMs are collection of positive magnitude feature
maps and negative magnitude feature maps, which reserve
more local magnitude information. Moreover, this paper also
employs CS-LSMP operator to extract texture features from
dominant local facial patches (eyebrow-eye, mouth). After
that, all above features are used to achieve feature-level fusion
and histograms are cascaded to form ultimate features.

The main contributions of our work are summarized as
follows:
(1) We present a new feature map: Orientational Mag-

nitude Feature Maps (OMFMs). Multi-Orientational
Magnitude Pattern (OMP) with different local radius
consist of various OMFMs, which increases the flexi-
bility of feature scale.

(2) We introduce a formal definition of Positive-and-
Negative Magnitude Feature Maps (PNMFMs), which
reserve more local magnitude information in images.

(3) We construct a grouping method of GFMs. It not only
reduces the feature dimension and time complexity
effectively but also improves the recognition rate.

(4) CS-LSMP operator records the gray value difference
between neighboring and central pixels, and the dif-
ference takes signal and magnitude information into
account. Four-bit encoded CS-LSMP makes the code
values more diverse and distinguishable.

The reminder of this paper is structured as follows: in
section II we introduce the related work about LBP, CS-LBP,
HOG and give a brief introduction about LBP-based texture
descriptors. Then, section III describes the feature extrac-
tion method based on OMFMs, PNMFMs, GFMs, CS-LSMP
operator and feature fusion. We carry out experiments of the
proposed method and discuss results in section 4. Lastly,
we make a conclusion in section 5.

II. RELATED WORK
A. LOCAL BINARY PATTERN
Ojala et al. [11] introduced Local Binary Pattern (LBP) as a
means of summarizing local gray-level structures. The LBP
operator was proposed to encode the pixel-wise information.
LBP takes a local neighborhood around each pixel and then
thresholds the pixels of the neighborhood at the value of
the central pixel. Then LBP uses the resulting binary-valued
image patch as a local image descriptor. It was originally
defined for 3 × 3 neighborhoods, giving 8-bit integer LBP
codes based on the eight pixels around the central one. And
the LBP code result is given in Eq. (1) and (2).

LBPN ,R (C) =
∑N−1

i=0
S(pi, pc)2i (1)

S (x, y) =

{
1, x − y ≥ 0
0, x − y < 0

(2)

where pc is the gray value of the central pixel, pi(i =
0, 1, . . . ,N − 1) denotes the gray value of neighboring pixel
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centered on c, N is the total number of involved neighbors, R
is the radius of the neighborhood.

B. CENTER-SYMMETRIC LOCAL BINARY PATTERN
The Center-Symmetric Local Binary Pattern (CS-LBP), as a
variant of LBP and SIFT descriptor, inheriting the desirable
properties of both texture features and gradient-based fea-
tures. A comparison of LBP yields a longer histogram and
has 256 different binary patterns, CS-LBP only generates
16 binary patterns. Different from comparing each peripheral
pixels with the central one, CS-LBP operator encodes a facial
image as a binary number by thresholding the gray-level
differences of pairs of opposite pixels with respect to the
central pixel. Therefore, the definition of CS-LBP is given
in Eq. (3) and (4).

CS − LBPN ,R (C) =
∑(N/2)−1

i=0
f
(
pi, pi+(N/2)

)
2i (3)

f (x, y) =

{
1, x − y ≥ T
0, x − y < T

(4)

where pi(i = 0, 1, . . . , (N/2)−1) and pi+(N/2) correspond to
the gray level values of peripheral pixels. T is a threshold that
needs to be specified by experiments. It should be noted that
CS-LBP is related to gradient operator closely as it considers
gray level differences between pairs of opposite pixels in a
local neighborhood.

CS-LBP descriptor not only lower feature dimensional-
ity but also has a better robustness. However, the CS-LBP
descriptor only compares the gray value of center symmetric
pixels but ignores the central pixel and the texture information
is not represented entirely.

The two operators: LBP and CS-LBP describe each pixel
by the relative gray values of its neighboring pixels, see
Figure 1 for an illustration with N = 8 and R = 1.

FIGURE 1. Calculation of LBP and CS-LBP operators for a neighborhood
of 8 pixels.

C. HISTOGRAM OF ORIENTED GRADIENT
Histogram of Oriented Gradient (HOG) was first developed
by Dalal and Triggs in 2005 as a robust descriptor for
pedestrian detection. HOG extracts features related to the
distribution of target edges in local regions as a means of
representing target shape. The gist of the HOG algorithm is
to describe the local shape information of images by analyz-
ing the gradient magnitude distribution from different gradi-
ent orientations statistically. HOG consists of an intelligent

grouping of gradient information (cells and blocks), as well
as well-engineered histograms of gradient orientations. HOG
features are descriptions of orientations histograms. Taking
Figure 1 as an example, convolving the first-order differential
template [−1, 0, 1] with image, the horizontal gradient Gx(c)
and the vertical gradient Gy(c) of the central pixel c can be
calculated by the Eq. (5).{

Gx (c) = p3 − p7
Gy (c) = p5 − p1

(5)

And the gradient magnitude M(c) and gradient orien-
tation θ (c) of the central pixel can be obtained from
Eq. (6) and (7).

M (c) =
√
Gx(c)2 + Gy(c)2 (6)

θ (c) = arctan(Gy(c)
/
Gx(c)) (7)

where p1, p3 p5, p7 are four peripheral pixels. The gradient
magnitudes of the pixels with the same gradient orientation
are accumulated to form a gradient histogram.

D. BRIEF REVIEW OF LBP VARIANTS
Among the local approaches, LBP-based methods emerged
as one of the most prominent texture descriptors, because of
their outstanding performance. The pioneering LBP and its
success in various computer vision applications has inspired
the development of effective LBP variants. Due to its flexibil-
ity, the LBP method can be easily modified to make it more
suitable to meet the requirements of different applications.
Since Ojala’s work, a vast number of LBP variants has been
proposed and continue to be developed. Guo and Zhang [41]
developed a completed modeling of LBP to produce CLBP
which combines magnitudes of local differences as well as
their signs. The method consists in converting the gray level
of the central pixel into a binary code, namely CLBP-Center
(CLBP_C), using a global threshold. The image local differ-
ences yield two complementary components: sign andmagni-
tude. Two operators, namely CLBP-Sign (CLBP_S which is
therefore the same as the original LBP) andCLBP-Magnitude
(CLBP_M), are then defined to code the sign and magnitude
of the image local differences, respectively. Vieira et al. [40]
proposed CLMP for improving the classification of rotated
images. The local grayscale differences in the CLMP for-
mulation are decomposed into two complementary compo-
nents: the signal (S) and the magnitude (M), generating two
operators CLMP_S and CLMP_M. The introduction of curve
slope increase the uncertainty. Huang et al. [13] proposed
LTP for face recognition. LTP, which extends original LBP to
3-valued codes using a threshold, is introduced to reduce
noise sensitivity of the original LBP. El merabet and Ruichek
proposed Local Concave-and-Convex Micro-structure Pat-
tern (LCCMSP) [42] which is based on concave-and-
convex characteristics of 3 × 3 grayscale image patches.
Ryu et al. [14] proposed LDTP for texture classification.
The LDTP operator, basically, encodes at the same time the
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information related to image contrast and the directional
pattern features based on local derivative variations, etc.

III. PROPOSED APPROACH
In this section, our approach will be described in detail,
including features extraction and features fusion.

A. ORIENTATIONAL MAGNITUDE FEATURE MAPS
Orientational Magnitude Feature Maps (OMFMs) are collec-
tion of OrientationalMagnitude Pattern (OMP) from different
orientations. The HOG in section II generates the gradient
magnitude but neglects central pixels, and simply calculates
the magnitude of horizontal and vertical orientations in a cell
of the same size. The proposed OMP not only focuses on
the gray value of central point but also increases the multi-
orientation magnitudes according to the radius of neigh-
borhood. As the radius of the neighborhood increases, the
number of involved neighboring pixels increases, so does the
number of OMP. All of the OMP from various orientations
are cascaded to form the OMFMs. With the introduction
of OMFMs, the local information of images can be better
represented. And the OMP can be defined in Eq. (8).

Mi,N ,R(c) =

√
(pi − pc)2 + (pi+(N/2) − pc)2

2
(8)

where Mi,N ,R(c) is defined as the ith orientation magnitude
of the given N and R of the central point c. Figure 2 shows
OMPs feature extracted by one facial image with R = 1 of
four different orientations. (from (a) to (d) are visualizations
of the OMP in four orientations: horizontal, vertical and two
diagonal orientations). As shown in Figure 2, OMP depicts
the region of interest of the face. According to Eq. (8), (N/2)
OMPs are obtained and cascaded to form the final OMFMs.

FIGURE 2. The schematic diagram of OMP (R = 1).

B. GROUPING OF GABOR FEATURE MAPS
Gabor wavelet [23] is a well-known descriptor representing
texture information of an image and is very similar to the
stimulus-response of simple cells in the human visual system.
Gabor feature is highly capable of describing textures used in

different research, such as identity recognition, image clas-
sification and facial expression recognition. Gabor wavelet
has better robustness and adapt to the changes of illumination
well. It also provides better selectivity for multi-orientation
and multi-scale. Considering the advantages of the Gabor
filters, we employ the Gabor filters to extract features from
the input face images. The kernel function captures various
spatial information of frequency, position, orientation from
an image and represent subtle local transformation effec-
tively. For a Gabor filter with five scales and eight orienta-
tions, ν ∈ {0, 1, 2, 3, 4}, µ ∈ {0, 1, 2, . . . , 7}, each facial
image generates 40 Gabor feature maps (GFMS). In this
paper, we separated four consecutive sheets in order, and
obtained separated ten groups of feature maps, as shown in
Figure 3, and then a group of feature maps was added for each
experiment.

FIGURE 3. The operation of GFMs for one face image.

C. POSITIVE- AND-NEGATIVE MAGNITUDE FEATURE MAPS
Referring to Figure 1, given a central pixel pc and its neigh-
boring pixels pi(i = 0, 1, . . . ,N − 1), we can simply calcu-
late the local magnitude mi between pc and pi in Eq. (9).

mi = pi − pc (9)

The local magnitude vector [m0, m1, . . . ,mN−1] charac-
terizes the image local structure at pc. Moreover, mi can
be further divided into two parts, greater than 0 (positive)
and less than 0 (negative). This paper introduces two weight
matrices. When the mi is positive, we set the weight value of
corresponding position to 1 in the weight matrix and the left
is set to 0. When the mi is negative, we set the weight value
to −1 and the left is set to 0 in Eq. (10)-(12), where W is
weight matrix.

w =

 a0 a1 a2
a7 ac a3
a6 a5 a4

 (10)

ai,positve =

{
1, mi ≥ 0
0, mi < 0

(11)

ai,negatve =

{
−1, mi ≤ 0
0, mi > 0

(12)

Then we obtain positive weight matrix and negative weight
matrix. Figure 4 shows an example. Figure. 4(a) is the
original 3∗3 local structure with central pixel being 25.
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FIGURE 4. (a) 3× 3 sample block; (b) the local magnitude; (c) positive
weight matrix; (d) negative weight matrix.

The magnitude vector (see Figure. 4(b)) is [−16, −13, 9,
−3, 29, 30, 75, −15]. After Eq. (11) and (12), the positive
weight matrix (see Figure.4(c)) and negative weight matrix
(see Figure. 4(d)) are obtained. Then two weight matri-
ces are convolved with magnitude of local neighborhood
respectively in order to obtain Positive Magnitude Pattern
(PMP) and Negative Magnitude Pattern (NMP) according to
Eq. (13) and (14), where ∗ represents convolution operation.
PMP and NMP together form positive-and-negative magni-
tude feature maps (PNMFMs).

ϕpositive (c) =
mi ∗Wpositive∑

ai,positive
(13)

δnegative (c) = −
mi ∗Wnegative∑

ai,negative
(14)

D. CENTER-SYMMETRIC LOCAL SIGNAL MAGNITUDE
PATTERN
The Center-Symmetric Local Signal Magnitude Pattern
(CS-LSMP) descriptor is proposed on the basis of LBP and
CS-LBP for extracting image texture features. LBP only
compares the gray values between the peripheral pixels and
central pixels: the former is smaller than the latter one,
then code value is assigned to 0; otherwise code value is 1.
However, the LBP operator ignores the gray value differences
of local peripheral pixels, resulting in losing local texture
details. In comparison with the LBP, CS-LBP halves the
number of pixel pairs for the same number of neighbors, thus
it significantly reduces the dimensionality from 256 to 16.
However, in CS-LBP mechanism, it is quite difficult to
choose an appropriate threshold (T) in general cases and it
does not take central points into consideration.

The binary expression of the LBP makes this method
very popular because it is very simple. On the other
hand, the binary formulation, although simple, also discard
information on local differences in the presence of noise.
To deal with these drawbacks and extract robust features, the
CS-LSMP operator not only captures the grayscale value dif-
ferences between the neighboring and central pixels but also

adds the signal information, and then compares themagnitude
differences of opposite pixels with average magnitude, which
makes the extracted texture features among pixels are more
meticulous and easy to distinguish. Thus, the resulting value
of CS-LSMP are shown in Eq. (15) and (16).

CS − LSMPN ,R (c)

=

∑(N/2)−1

i=0
µ(S(mi,mc), S(mi+(N/2),mc))2i

(15)

µ (a, b) = a ∗ 20 + b ∗ 21 (16)

where N ,R,mi and S (x, y) are mentioned before. This paper
employs µ (a, b) for the first time here. Different from LBP
and CS-LBP operators encoding the result as 0 and 1,µ (a, b)
maps the coded value into the [0, 3] interval, which makes the
results more diverse and distinguishable. And the mc is the
average of mi, that is mc = 1

N

∑N−1
i=0 mi. It is known that

the average gray level is widely accepted statistical parameter.
Taking N = 8 as an example, the calculation process of
CS-LSMP is shown in Figure 5.

FIGURE 5. The CS-LSMP operator with 8 neighbor pixels.

IV. EXPERIMENTS AND DISCUSSION
In this section, we carried out experiments for facial expres-
sion recognition to validate the efficiency of the proposed
frameworks and compared with different methods. All exper-
iments were implemented by using Visual Studio 2013 and
OpenCV 2.4.9.

A. DATASETS CONSTRUCTION
In order to evaluate the proposed algorithm, experiments are
conducted on two public available famous facial expression
datasets: The Japanese Female Facial Expression (JAFFE)
and the Extended Cohn-Kanade (CK+) [24]. The statistics
of two datasets are summarized. JAFFE dataset consists
of 213 images from 10 Japanese female subjects. Every
subject has 3 or 4 examples of all the six basic expres-
sions and also has a sample of neutral expression. The CK+
dataset comprises 593 image sequences (from neutral to apex)
of 123 subjects who were instructed to perform a series
of 23 facial displays but only 327 sequences are assigned
to seven labels. In these sequences, the expression label of
many images are distributed unevenly and some labels are
not be given. In order to compare with other methods, all
of the contempt expressions were removed. One example of
expressions about the two datasets is shown in Figure 6 (from
left to right, the label of expressions are: anger, disgust, fear,
happy, neutral, sad, surprise).
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FIGURE 6. Facial expression samples in JAFFE and CK+ datasets.

Our experiments selected three images of each subject in
JAFFE dataset with seven basic expressions and three peak
frames of each subject in CK+ dataset with six basic expres-
sions (excluding neutral expression). This paper used person-
independent cross-validation scheme, which is N-person to
evaluate the performance of proposed algorithm [14].

In the N-person cross-validation, all image samples were
partitioned into N groups according to subject and excluded
one subject out of training set as the testing set, which
ensured the person-independence itself. Then this scheme
was repeated N times and average results were taken as the
final average recognition. Recognition rate is calculated by
the Eq. (17).

Recognition rate =
true samples
all samples

(17)

B. STEPS OF EXPERIMENT
1) PREPROCESS
In this experiments, the image samples were preprocessed
through the following steps: ¬ detecting the position of
human eyes in the image with Haar-like and AdaBoost algo-
rithm, and using the coordinates of two eyes for geometric
transformation to eliminate the effect of posture.  detecting
and cropping the region of human faces and normalizing the
image size to 64 × 96. ® processing images with Gaussian
filter to eliminate the effect of noise and improving the quality
of images; ¯ detecting and cropping the region of human
eyes-eyebrows and mouths, then normalizing these regions
to 64× 32 size.

2) FEATURE EXTRACTION AND FUSION
In this work, image features are extracted and fused through
the following steps (see in Figure 7): ¬ utilizing OMP,
PMP and NMP for preprocessed whole facial image, mouth
and eyebrow- eye respectively to generate OMFMs and
PNMFMs;  employing CS-LSMP operator extracts texture
features from OMFMs and PNMFMs, and then cascading
histograms to obtain Feature 1; ® obtaining GFMs from
the preprocessed face image and then employing CS-LSMP
operator to obtain Feature 2; ¯ Cascading Feature 1 and
Feature 2 to form ultimate feature histograms.

3) CLASSIFICATION
Recognizing the category of facial expressions by carrying
out SVM with Polynomial Function kernel and using auto-
matic training function to acquire the optimal parameters.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) THE SELECTION OF NUMBERS AND BLOCKS IN GFMS
Gabor are commonly adopted as a feature as they are robust
to misalignment. As we all know, adopting Gabor filters has a
high computational cost, and the dimensionality of the output
is very large, especially if they are applied holistically with a
wide range of frequencies, scales and orientations. In order to
reduce time complexity, our work examined the recognition
rate of GFMs with different groups by adding four feature
maps at a time.

Before fusing aforementioned features, it is essential to
confirm the reasonable number of blocks for each feature
extraction method. As we all know, the number of blocks has
a vital effect on the final recognition result. A small value
of blocks will make the extracted image features insufficient,
whereas a large value of blocks will also result in higher fea-
ture dimensionality and time complexity. Therefore, experi-
ments are executed to determine appropriate block number.
So the experimental results on JAFFE dataset are described
in Figure 8.

Figure 8 shows the recognition rate under different number
of blocks and GFMs. When the number of block is set to

FIGURE 7. The overall diagram of feature extraction and fusion.
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FIGURE 8. The recognition rate by varying the number of GFMs and
blocks on JAFFE dataset.

1∗1 or 2∗2, the experimental performance using GFMs is
not ideal at all. With the increase of local block, the recog-
nition rate increases gradually and reaches the best result
when the number of block = 4∗4 then begin to decline.
On the other hand, as compared with other sheets of GFMs,
GFMs20 reaches a maximum of 74.76%. In addition, our
selection of GFMs reduces feature dimensionality greatly
rather than previous methods using all 40 feature maps.
Similarly, we also get the same result on CK+ dataset.
GFMs20 also performs favorably than other groups of GFMs
and then we test the optimal number of block as shown
in Figure 9 on CK+ dataset. It is evident that the number of
blocks is also set to 4∗4.

FIGURE 9. The recognition rate of GFMs for the number of block on
CK+ dataset.

2) THE SELECTION OF BLOCK AND RADIUS IN OMFMS
AND PNMFMS
OMFMs is a combination of multi-orientation OMP under
different local radius. With the increase of the local radius,
the number of involved neighboring points around the central
pixel also increases, making the number of OMP increases
(see in Figure 10). Similar to OMP, the local radius is also
involved in PMP and NMP.

Figure 10 takes R= 1 and R= 2 as examples to show that
the number of orientation increases with the increase of R.

FIGURE 10. The description of OMP (R = 1 and R = 2).

Experimental results in Figure 11 delicate that the OMFMs
achieve the better recognition rate on JAFFE when R= 3 and
block = 4∗4.

FIGURE 11. The recognition rate by varying the Radius of OMFMs and
blocks on JAFFE dataset.

After that, our work assumed the R to be 3 and continued
to complete the effect of the number of blocks on recognition
rate on CK+ dataset. As shown in Figure 12, when the num-
ber of blocks= 4∗4, the average accuracy reaches 95.31%.As
we except, the pervious results and analysis on JAFFE and
CK+ datasets validated that the optimal number of blocks

FIGURE 12. The recognition rate of OMFMs for the number of blocks on
CK+ dataset.
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was set to 4∗4 and the average accuracy achieved the higher
accuracy. Results demonstrated that the proposed method has
uniformity on different datasets and also proved the general
applicability of overall algorithms.

Similar to the experiment of OMFMs, we tested the
optimal radius and the number of blocks for PNMFMs.
Figure 13 shows that the PNMFMs achieve better recogni-
tion rate on JAFFE dataset when R = 2 and block = 6∗6.
On the premise that the radius is set to 2, we verify that the
experimental results on CK+ dataset perform better when the
number of blocks = 6∗6 (See in Figure 14).

FIGURE 13. The recognition rate by varying the Radius of PNMFMs and
blocks on JAFFE dataset.

FIGURE 14. The recognition rate of PNMFMs for the number of blocks on
CK+ dataset.

3) THE SELECTION OF THE NUMBER OF BLOCKS
IN FACIAL PATCHES
Facial patches contain a lot of discriminant information and
are conducive to expression recognition. In this paper, these
facial patches are added to extract CS-LSMP features. When
we express emotions, the nose patch contains less useful char-
acteristics than eyebrow, eye and mouth. Meanwhile, in order
to reduce the redundancy and training time, the nose patch
is discarded. We selected eyebrow-eye and mouth patches.
Figure 15 also shows the recognition rate for different block
numbers of the added facial patches.

In order to make the parameters consistent, the number
of blocks of the eyebrows and the mouth is the same in the

FIGURE 15. The recognition rate for different blocks of added facial
patches on JAFFE and CK+ dataset.

experiment. Compared previous experimental results, these
added facial patches further improves the average accuracy.
And when the number of blocks of eyebrow-eye, mouth is
2∗3 or 2∗4, experiments achieve the best accuracy of 80% and
97.67% on JAFFE and CK+ datasets, respectively. In order
to lower the computational complexity, the number of blocks
is set to 2∗3.

D. COMPARISON OF EXPERIMENTAL RESULTS
In order to illustrate the effectiveness of the proposed feature
extraction and fusion methods for facial expression recogni-
tion, this paper compares the recognition rate of proposed
algorithm with some conventional feature extraction algo-
rithms and CNN, and ensures that the recognition rate of each
method is obtained under its optimal number of blocks. The
comparison results are shown in Table 1.

TABLE 1. The recognition rate (%) for different methods on JAFFE and
CK+ datasets.
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It can be seen from Table 1, extracting the CS-LSMP
features from OMFMs, PNMFMs and GFMs improves the
recognition rate greatly. Compared with some conventional
feature descriptors, the best accuracy on JAFFE dataset only
achieves 67.62% (CS-LMP [36]), and OMFMs + CS-LSMP
yields average accuracy of 79.05%. The better performance
of ELBP [34] achieves 92.53% onCK+ dataset and this paper
is 95.31%. Our experiments also used neural networks for
facial expression recognition. Due to the different scale of two
datasets, we adopted and data augmentation (image rotation,
random crop) and fine-tine to train respective best networks.
So the parameter of network from two dataset are differ-
ent. CNN with data augmentation yields recognition rate
of 69.99% on JAFFE and 94.28% on CK+, which also indi-
cates the validity of the CS-LSMP descriptor proposed in our
work. To further improve the average accuracy, fusion strat-
egy is adopted to obtain hybrid features. Experimental results
illustrate that fused features are further enhanced based on
the previously mentioned individual feature, and yield the
final recognition accuracy 82.86% on JAFFE and 98.15%
on CK+, respectively. Our proposed method performs better
than other well-known descriptors, which demonstrates its
feasibility and advancement.

Moreover, this paper also examined the runtime of mul-
tiple feature descriptors to recognize one image under the
same experimental configuration. Taking JAFFE dataset as
an example, we rank the processing time (in milliseconds)
of various descriptors, including time of feature extraction
and SVM classification (see in Figure 16). One can see
that the proposed PNMFM have comparable times to the
traditional LBP. Compared to original Gabor features, our
fused method shorten the runtime and improve the overall
recognition results greatly.

FIGURE 16. Runtime (in ms) of multiple descriptors in JAFFE dataset.

In addition, to further demonstrate the reasonability of
overall algorithm, the proposed method in this paper was
compared with several methods of facial expression recog-
nition in other papers and ensured the same experimental
strategy, then the comparison results on JAFFE and CK+
datasets are shown in Table 2 and 3, respectively. As Table 2

TABLE 2. Accuracy (%) comparison of different methods on JAFFE
dataset.

TABLE 3. Accuracy (%) comparison of different methods on CK+ dataset.

reveals, the performance of our proposed method on JAFFE
dataset is superior to other excellent methods in recent years,
and average accuracy is improved by 4.29% on the basis
of [28] with 78.57%, which demonstrates the effectiveness of
our approach. Moreover, [28] uses all Gabor features and the
time complexity is much higher than our proposed method.
Table 3 indicates that the proposed method on CK+ is not
only superior to conventional feature extraction methods but
also better than somemethods using neural networks (In [29],
the feature extracted from the appearance feature-based net-
work is fused with the geometric feature in a hierarchi-
cal CNN, and also resulted in high feature dimensionality).
In summary, fusion features based on CS-LSMP operator
show their superiority and excellence in facial expression
recognition.

V. CONCLUSION
This paper presents a new descriptor, CS-LSMP for feature
extraction of facial expression recognition. The CS-LSMP
operator obtains the corresponding magnitude by comparing
the gray value between the central pixel and peripheral pixels,
while retains signal of magnitude and then compares with the
average magnitude. CS-LSMP reduces feature dimensional-
ity and avoids the selection of threshold. Compared with LBP
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and CS-LBP using a two-bit binary code of 0 or 1, CS-LSMP
first extends the coding range to [0, 3] interval so that some
delicate and detailed features between pixels can be captured
and represented. In addition, we performed CS-LSMP feature
extraction on OMFMs, PNMFMs, group of GFMs and facial
patches such as eyebrows-eyes and mouths. The subject-
independent experiments on JAFFE and CK+ datasets indi-
cated that the method proposed in this paper improved the
overall accuracy greatly and the consistency of experimental
parameters also demonstrated the universality of our pro-
posed algorithms. Since two public expression datasets were
built in a limited laboratory environment, we will continue
to study the expression recognition under uncontrollable and
wild environment. In the future, we will try to explore more
challenging tasks, such as micro-expression recognition and
expression recognition across data sets.
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