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Constraint Preserving Score for Automatic
Hyperparameter Tuning of Dimensionality

Reduction Methods for Visualization
Viet Minh Vu, Adrien Bibal, and Benoı̂t Frénay, Member, IEEE

Abstract—In data analysis, visualization through dimensional-
ity reduction (DR) is one of the most effective ways to understand
a dataset. However, the quality of a visualization is hard to
evaluate quantitatively and the hyperparameters of visualization
algorithms are sometimes difficult to tune for end-users. This
paper proposes a score for visualization assessment that can be
used to ease the choice of hyperparameter values for widely used
DR methods like t-distributed stochastic neighbor embedding
(t-SNE), LargeVis, and uniform manifold approximation and
projection (UMAP). We present the constraint preserving score, a
computationally efficient score to measure visualization quality.
The idea is to measure how well a visualization preserves the
information encoded in pairwise constraints like group informa-
tion or similarity/dissimilarity relationships between instances.
Based on this quantitative measure, we use Bayesian optimization
to effectively explore the solution space of all visualizations
and find the most suitable one. The proposed score is flexible
as it can measure quality in different ways depending on the
provided constraints. Experiments show its interest for end-users,
its complementarity with existing visualization quality measures,
and its flexibility to easily express different quality aspects.

Impact Statement—When working with high dimensional data,
visualization techniques are useful tools to help us to understand
patterns in data. Widely used visualization methods such as t-
SNE, LargeVis and UMAP require tuning several hyperparam-
eters, which is a tedious task for end-users. The visualizations
are usually assessed qualitatively and subjectively by users since
we lack quantitative measures that fit their needs. Our work
tackles this problem by proposing a novel score based on
user’s constraints to measure visualization quality. This score
can thus be used to automatically tune the hyperparameters of
visualization methods. For real-world datasets, there are typically
multiple aspects hidden in the data under the form of local or
global structures, or relationships between data groups. One
visualization gives us one vantage point to look at the data
and thus reveals one specific aspect of the data. Assessing the
visualization quality is still an open question and each state-of-
the-art visualization quality metric is designed to capture only one
specific aspect like local neighborhood structure. However, our
proposed constraints preserving score can capture other different
aspects of the visualization like the global structure or seman-
tic relationships between groups according to the information
encoded in the input constraints. Our score measures how well
the information encoded in input constraints is preserved in a
visualization, and suggests the best visualization corresponding
to the users’ needs. This score can have a large impact since
it is very easy to use and works with any visualization method.
Domain experts can express their knowledge in a simple form of
similar or dissimilar groups of points. If needed, end-users can
use a small amount of labeled data to express their constraints.

V.M.Vu, A.Bibal, B.Frénay are with the University of Namur, Belgium.
E-mail: { vuvietminh, adrien.bibal, benoit.frenay }@unamur.be

Manuscript received Xxx xx, 20xx; revised Xxx xx, 20xx.

Index Terms—Bayesian Optimization, Dimensionality Reduc-
tion, Hyperparameter Tuning, Pairwise Constraints, Visualiza-
tion.

I. INTRODUCTION

Dimensionality reduction (DR) methods transform data
from a high dimensional (HD) space into a low dimensional
(LD) space while preserving relevant structures. Modern DR
methods like t-distributed stochastic neighbor embedding (t-
SNE) [1], LargeVis [2] and uniform manifold approximation
and projection (UMAP) [3] aim to create visualizations that
help users to get insights. These techniques are powerful, but
their hyperparameters must be carefully tuned while often
being hard to understand for end-users. Choosing good hyper-
parameter values is crucial, since it predetermines the quality
and usefulness of the visualization [4], [5]. Typically, the most
suitable visualization is chosen through trial-and-error, which
is tedious and difficult for users.

Automatically finding the best hyperparameter values of
DR techniques, such as the perplexity of t-SNE, is crucial
before undertaking an exploratory data analysis. However,
this task involves two major difficulties: (i) the definition
of a measure of the visualization quality for choosing the
best hyperparameter value and (ii) the search through the
hyperparameter space to find this value. This paper tackles
both these issues by assessing the quality of visualizations
in an efficient and faithful way. Our idea is to use the
semantic information in pairwise constraints to measure the
quality of visualizations. This is done by transforming the
relationships between object pairs into a quantitative measure.
The main contribution of this paper is a new measure called the
constraint preserving score (f score) that measures the quality
of visualizations from any DR method. This score provides a
different aspect of quality than state-of-the-art visualization
quality measures (e.g., [6], [7]), while being computationally
efficient and flexible. An important application of our pro-
posed score is for automatically tuning hyperparameters of
visualization methods. This score can be used with Bayesian
optimization [8], [9] to find a range of hyperparameter values
corresponding to the visualizations that best respect the user
needs encoded in the input constraints.

One key advantage of our score is that, as we find the best
hyperparameter values with a model-independent measure of
quality, DR methods do not need to be modified. In that sense,
our approach is DR-method agnostic. Furthermore, when using
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constraints for choosing the best hyperparameter values, visu-
alizing these constraints makes it possible to explain the choice
of visualization. By explaining how the visualization is chosen,
a step towards interpretability of the DR process is also taken.
End-users can use our method as a black-box hyperparameter
tuning toolbox, but DR experts can also analyze the impact of
hyperparameters on the quality of visualizations.

This paper is organized as follows. Section II presents
the background on DR methods, visualization quality met-
rics, pairwise constraints in unsupervised learning and an
overview of how the automatic hyperparameter selection for
DR methods is handled in the literature. Section III presents
how to transform the knowledge in the input constraints into
the constraint preserving score. The experimental setting for
evaluating our proposed method is described in Section IV.
The main characteristics of the proposed score are empirically
presented through experiments in Section V. We compare
our score to other visualization quality metrics in Section VI
and show how to apply Bayesian optimization on this score
to automate the hyperparameter tuning task in Section VII.
Finally, Section VIII concludes our work.

II. BACKGROUND AND RELATED WORK

This section presents the background and methods related to
our work. Typically, dimensionality reduction (DR) methods
can be useful for very high dimensional data such as hy-
perspectral imagery to facilitate downstream tasks [10], [11].
However, in the scope of this paper, we focus on DR methods
for visualization, which are widely used for exploratory data
analysis. Section II-A presents the DR techniques used in
our evaluation (t-SNE [1], LargeVis [2] and UMAP [3]).
Section II-B presents the quality measures used in the literature
to assess DR embeddings. Section II-C describes how user
constraints are used in clustering and in DR. Finally, Sec-
tion II-D reviews the techniques to choose the hyperparameters
of DR algorithms.

A. Dimensionality Reduction for Visualization

t-SNE, LargeVis and UMAP are widely used for visualiza-
tion and have in common that they preserve local structures
in data. They consist of two main steps. First, a neighborhood
graph is constructed from the high-dimensional (HD) data.
This step requires an hyperparameter that determines the size
of the set of k-nearest neighbors (kNN), called n neighbors
in UMAP and perplexity in t-SNE and LargeVis. This kNN
graph is weighted in different ways to transform similarities in
the data space into neighborhood probabilities. Second, these
probabilities are used to project data in a low-dimensional
(LD) space to obtain the visualization.

Constructing the kNN graph requires pairwise distances
between all n instances in a d-dimensional space and has
a complexity of O(dn2). t-SNE [1] constructs the exact
kNN graph and thus cannot scale with large datasets. Its
accelerated version, called Barnes-Hut t-SNE [12], uses a
tree-based algorithm to reduce the complexity to O(dn log n).
LargeVis [2] approximates a very accurate kNN graph by

TABLE I: Properties of the five cluster-label-agnostic quality
metrics considered in this paper to assess visualizations.

metric range description
CC [0, 1] Pearson correlation coefficient between pair-

wise distance vectors
NMS [0,+∞) stress based on comparison of pairwise dis-

tance orders
CCA [0,+∞) stress with emphasis put on LD
NLM [0,+∞) stress with emphasis put on HD
AUC[RNX ] [−1, 1] how neighbors in HD are preserved in LD

using random projection trees to obtain neighborhood candi-
dates for each instance. In t-SNE and LargeVis, edges in the
kNN graph are weighted by an isotropic Gaussian kernel with
an adapted bandwidth derived from the perplexity parameter.
UMAP [3] has a different theoretical foundation and uses a
more sophisticated topological data analysis to model local
connectivity by a fuzzy topological structure.

In the embedding space, all three methods create a neigh-
borhood graph and transform it to neighborhood probabilities
using the Student’s t-distribution (UMAP uses a similar but
more general function). A graph layout problem must then be
solved to match the neighborhood probabilities in HD and LD.
t-SNE solves it by minimizing their Kullback-Leibler diver-
gence. LargeVis models the probability of obtaining an edge
between neighborhood nodes in the LD space and maximizes
the log-likelihood of this model. UMAP considers the graphs
in the HD and LD spaces as fuzzy sets and minimizes the
cross entropy between them. All three methods use gradient
descent for optimization.

The quality of the output embedding depends heavily on the
hyperparameters of these methods, which control the construc-
tion of the kNN graph in the HD space and the structure of
the kNN graph in the LD space. The perplexity/n neighbors
determines the approximate number of neighbors for each
instance: small values reveal more local structures, while
large values reveal more global structures in the data. UMAP
also uses another hyperparameter (min dist) to determine the
minimum distance between points in the embedding in order
to directly control how tight the groups are formed in the
visualization. The goal of this paper is to provide a score that
can be used to automatically tune these hyperparameters.

B. Visualization Quality Metrics

Several metrics exist to evaluate the quality of embed-
dings. In this paper, clustering-based quality measures are not
considered because they need labeled data for measurement.
Table I summarizes the reviewed metrics; more mathematical
details are provided in Appendix A. The correlation coefficient
(CC) [13] computes the correlation between the pairwise
distances in HD and LD. The well-known Kruskal’s non-
metric stress (NMS) [14], often used as the objective function
of non-metric multidimensional scaling, compares the pairwise
distance orders in HD and LD. The curvilinear component
analysis stress (CCA) [15] is a variant of Kruskal’s stress
with an emphasis on the embedding distances. This metric
evaluates the embedding quality by focusing on the correctness
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of close instances in LD. The Sammon’s non-linear mapping
stress (NLM) [16] is similar to CCA, but focuses on the
closeness of instances in HD. Finally, AUC[RNX ], a rank-
based criterion, measures how well neighborhoods in HD are
preserved in LD [17]. An average normalized intersection of
the neighborhood sets in the two spaces is calculated for
different neighborhood sizes k in a logarithmic scale. The area
under this curve then gives the AUC[RNX ] score that assesses
the average DR quality on all scales [7].

C. User Constraints for Clustering and DR

Clustering is a machine learning problem whose goal is to
find groups (called clusters) in the data. User constraints can
incorporate domain expertise to enforce expected properties
of the clusters. COP-KMeans [18] is the first method that
combines KMeans and pairwise constraints. Must-link and
cannot-link constraints indicate that two instances must be in
the same cluster or cannot be in the same cluster, respectively.
The popular survey by Davidson et al. [19] distinguishes
constraint-based and distance-based clustering methods with
instance-level constraints. In constraint-based methods, the
clusters are formed to preserve the constraints as much as
possible [20], [21]. In distance-based methods, the constraints
are first used to train a distance function that is later used by
a clustering algorithm [22], [23].

In DR, users can also inject constraints to enforce prop-
erties in the visualization. These objective constraints can be
partial labels as in semi-supervised latent Dirichlet allocation
[24], or constraints on the value of features as in bounded
PCA [25]. If users interact with the visualization, they can
give feedback in form of instance-level subjective constraints.
Pairwise constraints are often used to attract points connected
by similar links and repulse points connected by dissimilar
links. Such constraints are used in pairwise constraint-guided
feature projection [26], semi-supervised DR [27], graph-driven
constrained DR via linear projection [28] and constrained
locality preserving projections [29]. Sacha et al. [30] review
more methods for integrating user interaction into DR tech-
niques. Endert et al. [31] propose a wider survey on integrating
machine learning into visual analysis.

D. Choosing Hyperparameter Values of DR Methods

The best hyperparameter values of DR methods depend on
the dataset characteristics such as its size, its topology, or the
distribution of the instances, which makes them hard to tune.
For instance, the suggested values for t-SNE’s perplexity are
between 5 and 50 [1]. However, in practice, the embedding
can change drastically between two different perplexity values.
Therefore, there is no evidence that the suggested perplexities
are good for all datasets. The original t-SNE paper also
proposes a simple method to select a good perplexity by
looking at the Kullback-Leibler (KL) loss produced by several
perplexities and choose the lowest one. However, the KL loss
tends to decrease when the perplexity increases [32], which
is confirmed by our experiments, as shown in Fig. 1. For this
reason, using the KL loss for evaluating the embedding quality
is not suitable, since a very high perplexity would always be
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Fig. 1: Evolution of the KL loss for several datasets, which
tends to decrease systematically as the perplexity increases.
Perplexities are chosen in logarithmic scale from [2, n/3].

chosen. In practice, users have to manually choose this hard-to-
understand hyperparameter, which is tedious and error-prone.

Few papers in the literature attempt to derive the best hyper-
parameter values for DR methods automatically. Strickert [33]
suggests using rank-based data to avoid perplexity calculation.
Lee et al. [34] use a multi-scale approach by averaging all
neighborhood sizes. Despite bypassing the perplexity selec-
tion problem, these two solutions do not solve the selection
problem itself. Cao and Wang [32] try to tackle the problem
by selecting the perplexity of t-SNE that minimizes a modified
Bayesian information criteria [6]

BIC = 2KL(P ||Q) +
perplexity

n
log(n), (1)

where KL(P ||Q) is the KL loss of t-SNE and n is the number
of instances. However, this method is only designed for t-
SNE and cannot inject user knowledge through constraints. In
summary, tuning hyperparameters for complex methods like
UMAP or t-SNE is still an open problem.

III. CONSTRAINT PRESERVING SCORE

This section presents the proposed constraint preserving
score. We first illustrate the pairwise constraints used in this
work (Section III-A), then explain how to quantify the satis-
faction of these constraints to use as a score (Section III-B).

A. Introduction to the User Pairwise Constraints

Humans can often distinguish similar and dissimilar high-
dimensional objects (e.g., comparing images by visual features
such as the shape, colors, or objects therein) and group them.
For instance, we can easily identify three different groups
among the clothing images from the Fashion product dataset
in Fig. 2: the three t-shirts look similar, while being different
from the shoes and the belts. Here, users move from low-
level comparison between individual objects to higher-level
abstractions such as groups of similar objects.

Our idea is to use the information given by pairwise links
between objects to evaluate the quality of a visualization. Mod-
ern visualization methods such as t-SNE, LargeVis and UMAP
preserve the local structures in the dataset, i.e., instances that
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Fig. 2: Examples of the generated pairwise constraints from
three different groups of sample images in Fashion product
dataset. Similar links (plain blue) indicate images in the
same groups. Dissimilar links (dashed red) indicate images
of different groups.

are similar in HD should be close in the embedding space.
These methods are considered as successful when they reveal
clear groups of similar instances. If one knows in advance
examples of such patterns, they can be used to assess the
quality of the visualization.

Two types of pairwise constraints are considered here:
similar and dissimilar links. Similar links indicate that two
instances are similar and should be in a same group. On
the contrary, dissimilar links indicate that two instances are
dissimilar and should be in different groups. These pairwise
constraints are used to measure how well local structures are
preserved and to measure the quality of the visualization. In
general, a convenient way to form groups is to use class
labels. In the case where labels are not available, users can
observe some input data points (e.g., images or documents in
the dataset) and select groups of similar points to construct
the pairwise constraints. However, this approach only works
with datasets of images or structured documents where users
can visually or semantically compare objects to find simi-
lar/dissimilar pairs. Our method may not work with unlabeled
numerical data for which directly comparing data points is not
straightforward.

However, several solutions exist to address this issue. If the
input data are normalized, users can use a simple heuristic
to select similar/dissimilar points based on their distances.
Moreover, if users have prior knowledge about their dataset,
they can form their groups of interest using one or several
selected features. For example, in medical datasets, several
standard features like sex, age, blood pressure (BP) are com-
monly available. The users can easily form simple groups of
male and female patients, or different contrastive groups of
young patients with low BP, aged patients with high BP, etc.
It should be noted that we do not need the ground truth class
labels, but only need groups of similar objects to form the
pairwise constraints. This information can be considered as
a weak supervision information [35], which can be collected
efficiently and then enriched by the label propagation or active

constraint selection algorithms [36]. Snorkel, a research and
industrial library, is a useful tool that allows users to use their
domain knowledge or heuristics to label their data [37].

B. Defining the Constraints Preserving Score

Given a set of user pairwise constraints, the constraint pre-
serving score fscore measures how well the pairwise constraints
are preserved in a particular embedding. We first propose how
to quantify the satisfaction of individual constraints and we
then formulate fscore based on them.

Constraint Measurement: We first define the strength of the
input pairwise constraints in a given embedding. A similar link
should have a high strength and a dissimilar link should have
a low strength. The strength of a constraint can be measured
as the inverse of the distance between two connected points.
If a Student’s t distribution is placed at the point yi in the
embedding, the strength of the constraint connecting yi to
another point yj is defined as

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l (1 + ||yk − yl||2)−1

, (2)

where the denominator is a normalization constant calculated
from all pairs {(yk,yl)} in the embedding.

A similar formulation is used in t-SNE, LargeVis and
UMAP to model the neighborhood relationship in the embed-
ding space. qij can be interpreted as the probability of yi and
yj being neighbors in the embedding space. Therefore, for
each similar link (yi,yj) ∈ S , qij should be high. Inversely,
qij is expected to be low for each dissimilar link (yi,yj) ∈ D.

Constraint Preserving Score: We propose to measure the
preservation of all similar links (yi,yj) ∈ S in an embedding
as the log-likelihood

fscore(S) =
1

|S|
log

∏
(yi,yj)∈S

qij =
1

|S|
∑

(yi,yj)∈S

log qij . (3)

If all pairs of points connected by a similar link are close in
the visualization, the log-likelihood fscore(S) is high.

In contrast, the probability qij for each dissimilar link
(yi,yj) ∈ D should be low. For all dissimilar links, we
therefore propose to use the negative log-likelihood

fscore(D) = −
1

|D|
log

∏
(yi,yj)∈D

qij = −
1

|D|
∑

(yi,yj)∈D

log qij .

(4)
Another way to measure how well a dissimilar link (yi,yj) is
preserved is to use 1− qij . However, in practice, the value of
qij is very small, meaning that 1− qij is close to one, which
makes the log-likelihood of all dissimilar links vanish.

As the scores for the similar (Eq. 3) and dissimilar (Eq. 4)
constraints are normalized by the number of similar and
dissimilar constraints, an equal contribution of these different
kinds of constraints is considered. The final constraint preserv-
ing score is therefore the combination with equal contribution
of both similar links and dissimilar links

fscore(S,D) =
1

2
fscore(S) +

1

2
fscore(D). (5)
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Fig. 3: Illustration of how the proposed fscore assesses the visualizations. Two different visualizations (a) and (b) of the same
dataset are shown on top with the same set of pairwise constraints including four similar links denoted by plain blue lines and
four dissimilar links denoted by dotted red lines. For each pair (i, j) in the input constraints, the quantitative measure qij is
calculated by Eq. 2 and is visualized by the bar charts. fscore for the similar/dissimilar links and the final fscore are calculated
using Equations 3, 4 and 5. In the visualization (a), the selected images connected by must-links are close and thus the qij
values are large, while the images connected by cannot-links are distant, which makes the qij values small. The values of qij
for the same set of input constraint for the visualization (b) are opposite since the similar images are placed far apart while
the dissimilar ones are closer. fscore can measure this difference and give a high score for (a) and a much lower score for (b).

An embedding that retains as much as possible the pairwise
constraint corresponds to a high fscore, which means that it has
a good quality with respect to the encoded knowledge. Fig. 3
illustrates the idea of how to measure the preservation of input
constraints quantitatively using fscore.

IV. EXPERIMENTAL SETUP

In this paper, fscore is used to assess visualizations and
to find the best hyperparameters of three DR methods: t-
SNE, LargeVis and UMAP. This section discusses the datasets
used in experiments, as well as how pairwise constraints are
obtained and how metrics are computed. We analyze the
characteristics of fscore in Section V, compare it with other
metrics in Section VI and use this score to automatically tune
hyperparameters of DR methods in Section VII.

A. Experimental Datasets

Six datasets of gray-scale and color images, texts and
gene expressions are used for evaluation. DIGITS is a subset
of 1797 handwritten digits of gray-scale 8x8 images [38].
COIL20 contains 1494 gray-scale 32x32 images of 20 ro-
tated objects [39]. FASHION 1K contains 1000 gray-scale
28x28 images sampled from the Fashion-MNIST clothing
dataset [40]. FASH MOBI contains 1494 color images of

the seven most numerous classes sampled from another real-
world fashion product images dataset [41]. The features are
extracted with a pre-trained MobileNet [42], where the last
fully connected layer is replaced by a global average pooling
layer to obtain an output vector of 1280 dimensions. For these
four image datasets, PCA is applied to keep 90% variance of
the data. This speeds up the computation of pairwise distances
and reduce the potential noise of outliers.

5NEWS contains 2957 text documents in 5 groups
(rec.autos, rec.sport.baseball, sci.space, sci.crypt and
comp.sys.mac.hardware) from the 20 Newsgroups dataset. We
use a traditional pipeline to process the text data. Documents
are first converted to TF-IDF vectors that are then fed into
a latent Dirichlet allocation model [43] to extract 15 hidden
topics, which are the 15 features used by the DR methods.

The last real-world dataset is NEURON 1K open
dataset [44] that contains 1301 brain cells from an E18
mouse. These cells have been processed and provided by 10X
Genomics. The processed data have 10 PCA features and 6
labels found by a graph-based clustering method.

B. Constraint Generation

The proposed constraint preserving score requires a set
of constraints in the form of similar and dissimilar links.
As shown in Section III-B, the pairwise constraints can be
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Fig. 4: Evolution of fscore with respect to the hyperparameter of three DR methods for six datasets.

generated from groups of selected instances. Users can group
the instances that they find similar to indicate that they
should be connected by similar links. Similarly, instances in
different groups indicate that they should be connected by
dissimilar links. In order to objectively evaluate the proposed
score, we use a standard setting in semi-supervised learning
where only a small number of labels in the dataset are used.
Pairwise constraints generated from labeled instances are used
throughout our experiments as follows.

First, for a dataset of C classes and n instances, k � n
labeled instances are randomly selected for each class. Then,
a similar link is created for each possible pair of these k
instances, leading to |S| = Ck(k − 1)/2 constraints. Finally,
for each pair of classes, k2 dissimilar links are created by
considering all pairs of instances that belong to two distinct
classes, leading to |D| = C(C − 1)k2/2 constraints.

C. Computing Visualizations and Metrics

In the following sections, a grid of hyperparameter val-
ues is created for each method to compare them and to
perform their hyperparameter optimization. For t-SNE and
LargeVis, a one-dimensional grid of perplexity values is
sampled in natural logarithmic scale from [2, n/3]. For
UMAP, a two-dimensional grid is created with n neighbors
∈ [2, n/3] in natural logarithmic scale and min dist
∈ [0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0]. For each
combination of hyperparameters in the above grids, an embed-
ding is calculated, and fscore, AUC[RNX ] and the BIC-based
score (if applicable) are computed.

V. CHARACTERISTICS OF fSCORE

Experiments in this section show that fscore is a well-
behaved function of the input visualization (Section V-A), is
stable with respect to the number of input labeled instances
(Section V-B) and is flexible with respect to different sets of
input constraints (Section V-C).
fscore has a computational complexity of O(n2) since it

only uses pairwise distances between the n points in the
visualization (and not in the original HD data). Furthermore,
the summation over all the input pairwise constraints can

be efficiently vectorized via matrix slicing operations. In
contrast, AUC[RNX ] must access both to the HD data and
the visualization. This means that AUC[RNX ] is not scalable
for large datasets due to its complexity of O(dn2log(n)).
The BIC-based score, despite its simplicity, can only be used
for t-SNE. For an embedding not generated by t-SNE, it
requires to compute the KL loss of t-SNE with a complexity of
O(dn2). In conclusion, the proposed fscore has the advantage
to be independent of the choice of the DR method and to be
computationally more efficient.

A. fscore as a Well-Behaved Function

Fig. 4 shows the behavior of fscore as a function of the
perplexity for t-SNE and LargeVis and as a function of
n neighbors for UMAP for six datasets. In this experiment,
UMAP is run with the recommended value min dist = 0.1.
This parameter is fixed, which allows us to have an overview
of the evolution of fscore with respect to the neighborhood
size of all three evaluated methods. Pairwise constraints are
generated from k = 10 labeled instances per class.
fscore takes the form of a convex-like function of the per-

plexity/n neighbors, i.e., a well-behaved function. It increases
as the number of neighbors (perplexity/n neighbors) increases,
then reaches its maximum value, and finally decreases when
the number of neighbors becomes too large. This also holds
when fscore is a function of two parameters (n neighbors and
min dist) for UMAP embeddings. While fscore is not smooth
per se, it seems feasible to find a global maximum.

Flat regions can be found where fscore does not change much
for LargeVis. The reason is that LargeVis is designed for large
datasets and, thus, when applied to medium-sized datasets,
the impact of the perplexity is not significant. In contrast, t-
SNE and UMAP are very sensitive to their hyperparameters.
The experimental results of Section VI and Section VII are
therefore focused on t-SNE and UMAP.

B. Stability of fscore

To investigate the number of constraints needed to obtain
a reliable fscore, different number k of labeled instances (3,
5, 10 and 15) per class are tested. In each setting, fscore
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Fig. 5: Stability of fscore with the embeddings of (a) t-SNE,
(b) LargeVis and (c) UMAP for the COIL20 dataset. The
mean (blue line) and variance (filled region around the line)
is calculated for each perplexity/n neighbors with a different
number k of labeled instances per class (3, 5, 10 and 15).

is repeatedly evaluated 20 times. The mean and variance of
fscore for t-SNE, LargeVis and UMAP (with min dist of 0.1)
embeddings for the COIL20 dataset are shown in Fig. 5 as an
example. It can be seen in the figure that when the number
k of labeled instances increases, fscore is more stable since
its variance decreases. One can also observe that the region
where fscore has a high value is stable for different number of
constraints. This result is shown for COIL20, but also holds
for the other datasets. Since fscore is stable with respect to k,
for the remaining of this paper, k = 10 labeled instances per
class is used to calculate fscore, since it is a reasonable small
number of labels for which the variance of fscore is negligible.

C. Flexibility of fscore

In contrast to other DR quality measures, fscore is flexible, in
the sense that the input constraints can be used to control how
the visualization is assessed. In most cases, the constraints gen-
erated from class labels reflect naturally the class-relationship
between the instances. However, if the labels are not available,
or the users want to see other patterns in their data, they
can use their specific constraints to describe their needs. This
section provides concrete examples with t-SNE embeddings
for three real-world datasets in which the class labels are not
used. In this case, users can observe several data points and
group them into different abstract groups. For example, users
may not know how many categories there are in a dataset of
fashion products. However, they can easily identify a footwear
group of shoes and sandals, or a clothing group of dresses,
shirts, and trousers. These groups can represent the semantic
concepts users expect to see in the visualization. From each
abstract group selected by users, k = 10 instances are used to
generate a new set of pairwise constraints. fscore can then find

the best visualization that reflects the need of users encoded
in these constraints.

The first example considers the FASH MOBI dataset with
seven sub-categories. The best visualization (perplexity = 60)
shows 7 detached sub-groups as shown in the top-left plot of
Fig. 6a. If the user wants to see more abstract, general groups,
he or she can form higher-level groups such as
• Accessories as a group of { Bag, Jewellery, Watches },
• Footwear as a group of { Sandal, Shoes },
• Apparel as a group of { Topwear, Bottomwear }.

While the previously chosen visualization did not reveal these
three higher-level groups, using them to compute fscore lead
to a new best perplexity (113) that better reveals this structure
as shown in the bottom-right corner of Fig. 6a.

The second example focuses on semantic labels for the
textual 5NEWS dataset. Based on the content of the news in
five original classes, the user can create three general topics
• sportive records group (rec) as a topic of {rec.autos,

rec.sport.baseball},
• scientific group (sci) as a topic of {sci.space, sci.crypt},
• comp.sys.mac.hardware stays in its own group (comp).

The problem of the visualization found with the constraints
generated from the original class labels is that two sub-groups
of the same topic can be placed far apart (bottom-left of
Fig. 6b). By using the new constraints generated from the
three above semantic groups, fscore finds a better visualization
in which elements in these semantic groups are placed close
to each other (bottom-right of Fig. 6b).

The last example uses NEURON 1K. The original 1301
cells are grouped into 6 classes found by a graph-based clus-
tering algorithm. These classes are characterized by the tran-
scriptome profiles of individual cells (presented in the RNA
sequences). However, another important aspect to characterize
individual cells is the count of absolute number of molecules:
the unique molecular identifier (UMI) [45]. Therefore, the cells
can be grouped into three new groups:
• the ones with less than 6.5K molecules,
• the ones having from 6.5K to 12.5K molecules,
• the ones with more than 12.5K molecules.

Fig. 6c illustrates the visualizations found by fscore with the
constraints generated from the original graph-based clusters
and from the new groups obtained with the UMI count.

VI. COMPARISON WITH OTHER QUALITY SCORES

Our proposed fscore can be used as a quality measure like
other state-of-the-art scores such as BIC or AUC[RNX ]. This
section qualitatively compares the best visualizations found
by fscores and by two other metrics. fscore is compared
with AUC[RNX ] and the BIC-based score for evaluating t-
SNE embeddings (Section VI-A). fscore is also compared with
AUC[RNX ] for evaluating UMAP embeddings (Section VI-B).
As indicated previously, fscore is used with k = 10 labeled
instances for each class. Our experiments in Section V show
that this parameter does not need to be tuned since it gives
a stable score throughout the empirical measures for all three
methods and six experimented datasets.
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Fig. 6: Flexibility of fscore for t-SNE embeddings. Each dataset is shown in four plots that correspond to the four possible
combination of two perplexities and two coloring schemes. The two plots on the left (right) show the best visualization found
by maximizing fscore with the original labels (with higher-level categories used as labels). The plots in the top row are colored
with the original labels, while the ones in the bottom row are colored with higher-level categories.

A. Comparison of fscore with AUC[RNX ] and the BIC-based
Score for t-SNE

Fig. 7 shows that, for the six selected datasets, fscore agrees
with AUC[RNX ], the BIC-based score or both of them. The
agreement between these scores can be visually revealed
through the overlap of the ranges of the top 5% scores
(maximum values for fscore and AUC[RNX ], minimum values
for the BIC score) in Fig. 7.

In order to compare thoroughly the best solutions found by
these scores, metamaps are used for visualizing the solution
space of DR methods. Each point in the metamap is a t-SNE
embedding corresponding to a perplexity value. Two points
close to each other in the metamap correspond to perplexi-
ties that provide similar visualizations. The metamap can be
constructed with any embedding method such as UMAP or
t-SNE and is extremely useful in visual analytic tools like
VisCoDer [46] for discovering and comparing embeddings of
different DR methods. In the case demonstrated in Fig. 9,
we have more than 100 visualizations for the NEURON 1K
dataset. The metamaps are built using UMAP with large values
of n neighbors = 50 and min dist = 0.5, which allow us
to have a global view of all visualizations corresponding to
different perplexities.

Fig. 9 shows the metamaps for NEURON 1K and highlights
several visualizations selected by different scores. The four
metamaps are colored by the values of perplexity, fscore,
AUC[RNX ] and the BIC-based score. The 5% of embeddings
with the highest scores are highlighted. It can be seen that the
three scores reveal different visualizations: different scores can
select visualization with different qualities. This is in line with
Wattenberg et al. [4], who state that we need more than one
visualization to understand the hidden patterns in HD data.

The visualizations at the bottom of Fig. 9 serve as a qualitative
evaluation of the best visualizations found by the three scores.

B. Comparison of fscore with AUC[RNX ] for UMAP

Fig. 8 shows the evolution of fscore and AUC[RNX ] when
the two hyperparameters n neighbors and min dist of UMAP
are considered. For DIGITS, COIL20 and FASHION 1K,
the evolution of fscore is clearer and smoother than the one
of AUC[RNX ]. For NEURON 1K, the two scores discover
different optimal regions. For FASH MOBI and 5NEWS,
AUC[RNX ] reveals clearer regions of best hyperparameters,
but it mostly gives the same score for different min dist
while n neighbors is fixed. In contrast, fscore discovers the
influence of min dist in conjunction with n neighbors. The
combination of these two hyperparameters is important for
UMAP embeddings, since while n neighbors controls local
structures (the size of local neighborhoods), min dist controls
directly how tight the groups in the visualization are.

Fig. 10 shows metamaps for UMAP embeddings and several
selected visualizations for COIL20. In this case, we have more
than 1000 visualizations of the COIL20 dataset corresponding
to different combinations of n neighbors and min dist. The
metamaps are built using UMAP with a large neighbor size
(n neighbors = 100, min dist = 0.5) in order to obtain a global
view of all visualizations. fscore considers the first visualization
(a) as the best one. The next two visualizations are considered
good by AUC[RNX ], but not by fscore. In the second visuali-
sation (b), the groups clearly highlight the local structures, but
are not tight enough to reveal the global structures. In the third
visualization (c), the groups are retracted and heavily overlap
each other. This visualization has a high AUC[RNX ] score
since the neighborhood information is well preserved, while
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Fig. 7: Comparison of fscore, AUC[RNX ] and the BIC-based
score for t-SNE embeddings. (b), (c): the ranges of the top
5% of maximum values (minimum values for the BIC score)
overlap each other for the three scores. (d): fscore range mainly
overlaps with AUC[RNX ] score range. (a), (e) and (f): fscore
ranges only overlap with the BIC-based score ranges. The best
perplexity selected by each score (marked by the green vertical
line) gives an idea of what is the good range of perplexity
values according to each score.

the visualization is actually not clear. This same visualization
is discouraged by fscore. The last visualization (d) belongs
to the low score region in the metamap (with respect to
both scores) with a too large n neighbors and/or a too large
min dist.

It should be noted that we do not conclude which score
is better than the others since each score assesses the visual-
ization by different aspects. Indeed, among all possible visu-
alizations of a dataset, fscore and AUC[RNX ] can encourage
different visualizations. AUC[RNX ] encourages the visualiza-
tions where the neighborhood is preserved. For instance, in
the visualizations in Fig. 10(b), local structures, like circle
patterns, can clearly be identified. In contrast, fscore promotes
visualizations where similar points are close to each other and
dissimilar points are far from each other, according to the
pairwise constraints. The visualization proposed by fscore can
thus give a global view of the relative relation between small
clusters in visualizations like the ones in Fig. 10(a).
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Fig. 8: Comparison of fscore (on the left) and AUC[RNX ]
(on the right) for UMAP embeddings. The best combination
of hyperparameters found by each score is located by the
orange point in each dataset. In each plot, n neighbors (on
the horizontal axis) and min dist (on the vertical axis) are
shown in logarithmic scale. The light/dark region corresponds
to the large/small values of the two scores.

VII. BAYESIAN OPTIMIZATION FOR HYPERPARAMETER
TUNING WITH fSCORE

This section considers how to search through all combi-
nations of hyperparameters to find the one with a maximum
score. We propose to use Bayesian optimization (BayOpt) to
solve this problem. Section VII-A introduces the advantages
of this approach. Section VII-B and Section VII-C evaluate
the task of tuning one hyperparameter for t-SNE and two
hyperparameters for UMAP using the proposed fscore.

A. Hyperparameter Tuning and Bayesian Optimization

Hyperparameters of DR methods can be tuned by trial-
and-error or through a naive grid search. Better approaches
exist, such as random search [47], which randomly samples
combinations of hyperparameters. However, the parameter
space in which the search takes place grows exponentially
with respect to the number of hyperparameters.
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Fig. 9: Metamaps and sample visualizations for NEURON 1K. The top 5% highest scores in the metamap according to each
metric are highlighted on the top row. On the middle row, the visualizations are chosen using (a) fscore, (b) AUC[RNX ] and (c)
the BIC-based score. The last one (d) is not considered good by any of the scores. On the bottom row, the same visualizations
are shown without any information for supervision (i.e., no label for coloring the points). The contour in each plot shows the
density estimation, which is calculated in the same way for all visualizations. Visually, several groups are correctly revealed in
(a) and (c) while the whole embedding in (b) is considered as a single cluster, which makes it hard to recognize the different
small groups.

Bayesian optimization (BayOpt) is a strategy for finding the
extremum (minimum or maximum) of an objective function
f with as few evaluations as possible [8]. The objective
function can be any complex non-convex black-box function
that does not have a closed-form expression, or that does
not have an accessible derivative. The goal of BayOpt is
not to approximate this unknown function, but instead to
estimate its maximum from a set of observed input samples
and function values. BayOpt constructs a statistical model
describing the relationship between the tuned hyperparameters
and the target function. Based on past observations, BayOpt
predicts the most promising hyperparameters to evaluate. As
there is a trade-off between exploration and exploitation,
several strategies exist to guide the optimization process to
discover the parameter space: maximum probability of im-

provement, expected improvement and lower or upper confi-
dence bound [48]. BayOpt successfully solves the problem of
hyperparameters tuning for classification [49] or experimental
design/randomized experiments [50].

In this work, the objective function to maximize under the
BayOpt framework is fscore. The exploration strategy is chosen
so as to explore the largest parameter space possible. The
expected improvement (EI) acquisition function is thus a good
choice for the surrogate function of BayOpt, as it maximizes
the expected improvement over the current best parameters
and has proven its efficiency in practice [49]. The parameter
ξ of BayOpt controls the trade-off between global search
(exploration) and local optimization (exploitation). Here, ξ is
set to a large value (0.25) to stimulate exploration. Since there
is a small variance in fscore, BayOpt takes it into account by
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Fig. 10: Metamaps and sample visualizations for COIL20. The top 5% highest scores in the metamap according to each metric
are highlighted on the top row. On the bottom row, (a) is chosen by fscore and (b) is chosen by AUC[RNX ]. (c) is considered
good by AUC[RNX ] but not by fscore, and (d) is not considered good by any score. The detailed views when zooming in
on several small groups in (a) are shown. The circle patterns are similar to the patterns in (b). However, the visualization in
(a) reveals the global structure, while the one in (b) does not. When zooming in on several zones of the visualization in (b),
objects in one group are closer to objects in other groups rather than to the ones in the same group.

adding small values to the diagonal of the kernel function of
the underlying Gaussian process model.

B. Tuning One Hyperparameter for t-SNE

Fig. 11 demonstrates how BayOpt works for tuning t-SNE’s
perplexity for all six selected datasets. Remarkably, fscore
needs to be evaluated for only 15 selected perplexities. These
perplexity values are selected by BayOpt iteratively, starting

with five random perplexities. The pairs of perplexity and the
corresponding fscore are used to update the BayOpt model at
each iteration. The next predicted perplexity to evaluate is the
most promising perplexity value that does not decrease fscore. It
should be noted that BayOpt does not explicitly approximate
the score function, but it tries to find the maximum value
instead. BayOpt does not only find the best hyperparameter
values, but also indicates the region in which it is not certain
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Fig. 11: Tuning t-SNE’s perplexity for six datasets using
BayOpt. fscore is evaluated only for the embeddings of 15
selected perplexities shown by the dark blue points. The
dotted blue line presents the predicted fscore for all other
perplexities. The filled blue region represents the uncertainty
of the prediction. The green vertical line indicates the best
predicted perplexity. The orange lines are the true values of
fscore, only used as references to see how well the BayOpt
prediction approximates the true target values.

about its prediction, which is usually the region of too high
or too low perplexity values.

C. Tuning Two Hyperparameters for UMAP

Tuning hyperparameters for UMAP is a more difficult task,
since its two-dimensional hyperparameter grid is larger than
the one-dimensional grid of t-SNE. Instead of evaluating
thousands of combinations of values for two hyperparameters,
BayOpt converges after only 50 iterations for all six experi-
mental datasets. Fig. 12 shows how BayOpt finds the region
with the best combinations for the six datasets. The uncertainty
of BayOpt prediction is not shown in this plot. In comparison
with the full grid used for fscore in Fig. 8, BayOpt approximates
the region of highest score more efficiently with a very limited
number of evaluations.

In practice, BayOpt is used to tune multiple hyperparam-
eters. Contour plots of every pair of hyperparameters are
used to investigate the region with the best combinations.
One advantage of the BayOpt approach is that it does not
only maximize the target score function, but it also gives
predicted scores for all hyperparameter combinations. Indeed,
in each plot in Fig. 12, only 50 points are exactly evaluated.
The contour is calculated upon the predicted value of the
BayOpt’s underlying Gaussian process model for all other
points. Without spending too much resources to obtain a full
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Fig. 12: Tuning two hyperparameters of UMAP using BayOpt.
In each plot, 50 points (combinations of n neighbors and
min dist) are evaluated and shown by the blue dots. The
contour plots are constructed from the predicted fscore for all
other points in the grid. The light/dark region corresponds to
the large/small values of fscore. The orange points indicate the
best predicted hyperparameters.

grid, the estimated score given by BayOpt is reliable enough
to point out the best hyperparameters.

VIII. CONCLUSION AND FUTURE WORK

This work tackles the problem of automatically tuning the
hyperparameters of DR methods, which requires to search
through all visualizations and rank them by their quality in
order to find the best one. A new constraint-based score is in-
troduced to measure the quality of visualizations by evaluating
how well the information encoded in input pairwise constraints
is preserved in the visualization. The proposed score, called
fscore, is a simple, efficient and flexible quality metric. It
does not require to calculate neighborhood information in
the HD space or the expensive objective function of a non-
linear DR method. Furthermore, it is complementary to other
quality metrics, while being flexible (as the score can change
with respect to the user’s input constraints) and cheaper to
compute. Based on this score, we propose to use Bayesian op-
timization to efficiently find the best hyperparameters instead
of traditional search-based methods. The proposed workflow
facilitates the use of DR methods by making the choice of
difficult-to-understand hyperparameters easier and helps users
to discover different visualizations with various perspectives
on the structure of data.

In future work, we plan to evaluate the quality of the
selected visualizations through a user-based experiment. Users
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would select the instances that they consider should be in the
same or in different groups in order to generate the similar
and dissimilar links. Users’ feedback could also be directly
incorporated into the BayOpt framework to accelerate the
convergence of the optimization. Another perspective is to
consider richer constraints like contrastive [51] or triplet
constraints [52] in order to build a more robust constraint-
based quality score.

APPENDIX A: QUALITY METRICS

Let DX and DY be the pairwise distance matrices for all
pairs of points in the HD and LD spaces, respectively. Let
DY
ij be the distance between two instances i and j in the LD

space. Here are the mathematical formulas for the five selected
metrics reviewed in this work.
• The Correlation Coefficient is defined as

CC = pearson correlation(DX , DY ) =
Cov(DX , DY )

σ(DX)σ(DY )
.

• For measuring the distance order in NMS, an isotonic
transformation Diso is performed on DX . The Kruskal’s
stress is then computed using the transformation

NMS =

√∑
ij(D

iso
ij −DY

ij)
2∑

ij D
Y
ij

.

• The Curvilinear Component Analysis Stress function is
defined as

CCA =
∑
ij

(DX
ij −DY

ij)
2Fλ(D

Y
ij),

where Fλ(D
Y
ij) is a decreasing-weighting function of

DY
ij . Examples of weighting functions include the step

function or 1− sigmoid(DY
ij).

• The stress function of Sammon’s Nonlinear mapping is

NLM =
1∑
ij D

X
ij

∑
ij

(DX
ij −DY

ij)
2

DX
ij

.

• The quality measure AUC[RNX ] can be defined as
follows. Let k be the number of neighbors considered,
n the number of instances, νki the set of the k closest
neighbors of i in the embedding and ρki the set of the k
closest neighbors of i in the HD space, QNX is defined
as

QNX(k) =
1

nk

n∑
i=1

|νki ∩ ρki |,

RNX(k), the rescaled version of QNX(k), is defined as

RNX(k) =
(n− 1)QNX(k)− k

n− 1− k
and AUC[RNX ] is computed by taking the area under
the RNX(k) curve in the log-scale of k

AUC[RNX ] =

(
n−2∑
k=1

RNX(k)

k

)
/

(
n−2∑
k=1

1

k

)
.

REFERENCES

[1] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[2] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and
high-dimensional data,” in Proc. WWW, Montréal, Canada, Apr. 2016,
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