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Foreword

 

Objectives 

Topics 

This book was developed with the syllabus of MA-471: Introduction to Discrete Mathe- 

matics of Queensborough Community College (QCC) in mind. It therefore bears the same 

objectives, which can be summarized as follows. 

The first objective is to define and discuss the meaning of truth in mathematics. We ex- 

plore logics, both propositional (Chapter I) and first-order (Chapter II), and the construction 

of proofs, both formally and human-targeted (Chapter III). 

Using the proof tools, this book then explores some very fundamental definitions of 

mathematics through set theory (Chapter IV). This theory is then put in practice in several 

applications. The particular (but quite widespread) case of equivalence and order relations is 

developed in Chapter V. Chapter VI introduces sequences and proofs by induction. Number 

Theory is the focus of Chapter VII. Finally, a small introduction to combinatorics is given 

in Chapter VIII. 

As the name indicates, this book is an introduction , so most topics touched in this book 

would deserve a book in their own right. 

Math or Computer Science? 

The topics of this book oscillate between Computer Science and Mathematics. This is 

because theoretical computer science (the science part, that can be done with pen and 

paper rather than on a computer) needed in its inception to properly define truth and 

the mechanics of truth so that a machine could handle it. As a result, throughout the 

book some references are made to computer science and sometimes programming. A reader 

unfamiliar with these concepts can skip these parts, but for a computer programmer the 

relations between the theoretical concepts and their application in programming should 

help understand the theory better. In any case, knowing theoretical foundations helps being 

a better programmer, whether programming is learned before or after taking this course. 

Take-home message 

As the course touches lots of fundamental aspects of math, the book contains lots of defini- 

tions and vocabulary. Although it is necessary for the book to be self-contained, the vocab- 

ulary is not the most important idea of the book. What matters most is that it introduces 

and uses proof techniques. These techniques provide powerful tools and problem-solving 

strategies to approach any mathematical problem. In addition, they set a high standard for 

argumentation in everyday life: wrong arguments and wrong proofs are more easily detected 

when the mind knows what to expect from an actual well-formed proof. This protection 

against misleading arguments is valuable regardless of future coursework and career.
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Chapter Foreword

 

How to use this book 

Writing Intensive 

The Mathematics and Computer Science department at QCC designated the course MA- 

471 as Writing intensive . That means students must produce a certain amount of written 

material throughout the semester. 

In the context of this course, the main focus of the writing will be proofs. As a result, 

reading the proofs in this book should provide many examples as to what is expected in 

writing such proofs, as it is different from writing an English essay. 

Margin notes 

This book uses a relatively wide margin that allows for extensive marginal notes. They are 

color-coded for your convenience: 

• Green notes indicate an internal reference within the book. In PDF form, the links 

are clickable and lead to the pointed section.

 

↬

 

An internal 

reference.

 

• Dark red notes (all with the same text) indicate this part is more part of mathematical 

culture, usually some concepts that should be expanded more but do not fit within 

the scope of the course.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

• Bright red notes indicate that you must proceed carefully.

 

�

 

A warning.

 

• Yellow notes are uncategorized notes.

 

b

 

A note.

 

They include (among others) historical com- 

ments and fun facts. 

Student vs Instructor version 

This textbook exists in two versions: the student and instructor version. The only difference 

between the two is the presence of exercise answers in the Instructor version. 

This version is the Student version. If you are an instructor looking for the instructor 

version, please contact me at MSassolas@qcc.cuny.edu . 

Comments, bug reports, reuses 

This book has been put in circulation on-line without being extensively tested (especially 

by students). I welcome any suggestions and comments, even if only to report a typo, by 

email at MSassolas@qcc.cuny.edu . 

If you wish to reuse this book with modification and need access to the LATEX source, 

you can also reach out to me. I cannot promise the source is clean, though. This work is 

being published under the Creative Commons Attribution-NonCommercial 4.0 International 

License , so any derivative work should “include at least the same license elements as the 

license applied to the original material” ( https://creativecommons.org/faq/ ).
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Sources and acknowledgments 

This book was created from the slides used in class developed for the course in Fall 2020 and 

Spring 2021 semesters. The writing style of the book may be an indication of this origin, as 

it was intended as an extended version of the course as given in talk and slides. (The initial 

intent was to have enough space to write the longest proofs properly.) 

While the slides themselves and therefore this book were my personal writing, they were 

inspired by my readings at the time. These include, but are not limited to: 

• Lecture notes and exercises for this course from my colleague Dr. Kwang Hyun Kim. 

• Mathematics for Computer Science by Eric Lehman, Tom Leighton, and Albert Meyer; 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 

6-042j-mathematics-for-computer-science-fall-2010/readings/ . 

• Wikipedia, for historical points and notation examples. 

• Stackoverflow and TEXample for LATEX/Tikz code for figures (the source is indicated 

in the text).
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I.A Introduction 

I.A.1 What is truth? 

“What is truth?” is both a very deep and very broad question. It has been asked by 

philosophers for centuries (at least since the Greek antiquity), and have received some partial 

answers, depending on what discipline focuses on the issue. In the context of this book, we 

will take the mathematicians’ approach, and more precisely the logicians’ approach. We can 

summarize this as follows:

 

Truth is either something we assume to be true, or 

something we can build as true from other truths.

 

Although this definition seems self-contained, it leaves two (big) opportunities for inter- 

pretation: 

• What should be the truth that we assume? 

• By what mechanisms can we build new truths? 

There is actually no one good answer to that, and logicians are still actively working on 

this topic: Playing with these parameters generate a wild bunch of logical systems . In this 

book we will only see two such systems: Propositional calculus (in this chapter) and Natural 

Deduction system (in Chapter III). 

I.A.2 Propositions 

The framework described above is still too broad to be tackled formally by logics: in natural 

language (here English), there are lots of context that is implicit in a statement. For example 

“My name is John” is a true statement only if uttered by someone actually named John; “It 

is raining” may be true or false, depending on the time and place of the statement. Even 

mathematical statements can bear some uncertainty: “

 

2 x − 3 = 0

 

” may be a true or false 

statement, depending on the value of

 

x

 

. 

As a result, the statements that are studied in logics are only propositions : statements 

that are either true or false, regardless of context. It does not matter whether you actually 

know the truth value of the statement, what matter is that it is definite. For example “It 

rained on the current location of QCC on June 17th, 1076” is a proposition: it is either 

true or false, even though nobody knows which. Other, somewhat simpler, examples of 

proposition include: 

• “

 

1 + 1 = 2

 

” is a true proposition. 

• “

 

2 + 2 = 3

 

” is a false proposition. 

• “

 

∫ 1 

0 

∫ 1 

0 

1

 

1 − xy 

dx dy = 

π2

 

6

 

” is a true proposition, although it is not obvious why! 

As noted before, statements that include external parameters (such as a free variable

 

↬

 

The notion of 

free variable 

will be studied 

with more 

detail in 

Section II.B.6.

 

) are 

not propositions. Sentences that are not statements are not propositions either: 

• “Let’s go!” is an injunction, not a statement, hence not a proposition.

 

2 Introduction to Discrete Mathematics



 

Propositional Logics Chapter I

 

• “What time is it?” is a question, not a statement, therefore not a proposition. 

• ”

 

3 x2 − 7 = 0

 

depends on the value of

 

x

 

, so it is not a proposition. 

• “This statement is false” is a paradox: it is neither true or false.

 

Exercise I.1

 

For each of the following statements, decide whether it is a “Proposition” or “Not a 

proposition”. 

1. The exponential function is its own derivative. 

2. There exists a finite quantity of prime numbers. 

3. How are you doing? 

4. There exists an infinite number of ways to write 3 as the sum of three cubes. 

5.

 

x2 − 2 x + 5 = 9

 

6.

 

x3 − 2 x2 − 18 x + 9 = 0

 

when

 

x = 3

 

I.A.3 Natural language vs mathematical language 

Even when context is clear, the English language has ways to produce completely correct 

sentences (grammatically speaking) that can be interpreted in several ways. This ambiguity 

usually stems from internal references: connectors or pronouns can refer to more than one 

part of the sentence. An example of this ambiguity can be found in the song Lola , by The 

kinks (it is completely deliberate): “I’m glad I’m a man and so is Lola”. Does “so” refer 

to the fact that the speaker is “glad” or to the fact that he is “a man”? A simpler – and 

probably involuntary – ambiguity is also found in the tabloid headline “A mother beats up 

her daughter because she was drunk”, where the “she” can refer to either of the protagonists. 

And without pronouns, parsing (i.e. performing grammatical analysis) a sentence might 

in itself be difficult: “John saw the man on the mountain with a telescope”. The trouble a 

human has to parse this shows the immense difficulty a computer would!, despite the great 

progress shown in the field of Natural Language Processing (which is not at all the topic of 

this book). 

But the difficulty do not end here: in English, a word can have several meanings, which 

we know to interpret based on social context. Compare the sentences “You can have chicken 

or fish” with “Since you like Turner, you may like Monet or Pissarro”: in the first case, it 

is implied that you cannot have both meal options, while in the second case you may like 

both painters. In the mathematical context, we will give a single meaning to the word “or”, 

with a formal definition, in order to avoid this kind of confusion. 

I.B Boolean Algebra 

I.B.1 The building blocks: Propositional variables and oper- 

ators 

I.B.1.i Propositional variables 

Although propositions represent an statement on the real world, it is not really what is the 

focus of logics: what matters is how thes propositions relate to each other. As a result, the
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actual content of the proposition can usually be abstracted away through a propositional 

variable.

 

A propositional variable is a name (usually a single letter) used to 

represent a proposition. By habit, we mostly use the letters

 

p

 

,

 

q

 

,

 

r

 

.

 

Sometimes a letter closer to the content of the proposition is used. For example, we 

can write the following to define some propositional variables that represent “real-life” state- 

ments. 

• Let

 

c

 

be the proposition “Socrates is a cat” 

• Let

 

s

 

denote the proposition “It is snowing” 

• We define

 

t

 

as the proposition “John is taller than Bob” 

In most cases, propositional variables denote a yet undetermined proposition: we can 

reason on propositions before knowing (or without caring) whether it is true or false. 

I.B.1.ii Boolean values and operators 

I.B.1.ii.a Syntax 

Propositional variables are sometimes called atomic1 propositions , because they are the 

base building blocks of more complex propositions. We denote by

 

AP

 

the set of all atomic 

propositions, which are the propositional variables we will use. 

What joins these building blocks are the boolean operators

 

b

 

Booleans are 

named after 

English logician 

Georges Boole.

 

, and the result of said combi- 

nation is called a formula (plural: formulas , or formulae to be pedantic). By habit, formulas 

are denoted using the Greek letters

 

φ

 

or

 

ψ

 

(and sometimes

 

ξ

 

). 

The boolean values and operators are as follows:

 

b

 

Use

 

⊤

 

and

 

⊥

 

when 

handwriting 

because letters

 

T

 

and

 

F

 

can 

easily be 

confused.

 

⊤

 

True: the value of a true proposition. When writing in plain-text it can be replaced by 

the letter

 

T

 

.

 

⊥

 

False: the value of a false proposition. When writing in plain-text it can be replaced by 

the letter

 

F

 

.

 

¬

 

Negation (“not”), unary operator.

 

∧

 

Conjunction (“and”), binary operator.

 

∨

 

Disjunction (“or”), binary operator.

 

⊕

 

XOR (“exclusive-or”), binary operator.

 

→

 

Implication (“if. . . then”), binary operator.

 

↔

 

Iff (“if and only if”), binary operator. 

The above definition of what a formula is is often summarized with a grammar :

 

φ := ⊤|⊥| p ∈ AP |¬ φ | φ ∧ φ | φ ∨ φ | φ ⊕ φ | φ → φ | φ ↔ φ

 

To read these grammars, just replace

 

φ

 

by “a formula” and the

 

|

 

symbol by “or”: A formula 

is

 

⊤

 

, or

 

⊥

 

, or a propositional variable, or the

 

¬

 

of a formula, or the

 

∧

 

of two formulas. . .

 

1Atomic means “which cannot be cut” in Greek.
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φ

 

¬ φ

 

⊤

 

⊥

 

⊥

 

⊤

 

(a) Negation:

 

¬

 

φ

 

ψ

 

φ ∧ ψ

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

(b) Conjunction:

 

∧

 

φ

 

ψ

 

φ ∨ ψ

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

(c) Disjunction:

 

∨

 

φ

 

ψ

 

φ ⊕ ψ

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

(d) XOR:

 

⊕

 

φ

 

ψ

 

φ → ψ

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊤

 

(e) Implication:

 

→

 

φ

 

ψ

 

φ ↔ ψ

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

(f) Iff:

 

↔

 

Figure I.1: Truth tables for Propositional Logics. 

I.B.1.ii.b Semantics 

Up to now, only symbols have been given: this is called the syntax of the logics. But the 

symbols have no actual meaning: we are missing the semantics of the logics. In the case of 

propositional logics, the semantics of the operators gives the truth value of the compound 

formula based on the truth value of the sub-formulas. Since all combination of truth values 

for sub-formulas must be considered, the semantics of an operator is given in a truth table 

that lists all these possibilities. 

The truth tables of the above operators are displayed in Figure I.1. As the name indicates, 

Negation turns true into false and false into true. 

Conjunction, that we read as “and”, is true only if both sub-formulas are true. Dually, 

disjunction, that we read as “or”, is true if at least one of the sub-formula is. This is a 

different interpretation than the usual English one: it is an inclusive or : to the “chicken or 

fish” question, logicians allow themselves to answer “both”. The exclusive or is closer to the 

English interpretation: it is true when exactly one of the sub-formula is. So “chicken xor 

fish” forces you to choose one of them only. Remark that the actual meaning of “chicken 

or fish” is often “not(chicken and fish)”, because you are perfectly allowed to have neither, 

which does not work with the interpretation of

 

∨

 

or

 

⊕

 

. . . 

Implication mimics “if. . . then. . . ”: for

 

φ → ψ

 

to be true, whenever

 

φ

 

(called the premise ) 

holds, then so must

 

ψ

 

(the conclusion ). Note that when

 

φ

 

is not true, there is no obligation 

whatsoever on

 

ψ

 

: so for a false premise, the implication will always be true, as shown in the 

examples below: 

•

 

2 + 2 = 4 → 1 ̸ = 0

 

is true because both parts are true 

•

 

42 × 0 = 0 → π = 42

 

is false because even though the left part is true, the right part 

is false 

•

 

1 + 2 = 5 → 

1

 

2 

< 3

 

is true because

 

1 + 2 = 5

 

is false (

 

1

 

2 

< 3

 

happens to be true) 

•

 

1

 

2 

> 

7

 

8 

→ 1 + 1 = 7

 

is true because

 

1

 

2 

> 

7

 

8

 

is false (

 

1 + 1 = 7

 

happens to be false)
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So as long as the premise is false, the conclusion can be anything. That allows for some 

seemingly strange statements to be true: “if 1=0, then the moon is larger than the earth” is 

a true sentence! 

I.B.1.ii.c Precedence 

Mathematical operators

 

+

 

,

 

×

 

, etc have an order of precedence: an implicit order of 

operations that we don’t have to indicate with parenthesis (usually summed up as the 

acronym PEMDAS). Similarly, logical operators also have an order of precedence to avoid 

some parentheses: 

•

 

¬

 

has the highest precedence:

 

¬ p ∧ q

 

is to be understood as

 

( ¬ p ) ∧ q

 

. 

•

 

∧

 

has precedence over

 

∨

 

:

 

p ∨ q ∧ r

 

is to be understood as

 

p ∨ ( q ∧ r )

 

(but it is usually 

clearer to still use parenthesis in this case). 

•

 

→

 

has lower precedence than

 

∧

 

and

 

∨

 

(and

 

¬

 

), but higher precedence than

 

↔

 

:

 

p → 

q ↔ p → q ∨ r

 

is to be understood as

 

( p → q ) ↔ ( p → ( q ∨ r ))

 

. 

The

 

⊕

 

has no real fixed precedence: it depends on the context. For example, in the C 

programming language (and its derivatives like C++) it is between

 

∧

 

and

 

∨

 

, but mathe- 

matical texts might use another convention. So it is better to use parenthesis when using 

the exclusive or. 

I.B.2 Truth table for formulas 

Based on the semantics of the operators, one can calculate the semantics of any formula. This 

is done by computing the truth table for this formula: finding for every possible combination 

of truth value of the atomic propositions, called a valuation , what is the truth value of the 

whole formula. 

The procedure is as follows: 

1. Make one column for each variable. 

2. Write all possible sets of values for the variables appearing, that creates

 

2n

 

lines if 

there are

 

n

 

variables, as depicted in Figure I.2. It helps to follow some method in 

order not to forget any line. For example, in the tables displayed in Figure I.2, the 

rightmost variable has alternation of

 

⊤

 

and

 

⊥

 

, the variable to its left has blocks of

 

2

 

⊤

 

, then

 

2

 

⊥

 

, then blocks of

 

4 = 22

 

, etc until the leftmost variable has blocks of

 

2n − 1

 

⊤

 

and a block of

 

2n − 1

 

⊥

 

. 

3. Decompose the formula to find the sub-formulas . This is done is the reverse order of 

operations: start with the operator that would be applied last; its operand(s) are the 

sub-formulas. Then proceed similarly to decompose the sub-formulas until variables 

are reached. It helps to give names to the sub-formulas. 

4. Write a column for each sub-formula, starting from the least complex and ending in 

the whole formula. 

5. Fill the columns using the truth tables for the operators, based on the value present 

in the column of the operands.
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p

 

q

 

. . .

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊤

 

⊥

 

⊥

 

(a) Truth table for two variables

 

p

 

q

 

r

 

. . .

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

(b) Truth table for three variables 

Figure I.2: Line structure of truth tables for 2 or 3 variables.

 

φ

 

ξ

 

ψ = p ∧ ξ

 

φ ∨ ψ

 

p

 

q

 

r

 

q ∧ r

 

q ∨ r

 

p ∧ ( q ∨ r )

 

( q ∧ r ) ∨ ( p ∧ ( q ∨ r ))

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

Figure I.3: Truth table for

 

( q ∧ r ) ∨ ( p ∧ ( q ∨ r ))

 

. 

I.B.2.i Example: Writing the truth table for

 

( q ∧ r ) ∨ ( p ∧ ( q ∨ r ))

 

1. There are 3 variables, so we can start by drawing a truth table with 3 columns for

 

p, q , r

 

. 

2. We write all possible combinations in

 

23 = 8

 

lines as in Figure I.2(b). 

3.

 

( q ∧ r ) ∨ ( p ∧ ( q ∨ r ))

 

has sub-formulas

 

φ = ( q ∧ r )

 

and

 

ψ = p ∧ ( q ∨ r )

 

, which in turns 

has sub-formula

 

ξ = q ∨ r

 

. 

4. A column is added for

 

φ, ξ , ψ

 

, and one column for the whole formula. 

5. The lines are filled using the appropriate columns: for example, column

 

φ

 

and

 

ξ

 

are 

filled using only columns

 

q

 

and

 

r

 

, column

 

p

 

does not matter. Column

 

ψ

 

is filled using 

column

 

p

 

and

 

ξ

 

, the other ones do not matter. Note that since it is a conjunction, the 

truth table for conjunction is used: column

 

ψ

 

has a

 

⊤

 

only when both columns

 

p

 

and

 

ξ

 

have a top in this line. 

The end result is displayed in Figure I.3.
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p

 

q

 

r

 

q ∨ r

 

p ∧ ( q ∨ r )

 

( p ∧ q )

 

( p ∧ r )

 

( p ∧ q ) ∨ ( p ∧ r )

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

⊥

 

Figure I.4: Joint truth table for

 

p ∧ ( q ∨ r )

 

and

 

( p ∧ q ) ∨ ( p ∧ r )

 

. 

I.B.2.ii Logical equivalence

 

Definition: Logical Equivalence

 

Two formulas using the same set of atomic variables are said to be logically equivalent 

if they are true for exactly the same combination of the truth value of the variables.

 

Equivalently, two equivalent formulas have the same last column in their truth table. 

This is written by the symbol

 

≡

 

, to differentiate from syntactical equality (which is denoted 

with the usual

 

=

 

symbol). 

For example

 

p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r )

 

: as we can see in the truth table of Figure I.4 

where both

 

p ∧ ( q ∨ r )

 

and

 

( p ∧ q ) ∨ ( p ∧ r )

 

are gathered in the same table, the fifth and eight 

columns are identical.

 

Exercise I.2

 

1. Build the truth tables of the following formulas: 

a.

 

¬ p ∨ q

 

b.

 

¬ p ∨ ¬ q

 

c.

 

¬ ( p ∨ q )

 

d.

 

¬ ( p ∧ q )

 

e.

 

¬ p ∧ ¬ q

 

f.

 

¬ q → ¬ p

 

g.

 

( p → q ) ∧ ( q → p )

 

h.

 

¬ ( p ⊕ q )

 

i.

 

( p ∧ q ) ∨ ( ¬ p ∧ ¬ q )

 

j.

 

p → q

 

a 

k.

 

p ↔ q

 

2. Which of these formulas are equivalent to each other?

 

Practical instructions: 

• Use a single (wide) truth table. 

• A spreadsheet document works well for this. In this case, use NOT , AND , OR , 

XOR , -> , <-> instead of symbols and color columns in the same color if they are 

logically equivalent.

 

aNo real work needed in this question and the next, this is for Question 2.
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I.B.2.iii Remark: Equivalence and if-and-only-if

 

b

 

Here “at the 

same time” is 

an abuse of 

language to 

mean “for the 

same truth 

values of the 

propositional 

variables 

appearing in 

the formulas”.

 

The if-and-only-if

 

l ef tr ig htar r ow

 

operator is true whenever its operands are true at the 

same time and false at the same time. This idea is really close from logical equivalence: 

both sides of the

 

≡

 

symbol are true at the same time and false at the same time. And 

indeed these notions are related:

 

For any formulas

 

φ

 

and

 

ψ

 

,

 

φ ≡ ψ

 

means

 

φ ↔ ψ ≡ ⊤

 

.

 

As a result,

 

↔

 

is sometimes (abusively) referred to as the equivalence operator. This con- 

fusion must not hide from the mind that these two “equivalences” actually work at different 

levels: 

• The

 

↔

 

is an operator defined at the logical level, and its result may be true or false. 

• The

 

≡

 

is a relation

 

↬

 

We explore 

relations in 

Chapter V, and 

this particular 

type of relation 

in Section V.A.

 

defined at the mathematical level (i.e. the level at which math- 

ematician communicate with each other as humans) and implicitly states that the 

equivalence holds. 

In other terms, when

 

φ ↔ ψ

 

is false, the statement “

 

φ ≡ ψ

 

” is a mathematical mistake, a 

reasoning error, that should not have been written. 

I.B.3 Putting the Algebra back into Boolean Algebra 

The equivalences found in Exercise I.2 show that we can rewrite some formulas into others. 

This is the base for the calculation rules that form Propositional Calculus . The structure 

made of the boolean values and the properties of the operator is called Boolean Algebra , 

because it shares some structural properties with real algebra (the “usual” algebra on num- 

bers). To some extent,

 

⊤

 

can be thought to be

 

1

 

,

 

⊥

 

to be

 

0

 

,

 

∧

 

to be

 

×

 

and

 

∨

 

to be

 

+

 

. The 

correspondence is not perfect since

 

1+ 1 = 1

 

with booleans; indeed, booleans have only two 

“numbers”! That does not prevent electrical engineers to use these notations instead of

 

⊤

 

and

 

⊥

 

, and seeing it that way can help in memorizing the rules. 

No proofs will be provided for these rules, as it is left as an exercise to the reader to 

build the truth tables that show logical equivalence for the rules not covered by Exercise I.2. 

I.B.3.i The special case of

 

⊤

 

and

 

⊥

 

: Neutrality and Absorption 

The boolean values

 

⊤

 

and

 

⊥

 

are not variables: they are the possible values that every 

formula can take. They also have a special role regarding the operators

 

∧

 

and

 

∨

 

. 

Namely, whenever

 

⊤

 

is present in a conjunction, it does not affect the result. Similarly,

 

⊥

 

does not affect the result of a disjunction. This is called neutrality , and we say that

 

⊤

 

is the neutral element for conjunction and that

 

⊥

 

is the neutral element for disjunction . 

Remark that we have the same thing in real algebra:

 

x + 0 = x

 

and

 

x × 1 = x

 

(

 

0

 

is the 

neutral element for addition,

 

1

 

is the neutral element for multiplication). 

Furthermore, whenever

 

⊤

 

is present in a disjunction, the result will always be

 

⊤

 

, re- 

gardless of the other operands. And

 

⊥

 

makes any conjunction

 

⊥

 

, regardless of the other 

operand. This property is called absorption

 

b

 

Some sources 

use the term 

domination 

instead of 

absorption. 

That 

vocabulary 

relates to the 

boolean algebra 

as a lattice 

rather than an 

algebra , so 

absorption will 

be used in this 

book.

 

and we say that

 

⊤

 

is absorbing for disjunction 

and that

 

⊥

 

is absorbing for conjunction . This is similar to real algebra only for

 

0

 

:

 

x × 0 = 0

 

(

 

0

 

is absorbing for multiplication).
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For any formula

 

φ

 

: 

φ ∧ ⊤ ≡ φ φ ∨ ⊥ ≡ φ (Neutrality) 

φ ∨ ⊤ ≡ ⊤ φ ∧ ⊥ ≡ ⊥ (Absorption)

 

I.B.3.ii Doing the same thing twice: Double negation, Idempotence, and 

the rest 

As negation changes the truth value from true to false and vice versa, performing it twice 

bring us back to the starting point: therefore a double negation can be eliminated. 

Another interesting case to consider is trying to apply a binary operator to the same 

operand twice. From the point of view of truth table, that means we need to consider the two 

lines

 

⊤ , ⊤

 

and

 

⊥ , ⊥

 

(the first and fourth in the truth tables as displayed in Figures I.1(b-f)). 

What we see is that for both conjunction and disjunction, line

 

⊤ , ⊤

 

yield

 

⊤

 

and line

 

⊥ , ⊥

 

yield

 

⊥

 

. Therefore applying a conjunction (or a disjunction) to the same value twice will 

always produce this very original value. This property is called idempotence : we say that

 

∧

 

is idempotent , and that

 

∨

 

is idempotent . 

The case of the other operators can also be considered, also is it of lesser importance 

in practice. In these cases, the value produced is always the same regardless of the original 

value.

 

For any formula

 

φ

 

: 

¬ ( ¬ φ ) ≡ φ (Double negation elimination) 

φ ∧ φ ≡ φ φ ∨ φ ≡ φ (Idempotence) 

φ ⊕ φ ≡ ⊥ φ → φ ≡ ⊤ φ ↔ φ ≡ ⊤

 

I.B.3.iii Commutativity, Associativity, Distributivity 

For an operator, commutativity denotes the fact that its operands can appear in any order 

without affecting the result of the operation. In real algebra, it is the case for both multipli- 

cation and addition:

 

x × y = y × x

 

and

 

x + y = y + x

 

. In the case of boolean algebra, what 

need to be considered to establish commutativity are the lines of the truth tables where 

the operands are different: lines

 

⊤ , ⊥

 

and

 

⊥ , ⊤

 

(the second and third in the truth tables as 

displayed in Figures I.1(b-f)). We can see that conjunction, disjunction, exclusive-or, and 

iff are commutative. On the other hand, implication is not commutative as

 

⊥ → ⊤

 

is true 

but

 

⊤ → ⊥

 

is false. Note that the choice of the symbols used to represent these operators 

reflects this: the symbols for the commutative operators are symmetrical, but the

 

→

 

of the 

implication is not.

 

Commutativity

 

For any formulas

 

φ

 

and

 

ψ

 

: 

φ ∧ ψ ≡ ψ ∧ φ φ ∨ ψ ≡ ψ ∨ φ φ ⊕ ψ ≡ ψ ⊕ φ φ ↔ ψ ≡ ψ ↔ φ
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Associativity refers to the fact that when two of the same operation is to be performed, 

the order in which they are performed does not matter. In some sense, an associative 

operator has no precedence with itself because order does not matter. In real algebra, 

both addition and multiplication are associative. In boolean algebra, proving associativity 

requires to look at a table with three variables, and comparing the cases where operations 

are performed left-to-right and right-to-left. The result, left as an exercise to the reader, 

is that conjunction, disjunction, exclusive-or, and iff are associative. On the other hand, 

implication is not associative:

 

( ⊥ → ⊤ ) → ⊥

 

is false but

 

⊥ → ( ⊤ → ⊥ )

 

is true. As a result, 

we ought to define the order of operation in which

 

φ → ψ → ξ

 

should be interpreted: it is 

to be understood as

 

φ → ( ψ → ξ )

 

, meaning implications must be calculated from right to 

left (but parentheses are advised anyway).

 

b

 

We say that

 

→

 

is right- 

associative .

 

Associativity

 

For any formulas

 

φ

 

,

 

ψ

 

, and

 

ξ

 

: 

φ ∧ ψ ∧ ξ ≡ ( φ ∧ ψ ) ∧ ξ ≡ φ ∧ ( ψ ∧ ξ ) φ ∨ ψ ∨ ξ ≡ ( φ ∨ ψ ) ∨ ξ ≡ φ ∨ ( ψ ∨ ξ ) 

φ ⊕ ψ ⊕ ξ ≡ ( φ ⊕ ψ ) ⊕ ξ ≡ φ ⊕ ( ψ ⊕ ξ ) φ ↔ ψ ↔ ξ ≡ ( φ ↔ ψ ) ↔ ξ ≡ φ ↔ ( ψ ↔ ξ )

 

Distributivity is the capacity of an operator to “enter the parenthesis of another one”. The 

most common example is the distributivity of multiplication over addition in real algebra:

 

x × ( y + z ) = x × y + x × z

 

. In the case of boolean algebra, distributivity is much more 

widespread. Indeed, not only conjunction is distributive over disjunction (this was actually 

proved through the truth table of Figure I.4), but also the other way around: disjunction is 

distributive over conjunction (the proof is left as an exercise to the reader).

 

Distributivity

 

For any formulas

 

φ

 

,

 

ψ

 

, and

 

ξ

 

: 

φ ∧ ( ψ ∨ ξ ) ≡ ( φ ∧ ψ ) ∨ ( φ ∧ ξ ) φ ∨ ( ψ ∧ ξ ) ≡ ( φ ∨ ψ ) ∧ ( φ ∨ ξ )

 

There are actually more distributive properties in the boolean algebra, but listing them 

all would be more confusing that enlightening (although one will be proved in Exercise I.3). 

Remark that distributivity can work in reverse: factoring can also be performed using 

the same rules, but from right to left. 

I.B.3.iv Playing with negation: De Morgan’s laws, Contraposition 

As we should have seen in Exercise I.2, negation does not distribute directly over conjunction 

or disjunction. For example

 

¬ ( ⊤ ∨ ⊥ )

 

is false (as the negation of

 

⊤

 

), while

 

¬⊤ ∨ ¬⊥ )

 

is true 

(as the disjunction of

 

⊥

 

and

 

⊤

 

). Indeed, to distribute the negation, one must also change the 

operator: negation transforms disjunction into conjunction and vice versa. These properties 

are gathered under the name of De Morgan’s laws .

 

b

 

Named after 

the British 

logician 

Augustus De 

Morgan who 

formalized 

them.

 

The De Morgan’s laws seem trivial, but they really express the duality at play between 

disjunction and conjunction, which we can rephrase by describing their truth tables (Fig- 

ures I.1(b-c)) with the following similar sentences: 

• The conjunction is only true when both operands are true. 

• The disjunction is only false when both operands are false.
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De Morgan’s laws

 

For any formulas

 

φ

 

and

 

ψ

 

: 

¬ ( φ ∧ ψ ) ≡ ¬ φ ∨ ¬ ψ ¬ ( φ ∨ ψ ) ≡ ¬ φ ∧ ¬ ψ

 

Negation also behaves in a special way with implication. The negation of an implication 

does not look like an implication, as we will see in Section I.B.3.v. What is more interesting 

is the implication of the negations: it is also an implication, but is reversed (the proof of 

this is in Exercise I.2). The implication

 

¬ ψ → ¬ φ

 

is called the contrapositive of

 

φ → ψ

 

. 

The fact that they are equivalent is quite useful for proofs.

 

↬

 

More details on 

proofs by 

contraposition 

in Sec- 

tion III.C.4.iii.

 

Contrapositive

 

For any formulas

 

φ

 

and

 

ψ

 

:

 

φ → ψ ≡ ¬ ψ → ¬ φ

 

I.B.3.v Constructing operators from others 

The last set of rules are about rewriting operators using others. As a result, there is no one 

“basic” set of operators, but several equivalent presentations of the logic. Fewer symbols 

mean an easier formalization but expressing an actual statement would be more complex. 

I.B.3.v.a From

 

¬

 

,

 

∧

 

, and

 

∨

 

The simplest (in cognitive rather than mathematical terms) set of “basic” operators is 

using only

 

¬

 

,

 

∧

 

, and

 

∨

 

, and building the others from them. Note that, using De Morgan’s 

laws, using only one of

 

∧

 

or

 

∨

 

would be sufficient, but it is usual to have them both for 

symmetry. Also remark that

 

⊤

 

and

 

⊥

 

are not “basic” operators here, because they can be 

constructed. Namely,

 

⊤

 

is the disjunction

 

φ ∨ ¬ φ

 

, which is called the excluded middle : a 

formula is either true or false (in which case its negation is true), there is no “middle” option.

 

b

 

In Latin the 

name is tertium 

non datur , 

literally 

meaning “no 

third possibility 

is given”.

 

Symmetrically,

 

⊥

 

is defined as the conjunction

 

φ ∧ ¬ φ

 

: no proposition can be both true and 

false (in which case its negation is true), that would be a contradiction . 

The case of implication is quite useful, since it allows to replace the non-commutative, 

non-associative

 

→

 

operator by a combination of

 

¬

 

and the commutative and associative

 

∧

 

and

 

∨

 

. As proved in Exercise I.2, the implication

 

φ → ψ

 

is equivalent to

 

¬ φ ∨ ψ

 

. Note that 

as a result, the negation of the implication is not an implication.

 

↬

 

See Exercise I.3 

Question 1.

 

The exclusive-or and iff can be defined in a symmetrical way from each other: indeed, 

the XOR is true when the operands differ, which is when the iff is true, so they are the 

negation from one another. The XOR can be expressed in a way that follows its name of 

“exclusive or”: for

 

φ ⊕ ψ

 

to be true,

 

φ ∨ ψ

 

must be true, but also, we need to exclude the 

case when both operands are true, i.e. the case

 

φ ∧ ψ

 

. As a result we can rewrite

 

φ ⊕ ψ

 

as

 

( φ ∨ ψ ) ∧ ¬ ( φ ∧ ψ )

 

.
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For any formulas

 

φ

 

and

 

ψ

 

: 

⊤ ≡ φ ∨ ¬ φ (Excluded middle) ⊥ ≡ φ ∧ ¬ φ (Contradiction) 

φ → ψ ≡ ¬ φ ∨ ψ (Rewriting of

 

→

 

) φ ⊕ ψ ≡ ( φ ∨ ψ ) ∧ ¬ ( φ ∧ ψ ) 

φ ↔ ψ ≡ ¬ ( φ ⊕ ψ ) ≡ φ → ψ ∧ ψ → φ ≡ ( φ ∧ ψ ) ∨ ( ¬ φ ∧ ¬ ψ )

 

I.B.3.v.b From

 

→

 

and

 

⊥

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

One of the smallest set of operators that can recreate all others is

 

→

 

and

 

⊥

 

. In practice 

this is highly inefficient, but it allows for a very succinct definition of the logic’s grammar. 

Because of this inefficiency, once an operand has been recreated we will use it instead of its 

definition using only

 

→

 

and

 

⊥

 

.

 

⊤

 

We define

 

⊤ ≡ ⊥ → ⊥

 

. As we can see by looking at the truth table of the implication 

(Figure I.1(e)), whenever the premise (left side of the

 

→

 

) is

 

⊥

 

, the implication is true. 

So in particular,

 

⊥ → ⊥

 

is always true.

 

¬

 

We define

 

¬ φ ≡ φ → ⊥

 

: 

• whenever the premise is false, the implication is true; 

• whenever the premise is true, the implication is only true if the conclusion is too, 

but

 

⊥

 

is never true so here the implication is false. 

Another way to connect this to the usual definition is to rewrite

 

φ → ⊥

 

as

 

¬ φ ∨ ⊥ ≡ ¬ φ

 

. 

But although that allows to understand why it works, it is not a good way to define

 

¬

 

in this context.

 

∨

 

We define

 

φ ∨ ψ ≡ ¬ φ → ψ

 

. One way to understand (but not really prove) this definition 

is, as above, by rewriting the implication:

 

¬ φ → ψ ≡ ¬¬ φ ∨ ψ ≡ φ ∨ ψ

 

. To prove the 

correctness of this definition semantically, one need to consider all cases: 

• If

 

φ

 

is true, then

 

¬ φ

 

is false and the implication is true. 

• If

 

φ

 

is false, then the implication is only true when

 

ψ

 

is, which is the same 

semantics as the disjunction. 

Note that the way we tend to interpret this implication by first looking at the premise 

and not even considering the conclusion if the premise is false is akin to the evaluation 

of boolean formulas in some programming languages called lazy evaluation (or short 

circuit ): when evaluating

 

φ ∨ ψ

 

, when

 

φ

 

is true

 

ψ

 

is not evaluated.

 

∧

 

We define

 

φ ∧ ψ ≡ ¬ ( ¬ φ ∨ ¬ ψ )

 

: this follows from De Morgan’s laws. 

The other operators can be recreated from

 

¬

 

,

 

∧

 

, and

 

∨

 

, as mentioned in Section I.B.3.v.a.
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I.B.3.vi Calculating in the Boolean algebra 

Using the rules above allow to calculate in the boolean algebra in a similar way that we would 

in real algebra. The only additional principle to be added it the substitution principle : if

 

φ ≡ ψ

 

, then

 

φ

 

can be replaced by

 

ψ

 

in another expression. 

Calculating in the boolean algebra is often more efficient that building the truth tables 

in order to prove equivalences. In these calculation, indicating what rule was used allows to 

make sure that no mistake is made. For example:

 

( p → q ) ∨ ( p → r ) ≡ ( ¬ p ∨ q ) ∨ ( ¬ p ∨ r ) [Rewriting of

 

→

 

] 

≡ ¬ p ∨ q ∨ ¬ p ∨ r [Associativity of

 

∨

 

] 

≡ ¬ p ∨ ¬ p ∨ q ∨ r [Commutativity of

 

∨

 

] 

≡ ( ¬ p ∨ ¬ p ) ∨ ( q ∨ r ) [Associativity of

 

∨

 

] 

≡ ¬ p ∨ ( q ∨ r ) [Idempotence of

 

∨

 

] 

( p → q ) ∨ ( p → r ) ≡ p → ( q ∨ r ) [Rewriting of

 

→

 

]

 

Exercise I.3

 

Using the rulesa of Boolean Algebra: 

1. Prove that

 

¬ ( p → q )

 

is logically equivalent to

 

p ∧ ¬ q

 

. 

2. Prove that

 

( p → q ) ∧ ( p → r )

 

is logically equivalent to

 

p → ( q ∧ r )

 

. 

3. Prove that

 

( p ∧ q ) → p

 

is logically equivalent to

 

⊤

 

. 

4. Prove that

 

( p → q ) ∧ p ∧ ¬ q

 

is logically equivalent to

 

⊥

 

. 

5. Prove that

 

(( p → q ) → p ) → p

 

is logically equivalent to

 

⊤

 

( Peirce’s Law ). 

6. Prove that

 

( p ∨ ( q ∧ ¬ r )) → p

 

is logically equivalent to

 

p ∨ ¬ q ∨ r

 

.

 

aIndicate which rule was used.

 

I.C Classifying formulas 

I.C.1 Formula categories 

Formulas can be classified into three main categories: 

• Formulas that are true regardless of the truth value of the propositional variables, 

called tautologies . These formulas are logically equivalent to

 

⊤

 

, and their truth table 

(the last column) contains only

 

⊤

 

. For example, the excluded middle

 

p ∨ ¬ p

 

is a 

tautology; so is

 

( p ∧ q ) → p

 

. 

• Formulas that are false regardless of the truth value of the propositional variables, 

called contradictions . These formulas are logically equivalent to

 

⊥

 

, and their truth 

table (the last column) contains only

 

⊥

 

. For example, the contradiction

 

p ∧ ¬ p

 

is a 

contradiction

 

b

 

The statement 

“the 

contradiction

 

p ∧ ¬ p

 

is a 

contradiction” 

is a tautology!

 

; so is

 

( p → q ) ∧ p ∧ ¬ q

 

. 

• All other formulas, that are neither tautologies nor contradictions are called contingent 

formulas. The term contingent refers to the fact that the truth value of the formula 

is contingent (i.e. depends) on the truth value of the propositional variables. For 

a formula to be contingent, there needs to be at least a valuation of propositional 

variables that makes the formula true, and one that makes the formula false. In the 

truth table (the last column), that corresponds to having at least a line

 

⊤

 

and a line
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⊥

 

. For example,

 

( p → q ) ∧ ¬ q

 

is contingent: it is true for

 

p = q = ⊥

 

, and false for

 

p = ⊤

 

and

 

q = ⊥

 

. 

I.C.2 Classifying formulas, in practice 

One way to classify a formula is to build the truth table. It is however often inefficient: for

 

n

 

propositional variables, the truth table has

 

2n

 

lines. 

There are better methods for all three cases: 

• To prove that a formula

 

φ

 

is a tautology, it is sufficient to use propositional calculus 

and show that

 

φ ≡ ⊤

 

. 

• To prove that a formula

 

φ

 

is a contradiction, it is sufficient to use propositional calculus 

and show that

 

φ ≡ ⊥

 

. 

• To prove that a formula

 

φ

 

is contingent, it is sufficient to exhibit a valuation that 

makes the formula

 

⊤

 

, and another that makes the formula

 

⊥

 

. 

For contingent formulas, finding these valuations may also be done without building the 

truth table, but through a bit of guesswork, based on the operators in the formula. We work 

in a top-down approach, similar to the decomposition into sub-formulas to build the truth 

table. If the formula is. . .

 

p

 

For atomic propositions, choose

 

⊤

 

to make it true and

 

⊥

 

to make it false. Whenever a 

choice of truth value is made for an atomic proposition, keep it in mind: another later 

choice cannot contradict it.

 

¬ φ

 

• To make a negation true, the operand have to be false: so try to make

 

φ

 

false. 

• To make a negation false, the operand have to be true: so try to make

 

φ

 

true.

 

φ ∧ ψ

 

• To make a conjunction true, both operands have to be true: so try to make both

 

φ

 

and

 

ψ

 

true. 

• To make a conjunction false, only one operand needs to be false: choose one 

between

 

φ

 

and

 

ψ

 

and try to make it false.

 

φ ∨ ψ

 

• To make a disjunction true, only one operand needs to be true: choose one 

between

 

φ

 

and

 

ψ

 

and try to make it true. 

• To make a disjunction false, both operands have to be false: so try to make both

 

φ

 

and

 

ψ

 

false.

 

φ → ψ

 

• An easy way to make an implication true is to try to make the left handside false: 

try to make

 

φ

 

false. If that fails, try to make

 

ψ

 

true. 

• The only way to make an implication false is to try to make the left handside 

true and the right handside false: try to make

 

φ

 

true and

 

ψ

 

false.
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If a contradiction appears (for example

 

p

 

should be both

 

⊤

 

and

 

⊥

 

), then either come back 

to the last choice that was made (for example when trying to make a disjunction true) and 

choose the other way. Note that although this technique is more efficient in practice, it is 

not guaranteed to always be, and you might end up trying all combinations anyway. 

It is also possible that after trying all choices, it seems impossible to make a given formula 

true (resp. false).

 

b

 

“(resp. . . . )” 

indicates that 

this paragraph 

is actually two 

paragraphs: 

one without the 

parentheses, 

and one where 

“true” is 

replaced by 

“false”, 

“contradiction” 

by “tautology”, 

etc.

 

Unlike exercises, which may explicitly ask to prove that a formula belongs 

to a certain category, you may have started this procedure without the knowledge that 

it was contingent. In this case, it means the formula seems to be a contradiction (resp. 

tautology). But, as this trial-and-error technique is not a formal exploration of all cases 

(which would be the truth table), it remains to be proved that the formula is a contradiction 

(resp. tautology), usually by reducing it to

 

⊥

 

(resp.

 

⊥

 

) through calculus. 

I.C.2.i Example:

 

φ = ( p ∨ q ) → ( p ∧ ¬ r ∧ q )

 

Make

 

φ

 

true. It’s an implication, so having

 

( p ∨ q )

 

be false is sufficient. In order to do 

that, set both

 

p

 

and

 

q

 

to

 

⊥

 

. There is no constraint on

 

r

 

. So

 

p, q = ⊥

 

and say

 

r = ⊤

 

makes

 

φ

 

true. 

Make

 

φ

 

false. It’s an implication, so we need

 

p ∨ q

 

to be true while

 

p ∧ ¬ r ∧ q

 

is false. For

 

p ∨ q

 

, we can chose one of them to be true, and see if it works, for example set

 

p

 

to

 

⊤

 

. 

Now for

 

( p ∧ ¬ r ∧ q )

 

, we can chose one of the operands to be false, but not

 

p

 

because 

we already assumed it to be

 

⊤

 

. So if we choose

 

¬ r

 

to be false, that means

 

r

 

is

 

⊤

 

(and

 

q

 

does not matter). So for example

 

p, r = ⊤

 

and

 

q = ⊥

 

makes

 

φ

 

false. 

As we have exhibited a valuation that makes

 

φ

 

true and another one that makes

 

φ

 

false, we 

can classify

 

φ

 

as a contingent formula. 

I.C.2.ii Example:

 

ψ = ( p ∧ q ) → ( p ∨ q )

 

Make

 

ψ

 

true. It’s an implication, so having

 

p ∧ q

 

be false is sufficient. For example by 

having

 

p, q = ⊥

 

, formula

 

ψ

 

is true. 

Make

 

ψ

 

false. It’s an implication, so we need

 

p ∧ q

 

to be true while

 

p ∨ q

 

is false. So we 

need to set

 

p

 

and

 

q

 

to

 

⊤

 

. To make

 

p ∨ q

 

, they must both be false, but we have already 

set them

 

⊤

 

, to it seems impossible to find a valuation that makes the formula false! 

As we succeeded in finding a valuation that makes

 

ψ

 

true, but not a valuation that makes

 

ψ

 

false, it seems that

 

ψ

 

is a tautology. It remains to be proved, for example using a reduction 

to

 

⊤

 

:

 

ψ = ( p ∧ q ) → ( p ∨ q ) 

≡ ¬ ( p ∧ q ) ∨ ( p ∨ q ) [Rewriting of

 

→

 

] 

≡ ( ¬ p ∨ ¬ q ) ∨ ( p ∨ q ) [De Morgan’s Law] 

≡ ¬ p ∨ ¬ q ∨ p ∨ q [Associativity of

 

∨

 

] 

≡ p ∨ ¬ p ∨ q ∨ ¬ q [Commutativity of

 

∨

 

] 

≡ ( p ∨ ¬ p ) ∨ ( q ∨ ¬ q ) [Associativity of

 

∨

 

] 

≡ ⊤ ∨ ⊤ [Excluded middle] 

ψ ≡ ⊤ [

 

⊤

 

is absorbing for

 

∨

 

]
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We also could have used a truth table to prove the same fact (for two variables it is still 

relatively small):

 

p

 

q

 

p ∧ q

 

p ∨ q

 

( p ∧ q ) → ( p ∨ q )

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊤

 

⊥

 

⊥

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

Exercise I.4

 

1. Prove that the following formulas are contingent: 

a.

 

p ∨ ( q ∧ ( r → p ))

 

b.

 

( p ↔ r ) ∧ ( q → ¬ r )

 

2. Prove that the following formulas are tautologies: 

a.

 

(( p → q ) ∧ p ) → q

 

b.

 

( p → q ) ∨ ( q → p )

 

c.

 

(( p → q ) ∧ ¬ q ) → ¬ p

 

3. Prove that the following formulas are contradictions: 

a.

 

( p ⊕ q ) ∧ ( p ↔ q )

 

b.

 

( q → p ) ∧ ( p → r ) ∧ q ∧ ¬ r

 

4. Classify the following formulas as tautologies, contradictions, or contingent for- 

mulas: 

a.

 

( p → ( r ∨ ¬ p )) → q

 

b.

 

( p → r ) ∨ ( ¬ p → q )

 

c.

 

p → (( r ∨ ¬ p ) → q )

 

I.C.3 Satisfiability

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

There is a fourth category of formulas that is of interest: satisfiable formulas. A satisfiable 

formula is a formula that is not a contradiction; otherwise said it is either contingent or a 

tautology. That means at least for one particular valuation, the formula is true:there is at 

least a line in the truth table that is

 

⊤

 

. So to prove that a formula is satisfiable, one has to 

exhibit a valuation that makes the formula

 

⊤

 

. 

I.C.3.i The satisfiability problem: SAT 

The satisfiability problem, or SAT for short, is asking, for a formula

 

φ

 

, whether it is satis- 

fiable. It is an important problem in practice because lost of situations can be understood 

as an instance of a SAT problem. For example, the fact for a critical system to be in an 

error state (think: failure of a spacecraft) can be modeled into a propositional logic formula, 

albeit with lots of propositional variables. If this formula is satisfiable, that means there is 

the possibility of an error, which should be corrected before the system is actually launched. 

Given the number of variables, this problem ought to be solved by a computer program 

rather than a human. From what we saw above, we can deduct two ways of solving this 

problem: 

• Build the truth table, which amounts to testing all

 

2n

 

possibilities when there are

 

n

 

variables; this is the brute-force approach. This grows very fast! In critical systems,
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100 variables would actually be a small number.To put things in perspective, there are 

about

 

280

 

atoms in the universe. 

• Another way would be to guess a valuation that does satisfy the formula. In this 

case, that would mean only

 

n

 

guesses, one for each variable. After the guesses, we 

just have to verify that the formula is indeed true with this valuation (it takes about 

as much time as reading the formula). This method is non deterministic : it requires 

the ability to guess. Although current actual computers cannot guess, theoretical 

computers with this ability can be conceived; and quantum computing may one day 

provide real computers that can make such guesses. 

There are better ways to solve SAT without guessing, but they are only better in practice, 

and in some (very particular) instances may still require a full exploration of the whole

 

2n

 

cases. So guessing is more efficient that any technique that we know. 

I.C.3.ii The NP class 

Problems like SAT, that can be solved by guessing a “small” number of times are said to 

be in NP , which stands for Non deterministic Polynomial . Formally: the number of guesses 

and the checking time must be smaller than a polynomial on the size of the input. In the 

case of SAT, the size of the input is the length of the formula

 

l

 

, which is bigger than the 

number of variables

 

n

 

, and we need

 

n

 

guesses and

 

l

 

calculation steps to check the guess. So 

SAT is an NP problem. 

Furthermore, every problem that requires guesses can actually be interpreted as a satis- 

fiability problem for a given formula: we say that SAT is NP -complete . 

So far, it is unknown whether SAT could be solved with a polynomial number of instruc- 

tions but without guesses (a.k.a a deterministic polynomial-time algorithm). Answering this 

question would mean giving an answer to the “Is

 

P = NP

 

?” question (and winning a million 

dollars in the process). If there is a deterministic polynomial-time algorithm, that would 

mean that every problem that can be reduced to SAT (such as checking for potential error 

in a critical system) could be solved efficiently in all cases. It would also have less desirable 

consequences: for example, many currently used cryptographic protocols rely on the fact 

that it is not possible to guess a solution, and using a brute-force approach would take too 

long. Having a polynomial-time procedure to find a solution would wreak havoc on security 

systems. 

It is, however, unlikely that this is the case, and most computer scientists believe that

 

P ̸ = NP

 

But until there is a proof of that, every result that uses that must start with a 

caveat. It is actually not uncommon to find in the literature results that start with the 

phrase “Assuming

 

P ̸ = NP

 

. . . ” and proofs that end by “if this is false then

 

P = NP

 

”.
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II.A Predicates 

Propositions, that were the focus of Chapter I are weak, in the sense that they can express 

very little. Since they can only represent something that is definitely true or false, there is 

no place for the nuance of “it depends”. For example “

 

x2 − 2 x + 5 = 9

 

” is not a proposition 

because it depends on

 

x

 

: this statement falls out of the scope of propositional logics, but it 

is still worth considering. 

Since the truth value of the statement depends on the value of

 

x

 

, we can write it as a 

function

 

R

 

that takes a value

 

x

 

(a real number) and assigns the truth value

 

⊤

 

or

 

⊥

 

: this is 

called a predicate . For example

 

R (42)

 

is

 

⊥

 

,

 

R (1 + 

√

 

5)

 

is

 

⊤

 

, and

 

R ( π )

 

is

 

⊥

 

. 

Remark that as soon as a value is given for

 

x

 

,

 

R ( x )

 

become a proposition, and can be 

used as such with the boolean algebra operators.

 

Definition: Predicate

 

A predicate is a function that associates to

 

n

 

values in a domain a truth value in

 

{⊤ , ⊥}

 

.

 

To use a programmer’s point of view, a predicate is a function that takes some arguments 

and returns a boolean value. 

II.A.1 Interpretations and semantics 

Providing the domain, which is what kind of values can be used for the arguments, is essential 

to actually evaluating a predicate. Technically, providing the domain is not sufficient: one 

has to give a meaning to all the operators in the predicate. In this book, and unless otherwise 

specified, we will assume that mathematical symbols are used with their usual meaning:

 

+

 

means addition,

 

×

 

means multiplication. And when dealing with numbers, we will use the 

usual order predicates

 

b

 

They are indeed 

predicates: 

given two 

values, these 

operators may 

be true or false.

 

<

 

(strictly less than),

 

≤

 

(less than or equal to),

 

≥

 

(greater than or 

equal to),

 

>

 

(strictly greater than). 

Also note that, in its most abstract definition, we do not need to provide what exactly is 

the meaning of a predicate to be able to write formulas using it, for example

 

P ( x ) ∧ P ( y ) → 

Q ( x, y )

 

is a formula that is syntactically correct. But to give its semantics , i.e. its meaning, 

one need to provide a domain for

 

x

 

and

 

y

 

, the definition of predicates

 

P

 

and

 

Q

 

, as well as 

the definition of any symbols used in the definition o

 

P

 

and

 

Q

 

. Together, they are called an 

interpretation of the formula. 

It may be the case that a predicate is not defined by a mathematical formula but by 

a description, although it is less formal. For example, let

 

D ( n, k )

 

be the predicate over 

integers that is true when

 

n

 

is a multiple of

 

k

 

; in this case

 

D ( − 42 , 7)

 

is

 

⊤

 

and

 

D (12 , 5)

 

is

 

⊥

 

, for instance. 

In most cases, the informal definition is only given as intuition to the reader, and the 

formal definition is still present: let

 

P ( a, b, c )

 

be the predicate over integers that is true when

 

( a, b, c )

 

is a Pythagorean triple, i.e. when

 

a2 + b2 = c2

 

. In this case

 

P (1 , 2 , 3)

 

is

 

⊥

 

because

 

12 + 22 = 1 + 4 = 5 ̸ = 9 = 32

 

; but

 

P (3 , 4 , 5)

 

is

 

⊤

 

because

 

32 + 42 = 9 + 16 = 25 = 52

 

.
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II.A.2 Notations and vocabulary 

It is customary to denote predicates using a capital letter.

 

P

 

,

 

Q

 

, and

 

R

 

, are mostly used (in 

similarity with

 

p

 

,

 

q

 

,

 

r

 

for propositional variables), but other letters that relate more to the 

meaning of the predicate can also be used (for example, above

 

D

 

is used because

 

D ( n, k )

 

is 

true when

 

k

 

divides

 

↬

 

Section VII.A.1 

is devoted to 

the concept of 

divisibility.

 

n

 

). 

In addition, when the domain is known, variables used in predicates usually follow the 

cultural habits of the domain: so

 

x

 

,

 

y

 

,

 

z

 

would be used for real numbers,

 

n

 

,

 

k

 

,

 

p

 

,

 

m

 

for 

integers, etc. 

Predicates are categorized by the number of variables they use.

 

Arity of a predicate

 

• A predicate with no variable is called a proposition . 

• A predicate with a single variable is called a unary predicate. 

• A predicate with a two variables is called a binary predicate. 

• A predicate with a three variables is called a ternary predicate. 

• A predicate with

 

n

 

variables is called an

 

n

 

-ary predicate.

 

So in the predicates given above,

 

R

 

is unary,

 

D

 

is binary, and

 

P

 

is ternary. 

II.A.3 Predicates and boolean operators 

As remarked above, predicates can be used as atomic formulas (like propositions). Truth 

value of the whole formula depends on the truth value of all predicates and the rules (truth 

tables) for each operators (see Figure I.1). For example, over the domain of integers, with

 

D

 

and

 

P

 

defined as above: 

•

 

P ( a, b, c ) ∨ D ( c, a )

 

is true for

 

a = 1

 

,

 

b = 2

 

,

 

c = 3

 

(because

 

3

 

is a multiple of

 

1

 

), but 

false for

 

a = 7

 

,

 

b = 8

 

,

 

c = 9

 

(it is not a Pythagorean triple and

 

9

 

is not a multiple 

of

 

7

 

). 

•

 

( P ( a, b, c ) ∧ D ( a, k ) ∧ D ( b, k )) → D ( c, k )

 

is actually true for all values

 

a, b, c, k

 

: this 

formula states that if

 

a, b, c

 

is a Pythagorean triple where

 

a

 

and

 

b

 

are multiple of the 

same number

 

k

 

, then so is

 

c

 

. 

II.B Quantifiers 

II.B.1 Universal quantifier: Always 

In the example above, it does not really matter what the values of

 

a, b, c, k

 

are: the formula 

will always be true. So we can actually evaluate the truth value of this formula even 

before values for the variables are assigned. It is actually the goal of lots of mathematical 

statements: mathematics are about general truths, that hold “for every

 

x

 

”, or, in the context 

of predicates, regardless of the value of the variables in the predicate. 

This is denoted using a universal quantifier , written by the symbol

 

∀

 

, which is read “ for 

all ”. This symbol is followed by the variable it quantifies.
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For example:

 

∀ x, P ( x )

 

is a formula which is true if for all value

 

x

 

in the domain,

 

P ( x )

 

is true. This formula is actually in itself a proposition: it does not depend on the value of 

variable

 

x

 

, which is bound by the quantifier. 

The universally quantified statement is a stronger

 

b

 

A statement

 

φ

 

is stronger than

 

ψ

 

if

 

φ

 

implies

 

ψ

 

, but not the 

other way 

around.

 

statement than having to say indi- 

vidually that all versions of the predicate are true. For example, let

 

P ( x )

 

be the predicate 

defined on real numbers by

 

x +1 > x

 

. The proposition

 

∀ x, P ( x )

 

is true. Saying so is stronger 

than saying

 

0 + 1 > 0

 

is a true proposition, and so is

 

1

 

2 

+ 1 > 

1

 

2

 

, and

 

π + 1 > π

 

. . . (that has 

no end!). 

II.B.2 Existential quantifier: Sometimes 

As in the satisfiability problem

 

↬

 

The 

satisfiability 

problem is 

described in 

Section I.C.3.

 

, it is interesting to know when a predicate is true for some 

values. One does not have to actually know what are the values that make a predicate 

true to use the fact that is sometimes true. In some sense, this is what is done when we 

define numbers such as

 

√

 

2

 

: its exact value is not given, but this number that is positive 

and such that its square is two exists (somewhere between

 

1 . 4

 

and

 

1 . 5

 

, to give a very broad 

approximation); we just name it

 

√

 

2

 

to facilitate notations. 

This is denoted using a existential quantifier , written by the symbol

 

∃

 

, which is read as 

“ there exists ”. This symbol is followed by the variable it quantifies. 

For example:

 

∃ x, P ( x )

 

is a formula, which is true if there exists a value

 

x

 

in the domain 

such that

 

P ( x )

 

is true. This formula is actually in itself a proposition: it does not depend 

on the variable, which is bound by the quantifier. 

The existentially quantified statement is a weaker statement than actually giving a value 

for which the predicate is true. For example, let

 

P ( x )

 

be the predicate

 

2 x + 3 = 0

 

. The 

proposition

 

∃ x, P ( x )

 

is true over the reals. Saying so gives less information than saying that

 

2 × 

(
−3

 

2 

)
+ 3 = 0

 

, which actually provides the value for

 

x

 

. 

II.B.3 Negated quantifiers: Never, Not always 

There are two ways to express that something is never true. 

• We can say that it is always false:

 

∀ x, ¬ P ( x )

 

. 

• We can say that there is no way to make it true:

 

¬∃ x, P ( x )

 

. 

Similarly, there are two ways to express that something is not always true. 

• We can say that it is not the case that it is always true:

 

¬∀ x, P ( x )

 

. 

• We can say that there at least one way to make it false:

 

∃ x, ¬ P ( x )

 

. 

That gives us a version of De Morgan’s laws for quantifiers.

 

De Morgan’s Laws for quantifiers

 

∀ x, ¬ P ( x ) ≡ ¬∃ x, P ( x ) ¬∀ x, P ( x ) ≡ ∃ x, ¬ P ( x )

 

On finite domains, we can relate that to the De Mogan’s laws for conjunction and dis- 

junction as follows. Assume the domain contains values

 

{ x1 

, . . . , xn 

}

 

. Formula

 

∀ x, P ( x )

 

is, 

in that case, the same as

 

P ( x1) ∧ · · · ∧ P ( xn)

 

: it must be true for all the values

 

x1 

, . . . , xn

 

.
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On the other hand,

 

∃ x, P ( x )

 

is, in that case, the same as

 

P ( x1) ∨ · · · ∨ P ( xn)

 

: it must be 

true for at least on of the the values

 

x1 

, . . . , xn

 

. So we can write:

 

¬∀ x, P ( x ) ≡ ¬ ( P ( x1) ∧ · · · ∧ P ( xn)) ≡ ¬ P ( x1) ∨ · · · ∨ ¬ P ( xn) ≡ ∃ x, ¬ P ( x )

 

¬∃ x, P ( x ) ≡ ¬ ( P ( x1) ∨ · · · ∨ P ( xn)) ≡ ¬ P ( x1) ∧ · · · ∧ ¬ P ( xn) ≡ ∀ x, ¬ P ( x )

 

II.B.4 Finding the truth value of quantified formula 

Given an interpretation (domain and meaning of the predicates), the truth value of a quan- 

tified formula can be exhibited through a proof. In some sense, calculating the truth value of 

a propositional formula is also a proof, albeit being a purely calculating one using the truth 

tables of the operators. In the case of first order logic, the proof must take into account the 

quantifiers. and the structure of the proof will change depending on what is being proved. 

• To prove that

 

∃ x, P ( x )

 

is true, it is sufficient to exhibit one value

 

a

 

in the domain and 

show that

 

P ( a )

 

is true. The choice of

 

a

 

is completely up to the proof-writer, and is 

made keeping in mind what

 

P

 

is to ensure that it will actually be true. For example, 

to prove that

 

∃ x, x2 = x

 

over the reals, one can chose

 

x = 1

 

and show that

 

12 = 1

 

, or 

do the same with

 

0

 

. But it would not work with another value: so if you chose

 

x = 42

 

, 

you won’t be able to prove this statement. 

• To prove that

 

∀ x, P ( x )

 

is true, it must be shown that

 

P ( x )

 

holds for any value of

 

x

 

. 

Such proofs usually start with the words “Let

 

x

 

be an element of the domain”. For 

example to prove

 

∀ x, x2 + 1 > x

 

over reals, the proof would start by “Let

 

x

 

be a real 

number”. When such a value is chosen, we have no say in the choice of

 

x

 

(we say it is 

chosen by “the universe”), and cannot make careless assumptions about it.

 

↬

 

In Sec- 

tion III.C.4.v 

we discuss how 

to prove this 

kind of 

statement using 

careful 

assumptions in 

a proof by 

cases.

 

• Proving that

 

∀ x, P ( x )

 

is false, is like proving that

 

¬∀ x, P ( x ) ≡ ∃ x, ¬ P ( x )

 

is true, so 

it is sufficient to exhibit one value

 

a

 

in the domain and show that

 

P ( a )

 

is false. This 

value

 

a

 

is then called a counterexample . 

• Proving that

 

∃ x, P ( x )

 

is false, is like proving that

 

¬∃ x, P ( x ) ≡ ∀ x, ¬ P ( x )

 

is true, so it 

must be shown that

 

P ( x )

 

does not hold for any value of

 

x

 

. As in the above case, the 

proof would start with “Let

 

x

 

be an element of the domain”; in this case it must then 

be proved that

 

P ( x )

 

is false.

 

Exercise II.1

 

In the following exercises, you have to prove your claim (or at least give the proof 

structure). 

1. Let

 

P ( x )

 

be the predicate “

 

x2 ≥ 0

 

”. What is the truth value of

 

∀ x, P ( x )

 

. . . 

a. when the domain is the integers? 

b. when the domain is the reals? 

c. when the domain is the complex numbers? 

2. Let

 

Q ( x )

 

be the predicate “

 

4 x − 3 = 0

 

”. What is the truth value of

 

∃ x, Q ( x )

 

. . . 

a. when the domain is the integers? 

b. when the domain is the reals?
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II.B.5 Quantification on several variables 

There can be more than one quantified variable, hence more than one quantifier per formula. 

For example, with a single binary predicate, we can have the following formulas: 

∀ x, ∀ y , Q ( x, y ) ∃ x, ∀ y , Q ( x, y ) ∀ x, ∃ y , Q ( x, y ) ∃ x, ∃ y , Q ( x, y ) 

∀ y , ∀ x, Q ( x, y ) ∃ y , ∀ x, Q ( x, y ) ∀ y , ∃ x, Q ( x, y ) ∃ y , ∃ x, Q ( x, y ) 

When the quantifier is the same, the order does not actually matter: 

•

 

∀ x, ∀ y , Q ( x, y )

 

is the same as

 

∀ y , ∀ x, Q ( x, y )

 

can be abbreviated

 

∀ x, y , Q ( x, y )

 

•

 

∃ x, ∃ y , Q ( x, y )

 

is the same as

 

∃ y , ∃ x, Q ( x, y )

 

and can be abbreviated

 

∃ x, y , Q ( x, y )

 

This is because in the proof of these statements, the choices are always made by the same 

“person”: the proof-writer (to prove that

 

∃ x, y , Q ( x, y )

 

is true or that

 

∀ x, y , Q ( x, y )

 

is false), 

or the universe (to prove that

 

∀ x, y , Q ( x, y )

 

is true or that

 

∃ x, y , Q ( x, y )

 

is false). the order 

in which the choices are performed is therefore irrelevant. 

This is not the case when the quantifiers are different. To illustrate this, let us consider 

four cases using predicate

 

Q ( x, y )

 

being

 

x + y = 0

 

over the integers.

 

∀ x, ∀ y , Q ( x, y )

 

This formula is false. We can prove it using the counterexample

 

x = 42

 

and

 

y = 0

 

.

 

∃ x, ∀ y , Q ( x, y )

 

This formula is false: let

 

x

 

be an integer; then choosing

 

y = x + 1

 

we have

 

x + y = x + x + 1 = 2 x + 1

 

which can’t be

 

0

 

for any integer.

 

∀ x, ∃ y , Q ( x, y )

 

This formula is true: let

 

x

 

be an integer; then choosing

 

y = − x

 

we have

 

x + y = x − x = 0

 

.

 

∃ x, ∃ y , Q ( x, y )

 

This formula is true: choosing

 

x = y = 0

 

yields

 

x + y = 0 + 0 = 0

 

. 

Note that in this particular case,

 

x

 

and

 

y

 

have the same role in the predicate so

 

∃ y , ∀ x, Q ( x, y )

 

and

 

∃ x, ∀ y , Q ( x, y )

 

are similar; this is not the case in general! 

In the example above, the choice of

 

y

 

after the choice of

 

x

 

allowed the proof to work: the 

value of

 

y

 

depends on the value of

 

x

 

. In the proof of

 

∃ x, ∀ y , Q ( x, y )

 

, since we claim that it 

is false, we are playing the role of the universe in a proof trying to prove that it is true: for 

any choice of

 

x

 

by the proof-writer, the universe could have chosen a value of

 

y

 

that makes

 

Q ( x, y )

 

false.

 

Exercise II.2

 

Let

 

R ( x, y )

 

be the predicate “

 

x × y = 1

 

”. 

1. What is the truth value of

 

∃ x, ∃ y , R ( x, y )

 

. . . 

a. when the domain is the integers? 

b. when the domain is the reals? 

2. What is the truth value of

 

∃ x, ∀ y , R ( x, y )

 

. . . 

a. when the domain is the integers? 

b. when the domain is the reals? 

3. What is the truth value of

 

∀ x, ∃ y , R ( x, y )

 

. . . 

a. when the domain is the integers?
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b. when the domain is the reals? 

4. What is the truth value of

 

∀ x, ∀ y , R ( x, y )

 

. . . 

a. when the domain is the integers? 

b. when the domain is the reals?

 

II.B.6 Variable scope, freeness and boundedness 

Variable that are not bound by a quantifier are called free variables. A formula with free 

variables is not a proposition, but it can be seen as a predicate on these variables. 

A quantifier only binds in its scope : by default, the scope of a quantifier is everything 

that appears after the quantifier; but it can be restricted using parentheses. For example: 

•

 

∀ x, P ( x ) → Q ( x, y )

 

has free variable

 

y

 

only; could be viewed as a unary predicate

 

R ( y )

 

. 

•

 

( ∀ x, P ( x )) ∧ Q ( x, y )

 

has free variables

 

x

 

and

 

y

 

, because outside of the parentheses

 

x

 

is not bound anymore; could be viewed as a binary predicate

 

R 

′( x, y )

 

. 

The concept of scope is similar to the one used in programming: variables declared in a 

function only exist until the end of this function’s code; a variable defined inside a loop only 

exists within the loop. 

A bound variable can be renamed throughout its scope (this is called

 

α

 

-renaming ) with- 

out affecting the truth value of the formula: the change is purely syntactic. For example, 

we can rename the bound

 

x

 

into

 

z

 

in the above example:

 

( ∀ x, P ( x )) ∧ Q ( x, y ) 

α
⇝ ( ∀ z , P ( z )) ∧ Q ( x, y ) .

 

This renaming is useful in this case so that human readers distinguish better the scope of 

the quantified variable, but it doesn’t change the definition of

 

R 

′( x, y )

 

.

 

Exercise II.3

 

Determine the free variables in the following formulas: 

1.

 

P ( x, y ) ∧ ( ∀ z , Q ( z , y ))

 

2.

 

∀ x, Q ( x ) → ( ∃ y , R ( x, y ))

 

3.

 

( ∀ y , Q ( y )) ∧ ∃ x, P ( x, y )

 

II.B.7 Remarks 

II.B.7.i A new look on the satisfiability problem 

A boolean formula

 

φ

 

using free variables

 

p1 

, . . . , pn

 

is actually a

 

n

 

-ary predicate interpreted 

over the domain

 

{⊤ , ⊥}

 

, and using the semantics of Boolean algebra for operators. This 

point of view shines a new light on the problem of classifying formulas (see Section I.C). 

Namely: 

• A formula is satisfiable if for some valuation its truth value is

 

⊤

 

, so

 

φ

 

is satisfiable if

 

∃ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is true.
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• A formula is a tautology if for all valuation its truth value is

 

⊤

 

, so

 

φ

 

is a tautology if

 

∀ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is true. 

• A formula is a contradiction if for all valuation its truth value is

 

⊥

 

, so

 

φ

 

is a contra- 

diction if

 

∀ p1 

, . . . , pn 

, ¬ φ ( p1 

, . . . , pn)

 

is true; or

 

¬∃ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is true, i.e.

 

∃ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is false. 

The proof structure that is used when classifying propositional formulas simply follows 

from the structure of the quantifiers in the corresponding first-order formula. For example, 

to prove that a formula

 

φ ( p1 

, . . . , pn)

 

is contingent, it must be proved that it is not a tautol- 

ogy and not a contradiction: It is not a tautology if

 

∀ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is false. This 

is proved by finding a counter-example, i.e. a value in the domain

 

{⊤ , ⊥}

 

for each variable

 

p1 

, . . . , pn

 

(which is called a valuation) such that

 

φ ( p1 

, . . . , pn)

 

is false. It is not a contra- 

diction if

 

∀ p1 

, . . . , pn 

, ¬ φ ( p1 

, . . . , pn)

 

is false (or, equivalently, if

 

∃ p1 

, . . . , pn 

, φ ( p1 

, . . . , pn)

 

is 

true). This is also proved using a counter-example: a value in the domain

 

{⊤ , ⊥}

 

for each 

variable

 

p1 

, . . . , pn

 

such that

 

φ ( p1 

, . . . , pn)

 

is true. 

II.B.7.ii Abbreviations for easier maths 

Quantifiers are used, sometimes in hiding, throughout mathematical statements. To simplify 

the writing and remain closer to what the statement would look in natural language, some 

abbreviations are often used. It is however necessary to keep in mind what is the exact 

meaning of these abbreviations, as it guides the proof structure. 

II.B.7.ii.a Restricting the domain 

It is useful to restrict the domain to which the quantifiers actually apply: instead of 

considering the full domain on which a universal quantifier must hold, or from which a value 

can be chosen for a existential quantifier, only a part of it is used.

 

↬

 

Parts of the 

domain are 

called sets , a 

notion fully 

developed in 

Chapter IV.

 

This restriction is denoted using the symbol

 

∈

 

, which is read as “in” or “belonging to”:

 

∀ x ∈ A . . .

 

and

 

∃ x ∈ A

 

mean the domain of this variable is restricted to

 

A

 

. Formally

 

A

 

is 

given by a predicate

 

A ( x )

 

that is true when

 

x

 

is in this sub-part

 

A

 

. Then the meaning of 

this restricted domain is as follows: 

•

 

∀ x ∈ A, P ( x )

 

is actually

 

∀ x, A ( x ) → P ( x )

 

. 

•

 

∃ x ∈ A, P ( x )

 

is actually

 

∃ x, A ( x ) ∧ P ( x )

 

. 

Remark that it differs depending on the type of quantifier, but that De Morgan’s laws 

still work with these “restricted domain quantifiers”. It can be proved using the rules of 

propositional calculus and De Morgan’s laws for quantifiers:

 

¬∀ x ∈ A, P ( x ) ≡ ¬∀ x, A ( x ) → P ( x ) [Expansion of the abbreviation] 

≡ ∃ x, ¬ ( A ( x ) → P ( x )) [De Morgan’s Law for

 

∀

 

] 

≡ ∃ x, ¬ ( ¬ A ( x ) ∨ P ( x )) [Rewriting of

 

→

 

] 

≡ ∃ x, ¬¬ A ( x ) ∧ ¬ P ( x ) [De Morgan’s Law] 

≡ ∃ x, A ( x ) ∧ ¬ P ( x ) [Double negation elimination] 

¬∀ x ∈ A, P ( x ) ≡ ∃ x ∈ A, ¬ P ( x ) [Contraction of the abbreviation]
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II.B.7.ii.b Uniqueness 

To denote that a single element of the domain makes the predicate true, the symbol

 

∃ !

 

is used. It is read as “there exists a unique”. The formula

 

∃ ! x, P ( x )

 

is a shorthand for

 

∃ x, P ( x ) ∧ ( ∀ y , P ( y ) → x = y )

 

: there is an element

 

x

 

that satisfies the predicate, and any 

element of the domain that satisfies the predicate is

 

x

 

. 

II.B.7.iii Second- (or more) -order logic 

Propositional logics is logics without any quantifiers. In first-order logic, there is quantifi- 

cation on variables of the domain, that are used in predicates. 

We can go one step further,

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

and in second-order logic, we can quantify on variables 

of the predicates , to write formulas such as this one:

 

∀ P , ∃ Q, ∀ x, P ( x ) → ∃ y , Q ( x, y )

 

. So 

technically, the first-order formula

 

∀ x, P ( x ) → ∃ y , Q ( x, y )

 

is a second-order predicate with 

free variables

 

P

 

, and

 

Q

 

, which are instantiated when an interpretation is provided. 

But why stop here? In third-order logic, there can also be quantification over second 

order predicates. This could go on; if it goes as high as we want, we obtain higher-order 

logic (HOL). 

In practice, above second-order, the properties of

 

n

 

-order and HOL are somewhat similar, 

and third-order and above are not studied individually. Second order is however worth 

studying on its own, in particular the fragment that only allows unary predicates, which is 

called Monadic Second Order . Unfortunately, discussing MSO in more depth is way beyond 

the scope of this course. 

II.C Equivalence in first-order logic 

II.C.1 Syntactical calculation 

In the same manner that syntactical calculation is possible through the algebraic rules of 

propositional calculus, it is possible to perform syntactical calculations in first-order logic. 

The fact that it is syntactical means that: 

• There is no domain set. 

• We don’t get to see the meaning of the predicates. 

• Hence there is no functions (operators) in there, except the logical operators. 

Equivalences that are thus proved are valid regardless of the interpretation. 

II.C.1.i Calculation rules 

Since first-order is built on propositional logic, the rules of calculations for FO also uses the 

rules of propositional calculus. In order to deal with the quantifiers, calculus for FO also 

uses: 

• De Morgan’s Laws for quantifiers (

 

¬∀ ≡ ∃¬

 

and

 

¬∃ ≡ ∀¬

 

) 

• Rules regarding the scope of the bounded variables. 

• Rules regarding how quantifiers interact with other operators.
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The first set of rules regards the change of the scope of a quantifier. As these rules work 

both ways, and the scope can be extended or reduced. A scope reduction, which can be 

reduced to nothing, eliminating the quantifier is only possible if the quantifier was actually 

useless: this is why these rules are known as the null quantification rules. For a scope 

extension to be allowed (i.e. to be without effect on the truth value), this extension must 

not capture a variable: that means that the variable whose scope is extended must not have 

appeared free beforehand in its new scope. Note that if the variable appeared but is bound, 

it can be

 

α

 

-renamed, and therefore not appear anymore. Formally:

 

Null quantification rules

 

Assume

 

φ

 

is a formula where

 

x

 

is not a free variable. Then: 

∀ x, φ ≡ φ ∀ x, ( P ( x ) ∨ φ ) ≡ ( ∀ x, P ( x )) ∨ φ 

∃ x, φ ≡ φ ∃ x, ( P ( x ) ∧ φ ) ≡ ( ∃ x, P ( x )) ∧ φ

 

The second set of rules regards the interaction of quantifiers with the conjunction and 

disjunction operators. As previously noted, on a finite domain, a universal quantifier can 

be seen as a conjunction, while an existential quantifier can be seen as a disjunction. It is 

therefore not a surprise that universal quantifier behaves well with conjunction and universal 

quantifier with disjunction, even for infinite domains.

 

Quantifier distribution

 

( ∀ x, P ( x )) ∧ ( ∀ x, Q ( x )) ≡ ∀ x, ( P ( x ) ∧ Q ( x )) 

( ∃ x, P ( x )) ∨ ( ∃ x, Q ( x )) ≡ ∃ x, ( P ( x ) ∨ Q ( x ))

 

In addition, syntactical rules can be used as well (such as

 

∃ x ∃ y

 

rewritten as

 

∃ x, y

 

). 

All together, these rules are used to prove equivalences as in algebra. For readability, we 

indicate which rule was used in each step. 

For example, we can show that

 

∀ x, ( P ( x ) → ¬∃ y , Q ( y )) ≡ ∀ x, y , ¬ P ( x ) ∨ ¬ Q ( y )

 

.

 

∀ x, ( P ( x ) → ¬∃ y , Q ( y )) ≡ ∀ x, ( ¬ P ( x ) ∨ ¬∃ y , Q ( y )) [Rewriting of

 

→

 

] 

≡ ∀ x, ( ¬ P ( x ) ∨ ∀ y , ¬ Q ( y )) [De Morgan’s Law for

 

∃

 

] 

≡ ∀ x, (( ∀ y , ¬ Q ( y )) ∨ ¬ P ( x )) [Commutativity of

 

∨

 

] 

≡ ∀ x, ( ∀ y , ( ¬ Q ( y ) ∨ ¬ P ( x ))) [Null quantification] 

≡ ∀ x, ( ∀ y , ( ¬ P ( x ) ∨ ¬ Q ( y ))) [Commutativity of

 

∨

 

] 

∀ x, ( P ( x ) → ¬∃ y , Q ( y )) ≡ ∀ x, y , ( ¬ P ( x ) ∨ ¬ Q ( y ))) [Syntactical shortcut]

 

Exercise II.4

 

Assume

 

φ

 

is a formula where

 

x

 

is not a free variable. Prove the following equivalences 

using the rulesa of first-order calculation: 

1.

 

( ∀ x, P ( x )) ∧ φ ≡ ∀ x, ( P ( x ) ∧ φ )

 

2.

 

( ∃ x, P ( x )) ∨ φ ≡ ∃ x, ( P ( x ) ∨ φ )

 

3.

 

∀ x, ( φ → P ( x )) ≡ φ → ( ∀ x, P ( x ))

 

4.

 

∃ x, ( φ → P ( x )) ≡ φ → ( ∃ x, P ( x ))
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5.

 

∀ x, ( P ( x ) → φ ) ≡ ( ∃ x, P ( x )) → φ

 

6.

 

∃ x, ( P ( x ) → φ ) ≡ ( ∀ x, P ( x )) → φ

 

7.

 

¬∀ x, ( P ( x ) → Q ( x )) ≡ ∃ x, P ( x ) ∧ ¬ Q ( x )

 

Remark: Once you have proved that an equivalence holds, it can be used in the 

following ones.

 

aIndicate which rule was used.

 

II.C.1.ii Quantifier alternation

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Using the equivalences of Exercise II.4, we can see that it is possible to use these rules (and 

composite rules) to put any first-order formula in a given form. It is done as follows: 

• Put all quantifiers to the front. Using

 

α

 

-renaming, we can make it so all the quantifiers 

have distinct variables. 

• Pushed all negations to the inside (at least after all quantifiers), using De Morgan’s 

law as necessary. 

• Gather (syntactically) similar quantifiers that are together. 

The end result is a formula of the following form, called prenex normal form : 

∃ x1 , 1 

, . . . , x1 ,n1 

, ∀ y1 , 1 

, . . . , y1 ,p1 

, ∃ x2 , 1 

, . . . , x2 ,n2 

, 

∀ y2 , 1 

, . . . , y2 ,p2 

· · · ∃ xk , 1 

, . . . , x2 ,nk 

, ∀ yk , 1 

, . . . , yk ,pk 

, 

P ( x1 , 1 

. . . , x1 ,n1 

, y1 , 1 

, . . . , xk , 1 

, . . . , x2 ,nk 

, yk , 1 

, . . . , yk ,pk) 

Not that it is possible that the first quantifier is actually a

 

∀

 

, or the last a

 

∃

 

. 

The number

 

k

 

in the prenex normal form is called the number of quantifier alternation . 

It is an indicator of how complex the formula is. Intuitively, to prove a formula with

 

k

 

quantifier alternations, the prover will make a choice, then take unknown variables from the 

domain (chosen by the universe, and which can depend on the prover’s choice), then the 

prover again choses, taking into account the value chosen by the universe, etc

 

k

 

times. The 

choice of the first values has a great influence on the later choices, and it is possible, when 

writing such a proof, that it turns out later that the choice was not good, and you need to 

backtrack. 

II.C.2 Semantic proofs 

II.C.2.i Proving non-equivalence 

Although proving equivalence is often more useful, proving non-equivalence has one partic- 

ular application: showing that would-be rules of calculations are actually not valid. For 

example, is

 

( ∀ x, P ( x )) ∨ ( ∀ x, Q ( x ))

 

equivalent to

 

∀ x, ( P ( x ) ∨ Q ( x ))

 

? 

To prove non-equivalence in propositional logic, what is needed is a valuation for which 

one formula is true while the other is false. This amounts to finding a line in the truth 

table where the formulas differ. In first-order, there is no truth table, but the principle is 

the same, although what must be chosen is not the truth value of propositional variables,
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but the interpretation, i.e. a domain and a meaning for all predicates. So one must find an 

interpretation that makes one of the formula

 

⊤

 

while the other is

 

⊥

 

. 

For example, to prove

 

( ∀ x, P ( x )) ∨ ( ∀ x, Q ( x )) ̸≡ ∀ x, ( P ( x ) ∨ Q ( x ))

 

, we can choose the 

domain as the integers,

 

P ( x )

 

meaning “

 

x

 

is even”, and

 

Q ( x )

 

meaning “

 

x

 

is odd”. 

On the left handside, we have that

 

( ∀ x, P ( x )) ∨ ( ∀ x, Q ( x ))

 

is

 

⊥

 

because: 

•

 

∀ x, P ( x )

 

is false since

 

P (1)

 

is false. 

•

 

∀ x, Q ( x )

 

is false since

 

P (0)

 

is false. 

On the right handside, we have

 

∀ x, ( P ( x ) ∨ Q ( x ))

 

is

 

⊤

 

because for any integer, it is either 

even or odd. In this particular case, the left handside always implies the right handside. 

Why it doesn’t work in the other direction is because on the left, there are two different 

variables (we could

 

α

 

-rename one:

 

( ∀ x, P ( x )) ∨ ( ∀ y , Q ( y ))

 

), which can take two different 

values, while on the right handside there is a single variable. If

 

( ∀ x, P ( x )) ∨ ( ∀ y , Q ( y ))

 

is 

true, it is true in particular for the case where

 

x

 

and

 

y

 

are instantiated with the same value.

 

Exercise II.5

 

Prove that

 

( ∃ x, P ( x )) ∧ ( ∃ x, Q ( x )) ̸≡ ∃ x, ( P ( x ) ∧ Q ( x ))

 

II.C.2.ii Proving equivalence

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Proving equivalence of two first-order formulas using the semantics is also possible. It is 

actually the only way to prove the basic Null quantification and Quantifier distribution 

rules given above. 

Since the equivalence must hold for any interpretation, the proof must consider “an 

interpretation” without actually knowing what it is. Then for this unspecified interpretation, 

one must prove that if one formula is true in an interpretation, so is the other; if it is false, 

so is the other. 

For example let’s prove semantically that

 

∀ x, ( P ( x ) → ¬∃ y , Q ( y )) ≡ ∀ x, y , ¬ P ( x ) ∨ 

¬ Q ( y )

 

: 

Let

 

D

 

be a domain and

 

P , Q

 

predicates. 

• Assume

 

∀ x, ( P ( x ) → ¬∃ y , Q ( y ))

 

is true. We can

 

α

 

-rename it into

 

∀ t, ( P ( t ) → ¬∃ z , Q ( z ))

 

Let

 

x, y ∈ D

 

. We have by hypothesis

 

P ( x ) → ¬∃ z , Q ( z )

 

. 

– Assume we have

 

P ( x )

 

; then

 

¬∃ z , Q ( z )

 

, in particular

 

Q ( y )

 

is false so we have

 

¬ Q ( y )

 

, hence

 

¬ P ( x ) ∨ ¬ Q ( y )

 

. 

– Assume we don’t have

 

P ( x )

 

, then we have

 

¬ P ( x ) ∨ ¬ Q ( y )

 

. 

• Assume

 

∀ x, ( P ( x ) → ¬∃ y , Q ( y ))

 

is false. Then for some

 

x ∈ D

 

,

 

P ( x ) → ¬∃ y , Q ( y ))

 

is 

false. That implication can only be false if

 

P ( x )

 

is true and

 

¬∃ y , Q ( y )

 

is false, meaning

 

∃ y , Q ( y )

 

is true. Let’s take such a

 

y

 

. Then for these particular

 

x

 

and

 

y

 

, we have

 

P ( x )

 

, 

so

 

¬ P ( x )

 

is false; and we have

 

Q ( y )

 

, so

 

¬ Q ( x )

 

is false. As a result,

 

¬ P ( x ) ∨ ¬ Q ( y )

 

is 

false, and we have a counterexample to

 

∀ x, y , ¬ P ( x ) ∨ ¬ Q ( y )

 

, so this formula is false. 

So regardless of the domain and predicate interpretation, these formulas are equivalent.
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III.A What is a proof? 

A proof is a formal way to produce true statements from other true statements. These 

original true statements may have been proved in a similar manner, or just assumed true: 

they are hypotheses . The construction of mathematics in layers of proofs from the initial 

hypotheses, which are named axioms , explains why math is in itself cumulative: the math 

curriculum of Kindergarten is still used when studying calculus.

 

3

 

4

 

x

 

Figure III.1: A right 

rectangle 

For example, when applying the Pythagorean identity, to prove 

that

 

x = 5

 

in Figure III.1 on the right, the truth of the Pythagorean 

theorem is used. The assumption that the Pythagorean theorem 

holds is valid as long as we accept the initial axioms of geometry 

(known as Euclid’s axioms) and mathematics. These axioms are often 

implicit. 

In another example, when proving that the diagonals of a rect- 

angle have equal length, the fact that it is a rectangle is used as an 

hypothesis. In this case the hypothesis is very local: not all shapes 

are rectangles, we just assume that the shape under consideration is 

one. Of course, the usual axioms are also needed in order to produce 

this proof. 

III.A.1 Formal vs human proofs 

In this chapter, we will first consider proofs in the logical sense, for both propositional and 

first-order logics. These proofs are really a calculation, and are well suited for a formal 

setting. Indeed, some of the proof systems mentioned here are used in automatic theorem 

provers, or rather proof assistant, which are computer-aided mathematical proofs. 

When discussing between humans, these formal systems that do not allow any detail to 

be spared are harder to understand than natural language. So in the second part of this 

chapter, we will discuss the writing of proofs in English. Although technically less formal, 

writing proofs in natural language actually mimics the calculation rules of the proof systems. 

As a result, the techniques used to create a formal or a human-readable proof are somewhat 

similar, in the sense that both proofs rely on an observation of the hypotheses and the 

structure of the statement being proved. 

III.A.2 Vocabulary 

As we have seen, assumptions can come in two flavors, which are technically the same, but 

philosophically quite different. Axioms are assumptions that are expected to be always true 

regardless of the context, for example: “there is a single line that goes through two distinct 

points”. Hypotheses , on the other hand, are not necessarily true in general, for example: 

“Let ABC be a right rectangle”. So, as axioms are not expected to change, hypotheses can 

be introduced at will. 

The new true statement that results of a proof without hypotheses is called a Theo- 

rem . Note that hypotheses can actually be contained within the theorem. For example the 

Pythagorean Theorem “If

 

AB C

 

is a right triangle in

 

C

 

, then

 

AC2 + B C2 = AB2

 

” implic- 

itly contains the hypothesis that the triangle is right as the premise of an implication but 

the full sentence does not require any hypothesis (beyond the axioms of mathematics and 

geometry).
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The term theorem literally means “a thing from God” in Latin. In math this term is 

used for results deemed important (this being a purely subjective notion). For less important 

results, other terms are often used: 

Lemma An intermediate result not important in itself, but used to proved a theorem. 

Corollary An easy consequence of a theorem. What is easy being subjective also; a good 

example is when the corollary is a particular case of the theorem. 

Proposition A theorem of lesser importance; it is implied that it is proven to be a true 

proposition. 

Scholia Literally a “comment”: an intermediate result proved during the proof of a theorem 

that deserves a statement in its own right (as an afterthought). 

III.B Proof systems 

III.B.1 Rule-based systems 

Formal proof systems are based on deduction rules : from one or more statement, called the 

premises , the rule allows to produce a new statement, called the conclusion . Rules that have 

no premises are called axioms : they are deemed always true. 

The rules are written using the

 

⊢

 

symbol, which is read as “proves”. So

 

φ1 

, . . . , φn 

⊢ ψ

 

means that

 

ψ

 

can be proved when

 

φ1 

, . . . , φn

 

are assumed. Here

 

φ1 

, . . . , φn

 

forms the 

premise, while

 

ψ

 

the conclusion. 

This notation is used to denote a statement proved under some hypotheses and sometimes 

the rules themselves, as is the case in the Natural Deduction (ND) system. 

III.B.2 Hilbert-style Natural Deduction system for proposi- 

tional logic 

This system was introduced by mathematician and logician David Hilbert in the beginning 

of the 20th century to formalize the human-made proofs. 

III.B.2.i The rules 

In this system there 11 deduction rules and no axioms:

 

The rules of Natural Deduction system

 

Negation introduction,

 

¬

 

-I

 

p → q , p → ¬ q ⊢ ¬ p

 

Negation elimination,

 

¬

 

-E

 

¬ p ⊢ p → q

 

Double negation elimination,

 

¬¬

 

-E

 

¬¬ p ⊢ p

 

Conjunction introduction,

 

∧

 

-I

 

p, q ⊢ p ∧ q

 

Conjunction elimination (left and right),

 

∧

 

-E

 

l

 

and

 

∧

 

-E

 

r

 

p ∧ q ⊢ p

 

and

 

p ∧ q ⊢ q

 

Disjunction introduction (left and right),

 

∨

 

-I

 

l

 

and

 

∨

 

-I

 

r

 

p ⊢ p ∨ q

 

and

 

q ⊢ p ∨ q
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Disjunction elimination,

 

∨

 

-E

 

p ∨ q , p → r, q → r ⊢ r

 

Iff introduction,

 

↔

 

-I

 

p → q , q → p ⊢ p ↔ q

 

Iff elimination,

 

↔

 

-E

 

p ↔ q ⊢ p → q

 

and

 

p ↔ q ⊢ q → p

 

Implication introduction (conditional proof),

 

→

 

-I

 

p ⊢ q

 

becomes

 

⊢ p → q

 

. 

Implication elimination (Modus ponens),

 

→

 

-E

 

p, p → q ⊢ q

 

All rules have abbreviated named. They are formed with the symbol for the operator 

and I for introduction or E for elimination. Rules that have two versions (conjunction 

elimination and disjunction introduction) have two abbreviations to indicate whether the 

left or right version is being considered; 

Let’s consider all the rules and the intuition behind them. The negation introduction 

rule states that if a proposition

 

p

 

implies both a proposition

 

q

 

and its negation, then we 

have proved the negation of

 

p

 

. The idea is that

 

p

 

would imply a contradiction. 

The negation elimination rule simply states that if the negation of

 

p

 

has been proved, 

then

 

p

 

implies anything. 

Double negation elimination states that the proof of the negation of the negation of a 

proposition proves the proposition itself. 

Conjunction introduction states that two independent proofs of

 

p

 

and

 

q

 

provide a proof 

of their conjunction

 

p ∧ q

 

. On the other hand, a conjunction elimination takes a proof of

 

p ∧ q

 

and uses it to make in particular a proof of

 

p

 

(or a proof of

 

q

 

). 

Disjunction introduction states that a proof of

 

p

 

proves the weaker statement

 

p ∨ q

 

. 

Disjunction elimination is more involved. There is no way to just eliminate a disjunction 

on its own: when

 

p ∨ q

 

has been proved, one cannot know which of

 

p

 

or

 

q

 

to chose. This rule 

bypasses this difficulty by using a third proposition

 

r

 

implied by both

 

p

 

and

 

q

 

, independently. 

So it does not matter which of

 

p

 

or

 

q

 

would be chosen, because

 

r

 

would be proved anyway. 

The Iff rules are just a translation of the fact that Iff is implication in both directions. 

The conditional proof rule allows to convert a premise of the proof into a premise of the 

statement. It allows to make theorems that implicitly contain hypotheses. 

The modus ponens allows to apply an implication: when the implication has been proved 

and the premise of said implication has been proved as well, that proves the conclusion. This 

is what is at hand when applying a theorem (usually an implication): it must be proved 

that all the premises hold in order to be able to apply it and obtain the conclusion of the 

theorem. 

Remarks 

Note that these rules are about what is provable , not what is true . This is why the 

explanations above refrain from using phrases like “if

 

p

 

is true”. This subtle distinction is 

developed further in Section III.B.4.iv. 

Also these rules provide deduction , not equivalence. Some of the rules produce a con- 

clusion that is a weaker statement than the premise, that is to say a statement that is 

implied by the premise. Examples of these are the conjunction elimination and disjunction 

introduction rules.
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III.B.2.ii Writing proofs 

A proof in the Natural Deduction (ND) system consists of lines of propositions that have 

been proved or assumed. To create a new line, hence a new proposition, one has to use 

one of the 11 rules above, or add an hypothesis. The rule used must be indicated next to 

the proposition, with reference to the rule’s premises. The

 

⊢

 

(“proves”) symbol is not used 

within the proof itself. 

There are two ways to introduce an hypothesis. The first is as an hypothesis of what is 

being proved. Namely, if in the end the goal is to prove

 

φ1 

, . . . , φn 

⊢ ψ

 

, then each of the

 

φi

 

can be introduced using the (meta-)rule Premise . 

The second way to introduce an hypothesis is through a local assumption, with the 

rule Assumption . Anything can be assumed in this manner, but every assumption must be 

discharged by the end of the proof. Discharging is done through the conditional proof rule: 

the assumed hypothesis become the premise of an implication. It must however be noted that 

when an hypothesis is discharged, everything that was proved under this assumption cannot 

be used anymore. In order to highlight what was under which assumption, it is common 

to use indentation or adequate numbering (the latter is the approach taken here). Crossing 

out the lines no longer usable is also possible, but it hinders readability (see Figure III.2). 

Another “rule” that can be used when writing proofs is the Reiteration rule, that simply 

repeats a proposition proved earlier. Using this rule is never necessary, it only enhances the 

readability of the proof in some cases. 

There are no additional rules. In particular, it is not possible to use rules of proposi- 

tional calculus in this setting. For example, the rewriting of the implication arrow is not 

possible; technically, it can be allowed but only after being proved once (which is done in 

Exercise III.1). Then normally it should be proved again each time it is being used. 

III.B.2.iii Examples 

III.B.2.iii.a

 

⊢ p → p

 

This first example is very simple. What we can see is first that is does require a proof. 

Now to prove the statement

 

p → p

 

, which is an implication, the natural way is to assume 

the premise and try to prove the conclusion under the assumption of the premise (which is 

trivial here). Finally, the conditional proof discharges our assumption of the premise and 

provides a proof of the implication.

 

(1) p [Assumption, discharged in (2)] 

(1.1) p [Reiteration of (1)] 

(2) p → p [Conditional proof on (1) and (1.1)]

 

III.B.2.iii.b

 

( ¬ p → ¬ q ) ⊢ ( q → p )

 

In this case, we can start by writing all the hypotheses as premises. Then, because we 

need to prove an implication, we assume the premise

 

q

 

and try to prove

 

p

 

. In this case, we 

have little choice but to try to use our premise. 

As an implication, it could be used in a modus ponens, disjunction elimination, iff 

introduction, or negation introduction. Disjunction elimination would be hard to use, since 

we don’t have a disjunction to start with. Similarly, iff introduction would require

 

¬ q → ¬ p

 

, 

and also would provide an iff which is not really needed.
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(1) ¬ p → ¬ q [Premise] 

(2) q [Assumption]

 

discharged

 

(2.1) ¬ p [Assumption]

 

discharged

 

(2.1.1)

 

q [Reiteration of (2)] 

(2.2)

 

¬ p → q [Conditional proof on (2.1) and (2.1.1)] 

(2.3)

 

¬¬ p [Negation introduction on (1) and (2.2)] 

(2.4)

 

p [Double negation elimination on (2.3)] 

(3) q → p [Conditional proof on (2) and (2.4)]

 

Figure III.2: Proof of

 

( ¬ p → ¬ q ) ⊢ ( q → p )

 

using crossing-out. 

The modus ponens requires a bit more attention: if we assume

 

¬ p

 

, we could have

 

¬ q

 

. 

That seems to be a contradiction with the fact that we have assumed

 

q

 

. But there is no rule 

that says that having both

 

q

 

and

 

¬ q

 

is an issue per se. 

On the other hand, we can show that

 

¬ p

 

implies both

 

q

 

and

 

¬ q

 

, then use the negation 

introduction rule, which was our last choice. Then having

 

¬¬ p

 

will yield

 

p

 

, which was our 

goal. 

In ND, it translates as follows:

 

(1) ¬ p → ¬ q [Premise] 

(2) q [Assumption, discharged in (3)] 

(2.1) ¬ p [Assumption, discharged in (2.2)] 

(2.1.1) q [Reiteration of (2)] 

(2.2) ¬ p → q [Conditional proof on (2.1) and (2.1.1)] 

(2.3) ¬¬ p [Negation introduction on (1) and (2.2)] 

(2.4) p [Double negation elimination on (2.3)] 

(3) q → p [Conditional proof on (2) and (2.4)]

 

Note that reading the ND proof on its own might seem very artificial. But this proof was 

constructed by starting from both ends at the same time: what we have (the hypothesis) 

and what we want. Then we considered the rules available to use, selecting the ones that 

go us closer to the goal. 

III.B.2.iii.c

 

( p ∧ ¬ q ) → q ⊢ p → q

 

In this case, once again the start and end of the proof is given by the structure of the 

hypothesis and conclusion we want to prove: we write down the hypothesis as a premise, 

and we assume

 

p

 

, to be discharged in the end once we have proved

 

q

 

. 

Intuitively, we can see why

 

q

 

should be true under hypotheses

 

( p ∧ ¬ q ) → q

 

and

 

p

 

: for 

both these to hold, either

 

¬ q

 

is true then it implies

 

q

 

, or it is not then that means we have

 

q

 

. This intuition based on the possible truth values for

 

q

 

does not however yield a proof in 

ND: it would have to assume the excluded middle

 

q ∨ ¬ q

 

, which is not a base rule. Part 

of this reasoning nonetheless can give us an idea: if

 

¬ q

 

is true, then it implies

 

q

 

. That is 

sufficient to be able to prove

 

¬ q → q

 

(under the aforementioned hypotheses). While not a 

contradiction, the only way for this to hold is for

 

q

 

to be true; again, this does not constitute 

a proof in ND. One must first prove

 

¬ q → ¬ q

 

, then to introduce the negation to obtain

 

¬¬ q

 

.

 

36 Introduction to Discrete Mathematics



 

Proof systems and proof patterns Chapter III

 

The resulting proof in the Natural Deduction system is:

 

(1) ( p ∧ ¬ q ) → q [Premise] 

(2) p [Assumption, discharged in (3)] 

(2.1) ¬ q [Assumption, discharged in (2.2)] 

(2.1.1) p ∧ ¬ q [Conjunction introduction on (2) and (2.1)] 

(2.1.2) q [Modus Ponens on (1) and (2.1.1)] 

(2.2) ¬ q → q [Conditional proof on (2.1) and (2.1.2)] 

(2.3) ¬ q [Assumption] 

(2.3.1) ¬ q [Reiteration of (2.3)] 

(2.4) ¬ q → ¬ q [Conditional proof on (2.3) and (2.3.1)] 

(2.5) ¬¬ q [Negation introduction on (2.2) and (2.4)] 

(2.6) q [Double negation elimination on (2.5)] 

(3) p → q [Conditional proof on (2) and (2.6)]

 

III.B.2.iii.d

 

⊢ p ∨ ¬ p

 

(excluded middle) 

First, let’s once again remark that we cannot just use a truth table to prove the excluded 

middle. We have to rely entirely on the available rules. 

This proof is more advanced, and harder to develop from scratch without having the 

central idea: we will do a proof by contradiction. Namely, we will prove that assuming the 

negation of our formula allows to prove the formula itself:

 

¬ φ → φ

 

, where

 

φ = p ∨ ¬ p

 

. Then 

because

 

¬ φ → ¬ φ

 

trivially, by introduction of negation we obtain

 

¬¬ φ

 

, then

 

φ

 

. 

Proving

 

p ∨ ¬ p

 

from

 

¬ ( p ∨ ¬ p )

 

is a bit tricky in itself. Since it is a disjunction, one must 

choose in advance which part will be proved. In this case, we will prove

 

¬ p

 

, by proving that

 

p

 

implies both

 

φ

 

and its negation (by assumption). Note that in this case we could have 

chosen to prove

 

p

 

by proving that

 

¬ p

 

implies both

 

φ

 

and its negation. 

The resulting ND proof is as follows:

 

(1) ¬ ( p ∨ ¬ p ) [Assumption, discharged in (2)] 

(1.1) p [Assumption, discharged in (1.2)] 

(1.1.1) p ∨ ¬ p [Disjunction introduction on (1.1)] 

(1.2) p → ( p ∨ ¬ p ) [Conditional proof on (1.1) and (1.1.1)] 

(1.3) p [Assumption, discharged in (1.4)] 

(1.4) p → ¬ ( p ∨ ¬ p ) [Conditional proof on (1.3) and (1)] 

(1.5) ¬ p [Negation introduction on (1.2) and (1.4)] 

(1.6) p ∨ ¬ p [Disjunction introduction on (1.5)] 

(2) ¬ ( p ∨ ¬ p ) → p ∨ ¬ p [Conditional proof on (1) and (1.6)] 

(3) ¬ ( p ∨ ¬ p ) [Assumption, discharged in (4)] 

(4) ¬ ( p ∨ ¬ p ) → ¬ ( p ∨ ¬ p ) [Conditional proof on (3) and (3)] 

(5) ¬¬ ( p ∨ ¬ p ) [Negation introduction on (2) and (4)] 

(6) p ∨ ¬ p [Double negation elimination on (5)]

 

III.B.2.iv Tricks for creating proofs in ND 

It is often difficult to start writing a proof in the Natural Deduction system directly. As 

in the above example, it is easier to start by making a plan of the proof, starting from 

both what we have and what we want, and paying good attention to the structure of these 

formulas in order to mentally list all the rules that could be applied at this point.
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Exercise III.1

 

Prove in the Natural Deduction system: 

1.

 

p ∨ s

 

from hypotheses

 

( p ∧ q ) ∨ r

 

and

 

r → s

 

2.

 

( ¬ p ∧ q ) → t

 

from hypotheses

 

r → p

 

,

 

¬ r → s

 

, and

 

s → t

 

. 

3.

 

¬ p ∨ q

 

from hypothesis

 

p → q

 

(You don’t have to do both versions.) 

a. Easy version: add

 

p ∨ ¬ p

 

as an hypothesis. 

b. Hard version: get inspiration from the proof of

 

p ∨ ¬ p

 

, but don’t use it 

directly.

 

�

 

Do not use the 

rules of 

propositional 

calculus!

 

III.B.3 Natural deduction for first-order logic 

Extension from propositional logic to first-order logic was done through the introduction of 

variables and quantifiers. The extension to proof systems is similar: we need to introduce 

some rules to deal with the quantifiers. As is the case for other operators, there is an 

introduction rule, named generalization , and an elimination rule, named instantiation , for 

each quantifier. 

In order to prevent scoping issues, some restrictions apply. A quantifier can be introduced 

only if it uses a new variable

 

b

 

Such a new 

variable is 

called a fresh 

variable

 

. And this new variable does not replace one that appeared 

in an hypothesis: that would amount to performing the replacement only partially, and 

that could mean assuming a variable could take two different values (see the examples in 

Section II.C.2.i). 

In addition, we will use the following notation for variable substitution :

 

P ( a/x )

 

means

 

P

 

where every occurrence of

 

x

 

is replaced by

 

a

 

.

 

The rules of Natural Deduction system, extension to first-order

 

Existential generalization,

 

∃

 

-I

 

P ( a ) ⊢ ∃ x, P ( x/a )

 

if

 

a

 

does not appear free in any 

premise or assumption and

 

x

 

does not appear in

 

P

 

. 

Existential instantiation,

 

∃

 

-E

 

∃ x, P ( x ) ⊢ P ( y /x )

 

where

 

y

 

is a new symbol (think: 

constant). 

Universal generalization,

 

∀

 

-I

 

P ( y ) ⊢ ∀ x, P ( x/y )

 

if

 

y

 

does not appear free in any 

premise or assumption and

 

x

 

does not appear in

 

P

 

. 

Universal instantiation,

 

∀

 

-E

 

∀ x, P ( x ) ⊢ P ( a/x )

 

.

 

Example:

 

( ∀ x, P ( x )) → ( ∃ y , P ( y ))

 

(1) ∀ x, P ( x ) [Assumption] 

(1.1) P ( z ) [Universal instanciation on (1)] 

(1.2) ∃ y , P ( y ) [Existential generalization on (1.1)] 

(2) ( ∀ x, P ( x )) → ( ∃ y , P ( y )) [Conditional proof on (1) and (1.2)]
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Exercise III.2

 

Prove in the Natural Deduction System:

 

( ∃ x, ¬ P ( x ) ∧ Q ( x ))

 

from hypotheses

 

∃ x, ¬ P ( x )

 

and

 

∀ y , Q ( y )

 

III.B.4 Other proof systems

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

The Natural Deduction system presented above is just a deduction system. There are lots 

of possible variations, which may or may not yield an equivalent system, two systems being 

equivalent if they can prove exactly the same statements. 

III.B.4.i Some equivalent systems 

One simple variation that would provide the same proof system would be to keep only the 

the conjunction introduction and the implication introduction and elimination rules (modus 

ponens and conditional proof), and replace all other rules by an axiom of the corresponding 

implication. For example, conjunction elimination would be replaced by the axioms

 

⊢ p ∧ 

q → p

 

and

 

⊢ p ∧ q → q

 

. And Negation introduction would be replaced by the axiom

 

(( p → q ) ∧ ( p → ¬ q )) → ¬ p

 

. So instead of applying a rule, the modus ponens would be 

applied on the premises joined by a conjunction if more than one premise is required. 

This change is purely syntactical, and it is relatively easy to see why the system thus 

produced is equivalent. For other systems, it is not as easy to see (and no proof will be 

provided here). For example, the system defined by Jan Łukasiewicz only uses the modus 

ponens (

 

p → q , p ⊢ q

 

) and replaces the other axioms for propositional logic by the following 

few axioms: 

p → ( q → p ) ( ¬ p → ¬ q ) → ( q → p ) ( p → ( q → r )) → (( p → q ) → ( p → r )) 

III.B.4.ii Intuitionistic logic 

It is possible to use the same rule system, but removing the Double negation elimination 

rule. The logic thus created is called intuitionistic logic , in opposition to the classical logic 

used up to now. 

In this system, it is impossible to prove the excluded middle or the contraposition rule, 

or to use proofs by contradiction: proving

 

¬¬ φ

 

does not prove

 

φ

 

.

 

b

 

Proving “the 

impossibility of 

a proof” is not 

straightforward, 

as one need to 

consider all 

possible proofs !

 

That means that in order 

to prove

 

p ∨ ¬ p

 

, you have to either prove that

 

p

 

holds or that

 

¬ p

 

holds. This illustrates the 

difference between the truth and the provability . 

As a consequence, to prove an existential statement

 

∃ x, P ( x )

 

one cannot prove that there 

is a contradiction if we assume

 

∀ x, ¬ P ( x )

 

: an actual value for

 

x

 

that satisfies

 

P ( x )

 

has to 

be exhibited. This approach is called constructive . 

Classical logic seems more natural to modern mathematicians who have been using it 

all their lives, but when Hilbert proposed his system with this double negation rule, some 

logicians and philosophers deemed it unrealistic because it allowed non-constructive proofs. 

This is where the term intuitionistic comes from: only constructive proofs were considered 

compatible with the intuition that to prove the existence of something one need to show it.
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III.B.4.iii Sequent calculus 

The structure of the Natural Deduction system mimics how proofs are written on paper: 

linearly. But when planning the proof, we often see that there are different parts of the 

proof that are independent. For example, when proving a conjunction

 

φ ∧ ψ

 

, the proofs of

 

φ

 

and of

 

ψ

 

may be completely independent, have local assumptions, etc. 

As a result, it makes more sense to write the proofs not as a succession of lines but as 

a tree . This is the approach taken in the sequent calculus , invented by Gerhard Gentzen in 

the 1930s. 

A sequent is

 

Γ ⊢ ∆

 

that keep the list of all hypothesis and provable statements (under 

these assumptions). So if

 

Γ = { φ1 

, . . . , φn 

}

 

and

 

∆ = { ψ1 

, . . . , ψk 

}

 

, the sequent

 

Γ ⊢ ∆

 

should 

be understood as

 

φ1 

∧ · · · ∧ φn

 

proves

 

ψ1 

∨ · · · ∨ ψk

 

. The are written in a vertical way: on 

top are what is proved, on the bottom the new sequent: since the sequent contains both 

hypothesis and conclusion, assumptions are always indicated on the left handside of the 

sequent. 

For example the rule corresponding to modus ponens is Cut , while the conditional proof 

is implication right (

 

→r

 

) : 

Γ ⊢ p, ∆ Γ′ , p ⊢ ∆′

 

Γ , Γ′ ⊢ ∆ , ∆′ 

Cut 

Γ , p ⊢ q , ∆

 

Γ , ⊢ p → q , ∆

 

→r

 

This tree structure allows to make proofs about proofs. The most well-know result about 

proofs in sequent calculus is the Cut elimination Theorem that states the Cut rule is actually 

not necessary. This result mimics the idea that in math, you can do without intermediate 

results as long as you prove them again from scratch. 

The other beautiful result about sequent calculus is that to obtain the intuitionistic 

version of the logic, the only restriction that is needed is to require the right handside of the 

sequent to be a single formula. 

III.B.4.iv All the other proof systems 

Whenever a proof system is introduced, equivalence to the one shown here is not the most 

important feature. What is matter is whether the system is sound and complete .

 

b

 

The term 

validity is used 

rather than 

truth.

 

Soundness means that all statements than can be proved in this systems are true. For 

propositional logic, validity corresponds to what truth tables provide. For first-order logic, 

validity means true for any interpretation (domain and meaning of predicate). 

Completeness means that for every true statement can be proved. In the case of state- 

ments with premises, that means that if

 

φ → ψ

 

is a true statement, then

 

φ ⊢ ψ

 

is provable. 

Proving soundness is usually relatively easy. The plan of the proof is as follows: 

• for each axiom, prove that it is true. 

• for each rule, prove that if the premise is true, so is the conclusion. 

• since everything deemed provable was through these axioms and rules, if it is proved 

it is correct. 

Completeness is more complex to prove, because all possible statements have to be 

considered. Or rather, since these proofs are often by contradiction, we assume that for 

a given statement, there is no proof, and from that extract a valuation that makes the 

statement false.
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The Natural deduction system developed above is sound and complete both for propo- 

sitional and first-order logics. 

Gödel Incompleteness Theorem 

The fact that the ND system in this chapter is both sound and complete may sound 

contradictory if you have heard about Gödel Incompleteness Theorem:

 

Gödel Incompleteness Theorem

 

Any deduction system that can express second-order arithmetic cannot be at the same 

timed defined by a finite number of axioms and rules, sound, and complete.

 

But this not a contradiction: it only applies to systems that allows second-order arith- 

metic, so more expressive than first order. In addition, the notion of completeness used in 

this theorem is slightly different: it means that for any formula

 

φ

 

, either

 

φ

 

or its negation

 

¬ φ

 

can be proved. Soundness can also be defined in an analogous way by requiring that for 

no formula

 

φ

 

both

 

φ

 

and its negation

 

¬ φ

 

can be proved. 

This theorem however applies to any logical model that might be created to formalize 

the logics behind mathematical reasoning. It forbids any finite axiomatization: or any set 

of finite axioms we admit, there will be some statements that cannot be neither proved nor 

disproved. This statement (or its negation for that matter) could be added as a new axiom 

in the theory, which will enable proofs of more statements. It is for example frequent to 

have mathematical theorems that state “Assuming the axiom of choice. . . ”. But regardless 

of how many axioms are added, there will always be some other unprovable statement, and 

this process will never stop. 

III.C From formal proofs to mathematical proofs 

III.C.1 Human proofs 

Despite being called natural deduction , the proof system described in he first part of this 

chapter is not completely natural. In fact, it was actually created in order to formalize what 

were he proofs written at the time, in order to formally verify them. In this chapter, the 

reverse approach has been taken: now that we have seen the formal system, we can get 

inspiration from it, in particular paying attention to the structure of the statement in order 

to devise and write up a proof. 

It must be noted that human proofs go beyond first order logic (we allow ourselves 

to reason in higher order), and that the set of axioms we are using is not entirely clear. 

As remarked above, there will always be some axiom that is missing. It didn’t prevent 

mathematicians to try to approach an axiomatization of the mathematics we write.

 

b

 

It is tempting 

to call the 

proofs humans 

write as 

natural , but 

they are the 

product of our 

mathematical 

culture. The 

question of 

whether math 

is natural is left 

open for the 

consideration of 

philosophers.

 

One 

such axiomatization is called Zermelo–Fraenkel set theory with the Axiom of choice , a.k.a. 

ZFC . 

When writing proofs, we allow for a less formality than for ND or other proof systems. It 

must be kept in mind that the reader of the proof is in this case also a human! For example, 

complete sentences are used instead of merely pointing to a rule (which is often implicit). 

In first (or higher) order, the domain is often implicit: even when it is not mentioned, 

the statements proved are usually only valid in this given interpretation (for example real
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numbers with the usual operators). In addition, to improve readability, the proofs can be 

cut in several lemmas that are used later. Some lemmas are just theorems that you learned 

in school that can be used without being proved again. 

So in the end, what remains from natural deduction? As the structure of the statement 

guides the proof, the deduction rules provide proof patterns that can be applied in order to 

write a proof. 

III.C.2 Decomposition of the statement 

Although the statement to prove is often in English (or another human language) and so 

will be the proof, formalizing into a mathematical statement highlights its internal structure 

and may help choosing which of the proof pattern (described next) to apply. 

In addition, exhibiting the structure can also avoid errors such as quantifier confusion 

and scope mistakes. 

For example, the statement “Every real number that is non-zero has a multiplicative 

inverse” can be translated into the formula:

 

∀ x, ( x ̸ = 0) → ∃ y , x × y = 1

 

, keeping in mind 

that the domain is the real numbers. This translation highlights that it is a universal 

statement, so it can be proved using the usual pattern for a universal statement, and the 

proof will start as follows: “Let

 

x

 

be a real number.” Then we need to prove the statement

 

( x ̸ = 0) → ∃ y , x × y = 1

 

, which is an implication, so it should be proved using a pattern 

that deals with implication, and so on until the statement is fully proved.

 

Exercise III.3

 

Exhibit the structure of the following statements by transforming them into a first- 

order formula, indicating the interpretation of predicates and the domain. For exam- 

ple the statement There is no greatest integer can be transformed into

 

¬∃ x, ∀ y , P ( x, y )

 

where

 

P ( x, y )

 

is the predicate

 

x ≥ y

 

, the domain being the integers. 

Do not try to prove them (it may not be possible!). 

1. Every integer can be written as the sum of 2 squares. 

2. Every positive real number has a square root. 

3. The cosine function has zeroes. 

4. The cosine function has at least two distinct zeroes. 

5. There is a neutral elementa for multiplication in real numbers. 

6. Every odd square can be written as the sum of three odd numbers.

 

aRemember for example that

 

⊥

 

is neutral for

 

∨

 

in Boolean algebra because

 

⊥

 

does not affect a 

disjunction.

 

III.C.3 The art of writing a proof 

Writing a proof, which is a text intended for the explanation of a reasoning, is a process that 

requires some form of literary skill, although it falls into the category of technical writing, 

so style is not of utmost importance. 

There are however some codes and techniques that can be applied to make a proof more 

readable. 

The first is that a proof can mix formal and informal statements: having both a formula 

and a sentence saying the same thing helps the reader use the one he prefers to understand
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said statement. Usually, the sentence is easier to understand, but the formula relieves any 

ambiguity that the natural language may bring. 

When writing a proof, it is usually not created in the order that it is read. As there are 

subformulas inside a formula, a proof will consist of several parts. These parts are usually 

obvious when the proof is being devised, so it helps the writer to draft a plan of the proof 

first. But this plan can also help the reader understand the proof! It is therefore a good 

idea to keep the plan in the final proof. In that sense, technical writing differs from essays, 

where the plan has to bu concealed in the text. So when writing a proof, do not refrain from 

using intermediate titles or bullet points. In this book I often use framed subformulas in 

order to help the reader understand which part is being treated. See for example the proofs 

that formulas are contingent in Section I.C.2. 

Throughout the writing of a proof, or even right after having written it, the proof may 

appear too big to be easily understood in one go. In that case, it is worthwhile (if possible) 

to write part of the proof as the proof of a lemma: the proof of the lemma will be separate 

from the proof of the theorem, and the lemma will only be applied in the proof of the 

theorem. This is akin to, in programming, separating the code of a big function into an 

auxiliary function that is called by the main function. In both cases it is not always possible 

and it requires a bit of experience to perform this separation elegantly. 

It is common to end the proof by writing q.e.d. , which stands for the Latin phrase Quod 

erat demonstrandum , meaning “what was to be shown”. It is often symbolized by a square at 

the bottom right of the proof (seen here at the end of this paragraph). In research papers, 

using this square is a visual cue that allows the reader to skip the proof without missing any 

of the text of the paper.

 

III.C.4 Proof patterns 

III.C.4.i Proving a quantified statement 

The techniques and patterns for quantifiers was actually already covered in Section II.B.4, 

but we revisit them here both for exhaustiveness and to highlight the link with natural 

deduction. 

III.C.4.i.a Existential quantifiers 

To prove

 

∃ x, P ( x )

 

, it is sufficient to exhibit one value

 

a

 

in the domain and show that

 

P ( a )

 

is true. That corresponds to the Existential generalization rule

 

P ( a ) ⊢ ∃ x, P ( x/a )

 

. 

Proving that

 

¬∀ x, P ( x )

 

means proving the equivalent existential formula

 

∃ x, ¬ P ( x )

 

, 

so it is sufficient to exhibit one value

 

a

 

in the domain and show that

 

P ( a )

 

is false (a 

counterexample). 

III.C.4.i.b Universal quantifiers 

To prove

 

∀ x, P ( x )

 

, it must be shown that

 

P ( x )

 

holds for any value of

 

x

 

. That corresponds 

to the Universal generalization rule

 

P ( y ) ⊢ ∀ x, P ( x/y )

 

. In practice, we use the same symbol 

for the quantified variable and the uncontrolled value used in the proof. So the proof of a 

statement of the form prove that

 

∀ x, P ( x )

 

would start with the words “Let

 

x

 

be an element 

of the domain”.

 

b

 

The proof could 

start with “Let

 

y

 

be an element 

of the domain”, 

but it is less 

confusing to use 

the same 

symbol as the 

quantifier so 

that the reader 

can match it.

 

For example to prove

 

∀ n, 2 n2 + 1 ≥ 3 x

 

over integers, the proof would start by “Let

 

n

 

be 

an integer”.
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Proving

 

¬∃ x, P ( x )

 

means proving the universal statement

 

∀ x, ¬ P ( x )

 

: it must be shown 

that

 

P ( x )

 

does not hold for any value of

 

x

 

. 

III.C.4.ii Direct proof by implication 

Implications are the most common form of statements. As explained before, most theorems 

are implications, since the premise of the implication contains the hypotheses. Implications 

can be proved in a variety of manners. 

The most straightforward, and hence named the direct proof , relies on the conditional 

proof rule: to prove

 

p → q

 

, assume

 

p

 

and prove

 

q

 

. 

For example, let’s prove the following statement: “For an integer

 

n

 

, if

 

n

 

is even, then

 

n2

 

is even”. First, we can exhibit the formula corresponding to this statement:

 

∀ n, n is even → 

n2 is even

 

. And since it is a universal statement the proof starts by “Let

 

n

 

be an integer”. 

Then the statement that remains to be proved is the implication

 

n is even → n2 is even

 

, 

which can be proved by a direct proof: “Assume

 

n

 

is even. We need to prove that

 

n2

 

is even”.

 

b

 

Note that here 

we restate what 

needs to be 

proved to 

remind the 

reader (and 

ourselves) of 

the plan of the 

proof.

 

In this case the proof of

 

n2 is even

 

is obtained by calculation. The full proof is therefore as 

follows:

 

Proof of “For an integer

 

n

 

, if

 

n

 

is even, then

 

n2

 

is even”

 

Let

 

n

 

be an integer. Assume

 

n

 

is even. We need to prove that

 

n2

 

is 

even Then

 

n

 

can be written

 

n = 2 p

 

. So

 

n2 = (2 p )2 = 4 p2 = 2(2 p2)

 

, 

hence

 

n2

 

is even.

 

III.C.4.iii Proof by contrapositive 

To prove an implication

 

p → q

 

, it is possible to prove

 

¬ q → ¬ p

 

instead. This relies not on a 

base rule of the deduction system, but rather on the fact that

 

¬ q → ¬ p ⊢ p → q

 

(proved in 

Section III.B.2.iii.b). 

Proofs usually begin by the words “Let’s prove the contrapositive, namely that. . . ” to 

indicate to the reader the plan of the proof. 

This type of proof when the conclusion seems to have more information or manipulable 

variables than the premise of the implication. Typically, proving that for any integer

 

n

 

, if

 

n2

 

is even, then

 

n

 

is even: it is easier to reason on

 

n

 

than on a perfect square

 

n2

 

.

 

Proof of “For an integer

 

n

 

, if

 

n2

 

is even, then

 

n

 

is even”

 

Let’s prove the contrapositive, namely that if

 

n

 

is odd, then

 

n2

 

is odd. Assume

 

n

 

is odd, then

 

n = 2 p + 1

 

for some

 

p

 

. Hence

 

n2 = (2 p + 1)2 = 4 p2 + 4 p + 1 = 

2(2 p2 + 2 p ) + 1

 

is odd.

 

III.C.4.iv Proof by contradiction 

This technique relies on assuming the negation of what needs to be proven, and deduce a 

contradiction . For readability, these proofs usually indicate that this is the approach taken: 

“Assume, by contradiction, that. . . ” or “We will use a proof by contradiction. Assume 

that. . . ” 

The contradiction can take two forms: either assuming

 

¬ p

 

allows to prove

 

p

 

, then the 

idea is that what was proved is

 

¬ p → p

 

. Then the proof would go as follows : we can
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trivially prove that

 

¬ p → ¬ p

 

, so by negation introduction we have

 

¬¬ p

 

and by double 

negation elimination we have

 

p

 

. In actual proofs the latter part is omitted and replaced by 

the symbol E before concluding that the original (non negated) proposition is now proved. 

In other cases, the contradiction is proved by proving both

 

q

 

and

 

¬ q

 

for some other 

proposition. The rest of the proof would follow the same idea as before; and as before it is 

replaced by the E symbol. 

Note that since this proof scheme uses the double negation elimination, it only works 

because we reason in classical logics, but would not be allowed in a constructionist (intu- 

itionistic) mathematical world. 

(that is often omitted, and the proof ends at this point uses the same idea as the negation 

introduction rule

 

p → q , p → ¬ q ⊢ ¬ p

 

, combined with double negation elimination. 

This pattern is quite efficient when dealing with quantified statements, especially when 

proving non-existence: to prove

 

¬∃ x, P ( x )

 

, assume

 

∃ x, P ( x )

 

and exhibit a contradiction? 

What makes the proof easier in this case is that it is usually easier to prove a contradiction 

when there is an

 

x

 

to calculate on. This can also be seen as proving

 

∀ x, ¬ P ( x )

 

by taking an

 

x

 

and then assuming by contradiction that

 

P ( x )

 

holds (by De Morgan’s Law on quantifiers). 

A very famous example of a proof by contradiction is proving that

 

√

 

2

 

is irrational, i.e. 

there does not exist integers

 

p

 

and

 

q

 

such that

 

p

 

q 

= 

√

 

2

 

. Proving non-existence is an arduous 

task, so we use a proof by contradiction in order to have values

 

p

 

and

 

q

 

on which to reason 

and calculate.

 

Proof that

 

√

 

2

 

is irrational

 

Assume, by contradiction, that

 

√

 

2

 

is rational. 

Then it can be written as an irreducible fraction: there are two integers

 

p

 

and

 

q

 

that do not have a common divisor such that

 

√

 

2 = 

p

 

q

 

. 

Therefore

 

√

 

2
2 

= 

( 

p

 

q 

)2

 

so

 

2 = 

p2

 

q2

 

, and

 

2 q2 = p2

 

(Eq.1). 

So

 

p2

 

is even. By the Lemma that was proved in Section III.C.4.iii,

 

p

 

is also 

even: it can be written as

 

p = 2 p′

 

. 

In that case,

 

p2 = (2 p′)2 = 4 p′ 2

 

, and (Eq.1) becomes

 

2 q2 = 4 p′ 2

 

, which is 

equivalent to

 

q2 = 2 p′ 2

 

. 

That means

 

q2

 

is even, so

 

q

 

is even, which contradicts the fact that

 

p

 

and

 

q

 

had no common divisor. E 

As a result our assumption that

 

√

 

2

 

is rational is false, so

 

√

 

2

 

is irrational.

 

III.C.4.v Proof by cases 

As the name indicates, this proof pattern consists in separating the hypotheses into cases, 

then proving the theorem for each of the cases. This is akin to using the disjunction elim- 

ination rule:

 

p ∨ q , p → r, q → r ⊢ r

 

. In practice there may be more than two cases:

 

p1 

∨ p2 

∨ · · · ∨ pn 

, p1 

→ r, p2 

→ r, . . . , pn 

→ q ⊢ r

 

. 

When the theorem that is to be proven is an implication, the hypotheses is the premise 

of the implication (that is assumed): instead of proving

 

p → q

 

, prove

 

p → r1 

∨ r2 

∨ · · · ∨ rn

 

. 

Then prove

 

r1 

→ q

 

,

 

r2 

→ q

 

, . . . , and

 

rn 

→ q

 

. 

When the statement is not an implication, it is possible to split in cases using the 

knowledge of the domain, for example using the excluded middle on a well chosen predicate. 

The difficulty is to know how to chose this predicate: for integers there is even/odd, for all
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numbers there is positive/negative/zero. In other cases the statement may provide some 

indication. 

For example, to prove that “For an integer

 

n

 

, if

 

n

 

is not a multiple of

 

3

 

, then

 

n2 = 3 k +1

 

for some

 

k

 

”, which we can write as the formula

 

∀ n, P ( n ) → ∃ k , Q ( n, k )

 

, with

 

P ( n )

 

being 

“

 

n

 

is not a multiple of

 

3

 

” and

 

Q ( n, k )

 

being “

 

n2 = 3 k + 1

 

”. This being a universally 

quantified formula, we can deal with this quantifier by taking an arbitrary

 

n

 

: “Let

 

n

 

be an 

integer”. Then we need to find predicates

 

R1( n )

 

and

 

R2( n )

 

such that

 

P ( n ) → R1( n ) ∨ R2( n )

 

,

 

R1( n ) → ∃ k , Q ( n, k )

 

, and

 

R2( n ) → ∃ k , Q ( n, k )

 

. In this case, the premise gives us a hint: if

 

n

 

is not a multiple of

 

3

 

, then we can try to create cases based on what happens when

 

n

 

is 

divided

 

↬

 

Division is 

understood 

here as 

Euclidean 

division with 

quotient and 

remainder. 

This concept is 

explained in 

details in 

Section VII.A.2.

 

by

 

3

 

. That provides two cases: remainder is

 

1

 

or

 

2

 

, and each case is treated using 

calculation. The full proof is as follows:

 

Proof of “For an integer

 

n

 

, if

 

n

 

is not a multiple of

 

3

 

, 

then

 

n2 = 3 k + 1

 

for some

 

k

 

”

 

Let

 

n

 

be an integer. Since

 

n

 

is not a multiple of

 

3

 

, the remainder 

in the Euclidean division of

 

n

 

by

 

3

 

is either

 

1

 

or

 

2

 

. So

 

n

 

can be 

written either as

 

3 p + 1

 

or

 

3 p + 2

 

for some

 

p

 

• Assume

 

n = 3 p + 1

 

, then

 

n2 = (3 p + 1)2 = 9 p2 + 6 p + 1 =

 

3(3 p2 + 2 p ) + 1

 

; we choose

 

k = 3 p2 + 2 p

 

. 

• Assume

 

n = 3 p + 2

 

, then

 

n2 = (3 p + 2)2 = 9 p2 + 12 p + 

4 = 9 p2 + 12 p + 3 + 1 = 3(3 p2 + 6 p + 1) + 1

 

; we choose

 

k = 3 p2 + 6 p + 1

 

. 

In both cases we can find

 

k

 

such that

 

n2 = 3 k +1

 

, which concludes 

the proof.

 

III.C.4.vi Proving iff as two implications 

There are several possibilities to prove

 

p ↔ q

 

. The first one is to see this statement as 

the conjunction of two statements:

 

p → q

 

and

 

q → p

 

(called the converse of

 

p → q

 

). The 

converse

 

q → p

 

is also written

 

p ← q

 

, so we speak of the right-to-left implication (and

 

p → q

 

is the left-to-right implication). This mimics the approach of the iff introduction rule in ND. 

Since there are two independent parts to these proofs, it helps to keep track of what is 

being proved by highlighting the plan of the proof. One way to do that is to indicate which 

direction is being proved. 

Then there are many choices on how to prove these statements. They need not be proved 

in the same manner, as the examples below show. 

III.C.4.vi.a Two direct proofs 

The blunt approach is to use two direct proofs: prove

 

p → q

 

and

 

q → p

 

. For example we 

can prove the simple statement “

 

n

 

is even iff

 

n + 1

 

is odd” on integers this way.
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Proof of “For any integer

 

n

 

,

 

n

 

is even iff

 

n + 1

 

is odd”

 

→

 

Assume

 

n

 

is even:

 

n = 2 p

 

, so

 

n + 1 = 2 p + 1

 

is odd.

 

←

 

Assume

 

n + 1

 

is odd:

 

n + 1 = 2 p + 1

 

, so

 

n = 2 p

 

is even.

 

III.C.4.vi.b One direct and one contrapositive proof 

The contrapositive can be used to prove the converse: prove

 

p → q

 

and

 

¬ p → ¬ q

 

. This 

pattern is the source of the name “ if and only if ” comes from: if

 

p

 

then

 

q

 

; only if

 

p

 

then

 

q

 

.

 

Proof of “For any integer

 

n

 

,

 

n

 

is even iff

 

n2

 

is even”

 

→

 

n = 2 p

 

, so

 

n2 = 4 p2 = 2(2 p2)

 

is even.

 

←

 

By contrapositive, see Section III.C.4.iii.

 

Or the contrapositive is used for the right-to-left implication:

 

q → p

 

and

 

¬ q → ¬ p

 

Proof of “For any real

 

x

 

,

 

↔ x2 > x ↔ ( x > 1 ∨ x < 0)

 

”

 

→

 

By contrapositive assume

 

¬ ( x > 1 ∨ x < 0)

 

, so

 

x ≤ 1

 

and

 

x ≥ 0

 

, hence

 

x2 ≤ x

 

.

 

←

 

By cases

 

x > 1 → x2 > x

 

and

 

x < 0 → x < 1 → x2 > x

 

.

 

III.C.4.vii Chains of iffs 

Proving an iff

 

p ↔ q

 

can be done by introducing intermediate propositions that are also 

equivalent to

 

p

 

and

 

q

 

:

 

p ↔ r1 

↔ r2 

↔ · · · ↔ rn 

↔ q

 

So in this case we have a chain of iffs. 

The idea is that every equivalence

 

p ↔ r1

 

,

 

ri 

↔ ri +1

 

,

 

rn 

↔ q

 

, should be easy, or even 

trivial. 

This is what happens when solving equations:

 

2 x + 3 = 0 ↔ 2 x = − 3 ↔ x = −3

 

2

 

III.C.4.viii Chains of iffs using implications 

In the case of a proof of

 

p ↔ q ↔ r

 

(or more than 3), the several iffs can be proved using a 

chain of implications that loops back to the first proposition:

 

p → q → r → p

 

Note that in this case all the propositions are equivalent to each other. It is also implied 

that all equivalences are interesting (which is not the case of using a chain of trivial iffs to 

prove a single interesting iff). 

III.C.5 Remarks 

III.C.5.i All the other rules 

Not all rules of ND have been used in the presentation of the proof patterns. One such rule 

is the conjunction introduction. It can actually be presented as a proof pattern, but it is
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not really interesting: to prove

 

p ∧ q

 

, prove

 

p

 

and prove

 

q

 

. 

Other rules are actually used as instantiation : all these rules are used when using another 

result (usually a theorem). It may be the quantifier instantiation rules or the modus ponens, 

or even the weakening rules of conjunction elimination (if you have

 

p ∧ q

 

, you have

 

p

 

in 

particular ) and disjunction introduction (if you have

 

p

 

you have

 

p ∨ q

 

). 

III.C.5.ii On the boldness of arrows 

Some texts use

 

⇒

 

to mean implication, instead of

 

→

 

, and the symbol

 

⇔

 

to mean iff, instead 

of

 

↔

 

. 

This difference comes from the difference of worlds that these arrows live in: in mathe- 

matics, the “double” version is used, while the simple version denotes the logical connectors 

(as in proof systems). They are indeed linked, but technically they are different. 

In the remainder of this book, I’ll use

 

⇒

 

and

 

⇔

 

in math (and

 

→

 

and

 

↔

 

in formulas 

only) 

III.C.5.iii Practicing proof techniques 

Apart from the exercise below, applying the proof techniques discussed in this chapter make 

little sense without an actual application domain. As a result, the remainder of this book 

will be the applications of the proof techniques: every proof written will try to emphasize 

the proof patterns used, and it is expected that exercises are solved in the same manner.

 

Exercise III.4

 

For each of the following statement: 

• Identify the statement’s structure by transforming it into a first-order formula. 

• Prove the statement, indicating the proof technique being used. 

1. There is a solution to the system

 

{ 

4 x + 5 y = 2 

− 2 x + y = 6

 

2. For any real

 

x

 

, there is a value

 

y

 

such that

 

cos2( x ) + y2 = 1

 

. 

3. There are no integers

 

n

 

and

 

p

 

such that

 

6 n + 3 p = 2

 

. 

4. For any integers

 

n

 

and

 

p

 

, such that one is even and the other is odd, their sum 

is odd.
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IV.A Sets over a domain 

IV.A.1 Definition, vocabulary, notations 

The notion of set is fundamental to mathematics. It is actually possible to build all cur- 

rent mathematics from the concept of sets. So let’s focus a little bit on the theory of set 

manipulation, starting with the very definition of sets.

 

Definition: Set

 

A set is an unordered collection of elements.

 

The elements of the set are written enclosed between

 

{

 

and

 

}

 

. 

As such, this definition may bring more questions than it answers. So let’s give more 

details on the three essential features of a set mentioned in the above definition: 

Unordered means that order does not matter. So the set

 

{ 1 , 2 , 3 }

 

could also be written

 

{ 2 , 1 , 3 }

 

,

 

{ 1 , 3 , 2 }

 

, or using any other order of numbers

 

1

 

,

 

2

 

, and

 

3

 

. 

Collection means that every element can only appear once. So

 

{ 1 , 2 , 1 , 3 }

 

is not a set.

 

b

 

Sets with 

repetition are 

called 

multi-sets.

 

Elements are objects that belong to the domain. Which domain is being used is usually 

given as part of the definition of the set itself. 

We write

 

x ∈ A

 

, read as “

 

x

 

belongs to

 

A

 

” to denote that

 

x

 

is an element of the set

 

A

 

. 

We write

 

x / ∈ A

 

to denote that

 

x

 

is not an element of the set

 

A

 

. For example

 

2 ∈ { 1 , 2 , 3 }

 

, 

and

 

5 / ∈ { 1 , 2 , 3 }

 

. 

IV.A.1.i The writing of sets 

Defining and denoting a set can be done in several ways. The simplest is to simply give the list 

of all the elements of the set: this is called the roster method . For example:

 

A = { 3 , 2 , 12 , 42 }

 

. 

One obvious limitation to this notation is that it only works with finite sets, and can easily 

get tedious for big sets. 

It is therefore common to use ellipsis to denote a big, or even infinite, set. For example

 

I42 

= { 1 , 2 , . . . , 42 }

 

is the set of integers from

 

1

 

to

 

42

 

;

 

M7 

= { 0 , 7 , 14 , 21 , . . . }

 

is the set of 

positive integers that are multiples of

 

7

 

. It is up to the reader to replace the “

 

. . .

 

” with the 

actual elements. As a result, it can lead to ambiguity and should be used with care. 

A better (because more formal) way to define sets, whether finite or infinite, is to use 

the set-builder notation :

 

{ x | P ( x ) }

 

where

 

P

 

is a unary predicate. In English, this notation 

is read as “the set of elements

 

x

 

such that

 

P ( x )

 

”. For example,

 

{ x | x > 5 }

 

is “the set of 

numbers

 

x

 

such that

 

x > 5

 

”. 

IV.A.1.ii Usual domains 

In this notation, the domain should also be given (so the above example is not completely 

correct as such). Usual domains are given abbreviations in order to fit in the notation and 

are separated from the variable using the

 

∈

 

(“in”) symbol.

 

N

 

, Natural numbers:

 

{ 0 , 1 , 2 , 3 , . . . }

 

are whole positive numbers (and yes zero is included 

in the natural numbers). Using this domain, one can define the set of positive multiples
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of

 

7

 

as

 

M7 

= { n ∈ N | ∃ k ∈ N , n = 7 k }

 

. They are called natural because they are the 

simplest numbers that are used to count actual objects.

 

Z

 

, Integers:

 

{ 0 , 1 , − 1 , 2 , − 2 , 3 , . . . }

 

. Positive or negative whole numbers. Using this do- 

main, one can define the set of perfect cubes as

 

C = 

{
n ∈ Z 

∣∣ ∃ k ∈ Z , n = k3 

}

 

.

 

Q

 

, Rational numbers:

 

{ 

p

 

q 

∣∣∣ 

p, q ∈ Z and q ̸ = 0 

}

 

, the numbers that can be written as the 

ratio of two integers. These are also numbers that can be written with a repeating 

pattern after the decimal point: for example

 

2

 

7 

= 0 . 285714285714 · · · = 0 .

 

285714

 

. 

Using this domain, one can define the set of reciprocals of powers of two as follows:

 

{
q ∈ Q 

∣∣ ∃ n ∈ N , q = 

1

 

2n 

}

 

.

 

R

 

, Real numbers: formally, they are defined limits of sequences of rational numbers. 

These are also numbers that can be written with a decimal point, not necessarily 

with a repeating pattern:

 

π = 3 . 141592653589793238462643 . . .

 

Using this domain, 

one can define the set of numbers greater than

 

5

 

as

 

{ x ∈ R | x > 5 }

 

.

 

C

 

, Complex numbers: real numbers enriched with

 

i = 

√

 

− 1

 

, making it a two-dimensional 

domain. Complex numbers are outside the scope of this course, so this notation is 

mentioned for completeness’ sake but will rarely be used.

 

b

 

Fun fact: the 

original 

notations for 

these domains 

are bold letters 

N , Z , Q , R , C . 

They were 

transcribed on 

the board of 

classrooms with 

double bars, 

and this 

notation is now 

common in 

typeset texts 

such as this 

one.

 

In this book I may also use

 

D

 

to denote an unspecified domain.

 

Exercise IV.1

 

Convert these informally described sets into a set-builder notation (you may need to 

extrapolate): 

1. The set of real numbers between

 

−
√

 

2

 

(included) and

 

3 π

 

(excluded). 

2. Rational positive numbers. 

3.

 

{ 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , . . . , 79 }

 

.

 

IV.A.2 Boolean algebra on sets 

IV.A.2.i Sets and first-order logic 

Sets and first-order predicates are intertwined, to the point that it isn’t uncommon to read 

that ”a first-order unary predicate is a set”. Why is that so? In the set-builder notation, a 

predicate is used to define the set. But the relation also goes the other way around: a set

 

A

 

defines a unary predicate:

 

PA( x )

 

interpreted as

 

x ∈ A

 

: the predicate is true whenever

 

x

 

is 

an element of

 

A

 

. 

For example, the set

 

M7

 

of positive multiples of

 

7

 

defines the predicate

 

P7

 

that is true 

whenever the number is a multiple of

 

7

 

:

 

P7(42)

 

is true because

 

42 ∈ M7

 

;

 

P7(29)

 

is false 

because

 

29 / ∈ M7

 

. 

IV.A.2.ii Boolean operators for sets 

Since sets are unary predicates, whatever can be done with predicates can be done on sets. 

In particular, sets can be combined using boolean operators. Slightly different notations are 

used in order not to confuse the set and the underlying predicate, but the process really 

mimics the propositional Boolean Algebra of Section I.B. Technically, the operators below
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create another Boolean Algebra; the domain being the sets instead of the truth values

 

⊤

 

and

 

⊥

 

.

 

∅

 

, The empty set. It corresponds to predicate

 

⊥

 

:

 

∅ = { x ∈ D | ⊥}

 

.

 

D

 

, The whole domain. It corresponds to predicate

 

⊤

 

:

 

D = { x ∈ D | ⊤}

 

.

 

∩

 

, Intersection. It corresponds to the conjunction:

 

A ∩ B = { x ∈ D | x ∈ A ∧ x ∈ B }

 

. 

An element belongs to the intersection if it belongs to both sets, and the intersection 

is the set of all such elements. For example

 

3 ∈ { 1 , 2 , 3 } ∩ { 2 , 3 , 5 , 7 }

 

, and

 

{ 1 , 2 , 3 } ∩ 

{ 2 , 3 , 5 , 7 } = { 2 , 3 }

 

.

 

∪

 

, Union. It corresponds to the disjunction:

 

A ∪ B = { x ∈ D | x ∈ A ∨ x ∈ B }

 

. An element 

belongs to the union if it belongs to at least one of the sets (like disjunction, union is 

inclusive), and the union is the collection of elements of both these sets. For example,

 

7 ∈ { 1 , 2 , 3 } ∪ { 2 , 3 , 5 , 7 }

 

, and

 

{ 1 , 2 , 3 } ∪ { 2 , 3 , 5 , 7 } = { 1 , 2 , 3 , 5 , 7 }

 

.

 

, Complement. It corresponds to the negation:

 

A = { x ∈ D | ¬ ( x ∈ A ) }

 

. An element 

belongs to the complement if it does not belong to the set.

 

⊆

 

, Inclusion. It corresponds to an implication:

 

A ⊆ B

 

iff

 

∀ x, x ∈ A → x ∈ B

 

. Contrary 

to the above operators, this operation returns a truth value, not a set. For example

 

{ 3 , 5 , 7 } ⊆ { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

 

because every element of

 

{ 3 , 5 , 7 }

 

is also an element of

 

{ 1 , 2 , 3 , 4 , 5 , 6 , 7 }

 

.

 

=

 

, Equality It corresponds to iff:

 

A = B

 

iff

 

∀ x, x ∈ A ↔ x ∈ B

 

. As for inclusion, this 

operator returns a truth value, not a set. 

The operators above are the most common ones, that match the operators of boolean 

algebra. Other operators, which are more syntactical shortcuts than new definitions, are 

also used:

 

⊇

 

, Superset: the reverse of inclusion:

 

A ⊇ B

 

iff

 

B ⊆ A

 

.

 

⊈

 

, Non-inclusion: the negation of inclusion

 

A ⊈ B

 

iff it is not the case that

 

A ⊆ B

 

, i.e.

 

∃ x, x ∈ A ∧ x / ∈ B

 

.

 

⊊

 

, Strict inclusion: inclusion but not equality:

 

A ⊊ B

 

iff

 

A ⊆ B

 

and

 

B ⊈ A

 

.

 

\

 

, Relative complement:

 

A \ B = { x ∈ D | x ∈ A ∧ ¬ x ∈ B } = A ∩

 

B

 

removes from

 

A

 

all elements of

 

B

 

. For example

 

{ 1 , 2 , 3 , 4 , 5 , 6 } \ { 2 , 3 , 5 , 7 } = { 1 , 4 , 6 }

 

.

 

△

 

, Symmetric difference:

 

A △ B = { x ∈ D | x ∈ A ⊕ x ∈ B } = { x ∈ D | ( x ∈ A ∨ x ∈ 

B ) ∧ ¬ ( x ∈ A ∧ x ∈ B ) } = ( A ∪ B ) \ ( A ∩ B )

 

contains elements that are in

 

A

 

or in

 

B

 

, 

but not both.

 

Exercise IV.2

 

Write the result of the following set operations as a roster or set-builder notation: 

1.

 

A = { 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 } ∩ { 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 }

 

2.

 

B =

 

{ x ∈ R | x2 > 5 } ∪ { x ∈ R | x2 < 5 }
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A

 

B

 

(a)

 

A ∩ B

 

A

 

B

 

(b)

 

A ∪ B

 

A

 

(c)

 

A

 

A

 

B

 

(d)

 

A \ B

 

A

 

B

 

(e)

 

A △ B

 

Figure IV.1: Venn diagrams for operations on sets. In gold is the result of the operation.

 

B

 

A

 

(a)

 

A ⊆ B

 

A

 

B

 

(b)

 

A ∩ B = ∅

 

Figure IV.2: Venn diagrams for relations of sets. 

IV.A.2.iii Venn Diagrams 

Venn diagrams are circles (or other shapes) that represent sets. Looking at unions or in- 

tersections of sets on such diagrams can help understand the problem at hand. It does not 

replace a proof but drawing such diagrams on draft paper may help writing it. 

In Figure IV.1 are represented in Venn diagram form the result of the main operations 

for two sets. In some cases there are more than two and the drawing becomes more complex, 

but also more necessary to understand the situation! 

It is common that some hypotheses are given about sets. These situations can also be 

drawn as Venn diagrams, as is done for two example in Figure IV.2. 

IV.A.2.iv Proving theorems about sets 

Proving things about sets can be done using this underlying structure and the relation 

with the Boolean operations. Namely, whenever an inclusion

 

A ⊆ B

 

needs to be proved, a 

universally quantified implication must be proved: take an element

 

x

 

, assume

 

x ∈ A

 

, and 

prove that

 

x ∈ B

 

. For a set equality, the inclusion must be proved in both directions. 

In the case of sets built through operators, it is useful to rewrite the set definition as 

boolean operations on predicates. For example if there is an hypothesis that

 

x ∈ A1 

∪ A2

 

, 

then

 

x ∈ A1

 

or

 

x ∈ A2

 

, and in this case a proof by cases is probably the way to go. 

While most proofs involve some domain-specific assumptions (usually implied or gathered
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in theorems that are known by both the writer and the reader), a couple of results can be 

proved in general about sets. Below are some examples and exercises of such proofs. 

IV.A.2.iv.a

 

A ⊆ A

 

The statement

 

A ⊆ A

 

is a universally quantified implication: we need to prove

 

∀ x, x ∈ 

A → x ∈ A

 

. As usual, we need to take an element of the domain, then assume the premise, 

and finally prove the conclusion, which is trivial in this case (which make the proof sound a 

bit strange). The proof is as follows:

 

Proof of

 

A ⊆ A

 

Let

 

x

 

be an element of the domain. Assume

 

x ∈ A

 

. Then

 

x ∈ A

 

.

 

IV.A.2.iv.b

 

A ⊆ D

 

As in the previous case,

 

A ⊆ D

 

is a universally quantified implication: we need to prove

 

∀ x, x ∈ A → x ∈ D

 

. The proof is also quite trivial:

 

Proof of

 

A ⊆ D

 

Let

 

x

 

be an element of the domain. Assume

 

x ∈ A

 

. 

Since

 

x

 

is in the domain we have

 

x ∈ D

 

.

 

IV.A.2.iv.c

 

∅ ⊆ A

 

Expanding the implication, what needs to be proved is

 

∀ x, x ∈ ∅ → x ∈ A

 

.

 

Proof of

 

∅ ⊆ A

 

Let

 

x

 

be an element of the domain. Assume

 

x ∈ ∅

 

. This is 

false (

 

⊥

 

), so it implies anything, in particular

 

x ∈ A

 

.

 

IV.A.2.iv.d

 

A ∩ B ⊆ A

 

We need to prove

 

∀ x, x ∈ A ∩ B → x ∈ A

 

.

 

A ∩ B ⊆ A

 

Let

 

x

 

be an element of the domain. Assume

 

x ∈ A ∩ B

 

. By 

definition

 

x ∈ A

 

and

 

x ∈ B

 

, so in particular

 

x ∈ A

 

.

 

IV.A.2.iv.e Identities 

Most identities of Boolean algebra carry over to set algebra. No proof will be given for 

these (some are asked as exercises), only the idea behind it by mapping the identity to the 

corresponding property of boolean algebra.
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Identities for set algebra

 

•

 

A ∪ B = B ∪ A

 

(by commutativity of

 

∨

 

). 

•

 

A ∩ B = B ∩ A

 

(by commutativity of

 

∧

 

). 

•

 

A ∪

 

A = D

 

(by the excluded middle). 

•

 

A ∩

 

A = ∅

 

(by contradiction). 

•

 

A = A

 

(by double negation). 

•

 

A ∪ B =

 

A ∩

 

B

 

(by De Morgan’s Law). 

•

 

A ∩ B =

 

A ∪

 

B

 

(by De Morgan’s Law).

 

IV.A.2.iv.f

 

A ∩ B ⊆ A

 

A ∩ B ⊆ A

 

is a quantified implication

 

∀ x, x ∈ A ∩ B → x ∈ A

 

. The conclusion is 

proved from the premise using what resembles the conjunction elimination rule of Natural 

Deduction (see Chapter III).

 

Proof of

 

A ∩ B ⊆ A

 

Let

 

x

 

be an element of the domain. Assume

 

x ∈ A ∩ B

 

. 

Then

 

x ∈ A

 

and

 

x ∈ B

 

. In particular,

 

x ∈ A

 

.

 

The similar (dual)

 

A ⊆ A ∪ B

 

is left as exercise. 

IV.A.2.iv.g

 

A ⊆ B ⇔

 

B ⊆

 

A

 

A ⊆ B ⇔

 

B ⊆

 

A

 

is an equivalence. If we break down both sides of the equivalence, 

what needs to be proved is that

 

( ∀ x, x ∈ A → x ∈ B ) ↔ ( ∀ x, x / ∈ B → x / ∈ A )

 

. Rewriting 

the

 

/ ∈

 

as the negation of

 

∈

 

, we obtain:

 

( ∀ x, x ∈ A → x ∈ B ) ↔ ( ∀ x, ¬ ( x ∈ B ) → ¬ ( x ∈ A ))

 

. 

Using the contrapositive inside the right handside, we actually have to prove

 

( ∀ x, x ∈ A → 

x ∈ B ) ↔ ( ∀ x, x ∈ A → x ∈ B )

 

, which holds trivially (syntactically even). 

The formal proof consists in these rewritings (although the above proof is completely valid 

and probably clearer since it includes English explanations, the proof below is technically 

sufficient):

 

Proof of

 

A ⊆ B ⇔

 

B ⊆

 

A

 

B ⊆

 

A ⇔ ( ∀ x, x / ∈ B → x / ∈ A ) ⇔ ( ∀ x, ¬ ( x ∈ B ) → 

¬ ( x ∈ A )) ⇔ ( ∀ x, x ∈ A → x ∈ B ) ⇔ A ⊆ B
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Exercise IV.3

 

Prove that for any set

 

A

 

and

 

B

 

: 

1.

 

A ⊆ A ∪ B

 

2.

 

A ∩ B =

 

A ∪

 

B

 

Exercise IV.4

 

Prove that the four following statements are equivalent to each other: 

A ⊆ B A ∩ B = A A ∪ B = B

 

B ⊆

 

A 

Hint: You must prove the following chain of equivalences:

 

A ⊆ B ⇔ A ∩ B = A ⇔ A ∪ B = B ⇔

 

B ⊆

 

A.

 

IV.A.3 Cardinality 

The cardinality of a set is its size:

 

Definition: Cardinality

 

The cardinality of a set is the number of elements 

it contains. The cardinality of

 

A

 

is written

 

| A |

 

.

 

For example

 

|{ 1 , 2 , 5 , 42 }| = 4

 

;

 

|{⊤ , ⊥}| = 2

 

. The empty set, with no elements, has 

cardinality

 

0

 

:

 

|∅| = 0

 

. A set with cardinality

 

1

 

, i.e. containing a single element (for example

 

|{ 78 }| = 1

 

) is called singleton . 

While it is easy to find the cardinality of finite sets in roster notation (it is only a 

matter of counting, it may become harder when the set is given in the set-builder notation. 

For example, for the set

 

{ x ∈ N | x > 12 ∧ x ≤ 73 }

 

, we must reason that we have all 

integers between 12 excluded and 73 included. That means

 

73 − 12 = 61

 

element, therefore

 

|{ x ∈ N | x > 12 ∧ x ≤ 73 }| = 61

 

. 

For finite sets, the counting eventually stops to an actual number (which may be very 

big). For infinite sets, the counting of the element never stops. The cardinality of an infinite 

set is not a number, but

 

+ ∞

 

. That is actually the definition of finite or infinite set:

 

Finite vs infinite set

 

A finite set is a set whose cardinality is not

 

+ ∞

 

: a set

 

A

 

is finite if

 

| A | ∈ N

 

.

 

All the usual domains are infinite:

 

| N | = + ∞

 

,

 

| Z | = + ∞

 

,

 

| Q | = + ∞

 

,

 

| R | = + ∞

 

,

 

| C | = + ∞

 

. It can also be the case for some other sets, for example set

 

M7 

= { n ∈ N | ∃ k ∈ 

N , n = 7 k }

 

is infinite, so

 

| M7 

| = + ∞

 

. There are also infinitely many elements in the interval 

of reals between

 

0

 

and

 

1

 

(usually written

 

[0 , 1]

 

):

 

|{ x ∈ R | 0 ≤ x ≤ 1 }| = + ∞

 

. 

Intuitively, there should be fewer elements in

 

M7

 

than in the whole domain

 

N

 

. Is that 

really the case? And how dos the size of

 

[0 , 1]

 

compare to

 

R

 

? and to

 

N

 

? In Section IV.C.3.iv, 

we will discuss how to compare cardinalities of infinite sets.
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Exercise IV.5

 

Give the cardinality of all the sets of Exercises IV.1 and IV.2.

 

IV.A.4 Disjointedness, coverings, and partitions 

IV.A.4.i Disjoint sets 

Sets that don’t have any common element are called disjoint. This notion can also be 

generalized to more than two sets, requiring than no element is in more than one of the set. 

This situation is illustrated with a Venn diagram in Figure IV.2(b).

 

Definition: Disjoint sets

 

• Two sets

 

A

 

and

 

B

 

are disjoint if

 

A ∩ B = ∅

 

. 

• A collection of sets

 

A1 

, A2 

, . . . , An

 

are pairwise disjoint if 

for any

 

i, j ∈ { 1 , . . . , n }

 

,

 

Ai 

∩ Aj 

= ∅

 

.

 

For example

 

{ n ∈ Z | n < 0 }

 

and

 

{ n ∈ Z | ∃ p ∈ Z , n = p2 }

 

are disjoint. And intervals

 

[ − 3 , 5)

 

,

 

[5 , 12]

 

,

 

[4 π , 42)

 

are pairwise disjoint. 

Proofs of disjointedness can be either direct or by contradiction. In a direct proof, 

assume that an element is in one of the set and prove that it is not in the other. In a 

proof by contradiction, assume that there is an element that is in two sets and prove a 

contradiction. When there are more than two sets there are more proofs required: one for 

each pair of sets; although in some cases a proof by contradiction will work for all pairs at 

once. 

IV.A.4.ii Coverings 

A notion dual to disjointedness is coverability: several sets cover a single set

 

X

 

if all the 

elements of

 

X

 

can be found in at least one of the sets. This notion can also be defined for 

more than two sets.

 

Definition: Covering

 

• Two sets

 

A

 

and

 

B

 

cover a set

 

X

 

if

 

A ∪ B ⊇ X

 

. 

• Two sets

 

A

 

and

 

B

 

exactly cover a set

 

X

 

if

 

A ∪ B = X

 

. 

• A collection of sets

 

A1 

, A2 

, . . . , An

 

cover a set

 

X

 

if

 

A1 

∪ A2 

∪ · · · ∪ An 

= 

⋃n 

i =1 

Ai 

⊇ X

 

.

 

b

 

The

 

⋃n 

i =1 

Ai

 

notation is read 

“the union for

 

i

 

from

 

1

 

to

 

n

 

of 

the

 

Ai

 

s”.

 

• A collection of sets

 

A1 

, A2 

, . . . , An

 

exactly cover a set

 

X

 

if

 

A1 

∪ A2 

∪ · · · ∪ An 

= 

⋃n 

i =1 

Ai 

= X

 

.

 

For example,

 

{ 0 , 1 , 2 , 4 }

 

and

 

{ 1 , 3 , 5 }

 

cover

 

{ 1 , 2 , 3 , 4 , 5 }

 

. And

 

{ 1 , 4 }

 

,

 

{ 1 , 2 , 3 }

 

and

 

{ 2 , 5 }

 

exactly cover

 

{ 1 , 2 , 3 , 4 , 5 }

 

. 

To prove that a set is covered, any element must be shown to be in at least one of the 

sets. As a result, proofs by cases that will match the sets are usually the way to go for these
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properties. 

IV.A.4.iii Partitions and Disjoint Unions 

When a group of sets are both disjoint and exactly cover a set, they form a partition of the 

set.

 

Definition: Partition and Disjoint Union

 

• Two disjoint non-empty sets

 

A

 

and

 

B

 

that exactly cover

 

X

 

form a partition 

of

 

X

 

. We then write

 

X = A ⊎ B

 

and

 

X

 

is called the disjoint union of

 

A

 

and

 

B

 

. 

• A collection of pairwise disjoint non-empty sets that exactly cover

 

X

 

form a 

partition of

 

X

 

:

 

X = A1 

⊎ A2 

⊎ · · · ⊎ An 

= 

⊎n 

i =1 

Ai

 

is called the disjoint union 

of all the

 

Ai

 

s.

 

For example

 

{ 0 }

 

and

 

{ x ∈ Z | x ̸ = 0 }

 

form a partition of

 

Z

 

. And

 

{ x ∈ N | x is even }

 

and

 

{ x ∈ N | x is odd }

 

is a partition of

 

N

 

. With more than two sets,

 

{ 0 }

 

,

 

{ x ∈ R | x > 0 }

 

,

 

{ x ∈ R | x < 0 }

 

is a partition of

 

R

 

. 

The extra condition that excludes empty sets is added to the definition mostly to facilitate 

combinatorics theorems such as counting the number of partitions of a finite set.

 

↬

 

See 

Chapter VIII 

for an 

introduction to 

combinatorics.

 

Exercise IV.6

 

Let

 

Z

 

be the domain of work. For each collection of sets below, determine whether 

they are: 

• pairwise disjoint, (

 

A ∩ B = ∅

 

, (

 

A ∩ C = ∅

 

,

 

B ∩ C = ∅

 

)) 

• covering

 

Z

 

, (

 

A ∪ B ( ∪ C ) = Z

 

) It is always the case that

 

A ∪ B ( ∪ C ) ⊆ Z

 

; 

what remains to be proved to be a covering is that

 

Z ⊆ A ∪ B ( ∪ C )

 

. 

• conclude about whether they form a partition of the domain. 

1.

 

A = { n ∈ Z | n > 37 }

 

and

 

B = { n ∈ Z | n ≤ − 12 }

 

2.

 

A = { n ∈ Z | n < 37 }

 

and

 

B = { n ∈ Z | n ≥ − 12 }

 

3.

 

A = { n ∈ Z | n > 37 }

 

,

 

B = { n ∈ Z | n ≤ − 12 }

 

, and

 

C = {− 11 , − 10 , . . . , 36 , 37 }

 

IV.B Sets of sets 

IV.B.1 The nature of the elements 

The elements in a set can be of any nature. Although the most common objects in mathe- 

matics and the first studied in the curricula are numbers, it is possible to have other values: 

for example the set

 

{⊤ , ⊥}

 

contains the boolean values. 

The objects need not be very precisely defined, as long as they have a name. Hence it is 

perfectly possible to declare a set

 

{ a, b, c, d }

 

containing four objects. 

Or the objects can be sets themselves. In terms of logics, as a set is a predicate, a set 

of set is a second-order predicate. Since we allow also to have sets of sets of sets, etc, this 

means we are working in higher-order logic.

 

↬

 

See 

Section II.B.7.iii 

for a discussion 

of the orders of 

logic.

 

Let’s take an example:

 

X = 

{
{ 1 , 2 , 3 , 4 } , { 2 , 3 , 4 , 5 } , { 3 , 4 , 5 , 6 }

}

 

. This set

 

X

 

has 3 el- 

ements (

 

| X | = 3

 

), that happen to be sets. We can think of it as

 

X = { A, B , C }

 

with
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A = { 1 , 2 , 3 , 4 }

 

,

 

B = { 2 , 3 , 4 , 5 }

 

, and

 

C = { 3 , 4 , 5 , 6 }

 

. So

 

{ 1 , 2 , 3 , 4 } ∈ X

 

, since this set is an 

element of

 

X

 

. But

 

{ 1 , 2 , 3 , 4 } ⊈ X

 

! because

 

1

 

for example, is not an element of

 

X

 

. 

One must pay attention to what the elements are in a set. Sometimes the size of the 

brackets can help, but the typesetting is not guaranteed to be precise enough to discriminate. 

And it can be tricky, since non-homogeneous sets are allowed as well (even though their use 

is quite rare):

 

{ 

{ 1 , 3 } , 2 , 

{
5 , 7 , 13 , { 2 , 8 , 16 }

}}

 

is a completely valid set, containing elements 

that are sets (some of them also containing sets. . . ) and some numbers.

 

Exercise IV.7

 

For each of the following statements, determine whether it is true or false (justify 

your answer): 

1.

 

∅ ∈ {{ 0 , 1 } , { 3 , 7 }}

 

2.

 

∅ ⊆ {{ 0 , 1 } , { 3 , 7 }}

 

3.

 

3 ∈ {{ 0 , 1 } , { 3 , 7 }}

 

4.

 

{ 0 , 1 } ⊆ {{ 0 , 1 } , { 3 , 7 }}

 

5.

 

{{ 3 , 7 }} ⊆ {{ 0 , 1 } , { 3 , 7 }}

 

6.

 

{ 0 , 1 } ∈ {{ 0 , 1 } , { 3 , 7 }}

 

IV.B.2 The powerset 

One particular set of sets, is, given a set, the set of all its subsets.

 

Definition: Powerset

 

For a set

 

A

 

, the powerset of

 

A

 

, written

 

P ( A )

 

is 

the set of subsets of

 

A

 

:

 

P ( A ) = { X | X ⊆ A }

 

.

 

For example

 

P ( N ) = { A | A ⊆ N }

 

is the set of subsets of

 

N

 

. We have

 

∅ ∈ P ( N )

 

,

 

N ∈ P ( N )

 

,

 

{ 2 , 3 , 5 , 7 , 11 } ∈ P ( N )

 

,

 

{ k ∈ N | k is even } ∈ P ( N )

 

,

 

{ k ∈ N |∃ j ∈ N , j2 = k } ∈ P ( N )

 

(among others). 

While the powerset of

 

A

 

depends on the elements of

 

A

 

, in all cases

 

∅ ∈ P ( A )

 

and

 

A ∈ P ( A )

 

: this was proved when showing that

 

∅ ⊆ A

 

(Section IV.A.2.iv.c) and

 

A ⊆ A

 

(Section IV.A.2.iv.a), respectively. 

In general, an element

 

X

 

of

 

P ( A )

 

can be constructed by choosing, for each element of

 

A

 

, 

whether it will be in

 

X

 

or not. For the finite set

 

{ 1 , 2 , 3 }

 

, if none are chosen to be in the set 

then the empty set is created, if only

 

1

 

is chosen then

 

{ 1 }

 

is created, if

 

1

 

and

 

3

 

are chosen 

then

 

{ 1 , 3 }

 

is created, and so on until

 

{ 1 , 2 , 3 }

 

is created when all elements are chosen to be in 

the set. As a result we build

 

P ( { 1 , 2 , 3 } ) = 

{
∅ , { 1 } , { 2 } , { 3 } , { 2 , 3 } , { 1 , 3 } , { 1 , 2 } , { 1 , 2 , 3 }

}

 

. 

This construction also provides the cardinality of the powerset: since for each element 

there is one choice (two options), there are

 

2| A |

 

possible elements in the powerset. Knowing 

this cardinality can also help control that there is no missing element (set) when building 

the powerset. In the example above, we count

 

8 = 23

 

elements in

 

P ( { 1 , 2 , 3 } )

 

, which is 

consistent with

 

|{ 1 , 2 , 3 }| = 3

 

.

 

Properties of the powerset

 

For any set

 

A

 

: 

•

 

∅ ∈ P ( A )

 

•

 

A ∈ P ( A )

 

•

 

|P ( A ) | = 2| A |

 

Introduction to Discrete Mathematics 59



 

Chapter IV Set Theory

 

Exercise IV.8

 

Calculate

 

P ( {⊤ , ⊥} )

 

. Verify your answer using the cardinality.

 

IV.B.3 Defining natural numbers from sets

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

It was mentioned in this chapter’s introduction that sets are at the basis of mathematics. 

Indeed, there is a way to define natural numbers from sets. 

This construction, due to John Von Neumann, does not appear really natural at first 

if given directly. It may be clearer if we go backwards from what we want: the natural 

numbers. One way to see natural numbers is to consider that you start from nothing,

 

0

 

, 

then add

 

1

 

, to obtain

 

1

 

. If you add

 

1

 

again, you get

 

2

 

, and so on. So natural numbers are 

constructed from zero and the ability to get to the next number: the successor operation, 

usually noted

 

S

 

:

 

S (0) = 1

 

,

 

S (1) = S ( S (0)) = 2

 

, and so on. This approach, called Peano 

arithmetic, does construct the natural numbers, but requires the zero to start the process. 

The idea of Von Neumann is to use sets instead of numbers: the number

 

n

 

will just be 

a set of cardinality

 

n

 

. So number

 

0

 

is the empty set

 

∅

 

. 

Because numbers are sets, the successor operation

 

S

 

needs to be defined using these sets 

as well: an operation that adds one element to the set, in order to have the cardinality 

increase by one. That element is the set itself:

 

S ( x ) = x ∪ { x }

 

. 

The construction starts as follows:

 

0 = ∅ 

1 = S (0) = ∅ ∪ {∅} = {∅} = { 0 } 

2 = S (1) = { 0 } ∪ {{ 0 }} = { 0 , { 0 }} = { 0 , 1 } 

3 = { 0 , 1 } ∪ {{ 0 , 1 }} = { 0 , 1 , { 0 , 1 }} = { 0 , 1 , 2 } 

...

 

Note that the sets thus produced are highly non-homogeneous:

 

0

 

is a set,

 

1

 

is a set of 

sets,

 

2

 

is a set containing both sets and sets of sets, etc. 

And since all numbers are created from the natural numbers, we can see all numbers as 

being just sets. 

IV.C Sets of tuples 

Among the variety of objects that can go in a set are couples , and more generally tuples . 

A couple is an ordered pair of elements, noted between parentheses: each of the two 

component has as distinct role, and cannot be swapped with its neighbor. For example the 

couple

 

(1 , 2)

 

is different from the couple

 

(2 , 1)

 

. One of the best know use of couples is for 

coordinates on a plane: the first component is the

 

x

 

-coordinate (a.k.a abscissa, horizontal) 

while the second component is the

 

y

 

-coordinate (a.k.a. ordinate, vertical), and point

 

(1 , 2)

 

is different from point

 

(2 , 1)

 

. 

Tuples are a generalization of couples to more than two components. Other name for 

tuples include

 

n

 

-uples, where

 

n

 

can either be replaced with an actual number (then couples 

are

 

2

 

-uples) or left unspecified.
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IV.C.1 Cartesian products 

IV.C.1.i Definition 

Since each component of a tuple is relatively independent from the other, it is not uncommon 

for each component to take value over a different domain. For example,

 

( ⊤ , 3)

 

is a couple 

where the first component is a boolean value and the second a number. 

The tuples are therefore elements of a domain which is built as the Cartesian product 

of the domains for each component. Sometimes referred to as the cross product , the name 

Cartesian is a reference to philosopher and mathematician René Descartes. 

This idea also works for sets in the domains: a tuple is an element of the Cartesian 

product of several sets if each component belongs to the set in the product. Formally:

 

Definition: Cartesian product

 

• For two sets

 

A

 

and

 

B

 

, the Cartesian product of

 

A

 

and

 

B

 

is

 

A × B = { ( x, y ) | x ∈ A ∧ y ∈ B } ,

 

the set of couples where the first component is an element of

 

A

 

and the second component an element of

 

B

 

. 

• For

 

n

 

sets

 

A1 

, . . . , An

 

, the Cartesian product of the

 

Ai

 

s is

 

A1 

× · · · × An 

= { ( x1 

, . . . , xn) | ∀ i ∈ { 1 , . . . , n } , xi 

∈ Ai 

} ,

 

the set of tuples where the

 

i

 

-th component belongs to

 

Ai

 

.

 

Cartesian products over domains are frequently used to specify what goes into each 

component. For example, to define a triple containing an integer, a real, and a natural 

number, one can just write: “ ‘let

 

t ∈ R × Z × N

 

”, or “let

 

( x, k , n ) ∈ R × Z × N

 

” in order to 

give a name to each of the components. This can be done for variables, which is often the 

case in proofs of universally quantified formula, for instance, or just to particular value, for 

example

 

(42 , π , ⊤ ) ∈ N × R × {⊤ , ⊥}

 

. 

IV.C.1.ii Cardinality 

In a Cartesian product, each component is independent. So in order to build an element of 

the product, one can choose an element in the first set, when there are

 

| A |

 

choices, then an 

element in the second set, where there are

 

| B |

 

choices. As a result, there are

 

| A | · | B |

 

choices 

for elements of the product. This can be generalized for products of more than two sets:

 

Cardinality of Cartesian Products

 

The cardinality of the Cartesian product is the product of the cardinalities 

of the sets. Namely: 

• For two sets

 

A

 

and

 

B

 

,

 

| A × B | = | A | · | B |

 

. 

• For

 

n

 

sets

 

A1 

, . . . , An

 

,

 

| A1 

× · · · An 

| = | A1 

| · · · | An 

| = 

∏n 

i =1 

| Ai 

|

 

.

 

b

 

The

 

∏n 

i =1

 

notation is read 

“the product for

 

i

 

from

 

1

 

to

 

n

 

of. . . ”.
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IV.C.1.iii Examples 

•

 

{− 1 , 0 , 1 } × {⊤ , ⊥} = { ( − 1 , ⊤ ) , (0 , ⊤ ) , (1 , ⊤ ) , ( − 1 , ⊥ ) , (0 , ⊥ ) , (1 , ⊥ ) }

 

. We can check 

that cardinalities match:

 

|{− 1 , 0 , 1 } × {⊤ , ⊥}| = 3 · 2 = 6

 

• The coordinates of a point is the plane is an element of

 

R × R

 

(also written

 

R2

 

). In 

space it is in

 

R × R × R = R3

 

. 

• The product of two finite sets:

 

{
0 , 1 , . . . , n } × { 0 , 1 , . . . , p } = { (0 , 0) , (0 , 1) , . . . , (0 , p ) , 

(1 , 0) , (1 , 1) , . . . , (1 , p ) , 

... 

... 

. . . 

... 

( n, 0) , ( n, 1) . . . , ( n, p )
}

 

Although we used an ellipsis, we can see based on the rectangular display of the set 

that the cardinality is indeed

 

( n + 1) · ( p + 1)

 

. 

•

 

{ p ∈ N | p is even } × { p ∈ N | p is odd } = { ( p1 

, p2) ∈ N × N | p1 

is even and p2 

is odd }

 

, 

contain for example the elements

 

(0 , 1)

 

,

 

(2 , 7)

 

,

 

(42 , 93)

 

.

 

Exercise IV.9

 

1. Calculate

 

{⊤ , ⊥} × { a, b, c }

 

. 

2. Give three (distinct) elements of

 

Z × { x ∈ N | ∃ y ∈ N , y2 = x }

 

. 

3. How many elements are in

 

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } × { a, b, c, . . . , z }

 

? (Do not 

build the whole set!)

 

IV.C.2 Relations 

IV.C.2.i Definition 

As remarked above, in Cartesian products each component is independent from the others. 

That is useful when all tuples of a certain type have to be considered, but there is relatively 

few information in it. 

In relations , on the other hand, there are only some of the tuples. The choice of these 

tuples carries some information that goes beyond the type of each component. As for sets 

over a domain, choosing which values are included and which are not can be done through a 

predicate. In this case, the arity of the predicate will depend on the number of components. 

Binary relations are the most common relations and some particular types of binary relations 

will be studied in more details in Section IV.C.3 and Chapter V.

 

Definition: Relation

 

• A binary relation is a subset of a Cartesian product:

 

R ⊆ D1 

× D2

 

. It can be 

defined by a binary predicate:

 

{ ( x, y ) ∈ D1 

× D2 

| P ( x, y ) }

 

. 

• A relation is a subset of a Cartesian product :

 

R ⊆ D1 

× · · · × Dn

 

. It can be 

defined by an

 

n

 

-ary predicate:

 

{ ( x1 

, . . . , xn) ∈ D1 

× · · · × Dn 

| P ( x1 

, . . . , xn) }

 

.
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For binary relations,

 

( x, y ) ∈ R

 

is read “

 

x

 

is in relation with

 

y

 

by

 

R

 

”. Sometimes an infix 

notation is used and we write

 

xR y

 

. Usually for infix notations the relation is named with a 

symbol rather than a letter (see Chapter V for several examples of such relations). 

As for sets, the link between relations and predicates goes both ways: a relation defined 

a predicate that is true when the tuple is in the relation. 

Note that by definition a Cartesian product is a relation, although a relation need not 

be a Cartesian product. 

IV.C.2.ii Examples 

•

 

Pol = { ( n, p ) ∈ Z × Z | n3 = 3 p2 + 5 }

 

relates only the integers

 

n

 

and

 

p

 

that verify the 

specific equality

 

n3 = 3 p2+5

 

. One such pair is

 

(2 , 1)

 

, because

 

23 = 8

 

and

 

3 · 12+5 = 8

 

. 

Another one is

 

(8 , 13)

 

, because

 

83 = 512

 

and

 

3 · 3 · 132+5 = 3 · 169+5 = 507+5 = 512

 

. 

(Other pairs include

 

(2 , − 1)

 

and

 

(8 , − 13)

 

; there does not seem to be any other pair in 

this example, although it may not be easy to prove formally.) 

• Relation

 

Rec = { ( n, q ) ∈ Z × Q | n ̸ = 0 ∧ q = 

1

 

n 

}

 

relates non-zero integers and their 

reciprocal. 

•

 

L = { ( x, y ) ∈ R × R | y = 2 x + 3 }

 

defines a line in the plane. 

•

 

Pyth = { ( a, b, c ) ∈ N3 | a2+ b2 = c2 }

 

is a ternary relation that contains all Pythagorean 

triples: integer values that could be legs and hypotenuse of a right triangle. 

•

 

Abs = { ( n, p ) ∈ Z2 | n2 = p2 }

 

relates integers that are either equal or opposite (

 

n = p

 

or

 

n = − p

 

); otherwise said, it relates integers with the same absolute value. 

• Relation

 

Leq = { ( n, p ) ∈ Z2 | ∃ k ∈ N , n + k = p }

 

relates

 

n

 

to any integer that can be 

obtained by adding another positive integer to

 

n

 

. This is a convoluted way of saying 

that it relates

 

n

 

to any number greater than or equal to

 

n

 

. So

 

n

 

and

 

p

 

are in this 

relation if and only if

 

n ≤ p

 

. Note that this is a way to formally define what it means 

to be greater than or equal to, and this relation

 

Leq

 

is represented by the infix symbol

 

≤

 

. 

IV.C.2.iii Projection 

Projection of a tuple onto some of its components means ignoring the others. For example 

projecting

 

(1 , 2)

 

over the first component yields

 

1

 

. And projecting

 

( π , 42 , 

2

 

3)

 

over it’s first 

and third components yields

 

( π , 

2

 

3)

 

. 

This notion is extended to sets: the projection of a relation onto some components is the 

relation made of the projected tuples over this component. To know whether a tuple is the 

projection of another one, the original tuple must have been in the relation. The missing 

components have to be filled with some values in order to build a tuple of the original 

relation. This is done through an existential quantifier. In the case of binary relations, 

this formally means that the projection

 

R ⊆ D1 

× D2

 

over the first component is the set

 

{ x ∈ D1 

| ∃ y ∈ D2 

, ( x, y ) ∈ R }

 

. 

In the case of more than two components, the projection is defined the same way, al- 

though the notations are a bit more involved in order to separate the components that are 

preserved through projection and the ones that are not. The definition below is given more 

for completeness’ sake that to be actually applied in the context of this book or course. The
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T =

 

firstName

 

lastName

 

phoneNumber

 

John

 

Doe

 

1234567890

 

Jane

 

Doe

 

3456789120

 

Bob

 

Smith

 

1723456890

 

...

 

...

 

...

 

Figure IV.3: A table (relation) in a relational database. 

projection of

 

R ⊆ D1 

× · · · × Dn

 

onto the set of components

 

B = { i1 

, . . . , ik 

} ⊆ { 1 , . . . , n }

 

(with

 

i1 

< · · · < ik

 

) is the relation

 

{ ( xi1 

, . . . , xik) ∈ Di1 

× · · · × Dik 

| ∃ y1 

∈ D1 

, . . . , ∃ yn 

∈ Dn 

, ( ∀ i ∈ B , xi 

= yi) ∧ ( y1 

, . . . , yn) ∈ R }

 

Note that for the special case of a Cartesian product, the projection of

 

A × B

 

over the 

first component is the whole set

 

A

 

. Or for more than two components, the projection of a 

Cartesian product

 

D1 

× · · · × Dn

 

onto the set of components

 

B = { i1 

, . . . , ik 

} ⊆ { 1 , . . . , n }

 

(with

 

i1 

< · · · < ik

 

) is the Cartesian product

 

Di1 

× · · · × Dik

 

. 

In this book, the projection on the

 

i

 

-th component is written

 

σi

 

(although notations can 

vary, this one is pretty frequent in the literature). For example,

 

σ2( { ( x, y ) ∈ N2 | x2 = y } ) = 

{ y ∈ N | ∃ x ∈ N , x2 = y }

 

is the set of squares.

 

Exercise IV.10

 

1. Give three (distinct) elements of

 

{ ( n, x ) ∈ N × R | n = x2 + 1 }

 

. 

2. Calculate the projection on the first component of

 

{ ( x, y ) ∈ N × N | x = 2 y +1 }

 

. 

Give a set-builder notation and an English description.

 

IV.C.2.iv Relations in relational databases

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Some database systems, among which all the system of the SQL family are called relational 

databases . Although it is convenient to think of the data in these databases as tables where 

the data is organized in columns (see Figure IV.3), a table is actually a relation. 

The type of each column is given by a domain (words , numbers, numbers with

 

k

 

dig- 

its. . . ). The table itself is a subset of the Cartesian product of the domains, i.e. a relation:

 

T ⊆ words × words × digits10

 

, where

 

T

 

is the table of Figure IV.3. As a result, a line of such 

a table is called a tuple in the database nomenclature. 

Extracting data from such a database by finding tuples that satisfy a criterion (for 

example lastName being “Doe”) using an SQL query is like building a subset based on that 

relation: the SQL query SELECT * FROM T WHERE lastName="Doe" corresponds to the set

 

{ ( f , l , p ) ∈ T | l = “Doe” }

 

. 

IV.C.3 Functions 

IV.C.3.i Definition and notations 

The great strength of relation is that it allows to relate values together. One particular way 

to relate values is to attach to each value of one domain to a single corresponding value
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in the other domain. That is the principle of functions : to each value associate, usually 

through calculation, one particular image .

 

Definition: (Partial) Function

 

A function is a binary relation

 

f ⊆ D1 

× D2

 

where each element of

 

D1

 

is in relation 

with at most one element of

 

D2

 

:

 

∀ x ∈ D1 

, ∃ y ∈ D2 

, ( x, y ) ∈ f → ∀ z ∈ D2 

, ( x, z ) ∈ 

f → z = y

 

.

 

Examples of relations that are functions include

 

Rec = { ( n, q ) ∈ Z × Q | n ̸ = 0 ∧ q = 

1

 

n 

}

 

relates non-zero integers and their reciprocal and the linear function

 

L = { ( x, y ) ∈ R × R | 

y = 2 x + 3 }

 

. On the other hand, relation

 

Abs = { ( n, p ) ∈ Z2 | n2 = p2 }

 

is not a function, 

since for example

 

1

 

is in relation both with

 

1

 

and

 

− 1

 

. 

In graphical form, this is illustrated in Figure IV.4. The relation of Figure IV.4(a) is not 

a function since

 

1

 

is in relation both with

 

A

 

and

 

B

 

. In Figures IV.4(b-f), the represented 

relations are function since every element of

 

D1

 

is related to at most a single element of

 

D2

 

. 

Functions are so widespread in mathematics that specific notations and vocabulary. The 

only value

 

y

 

that is in relation with

 

x

 

through

 

f

 

is called the image of

 

x

 

and is written

 

f ( x )

 

. In the notation

 

f ( x )

 

,

 

x

 

is the argument of function

 

f

 

. In that case

 

x

 

is then called 

a pre-image of

 

y

 

. There can be several pre-images; the set of preimages of

 

y

 

is denoted

 

f 

− 1( y )

 

. 

Domain

 

D1

 

is the domain of

 

f

 

. The projection

 

σ1( f )

 

, the “first components” of

 

f

 

, is the 

domain of definition . It may not match exactly the domain. For example in function

 

Rec

 

,

 

0

 

is an element of the domain but not the domain of definition. 

Domain

 

D2

 

is the co-domain of

 

f

 

. The projection

 

σ2( f )

 

, the “second components” of

 

f

 

, 

is called the range . 

To indicate the domain and co-domain, it is customary to write:

 

f : D1 

→ D2

 

which is 

read as “

 

f

 

is a function from

 

D1

 

to

 

D2

 

”.

 

b

 

The arrow here 

is not an 

implication!

 

The notion of image is extended to subsets of the domain:

 

f ( A ) = { f ( x ) | x ∈ A }

 

. So 

in particular

 

f ( D1)

 

is the range of

 

f

 

. Similarly, the set of pre-images of a subset

 

B

 

of the 

codomain is

 

f 

− 1( B ) = { x | f ( x ) ∈ B }

 

. So in particular

 

f 

− 1( D2)

 

is the domain of definition 

of

 

f

 

. 

IV.C.3.ii Special cases for domains and co-domain 

IV.C.3.ii.a Functions from

 

R

 

to

 

R

 

The first relations encountered in the mathematics curriculum are relations over real 

numbers with real co-domain: relations in

 

R × R

 

. In this case it is possible to graph all 

the points (ordered pairs of coordinates) in the plane. Using the vertical line test , it is the 

possible to check whether the relation is a function: a vertical line must not intersect the 

graph in more than one point.

 

x

 

-coordinates where a vertical line does intersect the graph 

once provide the domain of definition. Using a horizontal line can provide the range of the 

function:

 

y

 

-coordinates where the horizontal line intersects the graph at least once are in 

the range.
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(b) A partial function.
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(c) A total function (neither injective nor surjective).
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(d) A surjection (not injective).
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(e) An injection (not surjective)
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(f) A bijection: both injective and surjective. 

Figure IV.4: Illustration of functions: total, injective, surjective, bijective.
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IV.C.3.ii.b Functions with multiple arguments 

Although functions are a special case of binary relations, it is possible to have more 

than one argument, and have a tuple as an image. In this case, the domain and co-domain 

are understood as a Cartesian product of other domains. A function

 

f

 

with

 

n

 

arguments 

can be defined as

 

f : D1 

× · · · × Dn 

→ D′ 

1 

× · × D′ 

k

 

. In this case it means that for every 

tuple

 

( x1 

, . . . , x2)

 

there is at most one image

 

( y1 

, . . . , yk)

 

. So although, technically, writing

 

f ⊆ D1 

× · · · × Dn 

× D′ 

1 

× · × D′ 

k

 

and

 

f ( ⊆ D1 

× · · · × Dn) × ( D′ 

1 

× · × D′ 

k)

 

is the same, separating 

domain and co-domain allows to determine on which domain the criterion must apply. 

IV.C.3.iii Injection, surjection, bijection 

In this section, we assume that

 

f : D1 

→ D2

 

is a function. 

IV.C.3.iii.a Total functions 

When the domain and the domain of definition coincide, the function is total . Formally,

 

f

 

is total if

 

∀ x ∈ D1 

, ∃ y ∈ D2 

, ( x, y ) ∈ f

 

. Otherwise it is a partial function. 

When

 

f

 

is total, we can also write

 

f ∈ DD1 

2

 

since for every element of

 

D1

 

we have the 

choice of any element of

 

D2

 

. So for a finite domain

 

A

 

, with

 

| A | = n

 

, and co-domain

 

B

 

, with

 

| B | = p

 

, there exists

 

pn

 

functions from

 

A

 

to

 

B

 

. 

Function

 

Rec

 

above is partial since domain and domain of definition do not coincide: the 

function is not defined for

 

0

 

. Function

 

L

 

, on the other hand, is total. 

In Figure IV.4(b), the function is not total since

 

3

 

has no image. Functions represented 

in Figures IV.4(c-f), on the other hand, are all total since every element of the domain has 

an image. 

IV.C.3.iii.b Surjections 

When the co-domain and the range coincide, the function is surjective . Formally,

 

∀ y ∈ 

D2 

, ∃ x ∈ D1 

, ( x, y ) ∈ f

 

. 

Function

 

Rec

 

is not surjective, since not all rational numbers are reciprocals of an integer. 

For example

 

2

 

5

 

is not in the range. Function

 

L

 

is surjective, since every number

 

y ∈ R

 

has 

a pre-image; namely, the preimage of

 

y

 

is the singleton

 

{ 

y − 3

 

2 

}

 

. 

Functions represented in Figures IV.4(b,c,e) are not injective: there is at least an element 

(

 

D

 

,

 

D

 

, and

 

C

 

, respectively) that has no preimage. In Figures IV.4(d,f), the function is 

surjective. 

IV.C.3.iii.c Injections 

A total function is injective if every element of the co-domain has at most one pre-image. 

Otherwise said, two values of the domain cannot share an image. This is formalized by the 

formula

 

∀ x1 

, x2 

∈ D1 

, f ( x1) = f ( x2) → x1 

= x2

 

, which states that the only way for two 

values

 

x1 

, x2

 

to have the same image is to be equal. 

When a function is injective, the pre-image of any element of the range is a singleton. 

In that case it is customary, although a slight abuse of notation, to write

 

f 

− 1( y )

 

for the 

pre-image itself. So for function

 

L

 

that is injective, one could write

 

L− 1( y ) = 

y − 3

 

2

 

.
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In Figures IV.4(c,d), the functions are not injective since

 

C

 

has pre-images

 

1

 

and

 

4

 

, 

and

 

A

 

has pre-images

 

2

 

and

 

3

 

, respectively. In Figures IV.4(e,f), the depicted functions are 

injective. 

IV.C.3.iii.d Bijections 

A total function both injective and surjective is called bijective , (sometimes also referred 

to as a one-to-one mapping ). 

Bijective functions have an inverse : relation

 

f 

− 1 : B → A

 

defined as

 

{ ( y , x ) ∈ B × A | 

( x, y ) ∈ f }

 

. Relation

 

f 

− 1

 

: 

• is a function because

 

f

 

is injective; 

• is total because

 

f

 

is surjective; 

• is surjective because

 

f

 

is total (which is a condition to be injective). 

Since the inverse function associates to any element of

 

B

 

its pre-image, the same notation 

is used. The term inverse relates to the fact that if

 

f

 

is combined with

 

f 

− 1

 

, the identity 

function is created. In other terms, the effect of

 

f

 

and

 

f 

− 1

 

cancel each other. Formally:

 

∀ x ∈ A, f 

− 1( f ( x )) = x

 

and

 

∀ y ∈ B , f ( f 

− 1( y )) = y

 

. 

Function

 

L

 

, being both injective and surjective, is bijective. Its inverse function

 

L− 1 : 

R → R

 

is defined as for any

 

y ∈ R

 

,

 

L− 1( y ) = 

y − 3

 

2

 

. In Figure IV.4(f), the function is bijective.

 

Exercise IV.11

 

For each of the following relations, determine whether it is a function, and if so: 

• whether it is a total function 

– if not give the domain of definition 

– if so whether it is injective 

• whether it is surjective, if not give the range. 

All your answers must be justified by a proof! 

1.

 

{ ( x, y ) ∈ R × R | 6 x + 2 y = 5 }

 

2.

 

{ ( x, y ) ∈ R × R | x · y = 42 }

 

3.

 

{ ( x, y ) ∈ R × R | y = cos( x ) }

 

4.

 

{ ( x, y ) ∈ R × [ − 1 , 1] | y = cos( x ) }

 

5.

 

{ ( x, y ) ∈ [0 , π ] × [ − 1 , 1] | y = cos( x ) }

 

6.

 

{ ( x, y ) ∈ R × R | x = cos( y ) }

 

IV.C.3.iv Injection, surjection, bijection and cardinality 

IV.C.3.iv.a Functions for cardinality comparison 

In this section, assume

 

f : A → B

 

is a total function. 

If

 

f

 

is injective, then every element of

 

A

 

points to a different element of

 

B

 

. So there 

must be at least as many elements in

 

B

 

as there are in

 

A

 

:

 

| A | ≤ | B |

 

. 

If

 

f

 

is surjective, then every element of

 

B

 

is pointed by at least an element of

 

A

 

. So 

there must be at least as many elements in

 

A

 

as there are in

 

B

 

:

 

| A | ≥ | B |

 

. 

If

 

f

 

is bijective, then we have both

 

| A | ≤ | B |

 

and

 

| A | ≥ | B |

 

, therefore

 

| A | = | B |

 

. 

Note that this idea works both for finite and infinite sets. And that provides a way to 

compare the cardinality of infinite sets.
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Let

 

A

 

and

 

B

 

be two sets. 

•

 

| A | ≤ | B |

 

iff there exists an injection from

 

A

 

to

 

B

 

. 

•

 

| A | ≥ | B |

 

iff there exists a surjection from

 

A

 

to

 

B

 

. 

•

 

| A | = | B |

 

iff there exists a bijection between

 

A

 

and

 

B

 

.

 

IV.C.3.iv.b Proof techniques for cardinality comparison 

So in order to prove that sets

 

A

 

and

 

B

 

have the same cardinality, there are several 

possibilities. 

• Exhibit a bijection between

 

A

 

and

 

B

 

: find a function

 

f : A → B

 

, prove that it is 

bijective. 

• Or exhibit an injection from

 

A

 

to

 

B

 

and an injection from

 

B

 

to

 

A

 

: find a function

 

g : A → B

 

and a function

 

h : B → A

 

; prove that both are injective. 

Note that if

 

f : A → B

 

is bijective, then both

 

f

 

and

 

f 

− 1

 

are injective. Choosing

 

g = f

 

and

 

h = f 

− 1

 

would therefore follow the second approach. The advantage of the second approach 

is that

 

h

 

need not be the inverse of

 

g

 

, which is sometimes easier. 

Proving that one set is strictly larger is often more involved: to prove

 

| A | > | B |

 

, it must 

be proved that there is no injection from

 

A

 

to

 

B

 

. Proving the absence of an object is difficult 

in a direct proof. The usual approach is to assume that there is an injection and show a 

contradiction. 

IV.C.3.iv.c The pigeonhole principle 

The above theorem on cardinality can also be used the other way round: if set

 

A

 

has 

more elements than set

 

B

 

, then there cannot be an injection from

 

A

 

into

 

B

 

. This idea is 

what is formalized in the pigeonhole principle : If there are

 

n

 

pigeons and

 

p < n

 

pigeonholes, 

then there is at least a hole with two or more pigeons. 

Formally, it can be reformulated as follows. Assume

 

| A | = n

 

and

 

| B | = p

 

with

 

p < n

 

, 

then: 

• There is no injection from

 

A

 

to

 

B

 

. 

• For any total function

 

f : A → B

 

, there exists

 

x1 

, x2 

∈ A

 

such that

 

x1 

̸ = x2

 

and

 

f ( x1) = f ( x2)

 

. 

This principle is a useful proof tool. For example, assume a set

 

X

 

is partitioned into

 

n

 

sets:

 

X = A1 

⊎ A2 

⊎ · · · ⊎ An

 

. For any

 

n + 1

 

elements of

 

X

 

, at least two belong to the same 

set

 

Ai

 

. This is because mapping

 

n +1

 

elements into the subset they belong to cannot be an 

injection. 

IV.C.3.iv.d Countability 

The usual domains

 

N

 

,

 

Z

 

,

 

Q

 

, and

 

R

 

are all infinite. But to compare these infinites, one 

must use injections (or prove they do not exist).
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First, we can remark that we have the inclusions

 

N ⊆ Z ⊆ Q ⊆ R

 

, so we have

 

| N | ≤ 

| Z | ≤ | Q | ≤ | R |

 

. (To exhibit an injection when there is inclusion, simply use the identity 

function

 

Id ( x ) = x

 

, which is clearly injective.)

 

N

 

being the smallest of our usual domains, we will try to compare cardinalities to

 

| N |

 

.

 

Definition: Countable

 

A set

 

A

 

is countable if

 

| A | ≤ | N |

 

.

 

The term countable stems from the fact that the elements of a countable set can be 

attributed a unique number, called an index (which is what is done when counting), even if 

that continues to infinity. Not that in particular all finite sets are countable. 

The first result, that might seem counterintuitive at first, is as follows:

 

Theorem

 

Z

 

and

 

Q

 

are countable sets:

 

| N | = | Z | = | Q |

 

.

 

This theorem is proved by providing injections into

 

N

 

. 

Inject

 

Z

 

in

 

N

 

We need to find a function

 

f : Z → N

 

such that no two elements of

 

Z

 

have the same image. The problem is to fold a number line that extends in both direction 

into a number line that only extends into the positive integers. The solution is to insert a 

negative number between two positive numbers, and to count as follows:

 

Value (in

 

Z

 

)

 

0

 

1

 

− 1

 

2

 

− 2

 

. . .

 

Index (in

 

N

 

)

 

0

 

1

 

2

 

3

 

4

 

. . .

 

Formally, our function

 

f

 

will map strictly positive numbers go to odd numbers while negative 

numbers (and 0) will go to even numbers. For

 

p ∈ Z

 

, if

 

p > 0

 

,

 

f ( p ) = 2 p − 1

 

and if

 

p ≤ 0

 

,

 

f ( p ) = − 2 p

 

. 

Note that a similar idea can be used in order to prove that the set of even natural 

numbers is a big as the whole set of natural numbers, by injecting

 

N

 

into the even numbers.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Inject

 

Q

 

into

 

N

 

This is actually performed in two steps: 

• Inject

 

Q

 

into

 

Z × Z

 

. This part is rather straightforward. We can define

 

f

 

by taking, 

for any rational number written as a fraction

 

p

 

q

 

,

 

f 

( 

p

 

q 

) 

= ( p, q )

 

. Not that technically 

there are more than one choice for

 

p

 

and

 

q

 

, but this can be resolved either by asking 

that

 

p

 

q

 

is an irreducible fraction, or by using the Axiom of Choice which states that it 

is possible to choose one value from the infinitely many fractions that can represent

 

p

 

q

 

. 

Function

 

f

 

is an injection: any pair

 

( p, q )

 

corresponds to at most one rational number

 

p

 

q

 

. 

• Inject

 

Z × Z

 

in

 

N

 

. This is more involved, and will not actually be shown here in full 

formality. One way to perform this injection, is to index

 

Z × Z

 

by

 

N

 

using a spiral 

in the plane of integers, as depicted in Figure IV.5. While this is, in my opinion, 

convincing enough to understand why this injection is possible, it does not constitute 

a formal proof. It is however not easy to formally define a function from this idea, 

as calculating the index from the coordinates is not direct. Other proofs exist that
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Figure IV.5: Injecting

 

Z × Z

 

into

 

N

 

, a graphical idea. 

do not use this spiral idea exist but use more involved tools and therefore will not be 

provided here. 

IV.C.3.iv.e Uncountability 

The case of

 

R

 

is different from

 

Q

 

. Intuitively, the difference between rational numbers 

and real numbers can be interpreted as a difference in the quantity of information they carry. 

The decimals in a rational number is a repeating pattern, so it is sufficient to remember 

the pattern to be able to reconstruct the number with arbitrary precision. For real irrational 

numbers, there is no repeating pattern, so all the decimals (infinitely many of them!) have 

to be stored in order to achieve arbitrary precision. 

So for any rational number, even with a very long repeating pattern, there will be an 

infinity of irrational number slightly different around it. This idea of slightly changing the 

numbers is what makes

 

R

 

much bigger than

 

N

 

:

 

Theorem

 

The set of real numbers is uncountable:

 

| R | > | N |

 

.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

The proof of uncountability of

 

R

 

that follows is due to Georg Cantor. It is a proof by 

contradiction called the diagonalization proof (or diagonalization argument), and goes as 

follows.

 

Assume, by contradiction, that

 

| R | = | N |

 

. Then we have a bijection

 

f

 

between

 

N

 

and

 

R

 

. 

Note that here

 

f

 

is not the indexing function, but

 

f 

− 1

 

is. For a real number

 

x

 

,

 

f 

− 1( x )

 

give the index of the real number

 

x

 

. On the other hand, for any natural number

 

n

 

,

 

f ( n )

 

gives the

 

n

 

-th real number. 

We can therefore write all the real numbers in the order they are indexed:

 

f (1)

 

,

 

f (2)

 

, . . . , aligning them on the decimal point. Then consider the real number

 

z =
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z = 0 .
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Figure IV.6: Cantor’s diagonalization argument.

 

0 .d1 

d2 

d3 

. . .

 

(where

 

di

 

is the

 

i

 

-th digit after the decimal point) built as follows: 

• Take the first digit after the decimal point of

 

f (1)

 

, and add 1 to it (truncating 

10 to 0): this is

 

d1

 

. 

• Take the second digit after the decimal point of

 

f (2)

 

, and add 1 to it (truncating 

10 to 0): this is

 

d2

 

.

 

...

 

• Take the

 

i

 

-th digit after the decimal point of

 

f ( i )

 

, and add 1 to it (truncating 

10 to 0): this is

 

di

 

.

 

...

 

• Continue for infinitely many steps. 

An illustration of this process that uses the digits of the diagonal (hence the name) 

is given Figure IV.6. 

For any

 

i ∈ N

 

,

 

z

 

differs from

 

f ( i )

 

at least in digit

 

i

 

, so

 

z ̸ = f ( i )

 

. So

 

z

 

has no pre-image 

by

 

f

 

, and

 

f

 

is not surjective, and that contradicts the assumption that

 

f

 

is bijective. E 

Therefore

 

| R | ̸ = | N |

 

, and since

 

| R | ≥ | N |

 

that means

 

| R | > | N |

 

.
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V.A Equivalence relations 

Equivalence relations are a special kind of relations between elements of the same set or 

domain. In English, two objects are equivalent if they are the same for a given purpose . 

And if the saying states that “if it talks like a duck and it walks like a duck, then it must be 

a duck”, the mathematician would be more prudent and only state that ”it is equivalent to 

a duck regarding the talking and walking”. 

V.A.1 Definition and notation 

V.A.1.i Formal and informal definitions 

The criteria on which the equivalence is performed can be about anything. The only condi- 

tion is that it follows the three conditions of the following definition:

 

Definition: Equivalence relation

 

A binary relation

 

R ⊆ A × A

 

is an equivalence relation if it is: 

Reflexive

 

∀ x ∈ A, ( x, x ) ∈ R

 

Symmetric

 

∀ x, y ∈ A, ( x, y ) ∈ R → ( y , x ) ∈ R

 

Transitive

 

∀ x, y , z ∈ A, ( x, y ) ∈ R ∧ ( y , z ) ∈ R → ( x, z ) ∈ R

 

Reflexivity states that every element is equivalent to itself. This makes intuitive sense: an 

object is equivalent to itself for every purpose. So a relation that does not see as equivalent 

an object with itself cannot be an equivalence relation. 

Symmetry means that if

 

x

 

is equivalent to

 

y

 

, then

 

y

 

is equivalent to

 

x

 

. The order does 

not matter; in English we actually say that “two objects are equivalent”, and the grammar 

does not indicate any order either. 

Transitivity requires than if

 

x

 

is equivalent to

 

y

 

and

 

y

 

equivalent to

 

z

 

, then

 

x

 

is equivalent 

to

 

z

 

as well. In this the math departs a bit from the intuition. In English, “equivalent” can 

be understood as ”almost the same”, and transitivity may not be assumed when speaking of 

almost the same objects. This ambiguity is at the heart of Sorites paradoxes : if a heap of 

10000 rice grains is equivalent to a heap of 9999 rice grains, which is equivalent to a heap 

of 9998 rice grains, . . . , which is equivalent to a heap of 1 grain; if there is transitivity, a 

heap of 10000 grains is equivalent to a heap of 1 grain, which sounds absurd. Transitivity is 

therefore required in the mathematical definition in order to prevent this kind of situation: 

a heap of 1 grain has to actually be equivalent to a heap of 10000 grains for the “equivalence” 

to be well defined (this equivalence can be for example “being a heap containing rice”). 

When all the criteria are met, the relation is said to be an equivalence relation over

 

A

 

, 

indicating the domain by the same sentence. In that case, to elements in relation are said 

to be “equivalent up to the relation”. 

V.A.1.ii Proving equivalence 

Whenever a relation is claimed to be an equivalence relation, this fact must be proved. The 

proof follows the definition: it is in three parts to deal separately with reflexivity, symmetry, 

and transitivity (labeling the parts of the proof with R, S, T is advised). Each part is a
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universally quantified statement, so variables of the set have to be taken: 1 for reflexivity, 

2 for symmetry, 3 for transitivity. Then, for symmetry and transitivity, the premise of the 

implication has to be assumed in order to prove the conclusion. The assumption of the 

premise combined with the definition of the relation usually provides enough to prove the 

conclusion rather easily. As a result, all proofs that a relation is an equivalence relation look 

alike. 

V.A.1.ii.a Example: Identity relation 

On any set

 

A

 

, the identity relation

 

Id = { ( x, x ) | x ∈ A }

 

is an equivalence relation. 

Although this proof is rather trivial, it still follows the aforementioned plan:

 

R

 

Let

 

x ∈ A

 

. By definition of Id ,

 

( x, x ) ∈ Id

 

, so Id is reflexive. 

S

 

Let

 

x, y ∈ A

 

. Assume

 

( x, y ) ∈ Id

 

. Then

 

y = x

 

, so

 

( y , x ) = ( x, x ) ∈ Id

 

. So Id is 

symmetric. 

T

 

Let

 

x, y , z ∈ A

 

. Assume

 

( x, y ) ∈ Id

 

and

 

( y , z ) ∈ Id

 

. Then

 

x = y

 

and

 

y = z

 

. 

Therefore

 

x = z

 

and

 

( x, z ) ∈ Id

 

. As a result Id is transitive. 

Since, Id is reflexive, symmetric, and transitive, it is an equivalence relation.

 

V.A.1.ii.b Example: Integral part 

On the set of reals, define

 

F = { ( x, y ) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

 

. 

Intuitively, this relation deems relates all numbers that have the same integral part:

 

2

 

is related to

 

2 . 39

 

, to

 

5

 

2

 

, to

 

e

 

(

 

2 . 718 . . .

 

), to

 

√

 

5

 

(

 

2 . 236 . . .

 

), or any number that is

 

2

 

point 

something. Of course that means

 

e

 

is related to

 

2

 

, and to

 

√

 

5

 

as well, so symmetry and 

transitivity do seem to hold. 

It can be proved that

 

F

 

is an equivalence relation:

 

R

 

Let

 

x ∈ R

 

. We have

 

⌊ x ⌋ = ⌊ x ⌋

 

so

 

( x, x ) ∈ F

 

, so

 

F

 

is reflexive. 

S

 

Let

 

x, y ∈ R

 

. Assume

 

( x, y ) ∈ F

 

. That means, by definition of

 

F

 

, that

 

⌊ x ⌋ = ⌊ y ⌋

 

. 

Then

 

⌊ y ⌋ = ⌊ x ⌋

 

and

 

( y , x ) ∈ F

 

. So

 

F

 

is symmetric. 

T

 

Let

 

x, y , z ∈ R

 

. Assume

 

( x, y ) ∈ F

 

and

 

( y , z ) ∈ F

 

. That means, by definition of

 

F

 

, that

 

⌊ x ⌋ = ⌊ y ⌋

 

and

 

⌊ y ⌋ = ⌊ z ⌋

 

. As a result

 

⌊ x ⌋ = ⌊ z ⌋

 

and

 

( x, z ) ∈ F

 

, so

 

F

 

is 

transitive. 

Since,

 

F

 

is reflexive, symmetric, and transitive, it is an equivalence relation.

 

V.A.1.iii Notations 

Since equivalence relations are binary, it is common to use an infix symbol to denote them: 

a symbol written in between the two variables or values.
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And to highlight the symmetric nature of these relations, symmetrical symbols are often 

used:

 

≡

 

,

 

∼

 

,

 

≈

 

,

 

≃

 

,

 

▷◁

 

,

 

∼=

 

. The equality symbol

 

=

 

is, despite being symmetrical, being 

“reserved” for the identity relation, and is therefore not used for any other. 

Definitions are often written using the infix symbol, for example: “Let

 

∼ = { ( n, p ) ∈ Z2 | 

n2 = p2 }

 

”. Note that the set-builder notation is not always used to define these relations. 

More often, an English statement of the same fact is used instead. For example the above 

relation can also be introduced as such: “Let

 

∼

 

be the relation over

 

Z

 

defined as

 

n ∼ p

 

if 

and only if

 

n2 = p2

 

”. 

Remark that using a symmetrical symbol does not make the relation symmetrical or 

even an equivalence relation, that must be proved separately!

 

Exercise V.1

 

Prove that the following relations are equivalence relations. 

1. Relation

 

≡

 

over

 

N × N

 

defined as

 

( n1 

, p1) ≡ ( n2 

, p2)

 

iff

 

n1 

+ p1 

= n2 

+ p2

 

. 

2.

 

≈ = { ( x, y ) ∈ R × R | cos( x ) = cos( y ) and sin( x ) = sin( y ) }

 

. 

3. Relation

 

≃

 

over

 

Z × ( N \ { 0 } )

 

defined as

 

( p1 

, q1) ≃ ( p2 

, q2)

 

iff

 

p1 

· q2 

= p2 

· q1

 

. 

4.

 

∼ = { ( n, p ) ∈ Z × Z | ∃ k ∈ Z , n = p + 5 k }

 

.

 

V.A.2 Equivalence classes 

V.A.2.i Definition 

Elements that are equivalent to each other are all equivalent together, by transitivity. In the 

example above of relation

 

F = { ( x, y ) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

 

, elements

 

2

 

,

 

2 . 39

 

,

 

5

 

2

 

,

 

e

 

, are

 

√

 

5

 

all equivalent together. They can therefore be grouped together into an equivalence class .

 

Definition: Equivalence class

 

Let

 

≈

 

be an equivalence relation over a set

 

A

 

. 

The equivalence class of

 

x

 

for is the set

 

[ x ]≈ 

= { y ∈ A | x ≈ y }

 

Sometimes the relation is omitted and the equivalence class is simply denoted

 

[ x ]

 

when 

the relation is clear from the context. 

An immediate consequence of this definition is that being equivalent and being in the 

equivalence class is the same:

 

Lemma

 

Let

 

≈

 

be an equivalence relation over

 

A

 

. 

Then

 

x ≈ y

 

if and only if

 

[ x ]≈ 

= [ y ]≈

 

.

 

Proof

 

This is an equivalence, which we can prove by proving implication in both directions:

 

x ≈ y ⇒ [ x ]≈ 

= [ y ]≈

 

and

 

x ≈ y ⇐ [ x ]≈ 

= [ y ]≈

 

.

 

⇒

 

Assume

 

x ≈ y

 

. To prove a set equality we prove set inclusion in both directions:
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[ x ]≈ 

⊆ [ y ]≈

 

and

 

[ x ]≈ 

⊇ [ y ]≈

 

.

 

⊆

 

Let

 

t ∈ [ x ]≈

 

, by definition

 

t ≈ x

 

, and by transitivity

 

t ≈ y

 

. By symmetry

 

y ≈ t

 

so

 

t ∈ [ y ]≈

 

. As a result

 

[ x ]≈ 

⊆ [ y ]≈

 

.

 

⊇

 

The converse inclusion is proved in a similar way (only the point where 

symmetry is used changes); it could be omitted but is given here for com- 

pleteness’ sake. Let

 

t ∈ [ y ]≈

 

, by definition

 

t ≈ y

 

. By symmetry

 

y ≈ t

 

and 

by transitivity

 

x ≈ t

 

so

 

t ∈ [ x ]≈

 

. As a result

 

[ y ]≈ 

⊆ [ x ]≈

 

. 

Therefore

 

[ x ]≈ 

= [ y ]≈

 

.

 

⇐

 

Assume

 

[ x ]≈ 

= [ y ]≈

 

. We have in particular

 

y ∈ [ y ]≈

 

(by reflexivity) so

 

y ∈ [ x ]≈

 

hence

 

y ≈ x

 

and by symmetry

 

x ≈ y

 

.

 

For example, the set

 

[2]F

 

contains all real numbers that have integral part of

 

2

 

:

 

2 ∈ [2]F

 

,

 

5

 

2 

∈ [2]F

 

,

 

e ∈ [2]F

 

,

 

√

 

5 ∈ [2]F

 

, . . . . Note that

 

[2]F 

= [
√

 

5]F

 

, and any of the equivalent value 

could have been chosen as a representative. 

V.A.2.ii Partition using equivalence classes 

The second consequence of the definition of equivalence classes is that it not only groups 

equivalent elements together: it puts every element in a single equivalence class. Formally:

 

Theorem

 

Let

 

≈

 

be an equivalence relation over a set

 

A

 

. Equivalence 

classes for

 

≈

 

over

 

A

 

form a partition of

 

A

 

.

 

Proof

 

First, by reflexivity, every element

 

x ∈ A

 

is in

 

[ x ]≈

 

. So every classes is non-empty 

(

 

[ x ]≈

 

contains at least

 

x

 

) and together they cover

 

A

 

:

 

⋃ 

x ∈ A[ x ]≈ 

= A

 

. 

What remains to be proved is that equivalence classes are pairwise disjoint: two 

equivalence classes that are not identical are disjoint. We prove the contrapositive: 

two equivalence classes that are not disjoint are identical. 

Let

 

[ x ]≈

 

and

 

[ y ]≈

 

be equivalence classes. Assume that

 

[ x ]≈

 

and

 

[ y ]≈

 

are not disjoint. 

That means

 

[ x ]≈ 

∩ [ y ]≈ 

̸ = ∅

 

so there exists an element

 

t ∈ [ x ]≈ 

∩ [ y ]≈

 

, i.e.

 

t ∈ [ x ]≈

 

and

 

t ∈ [ y ]≈

 

. By definition of

 

t ∈ [ x ]≈

 

, we have

 

t ≈ x

 

. By definition of

 

t ∈ [ y ]≈

 

, we 

have

 

t ≈ y

 

. By symmetry and transitivity, we have

 

x ≈ y

 

, which means

 

[ x ]≈ 

= [ y ]≈

 

by the above Lemma.

 

V.A.2.iii Quotient by an equivalence relation 

Since equivalence classes partitions

 

A

 

, this set can be seen as “zoomed out” through the 

prism of an equivalence relation

 

≈

 

: two elements that are equivalent for

 

≈

 

will be seen as 

the same. 

This is called the quotient of

 

A

 

by

 

≈

 

. It is defined as follows:
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Definition: Quotient by

 

≈

 

Let

 

≈

 

be an equivalence relation over

 

A

 

. The quotient of

 

A

 

by

 

≈

 

is

 

A/≈ 

= { [ x ]≈ 

| x ∈ A }

 

, the set of equivalence relations of

 

≈

 

.

 

V.A.2.iii.a Example: Quotient by integral part 

For example over the reals, the relation

 

F = { ( x, y ) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

 

groups into 

equivalence classes all numbers that start with the same integer (this is only completely 

true for positive numbers; for negative numbers it is a slight approximation since

 

⌊− 4 ⌋ = 

⌊− 3 . 14 ⌋ = − 4

 

). 

So an equivalence class can be represented by that integer, so the quotient of

 

R

 

by

 

F

 

is

 

{ [ n ]F 

| n ∈ Z }

 

. That means that

 

R /F

 

is just like

 

Z

 

: we say that

 

R /F

 

is isomorphic to

 

Z

 

, 

since these sets behave the same for all mathematical purposes.

 

b

 

For sets, being 

isomorphic is 

also an 

equivalence 

relation!

 

V.A.2.iii.b Example: Quotient by equivalent fraction 

Consider another example. Let

 

≃

 

be the relation over

 

Z × ( N \ { 0 } )

 

defined as

 

( p1 

, q1) ≃ 

( p2 

, q2)

 

iff

 

p1 

· q2 

= p2 

· q1

 

. This relation can be seen as marking as equivalent fractions that 

represent the same number. Proving it is an equivalence relation was done in Exercise V.1, 

Question 1. 

The quotient of

 

Z × ( N \ { 0 } )

 

by

 

≃

 

has one element per rational number; it is actually 

a way to construct the set of rationals:

 

Q = ( Z × ( N \ { 0 } )) /≃

 

V.A.2.iv Equivalence classes in mathematics 

V.A.2.iv.a Logical equivalence 

As the name indicates, logical equivalence is an equivalence relation over propositional 

formulas. Remember that logical equivalence is defined as follows:

 

φ ≡ ψ

 

iff for any valuation 

of atomic proposition,

 

φ

 

is true if and only if

 

ψ

 

is true.

 

↬

 

See 

Section I.B.2.ii.

 

Proving it is an equivalence is pretty 

straightforward and is left to the reader as an exercise. 

The more interesting question here is: what do equivalence classes look like? What 

would be a good representative? As logically equivalent formulas share the same truth 

table (the last column), a truth table represents all formulas that are true exactly for these 

combinations of truth values for atomic propositions. 

We can evan count how many classes there are. For

 

n

 

atomic propositions, there are

 

2n

 

lines in a truth table. Each can be either

 

⊤

 

or

 

⊥

 

, so

 

2

 

choices. As a result there are

 

22
n

 

classes. 

For example with 2 variables there are

 

22
2 

= 16

 

formulas that are sufficient to describe 

all formulas up to logical equivalence . For

 

3

 

propositional variables, there are

 

22
3 

= 256

 

possible truth tables.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Remark that the truth table itself is not a formula, and sometimes it is better to use an 

actual formula as the representative. There are several options for that, which are called 

normal forms , among which the conjunctive normal form and the disjunctive normal form. 

The disjunctive normal form is the one that resembles the most to the truth table: it is built
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as the disjunction of all lines where the formula is true, each line being the conjunction of 

atomic propositions (when

 

⊤

 

) or their negation (when

 

⊥

 

).

 

p

 

q

 

r

 

φ

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊤

 

⊥

 

⊤

 

⊤

 

⊤

 

⊥

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

⊤

 

⊤

 

⊥

 

⊥

 

⊥

 

⊥

 

Figure V.1: A truth ta- 

ble: an equivalence class 

for the logical equivalence 

relation. 

For example for formula

 

φ

 

whose truth table is given in 

Figure V.1 is equivalent to

 

( p ∧ q ∧ ¬ r ) ∨ ( p ∧ ¬ q ∧ ¬ r ) ∨ ( ¬ p ∧ q ∧ r ) ∨ ( ¬ p ∧ ¬ q ∧ r ) .

 

In this disjunction, the first term

 

p ∧ q ∧ ¬ r

 

corresponds to 

the second line, where

 

p

 

is

 

⊤

 

,

 

q

 

is

 

⊤

 

, and

 

r

 

is

 

⊥

 

so

 

¬ r

 

is

 

⊤

 

. 

This line was selected because

 

φ

 

is

 

⊤

 

, and so were the fourth, 

fifth, and seventh lines, corresponding to the other terms in the 

disjunction. 

Conjunctive normal form is obtained as the negation of 

the disjunctive normal form of the negation. In practice, that 

means building a disjunctive normal form using lines where the 

formula is

 

⊥

 

, then negating this formula and applying De Mor- 

gan’s laws and double negation elimination in order to obtain 

a conjunction of disjunctions. 

In the example of Figure V.1, the conjunctive normal form 

is obtained as: 

¬ (( p ∧ q ∧ r ) ∨ ( p ∧ ¬ q ∧ r ) ∨ ( ¬ p ∧ q ∧ ¬ r ) ∨ ( ¬ p ∧ ¬ q ∧ ¬ r )) ≡ 

¬ ( p ∧ q ∧ r ) ∧ ¬ ( p ∧ ¬ q ∧ r ) ∧ ¬ ( ¬ p ∧ q ∧ ¬ r ) ∧ ¬ ( ¬ p ∧ ¬ q ∧ ¬ r ) ≡ 

( ¬ p ∨ ¬ q ∨ ¬ r ) ∧ ( ¬ p ∨ ¬¬ q ∨ ¬ r ) ∧ ( ¬¬ p ∨ ¬ q ∨ ¬¬ r ) ∧ ( ¬¬ p ∨ ¬¬ q ∨ ¬¬ r ) ≡ 

( ¬ p ∨ ¬ q ∨ ¬ r ) ∧ ( ¬ p ∨ q ∨ ¬ r ) ∧ ( p ∨ ¬ q ∨ r ) ∧ ( p ∨ q ∨ r ) 

V.A.2.iv.b Similar triangles 

In geometry, similar triangles are triangle that bear the same proportions. It is formally 

defined over triplets of points in the plane (each being two coordinates), as

 

AB C ∼ A′ B 

′ C 

′

 

iff

 

AB

 

A′ B 

′ 

= 

B C

 

B 

′ C 

′ 

= 

AC

 

A′ C 

′

 

. 

In geometrical terms, similar triangles are triangles that are the same up to scaling, 

rotation, and mirror image. 

Technically, this relation is a subset of

 

(( R × R ) × ( R × R ) × ( R × R )) × (( R × R ) × ( R × 

R ) × ( R × R )) = (( R2)3)2

 

, but no one writes it that convoluted way!

 

Exercise V.2

 

1. Let

 

≈ = { ( x, y ) ∈ R × R | cos( x ) = cos( y ) and sin( x ) = sin( y ) }

 

. It was 

proved to be an equivalence relation in Exercise V.1, Question 2. What are the 

equivalence classes of

 

≈

 

? Describe the classes in English or formally. 

2. Let

 

∼ = { ( n, p ) ∈ Z × Z | ∃ k ∈ Z , n = p + 5 k }

 

. It was proved to be an 

equivalence relation in Exercise V.1, Question 4. What are the equivalence 

classes of

 

∼

 

Describe the classes in English or formally; at least give how many 

there are.
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A

 

B

 

C

 

A′′

 

B 

′′

 

C 

′′

 

A′

 

B 

′

 

C 

′

 

Figure V.2: Similar triangles

 

AB C

 

,

 

A′ B 

′ C 

′

 

, and

 

A′′ B 

′′ C 

′′

 

. 

V.B Order relations 

V.B.1 Definition and notation 

V.B.1.i Formal and informal definition 

An order relation, or order for short, allows to compare elements. The choice of the com- 

parison criterion is given in the relation’s definition. This is defined as follows:

 

Definition: Order relation

 

A binary relation

 

R ⊆ A × A

 

is an order relation over

 

A

 

if it is: 

Reflexive

 

∀ x ∈ A, ( x, x ) ∈ R

 

Antisymmetric

 

∀ x, y ∈ A, (( x, y ) ∈ R ∧ ( y , x ) ∈ R ) → x = y

 

Transitive

 

∀ x, y , z ∈ A, ( x, y ) ∈ R ∧ ( y , z ) ∈ R → ( x, z ) ∈ R

 

Reflexivity requires that elements compare to themselves. 

Antisymmetry requires states that the only way for elements to compare in both direction 

is to be equal. This property ensures that the relation is one-direction only. 

Transitivity is conform to intuition: if

 

a

 

is smaller than

 

b

 

and

 

b

 

is smaller than

 

c

 

, then

 

a

 

is smaller than

 

c

 

. 

Symmetry v Antisymmetry 

Remark than antisymmetry is not the negation of symmetry. It is possible for a relation 

to be both symmetric and antisymmetric. In this case, whenever

 

( x, y ) ∈ R

 

,

 

( y , x ) ∈ R

 

by symmetry, then

 

x = y

 

by antisymmetry. That means the only relations that are both 

symmetric and antisymmetric are included in the identity relation. 

In addition, a relation can be neither symmetric nor antisymmetric. For example over the 

set

 

{− 1 , 0 , 1 }

 

, consider relation

 

⊸ = { ( − 1 , − 1) , ( − 1 , 0) , ( − 1 , 1) , (0 , 0) , (1 , − 1) , (1 , 0) , (1 , 1) }

 

.
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We don’t have symmetry because

 

1 ⊸ 0

 

but not

 

0 ⊸ 1

 

. We don’t have antisymmetry either 

because

 

− 1 ⊸ 1

 

and

 

1 ⊸ − 1

 

, but

 

− 1 ̸ = 1

 

. 

V.B.1.ii Proving a relation is an order 

The definition being in three parts, proofs that a relation is an order relation will follow 

the same plan; it is useful to clearly mark these parts using the letter R, A, T. Then for 

reflexivity take one element, two for antisymmetry, and three for reflexivity. This plan is 

actually very similar to the one used for equivalence relations (see Section V.A.1.ii). 

V.B.1.ii.a Example: Identity relation 

It was proved in Section V.A.1.ii.a that the identity relation

 

Id = { ( x, x ) | x ∈ A }

 

is reflexive and transitive. As noted above, it is also antisymmetric: if

 

( x, y ) ∈ Id

 

and

 

( y , x ) ∈ Id

 

, then by definition

 

x = y

 

. 

V.B.1.ii.b Example: Less than or equal to 

Relation

 

Leq = { ( n, p ) ∈ Z2 | ∃ k ∈ N , n + k = p }

 

, which corresponds to

 

≤

 

, is an order. 

Although that seems obvious since

 

≤

 

is “the” very first order relation that is introduced on 

numbers, it ought to be proved formally. In this case, two numbers are related when there 

exists a natural number satisfying a property. When

 

( n, p ) ∈ Leq

 

is assumed, then we will 

take such a number

 

k

 

(existential instantiation). When it must be proved that

 

( n, p ) ∈ Leq

 

, 

we must exhibit such a value (existential generalization).

 

R

 

Let

 

n ∈ Z

 

. We have

 

n + 0 = n

 

, so by choosing

 

k = 0

 

we have

 

( n, n ) ∈ Leq

 

. So

 

Leq

 

is reflexive. 

A

 

Let

 

n, p ∈ Z

 

. Assume

 

( n, p ) ∈ Leq

 

and

 

( p, n ) ∈ Leq

 

. Then there exists

 

k , k 

′ ∈ N

 

such that

 

n + k = p

 

and

 

p + k 

′ = n

 

. So

 

n + k + k 

′ = n

 

, so

 

k + k 

′ = 0

 

. That 

means

 

k = k 

′ = 0

 

, so

 

n = p

 

. As a result,

 

Leq

 

is antisymmetric. 

T

 

Let

 

n, p, m ∈ Z

 

. Assume

 

( n, p ) ∈ Leq

 

and

 

( p, m ) ∈ Leq

 

. Then there exists

 

k , k 

′ ∈ N

 

such that

 

n + k = p

 

and

 

p + k 

′ = m

 

. So

 

n + k + k 

′ = m

 

. Let

 

k 

′′ = k + k 

′

 

. We have

 

n + k 

′′ = m

 

, so

 

( n, m ) ∈ Leq

 

. As a result

 

Leq

 

is transitive. 

Relation

 

Leq

 

is reflexive, antisymmetric, and transitive. Therefore it is an order 

relation.

 

V.B.1.ii.c Example: Divisibility

 

↬

 

Section VII.A.1 

is devoted to 

the concept of 

divisibility.

 

On natural numbers,

 

D = { ( n, p ) ∈ N2 | ∃ k ∈ N , n = k · p }

 

is called the divisibility 

relation: when

 

( n, p ) ∈ D

 

, we say that

 

p

 

divides

 

n

 

(

 

n

 

is a multiple of

 

p

 

). 

We can prove it is an order relation:
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R

 

Let

 

n ∈ N

 

. We have

 

n = 1 · n

 

. So by choosing

 

k = 1

 

we have

 

( n, n ) ∈ D

 

, hence

 

D

 

is reflexive. 

A

 

Let

 

n, p ∈ N

 

. Assume

 

( n, p ) ∈ D

 

and

 

( p, n ) ∈ D

 

. Then there are

 

k , k 

′ ∈ N

 

such 

that

 

n = k · p

 

and

 

p = k 

′ · n

 

, and

 

n = k · k 

′ · n

 

. So

 

k · k 

′ = 1

 

, hence

 

k = m = 1

 

and

 

n = p

 

. As a result

 

D

 

is antisymmetric. 

T

 

Let

 

n, p, m ∈ N

 

. Assume

 

( n, p ) ∈ D

 

and

 

( p, m ) ∈ D

 

. Then there are

 

k , k 

′ ∈ N

 

such that

 

n = k · p

 

and

 

p = k 

′ · m

 

, and

 

n = k · k 

′ · m

 

. Let

 

k 

′′ = k · k 

′

 

. We have

 

n = k 

′′ · m

 

so

 

( n, m ) ∈ D

 

and

 

D

 

is transitive. 

Relation

 

D

 

is reflexive, antisymmetric, and transitive. Therefore it is an order relation.

 

V.B.1.ii.d Example: Inclusion 

On any domain, the set inclusion relation

 

In = { ( A, B ) ∈ P ( D )2 | A ⊆ B }

 

is an order 

relation:

 

R

 

Let

 

A

 

be a set. We have

 

A ⊆ A

 

so

 

( A, A ) ∈ In

 

and

 

In

 

is reflexive. 

A

 

Let

 

A, B

 

be sets. Assume

 

( A, B ) ∈ In

 

and

 

( B , A ) ∈ In

 

. Then

 

A ⊆ B

 

and

 

B ⊆ A

 

so

 

A = B

 

. Hence

 

In

 

is antisymmetric. 

T

 

Let

 

A, B , C

 

be sets. Assume

 

( A, B ) ∈ In

 

and

 

( B , C ) ∈ In

 

. Let

 

x ∈ D

 

. Assume

 

x ∈ A

 

. Since

 

A ⊆ B

 

,

 

x ∈ B

 

. Since

 

B ⊆ C

 

,

 

x ∈ C

 

. Hence

 

A ⊆ C

 

and

 

( A, C ) ∈ In

 

. Therefore

 

In

 

is transitive. 

Relation

 

In

 

is reflexive, antisymmetric, and transitive. Therefore it is an order rela- 

tion.

 

V.B.1.iii Notations for orders 

To highlight the asymmetry of the relation, orders are often written with an infix asymmet- 

rical symbol:

 

≼

 

,

 

⊑

 

,

 

⊴

 

,

 

⋊

 

,

 

⋐

 

,

 

⋖

 

,

 

≪

 

. The

 

≤

 

symbol is being “reserved” for the “less than or 

equal to” order on numbers, and

 

⊆

 

is being “reserved” for the “inclusion” order on sets. 

As for equivalence relations, definitions can be written in a set-builder notation or 

through a sentence. For example one can define

 

≼ = { (( n1 

, p1) , ( n2 

, p2)) | n1 

≤ n2 

∧ p1 

≤ p2 

}

 

or by the sentence “Let

 

≼

 

be the relation over

 

Z2

 

defined as

 

( n1 

, p1) ≼ ( n2 

, p2)

 

if and only 

if

 

n1 

≤ n2

 

and

 

p1 

≤ p2

 

”. Then it remains to be proved that it actually is an order relation! 

V.B.1.iv Strict orders 

From any order

 

R

 

one can define a strict version

 

R 

′

 

of the order. The strict version is the 

same except it does not relate elements with themselves:

 

R 

′ = { ( x, y ) | ( x, y ) ∈ R ∧ x ̸ = y }

 

One example is the strict version

 

<

 

of order

 

≤

 

. 

It is common to use a resembling symbol for the strict version of the order. Usually, this 

is done either by barring or removing the part that resembles the equality symbol:
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•

 

x < y

 

iff

 

x ≤ y ∧ x ̸ = y

 

. 

•

 

x ≺ y

 

iff

 

x ≼ y ∧ x ̸ = y

 

. 

•

 

A ⊊ B

 

iff

 

A ⊆ B ∧ A ̸ = B

 

. 

•

 

A ⋢ B

 

iff

 

A ⊑ B ∧ A ̸ = B

 

. 

Remark the difference between

 

⊊

 

, which is strict inclusion, and

 

⊈

 

, which is the negation 

of inclusion:

 

A ⊈ B

 

iff

 

¬ ( A ⊆ B )

 

. 

Note that because the strict version is not reflexive, it is not an order relation! We can 

however prove that the strict order is transitive:

 

Lemma: Strict orders are transitive

 

Let

 

≼

 

be an order over

 

A

 

and let

 

≺

 

be the strict version of this order. Then for any

 

x, y , z ∈ A

 

, if

 

x ≺ y

 

and

 

y ≺ z

 

, then

 

x ≺ z

 

.

 

Proof

 

Let

 

x, y , z ∈ A

 

. Assume

 

x ≺ y

 

and

 

y ≺ z

 

. Therefore in particular

 

x ≼ y

 

and

 

y ≼ z

 

, 

so by transitivity of

 

≼

 

,

 

x ≼ z

 

. 

It remains to be proved that

 

x ̸ = z

 

. Assume, by contradiction, that

 

x = z

 

. Then 

we have

 

y ≼ x

 

, and by antisymmetry of

 

≼

 

x = y

 

, which is a contradiction with

 

x ≺ y

 

. E Therefore

 

x ̸ = z

 

and

 

x ≺ z

 

.

 

Also remark that it is impossible to have both

 

x ≺ y

 

and

 

y ≺ x

 

: that would mean in 

particular

 

x ≼ y

 

and

 

y ≼ x

 

, so

 

x = y

 

by antisymmetry of

 

≼

 

, which is a contradiction with

 

x ̸ = y

 

. As a result,

 

≺

 

is only antisymmetric because the premise of the implication never 

holds.

 

Exercise V.3

 

Prove that each of the following relation is an order. 

1.

 

⋐

 

defined over

 

R × R

 

as

 

( a1 

, b1) ⋐ ( a2 

, b2)

 

iff

 

a2 

≤ a1

 

and

 

b1 

≤ b2

 

. 

2.

 

⊴

 

defined over

 

R × N

 

as

 

( x1 

, n1) ⊴ ( x2 

, n2)

 

iff either

 

x1 

< x2

 

or:

 

x1 

= x2

 

and 

there exists

 

k ∈ N

 

such that

 

n1 

= n2 

× k

 

.

 

Exercise V.4

 

Prove that relation

 

R = { ( x1 

, y1) , ( x2 

, y2) ∈ R2 × R2 | x1 

≤ x2 

∨ y1 

≤ y2 

}

 

is not an 

order.

 

V.B.2 Partial v total orders 

Assume

 

≼

 

is an order relation. Nothing in the definition of an order (Reflexivity, Antisym- 

metry, Transitivity) requires that for any

 

x, y

 

,

 

x ≼ y

 

or

 

y ≼ x

 

. 

For example, for sets of natural numbers, we have neither

 

{ 1 , 2 , 3 } ⊆ { 2 , 3 , 5 }

 

nor

 

{ 2 , 3 , 5 } ⊆ { 1 , 2 , 3 }

 

: these elements are incomparable . That does not contradict the fact 

that

 

⊆

 

is an order. 

The additional requirement that any two elements can be compared makes the order 

total :
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Definition: Total order

 

An order

 

≼

 

over

 

A

 

is total iff

 

∀ x, y ∈ A, x ≼ y ∨ y ≼ x

 

.

 

An order that is not total is called a partial order . 

Proving totality of an order 

To prove that an order is total, one has to show that for any two elements, they are 

related one way or another. This can be done using a proof by cases, because the statement 

is a disjunction. It can also be done by assuming

 

x ̸ ≼ y

 

and proving

 

y ≼ x

 

(which is a proof 

by cases in hiding). 

To prove an order is not total, on the other hand, one has to exhibit incomparable 

elements

 

x

 

and

 

y

 

such that

 

x ̸ ≼ y

 

and

 

y ̸ ≼ x

 

.

 

Exercise V.5

 

Determine whether the following relation is a total or partial order. Justify your 

answer by a proof. 

1.

 

D = { ( n, p ) ∈ N2 | ∃ k ∈ N , n = k · p }

 

(divisibility). 

2.

 

⋐

 

defined over

 

R × R

 

as

 

( a1 

, b1) ⋐ ( a2 

, b2)

 

iff

 

a2 

≤ a1

 

and

 

b1 

≤ b2

 

(this is from 

Exercise V.3, Question 1). 

3.

 

⊴

 

defined over

 

R × N

 

as

 

( x1 

, n1) ⊴ ( x2 

, n2)

 

iff

 

x1 

< x2

 

or

 

x1 

= x2

 

and there 

exists

 

k ∈ N

 

such that

 

n1 

= n2 

× k

 

(this is from Exercise V.3, Question 2). 

4.

 

Leq = { ( n, p ) ∈ Z2 | ∃ k ∈ N , n + k = p }

 

. Note: you cannot use the fact that if

 

n ≰ p

 

then

 

p < n

 

that would be using the result you are trying to prove!

 

V.B.3 Lexicographic orders 

V.B.3.i Definition 

A lexicographic order is a way to create orders on Cartesian products, using orders on the 

sets in the product. It works as follows: compare the first components; if they are the same, 

compare the second component, and so on until one component can be strictly compared or 

the tuples are completely identical. 

This process is used in the way we sort words out in a dictionary: a word is a tuple of 

letters, we have an underlying order on letters, the alphabetical order

 

≼α

 

. To compare apple 

and pear , we compare their first letter a and p , and conclude that since

 

a ≺α 

p

 

apple comes 

before pear . Now when comparing pear and peach , we first compare the first letters, which 

are both p , so move on to the second letter, both e , move on to the third letter, both a , 

move on to the fourth letter, and since

 

c ≺α 

r

 

, we conclude that peach comes before pear . 

This is formalized as follows; in the definition below we give the case of two sets and the 

general case of

 

n

 

sets.
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Definition: Lexicographic order

 

• Let

 

≼A

 

be an order over

 

A

 

and

 

≼B

 

be an order over

 

B

 

. The lexicographic order

 

≼lex

 

over

 

A × B

 

is defined as:

 

( x1 

, y1) ≼lex 

( x2 

, y2)

 

iff 

– either

 

x1 

̸ = x2

 

and

 

x1 

≼A 

x2

 

(i.e.

 

x1 

≺A 

x2

 

); 

– or

 

x1 

= x2

 

and

 

y1 

≼B 

y2

 

. 

• Let

 

≼1 

, . . . , ≼n

 

be

 

n

 

orders over

 

A1 

, . . . , An

 

, respectively. The lexicographic 

order over

 

A1 

× · · · × An

 

is defined as:

 

( x1 

, . . . , xn) ≼lex 

( y1 

, . . . , yn)

 

iff 

– either

 

( x1 

, . . . , xn) = ( y1 

, . . . , yn)

 

; 

– or

 

∃ i ∈ { 1 , . . . n } , xi 

≺i 

yi

 

and

 

∀ j < i, xj 

= yj

 

.

 

The definitions seem to differ a bit for two sets and the general case. They actually 

match for

 

n = 2

 

, but they are presented in a slightly different way. This is because for the 

general case it is important to be able to determine at which index the comparison is strict 

(if any). In the case of two sets, the case of equality is encompassed in the case

 

y1 

≼B 

y2

 

, 

whereas for the general case this case is further divided into the remaining components: 

there can be strict inequality at the second component, or equality and then we need to 

compare further, but we cannot yet conclude to equality. 

V.B.3.ii Lexicographic orders are orders 

As the name claims, but which remains to be proved, the lexicographic order thus defined 

is actually an order:

 

Theorem: Lexicographic order is an order

 

Let

 

≼1 

, . . . , ≼n

 

be

 

n

 

orders over

 

A1 

, . . . , An

 

, respectively. The lexicographic 

order

 

≼lex

 

is an order over the Cartesian product

 

A1 

× · · · × An

 

.

 

Proof

 

R

 

( x1 

, . . . , xn) ≼lex 

( x1 

, . . . , xn)

 

because

 

( x1 

, . . . , xn) = ( x1 

, . . . , xn)

 

. 

A

 

Assume

 

( x1 

, . . . , xn) ≼lex 

( y1 

, . . . , yn)

 

and

 

( y1 

, . . . , yn) ≼lex 

( x1 

, . . . , xn)

 

. Assume, 

by contradiction, that

 

( x1 

, . . . , xn) ̸ = ( y1 

, . . . , yn)

 

. That means there exist

 

i, k ∈ 

{ 1 , . . . , n }

 

such that: 

xi 

≺i 

yi 

and ∀ j < i, xj 

= yj 

(V.1) 

yk 

≺k 

xk 

and ∀ j < k , xj 

= yj 

. (V.2) 

Now we have two cases: either the indices

 

k

 

and

 

i

 

match or they don’t. 

• Assume

 

i = k

 

, then we have

 

xi 

≺i 

yi

 

and

 

yi 

≺i 

xi

 

, so

 

xi 

≼i 

yi

 

,

 

yi 

≼i 

xi

 

, and

 

xi 

̸ = yi

 

. By antisymmetry of

 

≼i

 

we have

 

xi 

= yi

 

, which is a contradiction 

with

 

xi 

̸ = yi

 

. 

• Without loss of generality, we can now assume that

 

i < k

 

. (The case

 

k < i

 

is the same.) We have both

 

xi 

≺i 

yi

 

, by (V.1), and

 

xi 

= yi

 

, by (V.2) and 

since

 

i < k

 

, which is a contradiction.
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So we have a contradiction in all cases, so we have a contradiction and

 

( x1 

, . . . , xn) = ( y1 

, . . . , yn)

 

. 

T

 

Assume

 

( x1 

, . . . , xn) ≼lex 

( y1 

, . . . , yn)

 

and

 

( y1 

, . . . , yn) ≼lex 

( z1 

, . . . , zn)

 

. 

• If

 

( x1 

, . . . , xn) = ( y1 

, . . . , yn)

 

or

 

( y1 

, . . . , yn) = ( z1 

, . . . , zn)

 

we directly have

 

( x1 

, . . . , xn) ≼lex 

( z1 

, . . . , zn)

 

. 

• Assume

 

( x1 

, . . . , xn) ̸ = ( y1 

, . . . , yn)

 

and

 

( y1 

, . . . , yn) ̸ = ( z1 

, . . . , zn)

 

. Then 

we have

 

i ∈ { 1 , . . . n } , xi 

≺i 

yi

 

and

 

∀ j < i, xj 

= yj

 

and

 

k ∈ { 1 , . . . , n }

 

such 

that

 

yk 

≺k 

zk

 

and

 

∀ j < k , yj 

= zj

 

. 

We prove it by cases on the order between indices

 

i

 

and

 

k

 

: 

– Assume

 

i < k

 

. We have

 

∀ j < i, xj 

= yj 

= zj

 

, and

 

xi 

≺i 

yi

 

, with

 

yi 

= zi

 

. So

 

xi 

≺i 

zi

 

, so

 

( x1 

, . . . , xn) ≼lex 

( z1 

, . . . , zn)

 

. 

– Assume

 

i = k

 

. We have

 

∀ j < i, xj 

= yj 

= zj

 

, with

 

xi 

≺i 

yi

 

and

 

yi 

≺i 

zi

 

. By the above Lemma (Section V.B.1.iv),

 

xi 

≺i 

zi

 

, and

 

( x1 

, . . . , xn) ≼lex 

( z1 

, . . . , zn)

 

. 

– Assume

 

k < i

 

. We have

 

∀ j < k , xj 

= yj 

= zj

 

, and

 

xk 

= yk

 

, with

 

yk 

≺k 

zk

 

. So

 

xk 

≺k 

zk

 

and

 

( x1 

, . . . , xn) ≼lex 

( z1 

, . . . , zn)

 

.

 

V.B.3.iii Lexicographic orders and totality

 

Theorem

 

Let

 

≼1 

, . . . , ≼n

 

be

 

n

 

total orders over

 

A1 

, . . . , An

 

, respectively. The lexicographic 

order

 

≼lex

 

over

 

A1 

× · · · × An

 

is total.

 

Proof

 

Let

 

( x1 

, . . . , xn) , ( y1 

, . . . , yn) ∈ A1 

× · · · × An

 

. 

First, consider the case where these tuples are equal: assume

 

( x1 

, . . . , xn) = 

( y1 

, . . . , yn)

 

. Then by definition of

 

≼lex

 

we have

 

( x1 

, . . . , xn) ≼lex 

( y1 

, . . . , yn)

 

. 

Now assume

 

( x1 

, . . . , xn) ̸ = ( y1 

, . . . , yn)

 

. So for at least an index

 

i

 

,

 

xi 

̸ = yi

 

. Let

 

i

 

be 

the smallest of those, i.e. for

 

j < i

 

,

 

xj 

= yj

 

. 

Since

 

≼i

 

is total, we have one of the two cases: 

• Either

 

xi 

≼i 

yi

 

, which means

 

xi 

≺i 

yi

 

since

 

xi 

̸ = yi

 

. Therefore

 

( x1 

, . . . , xn) ≼lex 

( y1 

, . . . , yn)

 

. 

• Or

 

yi 

≼i 

xi

 

, which means

 

yi 

≺i 

xi

 

since

 

xi 

̸ = yi

 

. Therefore

 

( y1 

, . . . , yn) ≼lex 

( x1 

, . . . , xn)

 

. 

As a result

 

( x1 

, . . . , xn)

 

and

 

( y1 

, . . . , yn)

 

are comparable and

 

≼lex

 

is total.
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VI.A Sequences 

VI.A.1 Definition, notation 

Formally speaking, a sequence is a total function using natural numbers (sometimes exclud- 

ing zero) as the domain. This particularity is reflected in the way sequences are denoted: 

instead of the usual notation

 

u ( n )

 

, we write

 

un

 

for the element of index

 

n

 

, called the

 

n

 

th 

term . The whole sequence is denoted

 

( un)n ∈ N

 

(rather than

 

u

 

as we do for functions). The 

choice of the letter

 

u

 

in itself is guided by tradition: by habit, letters

 

u

 

,

 

v

 

,

 

w

 

, are usually 

used in sequences (while

 

f

 

,

 

g

 

,

 

h

 

are more often used for functions in general).

 

Definition

 

A sequence is a total function with

 

N

 

(or

 

N \ { 0 }

 

) as domain.

 

VI.A.1.i Explicit definition 

We can define a sequence explicitly, as we do for functions, by providing an expression to 

calculate the

 

n

 

th term based on

 

n

 

. For example: 

• Let

 

( un)n ∈ N

 

the sequence of integers defined by

 

un 

= 3 n − 5

 

. 

• Let

 

( vn)n ∈ N

 

the sequence of reals defined by

 

vn 

= 

√

 

n

 

. 

• Let

 

( wn)n ∈ N

 

the sequence of rationals defined by

 

wn 

= 

2 n +7

 

n +1

 

. 

With an explicit definition, a sequence has little difference with a function, only a par- 

ticular domain. 

VI.A.1.ii Recursive definition 

What makes sequences more specific, and therefore more interesting, is that is it possible to 

define a term using the previous one, as long as term

 

0

 

is provided. Calculating each term 

starting from

 

0

 

allows to calculate the

 

n

 

th term.

 

Definition: Recursive definition of a sequence

 

A recursive definition of a sequence

 

( un)n ∈ N

 

is given by: 

• A base case that gives the value

 

u0

 

. 

• A recurrence relation that expresses

 

un +1

 

using

 

un

 

for every

 

n

 

.

 

The above pattern can be generalized with more than a single base case. The base 

cases could be

 

0

 

and

 

1

 

; the recurrence relation can then be defined by writing

 

un +2

 

as an 

expression of

 

un +1

 

and

 

un

 

. For example: 

•

 

u0 

= 1

 

and for

 

n ∈ N

 

,

 

un +1 

= 2 un+3

 

. Then we have

 

u0 

= 1

 

,

 

u1 

= 2 u0+3 = 2 · 1+3 = 5

 

,

 

u2 

= 2 u1 

+ 3 = 2 · 5 + 3 = 13

 

. . . 

•

 

v0 

= 3

 

,

 

v1 

= 2

 

and for

 

n ∈ N

 

,

 

vn +2 

= 2 vn +1 

− vn

 

. Then we have

 

v0 

= 3

 

,

 

v1 

= 2

 

,

 

v2 

= 2 v1 

− v0 

= 2 · 2 − 3 = 1

 

,

 

v3 

= 2 v2 

− v1 

= 2 · 1 − 2 = 0

 

,

 

v4 

= 2 v3 

− v2 

= 2 · 0 − 2 = − 2

 

. . .
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Using more than one base case is not the only way to define a sequence recursively. The 

recursive relation can actually use any term as long as it is lower and all possible base cases 

are covered. This makes a recursive definition well founded . For example one can define the 

sequence

 

( wn)n ∈ N

 

as

 

w0 

= 1

 

and

 

wn 

= 2 w⌊ 

n

 

2 

⌋ 

+ 3

 

. In this case, it is possible to calculate 

any term

 

wn

 

using

 

w⌊ 

n

 

2 

⌋

 

, and since this number is strictly smaller the process will terminate 

when we eventually reach

 

w0

 

, which is given.

 

Exercise VI.1

 

Give the first 6 terms (up to index

 

5

 

) of the following sequences: 

1.

 

( un)n ∈ N

 

defined by

 

un 

= 

3 n

 

5

 

. 

2.

 

( vn)n ∈ N

 

defined by

 

vn +1 

= 

3 vn

 

5

 

and

 

v0 

= 125

 

. 

3.

 

( wn)n ∈ N

 

defined by

 

wn +1 

= 3 wn 

− 8

 

and

 

w0 

= 5

 

. 

4.

 

( w 

′
n)n ∈ N

 

defined by

 

w 

′ 

n +1 

= 3 w 

′
n 

− 8

 

and

 

w 

′ 

0 

= 3

 

. 

5.

 

( Fn)n ∈ N

 

defined by

 

Fn +2 

= Fn +1 

+ Fn

 

,

 

F0 

= F1 

= 1

 

.

 

VI.A.2 Particular sequences 

When given a recursive definition for a sequence, finding an explicit definition is the first 

goal: it allows for faster computation of any term. Each definition being different, there is no 

one recipe to find such an expression (if it is even possible). There are however some families 

of sequences for which there are formulas or methods to achieve an explicit definition. 

VI.A.2.i Arithmetic and geometric growth 

The simplest sequences are sequences that grow in the same manner between each term. 

If this growth is additive, the sequence is arithmetic ; if the growth is multiplicative, the 

sequence is geometric .

 

Definition: Arithmetic sequence

 

An arithmetic sequence of increment

 

d

 

is defined: 

• Recursively by

 

u0 

= a

 

and

 

un +1 

= un 

+ d

 

. 

• Explicitly by

 

un 

= a + n · d

 

.

 

Definition: Geometric sequence

 

A geometric sequence of ratio

 

r

 

is defined: 

• Recursively by

 

u0 

= a

 

and

 

un +1 

= r · un

 

. 

• Explicitly by

 

un 

= a · r 

n

 

.

 

The fact that the explicit definition of these sequences actually corresponds to the re- 

cursive definition will be proved in Section VI.B.1 and Exercise VI.3. 

In practice, an arithmetic sequence can be recognized by looking at the difference between 

two consecutive terms: it is always the same. For a geometric sequence, the ratio of two 

consecutive terms is constant.
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For example, let

 

( un)n ∈ N

 

be defined by

 

un 

= 5 n − 3

 

for any

 

n ∈ N

 

. For

 

n ∈ N

 

,

 

un +1 

− un 

= (5( n +1) − 3) − (5 n − 3) = 5 n +5 − 3 − 5 n +3 = 5

 

. So

 

( un)n ∈ N

 

is an arithmetic 

sequence of increment

 

5

 

. 

Let’s define

 

( vn)n ∈ N

 

by

 

v0 

= 2

 

,

 

vn +1 

= 3 vn

 

. Then for any

 

n

 

,

 

vn +1

 

vn 

= 

3 vn

 

vn 

= 3

 

, so

 

( vn)n ∈ N

 

is a geometric sequence of ratio

 

3

 

.

 

Exercise VI.2

 

For the following starts of sequences: 

• Conjecture based on the first terms whether it is an arithmetic, a geometric 

sequence (or none of these two kinds). Justify your answer. 

• If so: 

– Find the increment or ratio. 

– Give a recursive definition. 

– Give an explicit definition. 

– Find the next term of the sequence. 

1.

 

u0 

= 7 , u1 

= 4 , u2 

= 1 , u3 

= − 2 , u4 

= − 5 , . . .

 

2.

 

v0 

= 3 , v1 

= − 6 , v2 

= 12 , v3 

= − 24 , v4 

= 48 , . . .

 

3.

 

w0 

= 13 , w1 

= 6 . 5 , w2 

= 3 . 25 , w3 

= 1 . 625 , w4 

= 0 . 8125 , . . .

 

4.

 

s0 

= 2 , s1 

= 3 , s2 

= 8 , s3 

= 33 , s4 

= 158 , . . .

 

VI.A.2.ii Sum of terms of a sequence 

It is quite common that the sum of the value is of more interest than the individual values. 

For example when the sequence represents a yearly value and the total value is of interest. 

In mathematical notations, sums are written with the

 

Σ

 

symbol (which is the Greek 

letter for

 

S

 

).

 

n∑ 

i =0 

ui 

= u0 

+ u1 

+ · · · + un

 

Below the

 

Σ

 

is the index name (here

 

i

 

) and its starting value (

 

0

 

). Above is the ending value 

(here

 

n

 

). Next to the

 

Σ

 

is the expression that is being summed, using the index. 

For those familiar with programming, this is akin to declaring a loop with index i , 

starting at 0 and ending at n : sum=0; for (int i=0; i<=n; i++) {sum += u(i);} 

This notation is quite handy because it has some good properties: 

• Linearity: when the terms being summed is a linear expression, it can be decomposed 

into a linear expression of sums:

 

n∑ 

i =0 

( x · ai 

+ y · bi) = x · 

n∑ 

i =0 

ai 

+ y · 

n∑ 

i =0 

bi

 

• Decomposition: a sum can be split into several sums at any index between the start 

and end: for

 

0 ≤ k ≤ n

 

,

 

n∑ 

i =0 

ui 

= 

k∑ 

i =0 

ui 

+ 

n∑ 

i = k +1 

ui
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Summing sequences up to infinity (this is called a series ) is also possible, although one 

has to be careful because the result may be infinite. These series show up as a good way 

to approximate real numbers and functions (such as the exponential, logarithm, sine, and 

cosine). For example, it can be proved that

 

b

 

This is called 

Leibniz 

formula .

 

π = 4 

∑∞ 

i =0 

( − 1)i

 

2 i + 1

 

, so calculating this sum up 

to a certain point provides an approximation of

 

π

 

. 

In the case of arithmetic and geometric sequences, the sum of their terms up to

 

n

 

can 

actually be expressed in a closed-form formula (i.e. a formula that does not use the terms 

of the sequence themselves). 

VI.A.2.ii.a Sum of an arithmetic sequence

 

Theorem: Closed-form formula for an arithmetic series

 

If

 

un 

= a + n · d

 

then

 

∑n 

i =0 

un 

= 

( n +1)(2 a + n · d )

 

2

 

.

 

Proof

 

This proof uses a technique that is very useful for sequences: we introduce symmetry 

by summing the terms twice, in order to match the first term with the last. 

We write

 

S = 

∑n 

i =0 

un

 

. So

 

2 S = u0 

+ u1 

+ · · · + un 

+ u0 

+ u1 

+ · · · + un 

= ( u0 

+ un) + ( u1 

+ un − 1) + · · · + ( un 

+ u0) 

= ( a + a + n · d ) + ( a + d + a + ( n − 1) · d ) + · · · + ( a + n · d + a ) 

= (2 a + n · d ) + (2 a + n · d ) + · · · + (2 a + n · d ) 

2 S = ( n + 1)(2 a + n · d )

 

So

 

S = 

∑n 

i =0 

un 

= 

( n +1)(2 a + n · d )

 

2

 

.

 

VI.A.2.ii.b Sum of a geometric sequence

 

Theorem: Closed-form formula for a geometric series

 

If

 

un 

= a · r 

n

 

with

 

r ̸ = 1

 

then

 

∑n 

i =0 

un 

= 

a ( r 

n +1 − 1)

 

r − 1

 

.

 

Proof

 

This proof uses another technique that is very useful for sequences: trying to find self- 

similarities. In this case, if the sum is multiplied by

 

r

 

it looks a lot like the original 

sum: Let

 

S = 

∑n 

i =0 

un

 

. We have:

 

r · S = a · r + · · · + a · r 

n+ a · r 

n +1 

S = a + a · r + · · · + a · r 

n

 

So

 

r S − S = a · r 

n +1 − a ⇔ S ( r − 1) = a ( r 

n +1 − 1)

 

so for

 

r ̸ = 1

 

,

 

S = 

∑n 

i =0 

un 

= 

a ( r 

n +1 − 1)

 

r − 1

 

.

 

Introduction to Discrete Mathematics 91



 

Chapter VI Sequences and Recurrence

 

Remark that in the case where

 

r = 1

 

, then all terms are equal and

 

∑n 

i =0 

un 

= ( n + 1) a

 

. 

VI.A.2.iii Arithmetico-geometric sequences 

One step of difficulty higher than arithmetic and geometric sequences is a mixing of these two: 

arithmetico-geometric sequences, where the next term is calculated as a linear expression of 

the current one.

 

Definition: Arithmetico-geometric sequence

 

An arithmetico-geometric sequence is defined recursively 

by

 

u0 

= a

 

and

 

un +1 

= r · un 

+ d

 

.

 

To find an explicit equivalent definition, we will use the fixed-point (sometimes written 

fixpoint ) of this recurrence relation: a value

 

x

 

such that if

 

un 

= x

 

, then

 

un +1 

= x

 

. This can 

be calculated by solving the simple linear equation

 

x = r x + d ⇔ x (1 − r ) = d ⇔ x = 

d

 

1 − r

 

. 

Note that we have assumed here that

 

r ̸ = 1

 

, otherwise it is an arithmetic sequence (with no 

fixed-point if

 

d ̸ = 0

 

) and we have

 

un 

= a + n · d

 

. 

Now the trick is to define an auxiliary sequence, that will be the original one shifted by 

the fixed-point: we define the shifted sequence

 

vn 

= un 

− 

d

 

1 − r

 

(i.e.

 

un 

= vn 

+ 

d

 

1 − r

 

). We can 

the rewrite the equality

 

un +1 

= r · un 

+ d

 

as follows:

 

un +1 

= r · un 

+ d ⇔ 

vn +1 

+ 

d

 

1 − r 

= r · ( vn 

+ 

d

 

1 − r ) + d ⇔ 

vn +1 

= r · ( vn 

+ 

d

 

1 − r ) + d − 

d

 

1 − r 

⇔ 

vn +1 

= r · vn 

+ 

r d

 

1 − r 

+ d − 

d

 

1 − r 

⇔ 

vn +1 

= r · vn 

+ 

r d + d − r d − d

 

1 − r 

⇔ 

vn +1 

= r · vn

 

So

 

vn

 

is a geometric sequence and

 

vn 

= v0 

· r 

n = ( a − 

d

 

1 − r ) r 

n

 

, hence

 

un 

= ( a − 

d

 

1 − r ) r 

n+ 

d

 

1 − r

 

. 

While it is not really interesting to memorize the formula for the explicit definition of 

an arithmetico-geometric sequence, it is good to memorize the method of using the auxil- 

iary sequence obtained by shifting by a fixed-point; this is because this trick is not easily 

rediscovered, while the calculations that then lead to the result are easily deducted. 

Example of arithmetico-geometric sequence 

Consider the sequence recursively defined by

 

u0 

= 2

 

and

 

un +1 

= 3 un 

+ 5

 

. The fixed 

point of the recurrence relation is

 

x

 

that satisfies the equation

 

x = 3 x + 5 ⇔ x = −5

 

2

 

. 

We can now define the shifted sequence

 

vn 

= un 

+ 

5

 

2

 

, so

 

un 

= vn 

− 

5

 

2

 

. Then

 

vn +1 

− 

5

 

2 

= 

3( vn 

− 

5

 

2) + 5 ⇔ vn +1 

= 3 vn 

− 

15

 

2 

+ 5 + 

5

 

2 

⇔ vn +1 

= 3 vn 

+ 

− 15+10+5

 

2 

⇔ vn +1 

= 3 vn

 

. Since

 

( vn)n ∈ N

 

is a geometric sequence of ratio

 

3

 

, we can write

 

vn 

= v0 

· 3n = 

9

 

2 

· 3n

 

. So for any

 

n

 

,

 

un 

= 

9

 

2 

· 3n − 

5

 

2 

= 

3n +2 − 5

 

2

 

.
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VI.B Proofs by induction 

VI.B.1 Principle of induction 

Universal properties over sequences defined recursively can be proved in a manner following 

the recursive definition, using a proof by induction .

 

Proof by induction rule

 

Let

 

P ( n )

 

be a predicate over integers. 

If

 

P (0)

 

and

 

∀ n ∈ N , P ( n ) ⇒ P ( n +1)

 

, then

 

∀ n ∈ N , P ( n )

 

.

 

The idea behind this proof rule is as follows. Assume

 

P (0)

 

and

 

∀ n ∈ N , P ( n ) ⇒ P ( n +1)

 

. 

To prove that

 

∀ n ∈ N , P ( n )

 

, take an integer

 

n

 

. Starting at

 

0

 

, we have

 

P (0)

 

and the universal 

quantifier can be instantiated with

 

n = 0

 

:

 

P (0) → P (1)

 

. By Modus Ponens we obtain

 

P (1)

 

. 

Similarly, the universal quantifier can be instantiated with

 

n = 1

 

:

 

P (1) → P (2)

 

. Since 

we have

 

P (1)

 

, by Modus Ponens we obtain

 

P (2)

 

. This continues until reaching the desired 

value

 

n

 

. 

This reasoning is being abstracted away in the rule, and in practice it is applied as 

follows:

 

Proof by induction scheme

 

• State the property being proved by defining predicate

 

P

 

. 

• Prove

 

P (0)

 

. 

• Take

 

n ∈ N

 

, assume

 

P ( n )

 

and prove

 

P ( n + 1)

 

. 

• Conclude.

 

In this scheme, predicate

 

P ( n )

 

is called the induction hypothesis . The proof of

 

P (0)

 

is 

called the base case , while proving

 

P ( n + 1)

 

from

 

P ( n )

 

is the induction case . These steps 

are usually explicitly specified in the proof. 

As this mimics exactly how recursive sequences are defined, it is well suited for any 

property on sequences. 

Example: Proof by induction of explicit representation of arithmetic se- 

quences 

Let’s prove by induction that if

 

( un)n ∈ N

 

is defined ny

 

u0 

= a

 

and

 

un +1 

= un 

+ d

 

, then for 

any

 

n

 

,

 

un 

= a + n · d

 

. Formally, let

 

P ( n )

 

be the predicate

 

un 

= a + n · d

 

. 

Base case: For

 

n = 0

 

. We have

 

u0 

= a = a + 0 · d

 

so the property holds for

 

0

 

, i.e.

 

P (0)

 

is 

true. 

Induction case: Let

 

n ∈ N

 

. Assume

 

P ( n )

 

, meaning that the property holds for

 

n

 

, namely 

that

 

un 

= a + n · d

 

. Then

 

un +1 

= un+ d = a + n · d + d = a +( n +1) · d

 

, so the property 

holds for

 

n + 1

 

:

 

P ( n + 1)

 

is true. 

Therefore, by induction the property holds for any

 

n

 

:

 

∀ n ∈ N , P ( n )

 

.
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Exercise VI.3

 

Prove by induction that a geometric sequence of ratio

 

r

 

and initial term

 

u0 

= a

 

can 

be expressed as

 

un 

= a · r 

n

 

for any

 

n

 

.

 

Exercise VI.4

 

Let

 

u0 

= 4

 

and

 

un +1 

= 3 · un 

− 2

 

. Prove that for any

 

n ∈ N

 

,

 

un 

= 3n +1 + 1

 

.

 

Exercise VI.5

 

1. Calculate a closed-form formula for

 

∑n 

i =0 

i

 

. 

2. Prove the same result using a proof by induction.

 

VI.B.2 Variations on induction 

VI.B.2.i Finding the right predicate 

One issue with proofs by induction is that they can only be written once you know exactly 

what you want to prove. And this may not be easy, for example for formulas it is sometimes 

hard to know in advance what is the closed form. This can be conjectured based on a couple 

of terms: calculate the first few terms and try to find a pattern. This provides a conjecture 

that remains to be proved (by induction). 

In some cases, to prove predicate

 

P

 

it is easier to use a stronger predicate

 

P 

′

 

which is 

proved by induction. Predicate

 

P 

′

 

is deemed stronger is for any

 

n ∈ N

 

,

 

P 

′( n ) ⇒ P ( n )

 

. While 

it is in usually harder to prove a stronger predicate, in the case of induction the strength 

of

 

P 

′

 

can play in your favor because in the inductive case

 

P 

′

 

is used as an hypothesis: a 

stronger hypothesis means there is more to rely on. 

In these case, choosing the right predicate is not obvious. It is often found by trial and 

error: when failing to prove

 

P ( n + 1)

 

from

 

P ( n )

 

, try a stronger version

 

P 

′

 

, if that fails try 

an even stronger one

 

P 

′′

 

. . . One case where the stronger predicate is quite straightforward 

is the strong induction scheme, described in Section VI.B.2.iii. 

VI.B.2.ii The proof by contradiction version of induction 

To prove

 

∀ n ∈ N , P ( n )

 

by contradiction, we assume its negation and show a contradiction. 

In this case the negation is

 

∃ n ∈ N , ¬ P ( n )

 

. So we can assume that there is some value

 

n

 

that violates predicates

 

P

 

:

 

¬ P ( n )

 

. Because we are working with natural numbers, we can 

assume

 

n

 

to be the smallest such value: it is possible because

 

N

 

has a smallest element (

 

N

 

is Well ordered ). Then we prove first that

 

n ̸ = 0

 

, i.e.

 

P (0)

 

holds (corresponding to the base 

case). Now that it can be assumed that

 

n > 0

 

, we show that

 

n − 1

 

also violates

 

P

 

:

 

¬ P ( n − 1)

 

(corresponding to the induction case). That contradicts the fact that

 

n

 

was the smallest. 

Therefore the assumption that

 

∃ n ∈ N , ¬ P ( n )

 

does not hold so the property

 

∀ n ∈ N , P ( n )

 

is true. 

VI.B.2.iii Strong induction 

While the induction scheme was presented starting from

 

0

 

, it is possible it actually starts 

higher: often

 

1

 

, sometimes

 

2

 

, rarely but possibly higher. There can even be more than one
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base case, and therefore the induction case will assume the predicate holds for several values 

to prove it for the next one. 

For example, when trying to prove a property

 

P

 

about the Fibonacci sequence defined 

by

 

F0 

= F1 

= 1

 

and for any

 

n ∈ N

 

,

 

Fn +2 

= Fn +1 

+ Fn

 

, one will need: 

• to prove that

 

P (0)

 

and

 

P (1)

 

hold (base cases); 

• to assume

 

P ( n )

 

and

 

P ( n + 1)

 

and prove

 

P ( n + 2)

 

(induction case). 

As a rule of thumb, proofs by induction on sequences follow the same structure as the 

recursive definition of said sequence. 

A proof using two base cases will in fine be a proof that relies on two steps before. 

This principle can be generalized to write proofs that rely on several steps before, while not 

specifying exactly how many: the assumption used to prove

 

P ( n )

 

is that

 

P

 

holds for any 

value strictly smaller than

 

n

 

.

 

Proof by strong induction rule

 

Let

 

P ( n )

 

be a predicate over integers. 

If

 

P (0)

 

and

 

∀ n ∈ N , ( ∀ i ≤ n, P ( i )) → P ( n + 1)

 

, then

 

∀ n ∈ N , P ( n )

 

.

 

This is very useful when a recurrence relation is defined using terms that are smaller 

but not necessarily the previous one. For example for

 

un 

= u⌊ 

n

 

2 

⌋ 

+ 4

 

: the term used in the 

recurrence relation is not the previous one, but a previous one, thus requiring to assume any 

property holds for this term, regardless of its actual index (as long as it is smaller so that 

the induction terminates).

 

Proof by strong induction scheme

 

• Prove

 

P (0)

 

. 

• Take

 

n

 

, assume

 

∀ i ≤ n, P ( i )

 

and prove

 

P ( n +1)

 

. (Sometimes notations 

are made easier by assuming

 

∀ i < n, P ( i )

 

and then proving

 

P ( n )

 

.)

 

This scheme is actually a proof by induction on the stronger predicate

 

P 

′

 

defined as

 

P 

′( n ) = ∀ i ≤ n, P ( i )

 

. 

Example of strong induction: The chocolate bar problem 

The problem is as follows: a chocolate bar is made of

 

n

 

squares in a single line:

 

How many cuts are needed to cut it in

 

n

 

individual squares? 

First, let’s conjecture what this number is by calculating it for a couple of small values: 

•

 

n = 1

 

, no need to cut so

 

0

 

cuts needed:

 

•

 

n = 2

 

, cut once to get two pieces, so

 

1

 

cut needed:

 

cut−→
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•

 

n = 3

 

, cut once to get

 

2

 

and

 

1

 

(or

 

1

 

and

 

2

 

), then again to cut the

 

2

 

-bar into single 

pieces, so

 

2

 

cuts:

 

cut−→

 

cut
−→

 

It seems that

 

n − 1

 

cuts are needed to cut a bar of length

 

n

 

: this will be our conjecture. 

Let’s prove by strong induction that

 

n − 1

 

cuts are needed for a bar of

 

n

 

squares. 

Base case

 

n = 1

 

: no cut needed, so

 

0

 

cuts. 

Inductive case Assume that for any

 

p < n

 

,

 

p − 1

 

cuts are needed for a bar of

 

p

 

squares. 

Let’s number the squares of the bar from

 

1

 

to

 

n

 

, and choose a number

 

p

 

between

 

1

 

and

 

n − 1

 

. When we cut in the bar of

 

n

 

squares right after square number

 

p

 

, we obtain 

two bars of lengths

 

p

 

and

 

n − p

 

, with

 

1 ≤ p < n

 

.

 

cut−→

 

n

 

p

 

n − p

 

We have both

 

p < n

 

and

 

n − p < n

 

so there are

 

p − 1

 

cuts needed for one piece and

 

n − p − 1

 

needed for the other. So a total of

 

1+ ( p − 1)+ ( n − p − 1) = n − 1

 

cuts.

 

While this problem may look a bit artificial, more mathematical applications of strong 

induction will be done in Chapter VII when cutting integers into pieces as part of number 

theory.

 

Exercise VI.6

 

Let

 

( un)n ∈ N

 

be the sequence defined by

 

u0 

= 0

 

,

 

u1 

= 1

 

, for any

 

n ∈ N

 

,

 

un +2 

= 

1

 

4 

· ( u2 

n +1 

+ un 

+ 2)

 

. Prove that for any

 

n

 

,

 

0 ≤ un 

≤ 1

 

.

 

VI.B.2.iv Structural induction

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

The induction may be over something else than an integer. 

For example, one could use an induction proof scheme over a couple of integers ordered 

lexicographically (so that the order is total). In this case the induction is often a strong 

induction: prove

 

P (0 , 0)

 

, then for

 

n, m ∈ N

 

, assume for any couple

 

( n′ , m′) ≺ ( n, m )

 

,

 

P ( n′ , m′)

 

is true, and prove

 

P ( n, m )

 

. 

The same principle can be used for more than numbers, actually. Induction works 

because we use a proof of a predicate

 

P

 

on a smaller integer to prove

 

P ( n )

 

. This can be 

extended to any well-ordered set : a set that has minimal elements. These minimal elements 

are what serves as base cases: the induction does not go on forever. 

So we can use a proof by induction to prove properties about a set of objects where the 

proof of a predicate on smaller objects is used. The definition of what makes an object 

smaller may be built as a lexicographic order, but it can also be a more natural notion, such 

as being a sub-part of the bigger object. Once again, the form of the proof will follow the
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structure of the definition of the object. Since it relies exclusively on said structure, it is 

named structural induction . 

For example, it is possible to write proofs about the set of formulas of propositional logic 

by structural induction on sub-formulas: 

Base case Prove the property on atomic propositions. 

Induction case Prove for every operator

 

∗

 

that

 

P ( φ )

 

and

 

P ( ψ )

 

, then

 

P ( φ ∗ ψ )

 

. 

We can use such a proof scheme to prove that every formula can be written using only

 

→

 

and

 

⊥

 

(as was done in Section I.B.3.v.b): this holds for atomic propositions, and for any 

operator we prove that it can actually be replaced by combinations of

 

→

 

and

 

⊥

 

. In this 

case there will be more than one induction case, as there will be one per operator. 

A structural induction can also be used to write proofs about proof trees in sequent 

calculus. 

VI.C Application: Growth and complexity 

VI.C.1 What is complexity? 

In computer science, complexity is the number of basic steps a program must take to execute. 

Such basic steps include arithmetic operations, variable assignments, function calling. . . As 

such, complexity allows to measure of how long the program takes to execute, while ab- 

stracting away the differences that may arise by running the program on different hardware. 

As most program execute on data, this measure depends on the value of the inputs to 

the program. For example, consider the following program that calculates

 

∑n 

i =1 

i2

 

: 

• Take a value

 

n

 

as an argument (think input). 

• Start with the result at

 

0

 

. 

• For each number

 

i

 

from

 

1

 

to

 

n

 

, add

 

i2

 

to the result 

• Then return the result. 

Executing this program requires to perform

 

n

 

times the following: multiply

 

i

 

by itself, then 

adding it to the current result, and finally assign the new value to the result. That means

 

3 n

 

basic operations. To which we must add the initialization of the result to

 

0

 

. So in the 

end we can say that this program requires

 

3 n + 1

 

operations to execute on input

 

n

 

. 

This calculation has neglected to count that there must be some operations performed 

to maintain the value of

 

i

 

, so that is a couple of operations

 

n

 

times, and maybe count the 

action of returning as a basic operation. But that actually does not really matter: we are not 

interested in a precise number but in the growth of the complexity when

 

n

 

increases. And 

in this case, what matters is that it is proportional to

 

n

 

: we don’t need to know precisely 

how many operations are performed each time, as long as it is the same for all the values 

of

 

i

 

. And we don’t need to know precisely how many operations are needed to initialize 

the program and have it return, because this does not change with

 

n

 

. Both these precise 

values could be made negligible by using a faster computer, but it cannot change the fact 

that doubling the value of

 

n

 

will (roughly) double the execution time.
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VI.C.1.i Big-O notation 

To write the complexity of programs while denoting that we are only interested in growth, 

we use the

 

O

 

(“big O” or “big Omicron”) notation. Formally, it is defined as follows:

 

f ( n ) = O (( g ( n )) iff ∃ M ∈ R , lim sup 

n → + ∞ 

∣∣∣∣ 

f ( n )

 

g ( n ) 

∣∣∣∣ 

≤ M

 

What the above definition states is that he limit of

 

f

 

g

 

is bounded, meaning that

 

f

 

does not 

grow any order of magnitude faster than

 

g

 

. 

So the function

 

g

 

used in practice is the leading factor of growth of

 

f

 

, stripped of any 

constant coefficient. Let’s consider the following examples: 

•

 

2021 = O (1)

 

: any constant is a

 

O (1)

 

; that is the complexity of a program that executes 

in the same time regardless of its arguments. 

•

 

3 n + 1 = O ( n )

 

: this means the growth is (at most) linear, as the program described 

above. 

•

 

7 n3 − 3 n2 +4 n − 9 = O ( n3)

 

: in the case of polynomials, the main growth factor is the 

leading coefficient. Sometimes knowing that the complexity is polynomial is enough 

(not considering the degree), this is what constitutes the

 

P

 

class.

 

↬

 

See 

Section I.C.3.ii 

for more about 

the

 

P

 

class.

 

•

 

27 n + 42 n79 = O (27 n) = 2O ( n )

 

: since exponentials grow faster than polynomials, the 

leading growth factor is the exponential here. 

VI.C.1.ii Worst-case complexity 

Programs do not always execute the same code: that is the purpose of conditionals ( if 

statements). So the number of operations may be very different depending on the actual 

value. In these situations what matters is the worst-case . 

Consider this (purposefully weird) program: 

• Take argument

 

n

 

? 

• If

 

n

 

is even return

 

42

 

• Otherwise (i.e. if

 

n

 

is odd) calculate the decomposition of

 

n ! + 17!

 

into prime factors. 

When

 

n

 

is even, it executes in constant time, while it can take a very long time since

 

n !

 

growth exponentially

 

b

 

Stirling’s 

formula shows 

that

 

n !

 

grows 

as fast as

 

nn en 

√

 

2 π n

 

.

 

and there is not polynomial factorization known (and it is possible 

that none exist). In this case, what matters for complexity is only the case when

 

n

 

is odd. 

As a result, complexities are always stated with the understanding that the program 

executes in less than

 

O ( f ( n ))

 

steps. 

VI.C.2 Complexity of recursive programs 

One way to think about complex problems is to break them down into smaller ones, that 

ought to be more manageable. This idea is at the crux of the divide and conquer approach: 

break a big problem into smaller ones, solve these, then bring the solutions together This 

strategy was named after the method used by Julius Caesar to conquer Gauls (more or less 

equivalent to modern France): instead of fighting the whole Gallic peoples, fight each tribe 

separately; a legion of 1000 can easily beat a tribe of 100, and do so 20 times instead of 

facing a coalition of 2000 in one go.
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Most common variations of the divide and conquer approach are as follows. In the first 

one, assume you can solve a smaller version of the same problem, and prove you can from 

that solve the current version. Otherwise said, to solve a problem for input

 

n

 

(or size

 

n

 

), 

assume you can solve the same problem for size

 

n − 1

 

and then show how to go from the 

solution for

 

n − 1

 

to a solution for

 

n

 

. In the second one, divide the problem in two, solve 

these sub problems, and combine. Otherwise said, to solve a problem for input

 

n

 

(or size

 

n

 

), assume you can solve the same problem for size

 

⌈ 

n

 

2 

⌉

 

and then show how to combine the 

solutions for

 

⌈ 

n

 

2 

⌉

 

to a solution for

 

n

 

. Of course, for this idea to work, one ought to be able 

to solve the problem for

 

n = 0

 

or

 

n = 1

 

, i.e. the base case. 

The complexity of the solving the whole problem is therefore expressed as a recurrence 

relation on smaller problems. The base case, usually size

 

0

 

or

 

1

 

, is often solved with a 

constant number of operations. From this recurrence relation, to get a complexity expressed 

in the

 

O

 

notation, an explicit definition is needed. But finding this explicit definition from 

the recurrence relation may not be easy: the recurrence rarely is an arithmetico-geometric 

sequence for which we have a predefined strategy. Therefore the approach will be in two 

steps: 

1. Calculate a couple of terms from

 

n

 

down (“unwinding”), until you are able to conjecture 

(i.e. guess) the explicit form. 

2. Prove that the explicit form correspond to the recurrence relation using a proof by 

induction. 

VI.C.2.i Example: The Towers of Hanoi 

The problem of the Towers of Hanoi is one of the best known in recursive programming and 

complexity analysis. It is stated as follows: 

• There are three poles A, B, C, and

 

n

 

discs of increasing size, labeled

 

1

 

to

 

n

 

. 

• Initially, all the discs are stacked in a pyramid on the first pole. 

• You can move the topmost disc of a pole to any other pole, but a disc must always 

rest on a bigger disc. 

The questions being: How do you move the whole stack from one pole to another? How 

many moves does that take? 

This problem can be solved using the divide and conquer approach. Assuming I know 

how to move a stack of

 

n − 1

 

discs. To move

 

n

 

discs from A to C, I proceed as follows: I 

can move the first

 

n − 1

 

discs from A to B. Then move disc number

 

n

 

from A to C. Finally 

move the first

 

n − 1

 

discs from B to C. For this to be complete I must tell how to proceed 

when

 

n = 1

 

, which is quite trivial: move the single disc. 

Note that the beauty of this description lies in the fact that the move of the

 

n − 1

 

discs 

is not described extensively. This kind of procedure can therefore be programmed in a very 

elegant code, that follows the structure of the reasoning above. Nonetheless, the details can 

be filled in by looking into what it means for

 

n − 1

 

, and that yields an actual procedure to 

move the stack of

 

n

 

discs. For example, for

 

n = 3

 

, the set of moves is given in Figure VI.11. 

Note that one can easily ignore the intermediate steps: only consider Figures VI.1(a,d,e,h), 

showing the moves of the stack of 2 discs from A to B in one step instead of 3.

 

1Adapted from http://www.texample.net/tikz/examples/towers-of-hanoi/ .
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A
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2

 

1

 

B

 

C

 

(a) Starting position.

 

A

 

3

 

2

 

B

 

C

 

1

 

(b) Moved disc from pole A to pole C.

 

A

 

3

 

B

 

2

 

C

 

1

 

(c) Moved disc from pole A to pole B.

 

A

 

3

 

B

 

2

 

1

 

C

 

(d) Moved disc from pole C to pole B.

 

A

 

B

 

2

 

1

 

C

 

3

 

(e) Moved disc from pole A to pole C.

 

A

 

1

 

B

 

2

 

C

 

3

 

(f) Moved disc from pole B to pole A.

 

A

 

1

 

B

 

C

 

3

 

2

 

(g) Moved disc from pole B to pole C.

 

A

 

B

 

C

 

3

 

2

 

1

 

(h) Moved disc from pole A to pole C. 

Figure VI.1: Tower of Hanoi – 3 Discs.

 

100 Introduction to Discrete Mathematics



 

Sequences and Recurrence Chapter VI

 

Let’s now analyze the complexity of the problem, i.e. count the number of moves that 

are required to move a stack of

 

n

 

discs, which we will call

 

f ( n )

 

.. Our procedure can be 

summarized as follows: to move

 

n

 

discs, we need to move

 

n − 1

 

discs, move one disc, 

move

 

n − 1

 

discs again. We can therefore deduct that the function

 

f

 

follows the following 

recurrence:

 

f ( n ) = f ( n − 1) + 1 + f ( n − 1) = 2 · f ( n − 1) + 1

 

. The base case being a single 

move to move a single disc, we have the base case of the recurrence:

 

f (1) = 1

 

. 

As it is not straightforward to see what is the explicit definition of

 

f

 

that corresponds 

to this recursive definition, we will unwind the recurrence and try to find a pattern. 

f ( n ) = 2 · f ( n − 1) + 1 

= 2 · (2 · f ( n − 2) + 1) + 1 

= 22 · f ( n − 2) + 2 + 1 

= 22 · (2 · f ( n − 3) + 1) + 2 + 1 

= 23 · f ( n − 3) + 22 + 21 + 20 

= 23 · f ( n − 3) + (23 − 1) 

... 

= 2i · f ( n − i ) + (2i − 1) 

... 

= 2n − 1 · f ( n − ( n − 1)) + (2n − 1 − 1) 

= 2n − 1 · f (1) + (2 

n − 1 − 1) 

= 2n − 1 · 1 + (2 

n − 1 − 1) 

f ( n ) = 2n − 1 

We can conjecture from this that

 

f ( n ) = 2n − 1

 

. It remains to be proved that this function 

matches the recursive definition: 

Base case: For

 

n = 1

 

,

 

21 − 1 = 2 − 1 = 1 = f (1)

 

so the base case is satisfied. 

Induction case: Let

 

n > 1

 

. Assume that

 

f ( n − 1) = 2n − 1

 

. Then let’s use the recursive 

definition:

 

f ( n ) = 2 · f ( n − 1) + 1 = 2 · (2n − 1 − 1) + 1 = 2 · 2n − 1 − 2 + 1 = 2n − 1

 

so 

the recurrence relation is satisfied 

We can therefore conclude by induction that for any

 

n

 

,

 

f ( n ) = 2n − 1

 

, so

 

2n − 1

 

steps are 

needed to move a stack of

 

n

 

discs. We can deduct an approximate complexity:

 

f ( n ) = O (2n)

 

. 

Note that in this case, it takes an exponential number of moves to move the discs: adding 

one disc doubles the number of moves. The legend associated to this problem stated that 

in a monastery in Hanoi (Vietnam), monks had the task of moving a stack of 64 discs 

according to these rules. Once they are done, the world would end; but that is not a very 

frightening threat: even if a move takes as little as one second, over 584 billion years would 

be needed for the whole procedure to be complete (while the sun will go out in “only” 5 

billion years). It must also be noted that there is no such monastery, it is pure invention by 

French mathematician Édouard Lucas who created the problem in the 19th century. 

VI.C.2.ii Example: Merge sort 

Sorting data is a very common action in computer systems. It is also an interesting problem 

because there are lots of ways of sorting, and different algorithms may have different com-
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plexity. Note that in theory the sorting can be performed as long as the data is equipped 

with an order,

 

↬

 

Orders are 

defined in 

Section V.B.

 

but here we will assume the data is integers for simplicity. 

The problem is formally stated as follows: the input is an array of size

 

n

 

containing 

integers. The returned array must be sorted in increasing order. 

The solution used here applied the divide and conquer principle: 

• Divide the array in two in the middle. 

• Recursively sort the two halves, which are of sizes

 

⌈ 

n

 

2 

⌉

 

and

 

⌊ 

n

 

2 

⌋

 

. 

• Merge them together as follows. Take an empty array. Start inserting elements from 

the two sorted arrays, always choosing the smallest one that has not been inserted. 

Note that because the arrays are sorted this procedure only requires traversing the 

array in one way. 

The base cases occur when the size is either

 

1

 

or

 

0

 

: the array is already sorted and there is 

nothing to do. Note that we never actually reach size

 

0

 

with this algorithm, and this case is 

mentioned for completeness’ sake in case the original input is an array of size

 

0

 

. 

An example of this procedure is given in Figure VI.2 for an array of size

 

10

 

. The recursive 

sorting of the sub arrays (of size

 

5

 

) is not given. 

To analyze the complexity of the Merge sort, let’s assume there are

 

n = 2k

 

elements in 

the original array. Although this is rarely the case in practice that the array’s size is precisely 

a power of two, it can be assumed that it is the size of the next power of two, padded with

 

∞

 

. So in the case of the array of Figure VI.2, we could assume it is the following array of 

size

 

16

 

:

 

17

 

23

 

2

 

19

 

5

 

18

 

27

 

15

 

7

 

13

 

∞

 

∞

 

∞

 

∞

 

∞

 

∞

 

Now let’s consider the complexity in terms of

 

k

 

rather than

 

n

 

: we are looking for the 

complexity function

 

g ( k )

 

that gives the number of operations needed to sort an array of size

 

2k

 

with the merge sort algorithm. Splitting the array in the middle means copying all the 

elements in two new arrays

 

b

 

In practice the 

splitting can be 

done without 

copy, but that 

does not change 

the overall 

complexity.

 

. And the merging means, for every cell of the array, comparing 

the two current minimal elements of the sorted sub-arrays and writing the smallest one in 

the array. In both cases these operations take a time proportional to the number of elements, 

so a time

 

c · 2k

 

, with

 

c

 

being a constant. The sorting of each sub-arrays is done in time

 

g ( k − 1)

 

, because each array is half the length of the original one. As a result, the complexity 

function

 

g

 

obeys the following recurrence relation:

 

g ( k ) = 2 · g ( k − 1)+ c · 2k

 

. The base case, 

which means sorting an array of size

 

1

 

, requires no action, besides recognizing that this case 

has been reached. This is done in constant time so

 

g (0) = c′

 

, for some constant

 

c′

 

.
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17
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27

 

15

 

7
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(a) Starting (unsorted) array.

 

17

 

23

 

2

 

19

 

5

 

18

 

27

 

15

 

7

 

13

 

(b) Splitting in the middle.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

(c) Sorted sub-arrays (recursively).

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 0

 

j

 

= 0

 

i + j

 

= 0

 

(d) Merging, empty array (step 0/10).

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 1

 

j

 

= 0

 

2

 

i + j

 

= 1

 

(e) Merging, step 1/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 2

 

j

 

= 0

 

2

 

5

 

i + j

 

= 2

 

(f) Merging, step 2/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 2

 

j

 

= 1

 

2

 

5

 

7

 

i + j

 

= 3

 

(g) Merging, step 3/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 2

 

j

 

= 2

 

5

 

7

 

13

 

i + j

 

= 4

 

(h) Merging, step 4/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 2

 

j

 

= 3

 

5

 

7

 

13

 

15

 

i + j

 

= 5

 

(i) Merging, step 5/10. 

Figure VI.2: Example of merge sort; the recursive calls are not detailed. Continued next 

page.
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2

 

5
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23
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15

 

18

 

27

 

i

 

= 3

 

j

 

= 3

 

5

 

7

 

13

 

15

 

17

 

i + j

 

= 6

 

(j) Merging, step 6/10.

 

2

 

5
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19
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7

 

13

 

15

 

18
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i

 

= 3

 

j

 

= 4

 

5

 

7
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15

 

17

 

18

 

i + j

 

= 7

 

(k) Merging, step 7/10.

 

2

 

5
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19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 4

 

j

 

= 4

 

5

 

7

 

13

 

15

 

17

 

18

 

19

 

i + j

 

= 8

 

(l) Merging, step 8/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 5

 

j

 

= 4

 

5

 

7

 

13

 

15

 

17

 

18

 

19

 

23

 

i + j

 

= 9

 

(m) Merging, step 9/10.

 

2

 

5

 

17

 

19

 

23

 

7

 

13

 

15

 

18

 

27

 

i

 

= 5

 

j

 

= 5

 

5

 

7

 

13

 

15

 

17

 

18

 

19

 

23

 

27

 

i + j

 

= 10

 

(n) Merging, ended (step 10/10). 

Figure VI.2: Example of merge sort; the recursive calls are not detailed. Continued from 

previous page.
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We can now try to conjecture an explicit form by unwinding this recurrence relation: 

g ( k ) = 2 · g ( k − 1) + c · 2k 

= 2 · (2 · g ( k − 2) + c · 2k − 1) + c · 2k 

= 4 · g ( k − 2) + c · 2k + c · 2k 

= 22 · g ( k − 2) + 2 · c · 2k 

= 22 · (2 · g ( k − 3) + c · 2k − 2) + 2 · c · 2k 

= 23 · g ( k − 3) + 3 · c · 2k 

... 

= 2i · g ( k − i ) + i · c · 2k 

... 

= 2k · g ( k − k ) + k · c · 2k 

= 2k · g (0) + k · c · 2k 

g ( k ) = 2k · c′ + k · c · 2k 

We can see the previous calculations as follows. Each time the array is divided into two, 

so there are

 

k

 

divisions before reaching arrays of size

 

1

 

. After

 

i

 

divisions, let’s call that level

 

i

 

, we have

 

2i

 

arrays, each of size

 

2k − i

 

. So all the merging done at level

 

i

 

means reading

 

2i

 

arrays of size

 

2k − i

 

, so reading

 

2k

 

values. That means the time to merge is the same at 

every level. Since there are

 

k

 

levels, the global time needed for all the merging will be

 

k · 2k

 

. 

The

 

2k · c′

 

is the time needed to treat all the base cases, but that is negligible compared to

 

k · 2k

 

as

 

k

 

grows to infinity. 

Therefore the conjecture on

 

g

 

is that for any

 

k ∈ N

 

,

 

g ( k ) = 2k · c′ + k · c · 2k

 

. Let’s prove 

it by induction. 

Base case: For

 

k = 0

 

, we have

 

2k · c′ + k · c · 2k = 20 · c′ + 0 · c · 20 = c′ = g (0)

 

. 

Induction case: Let

 

k > 0

 

, assume the property holds for

 

k − 1

 

, i.e.

 

g ( k − 1) = 2k − 1 · c′ + 

( k − 1) · c · 2k − 1

 

. Let’s use the recursive definition: 

g ( k ) = 2 · g ( k − 1) + c · 2k 

= 2(2k − 1 · c′ + ( k − 1) · c · 2k − 1) + c · 2k 

g ( k ) = 2k · c′ + k · c · 2k 

So the property holds for

 

k

 

. 

As a result the property holds for any

 

k

 

, and the complexity of merge sort is

 

2k · c′+ k · c · 2k

 

. 

We can express it as a

 

O

 

notation: the term in

 

k · 2k

 

is the leading one, so the complexity is

 

O ( k · 2k)

 

. Remark that we can translate that back into a complexity for

 

n

 

: if

 

n = 2k

 

, then

 

k = log2( n )

 

, so the complexity is

 

O ( n log( n ))

 

.

 

b

 

The base of the 

logarithm does 

not matter in

 

O

 

notation, since 

the change of 

base is only a 

constant term.

 

Exercise VI.7

 

Consider the following algorithm (called binary search ) to find a value

 

v

 

in a sorted 

array: 

• If the array has size

 

> 0

 

, look at the middle element

 

m

 

:
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– If

 

m = v

 

we have found the element, return the index of

 

m

 

. 

– If

 

m < v

 

search for

 

v

 

in the right half of the array (

 

m

 

is excluded). 

– If

 

m > v

 

search for

 

v

 

in the left half of the array (

 

m

 

is excluded). 

• An array of size

 

0

 

does not contain

 

v

 

. 

Assuming the array has a size

 

2k − 1

 

: 

1. What is the size of the left half of the array? And of the right half? 

2. Find a recurrence relation that expresses

 

f ( k )

 

, the number of steps it takes to 

find

 

v

 

in the worst case (which is when

 

v

 

is actually not in the array), based on

 

f ( k − 1)

 

. Assume the complexity for an empty array is a constant

 

p

 

. 

3. Unwind this relation and conjecture an explicit formula for

 

f ( k )

 

. 

4. Prove your conjecture. 

5. Conclude about the complexity of this algorithm.
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VII.A Division of integers 

Number theory refers to the study of how integers are formed and relate to each other, 

especially through multiplication and division. Hence the central role that the concept of 

divisibility plays in this chapter. Note that most of the theory focuses on natural integers, 

but that it can be extended to deal with all integers, as is explained in Section VII.D.1. 

VII.A.1 Divisibility 

VII.A.1.i Definition

 

Definition: Divisibility

 

Let

 

n, m ∈ N

 

.

 

n

 

divides

 

p

 

, written

 

n | p

 

, iff there exists

 

k ∈ N

 

such that

 

n · k = p

 

.

 

So to prove that,

 

n | p

 

, one has to exhibit the value

 

k

 

such that

 

n · k = p

 

. For example: 

•

 

3 | 15

 

because

 

3 · 5 = 15

 

•

 

7 | 42

 

because

 

7 · 6 = 42

 

•

 

6 | 42

 

because

 

6 · 7 = 42

 

•

 

1 | 17

 

because

 

1 · 17 = 17

 

•

 

42 | 0

 

because

 

42 · 0 = 0

 

•

 

23 | 23

 

because

 

23 · 1 = 23

 

We write

 

n ̸ | p

 

when it is not the case that

 

n

 

divides

 

p

 

. This is proved by considering 

all values for

 

k

 

and proving they cannot work. For example: 

•

 

7 ̸ | 24

 

because

 

7 · k

 

is either

 

0 , 7 , 14 , 21 , 28

 

or

 

> 28

 

. 

•

 

23 ̸ | 1

 

because

 

23 · k

 

is either

 

0

 

or

 

> 23

 

. 

Note that there are other (better) ways to prove that

 

n ̸ | m

 

, which will be explained in 

Section VII.A.2. 

When

 

n | p

 

,

 

p

 

n

 

denotes the integer

 

k

 

such that

 

n · k = p

 

. In that case

 

n

 

and

 

p

 

n

 

are called 

divisors or factors of

 

p

 

. If, however,

 

n ̸ | p

 

, the

 

p

 

n

 

notation has no real sense, since we are 

only considering integers, and from this point of view fractions that are not whole do not 

even exist. 

VII.A.1.ii Properties 

VII.A.1.ii.a Relation with addition (and subtraction) 

Although divisibility deals with multiplication, it is interesting to consider how it behaves 

with respect to addition (and its reverse subtraction). Namely, we can only have results when 

both operands are divisible by the same number.

 

Proposition

 

Let

 

n, p, q ∈ N

 

. 

• If

 

n | p

 

and

 

n | q

 

, then

 

n | p + q

 

. 

• If

 

n | p

 

and

 

n | p + q

 

, then

 

n | q

 

.
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Proof

 

Let

 

n, p, q ∈ N

 

. 

• Assume

 

n | p

 

and

 

n | q

 

. Then there exists

 

k , m

 

such that

 

n · k = p

 

and

 

n · m = q

 

. 

So

 

n · ( k + m ) = p + q

 

and

 

n | p + q

 

. 

• Assume

 

n | p

 

and

 

n | p + q

 

. Then there exists

 

k , m

 

such that

 

n · k = p

 

and

 

n · m = p + q

 

. Note: since

 

q ≥ 0

 

, we have

 

k ≤ m

 

. So

 

n · m = n · k + q

 

, and

 

n · ( m − k ) = q

 

So

 

n | q

 

.

 

This can be adapted for subtraction:

 

Proposition

 

Let

 

n, p, q ∈ N

 

. 

• If

 

n | p

 

,

 

q ≥ p

 

and

 

n | q − p

 

, then

 

n | q

 

. 

• If

 

n | p

 

,

 

q ≥ p

 

and

 

n | q

 

, then

 

n | q − p

 

.

 

Although a direct proof can be used (left as exercise to the reader), this is only a par- 

ticular case of the previous Proposition (using

 

q − p

 

instead of

 

q

 

). 

VII.A.1.ii.b Divisibility Order 

Another interesting aspect of divisibility is how it can propagate. In fact, we can show 

the property is transitive, and even better, that it is a partial order. This was already proved 

in Section V.B.1.ii.c, but the main elements of the proof will be reproduced here as well. 

We can however note that

 

0

 

and

 

1

 

have a particular role with respect to this order. Since

 

1

 

divides any integer, it is a minimal element to the order. On the other hand,

 

0

 

does not 

divide any number (but itself), so it is a maximal element .

 

Theorem

 

• Divisibility is a partial order. 

•

 

1

 

is a minimal element with respect to this order. 

•

 

0

 

is a maximal element with respect to this order.

 

Proof

 

Let

 

n, p, m ∈ N

 

. 

• R

 

We have

 

n | n

 

by choosing

 

k = 1

 

in the definition. So we have reflexivity. 

A

 

Assume

 

n | p

 

and

 

p | n

 

, then

 

n · k = p

 

and

 

p · k 

′ = n

 

so

 

k · k 

′ = 1

 

hence

 

k = k 

′ = 1

 

and

 

n = p

 

. So we have antisymmetry. 

T

 

Assume

 

n | p

 

and

 

p | m

 

then

 

n · k = p

 

and

 

p · k 

′ = m

 

so

 

n · k · k 

′ = m

 

hence

 

n | m

 

. So we have transitivity. 

• The order is partial, because for example

 

7 ̸ | 24

 

(see above) and

 

24 ̸ | 7

 

, as for

 

Introduction to Discrete Mathematics 109



 

Chapter VII Number Theory

 

1

 

2

 

3

 

5

 

7

 

11

 

· · ·

 

4

 

8

 

...

 

9

 

27

 

...

 

25

 

125

 

...

 

49

 

...

 

121

 

...

 

. 

. 

.

 

6

 

12

 

24

 

...

 

15

 

...

 

35

 

...

 

0

 

Figure VII.1: The divisibility lattice.

 

any

 

k

 

24 k

 

is either

 

0

 

(if

 

k = 0

 

) or strictly greater than

 

7

 

(if

 

k ≥ 1

 

). 

•

 

1 | n

 

, by choosing

 

k = n

 

. If

 

n ̸ = 1

 

then

 

n ̸ | 1

 

: for any

 

k

 

,

 

n · k

 

is either

 

0

 

or 

strictly greater than

 

1

 

. 

•

 

n | 0

 

, by choosing

 

k = 0

 

. If

 

n ̸ = 0

 

then

 

0 ̸ | n

 

: for any

 

k

 

,

 

0 · k = 0

 

.

 

It is possible to draw a graph of this order, as follows. Put each number in a vertex 

(a.k.a. node, a circle with the value inside), and draw an arrow between node containing 

numbers

 

n

 

to node containing number

 

p

 

if

 

n | p

 

. In graph vocabulary, we use

 

N

 

as the 

vertices and

 

|

 

as the transition relation. 

To clarify a bit this graph, we can omit self-loops and transitions that can be deducted 

from transitivity. And of course, to actually represent it, we must choose a finite subset of 

integers. 

Part of this graph is represented on Figure VII.1. The shape that this graph has is 

particular, and is called a lattice , in reference to the criss-crossed pattern. It has several 

properties that will be detailed throughout the chapter. What we can already see is that

 

1

 

, 

being the minimal element, is at the base of the lattice, while the maximal element

 

0

 

is on 

top, with arrows from every number pointing to it. 

VII.A.2 Euclidean division (a.k.a Long division) 

When

 

m

 

is a multiple of

 

n

 

, it is possible to divide

 

m

 

by

 

n

 

, which is exactly what is behind 

the concept of divisibility. This can be generalized to the case when

 

n

 

does not divide

 

m

 

, 

using the Euclidean division .

 

b

 

Several notions 

in this chapter 

bear the name 

of the ancient 

Greek 

mathematician 

Euclid , who 

introduced 

them in his 

book the 

Elements .

 

This is not really a new concept, as this is also called long 

division . What may be new is that we are actually going to prove properties of this division, 

so what we are giving is not a definition, but rather a theorem that states these properties.
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Theorem: Euclidean Division

 

Given two integers

 

n, m ∈ N

 

, with

 

m > 0

 

, there exists two unique integers

 

q , r ∈ N

 

such that

 

n = m · q + r and 0 ≤ r < m

 

The very important fact is that there is only one pair

 

( q , r )

 

that satisfies the property: 

there can be no ambiguity when writing a Euclidean division. Because of this uniqueness, 

we call

 

q

 

the quotient (not “a”) and

 

r

 

is the remainder (again, not “a”). 

The equality

 

n = m · q + r

 

itself is called the Euclidean division of

 

n

 

by

 

m

 

. And

 

n

 

is 

called the dividend , while

 

m

 

is the divisor . Note that “the divisor in a Euclidean division” 

is not the same as “a divisor”, since in the former case divisibility is not assumed. 

For example: 

• The Euclidean division of

 

42

 

by

 

5

 

is

 

42 = 5 · 8 + 2

 

: quotient is

 

8

 

, remainder is

 

2

 

. 

• The Euclidean division of

 

132

 

by

 

3

 

is

 

123 = 3 · 41 + 0

 

: quotient is

 

41

 

, remainder is

 

0

 

. 

• The Euclidean division of

 

79

 

by

 

12

 

is

 

79 = 12 · 6 + 7

 

: quotient is

 

6

 

, remainder is

 

7

 

. 

• The Euclidean division of

 

79

 

by

 

6

 

is

 

79 = 6 · 13 + 1

 

: quotient is

 

13

 

, remainder is

 

1

 

. 

In the last two examples, one can see that dividing

 

79

 

by its quotient by

 

12

 

does not yield 

back

 

12

 

as the quotient. This is because the criterion on the remainder depends on the 

divisor.

 

Proof of the Euclidean Division

 

If we write down what we need to prove as a first order formula, it has the following 

form:

 

∀ n, m ∈ N , m > 0 → ∃ ! q , r ∈ N , n = m · q + r ∧ 0 ≤ r < m.

 

We can actually change it a bit, using the rules of first order logic, in order to have 

the quantification on

 

m

 

at the outermost level. So we use the rule

 

∀ x, φ → P ( x ) ≡ 

φ → ( ∀ x, P ( x ))

 

where

 

x

 

does not appear in

 

φ

 

. Here we have that

 

n

 

does not appear 

in “

 

m > 0

 

”, so we obtain the equivalent formula

 

∀ m ∈ N , m > 0 → ∀ n ∈ N , ∃ ! q , r ∈ N , n = m · q + r ∧ 0 ≤ r < m.

 

Let

 

m ∈ N

 

and assume that

 

m > 0

 

. We are going to prove by strong induction that

 

∀ n ∈ N , ∃ ! q , r ∈ N

 

such that

 

n = m · q + r

 

and

 

0 ≤ r < m

 

. Note that we have to 

prove two things: existence and uniqueness. For existence, we have to exhibit

 

q

 

and

 

r

 

. For uniqueness, we assume the existence of another pair

 

( q 

′ , r 

′) ̸ = ( q , r )

 

and deduct 

a contradiction. 

Base case

 

n = 0

 

. 

Existence

 

We have

 

0 = m · 0 + 0

 

and

 

q = r = 0

 

satisfies the property. 

Uniqueness

 

Assume there exists some other couple

 

( q 

′ , r 

′) ̸ = (0 , 0)

 

that sat- 

isfies the property. 

• Assume

 

q 

′ > 0

 

: then

 

m · q 

′ > 0

 

, so

 

n = m · q 

′ + r 

′ > 0

 

, which is a 

contradiction with

 

n = 0

 

.
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• Otherwise,

 

q 

′ = 0

 

, so

 

r 

′ > 0

 

, so

 

n = m · q 

′ + r 

′ > 0

 

, which is again a 

contradiction with

 

n = 0

 

. 

Inductive case

 

Assume that for any

 

p < n

 

, the property holds, i.e., there exists a 

unique couple

 

( q0 

, r0)

 

that satisfies the conditions:

 

p = m · q0+ r0

 

and

 

0 ≤ r0 

< m

 

. 

We have two cases to consider, that actually match the basic algorithm used to 

compute this division: if you cannot fit

 

m

 

into

 

n

 

, then you are done. If you can, 

then subtract

 

m

 

from

 

n

 

and increment the quotient, then start again. 

• Assume

 

n < m

 

. 

Existence

 

Write

 

n = m · 0 + n

 

: we have

 

q = 0

 

and

 

r = n < m

 

by 

assumption. 

Uniqueness

 

Assume there exists some other values for

 

q 

′

 

and

 

r 

′

 

: another 

couple

 

( q 

′ , r 

′) ̸ = (0 , n )

 

that satisfies the property. 

– If

 

q 

′ > 0

 

that means

 

q 

′ ≥ 1

 

, therefore

 

m · q 

′ ≥ m

 

. So

 

n = m · q 

′+ r 

′ ≥ 

m + r 

′ ≥ m

 

, which is a contradiction with

 

n < m

 

. 

– Otherwise,

 

q 

′ = 0

 

so it must be the case that

 

r ̸ = n

 

. Writing the 

division, we have

 

n = m · q 

′ + r 

′ = m · 0 + r 

′ = r 

′ ̸ = n

 

which is a 

contradiction. 

• Otherwise, i.e.

 

n ≥ m

 

. Write

 

p = n − m < n

 

. By induction hypothesis, we 

have a unique couple

 

( q0 

, r0)

 

that satisfies the conditions:

 

n − m = m · q0+ r0

 

and

 

0 ≤ r0 

< m

 

. 

Existence

 

From the previous equation we get

 

n = m · q0 

+ r0 

+ m = 

m · ( q0 

+ 1) + r0

 

. We choose

 

q = q0 

+ 1

 

and

 

r = r0

 

. 

Uniqueness

 

Assume by contradiction that there is another couple

 

( q 

′ , r 

′)

 

, with

 

n = m · q 

′ + r 

′

 

and

 

0 ≤ r 

′ < m

 

. If

 

q 

′ = 0

 

then

 

n = r 

′ < m

 

, which contradicts

 

n ≥ m

 

, so it must be the case that

 

q 

′ ≥ 1

 

. We can therefore subtract

 

m

 

from both sides of the division:

 

n − m = m · ( q 

′ − 1)+ r 

′

 

. If

 

q 

′ − 1 ̸ = q0

 

or

 

r 

′ ̸ = r0

 

, that contradicts the 

uniqueness of

 

q0

 

and

 

r0

 

.

 

Exercise VII.1

 

For the following numbers

 

n

 

and

 

m

 

, write the Euclidean division of

 

n

 

by

 

m

 

. 

1.

 

n = 37

 

,

 

m = 4

 

2.

 

n = 43

 

,

 

m = 8

 

3.

 

n = 39

 

,

 

m = 3

 

As we remarked, Euclidean division is a generalization of the division when

 

n | m

 

. The 

special case can actually be detected because then the remainder is

 

0

 

. That provides an 

easier proof of

 

n ̸ | m

 

than trying any value for

 

k

 

and showing that

 

n · k ̸ = m

 

: just show that 

the remainder is not

 

0

 

.

 

Proposition

 

m | n

 

iff the remainder of the Euclidean division of

 

n

 

by

 

m

 

is

 

0

 

.
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Proof

 

We can prove this equivalence by proving two implications.

 

⇒

 

Assume

 

m | n

 

. Then there exists

 

q

 

such that

 

m · q = n

 

. This is the Euclidean 

division with

 

r = 0

 

:

 

n = m · q + 0

 

.

 

⇐

 

Assume

 

r = 0

 

in the Euclidean division of

 

n

 

by

 

m

 

. Then

 

n = m · q

 

so

 

m | n

 

.

 

Exercise VII.2

 

For the following numbers

 

n

 

and

 

m

 

, determine whether

 

n | m

 

or

 

n ̸ | m

 

. Justify your 

answer. 

1.

 

n = 10

 

,

 

m = 50

 

2.

 

n = 50

 

,

 

m = 10

 

3.

 

n = 13

 

,

 

m = 63

 

4.

 

n = 37

 

,

 

m = 37

 

5.

 

n = 37

 

,

 

m = 0

 

6.

 

n = 1

 

,

 

m = 19

 

Exercise VII.3

 

List all the divisors of

 

28

 

by trial and error.

 

VII.B Prime numbers 

Prime numbers are the basic atoms (in the literal sense: “which cannot be cut”) of numbers, 

as they cannot be decomposed as a product of other numbers: 

VII.B.1 Definition

 

Definition: Prime number

 

A number

 

n ∈ N

 

is prime iff it has exactly two divisors:

 

1

 

and

 

n

 

.

 

Not that by this definition,

 

0

 

and

 

1

 

are not prime numbers, even though they cannot 

really be decomposed either. They have a special role in arithmetic, as

 

1

 

is the neutral 

element while

 

0

 

is absorbing for multiplication, so it is convenient to exclude them from this 

definition. 

The first prime numbers are

 

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37

 

. We can see in Fig- 

ure VII.1 that they constitute the “line” at the base of the lattice of divisibility: they are 

not divisible by anything but

 

1

 

. 

A number that is not prime is composite , so for example

 

21

 

is composite because its 

divisors are

 

1 , 3 , 7 , 21

 

. As a result it can be written as

 

21 = 3 · 7

 

, which is a decomposition 

into the product

 

3

 

and

 

7

 

. For a prime number, the only possible “decomposition” being the 

trivial one

 

p = 1 · p

 

, which actually is not a real decomposition because

 

p

 

appears as the 

component.
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VII.B.2 Euclid’s Lemma 

Because of their atomicity, prime numbers have good properties regarding divisibility. This 

result is best known as Euclid’s Lemma:

 

Euclid’s Lemma

 

Let

 

n, m, p ∈ N

 

. If is

 

p

 

prime and

 

p | n · m

 

, then

 

p | n

 

or

 

p | m

 

.

 

Before even attempting to prove this Lemma, we can remark that the condition of

 

p

 

being prime is crucial here. For example

 

6 | 8 · 3

 

, because

 

8 · 3 = 24

 

and

 

6 · 4 = 24

 

. But

 

6 ̸ | 8

 

and

 

6 ̸ | 3

 

. What is happening here which cannot happen with a prime number is that

 

6 = 2 · 3

 

, so one can write

 

24

 

in different ways:

 

24 = 6 · 4 = 2 · 3 · 4 = 8 · 3

 

. As a prime 

number cannot be decomposed, any way of writing the product

 

n · m

 

has to feature

 

p

 

or a 

multiple of

 

p

 

.

 

Proof of Euclid’s Lemma

 

Let

 

n, m, p ∈ N

 

. Assume that

 

p

 

is prime, and

 

p | n · m

 

. First, we can treat the case 

when either

 

n

 

or

 

m

 

is

 

1

 

: the result is trivial. For example if

 

n = 1

 

, then

 

n · m = m

 

, 

so the assumption

 

p | n · m

 

yields directly

 

p | m

 

; the case for

 

m = 1

 

being similar. So 

we can assume that both

 

n

 

and

 

m

 

are not

 

1

 

in the sequel of the proof. 

We will prove the result by contradiction: assume

 

p ̸ | n

 

and

 

p ̸ | m

 

. We can choose

 

m

 

to be minimal: for given

 

p

 

and

 

n

 

,

 

m

 

is the smallest such value such that

 

p | n · m

 

,

 

p ̸ | n

 

, and

 

p ̸ | m

 

. 

We write the Euclidean division of

 

m

 

by

 

p

 

:

 

m = p · q + r

 

, with

 

0 ≤ r < p

 

. Since

 

p ̸ | m

 

, 

the case

 

r = 0

 

is impossible, so we actually have

 

0 < r < p

 

. 

• Assume

 

q = 0

 

. Then

 

m = r

 

, so we have

 

0 < m < p

 

. We now write the 

Euclidean division of

 

p

 

by

 

m

 

:

 

p = m · q 

′ + r 

′

 

with

 

0 < q 

′

 

,

 

0 < r 

′ < m < p

 

; 

the case

 

r 

′ = 0

 

being impossible since

 

m ̸ | p

 

as

 

p

 

is prime. Therefore we can 

rewrite the division as

 

r 

′ = p − m · q 

′

 

. Multiplying both sides by

 

n

 

we obtain

 

n · r 

′ = n · p − n · m · q 

′

 

. Since

 

p | n · m

 

, there exists

 

k

 

such that

 

p · k = n · m

 

, so

 

n · r 

′ = n · p − p · k · q 

′ = p · ( n − k · q 

′)

 

. As a result

 

p | n · r 

′

 

. We also have

 

p ̸ | r 

′

 

because

 

0 < r 

′ < p

 

. So

 

p | n · r 

′

 

,

 

p ̸ | n

 

, and

 

p ̸ | r 

′

 

with

 

r 

′ < m

 

, which contradicts 

the minimality of

 

m

 

. 

• Otherwise,

 

q > 0

 

. Multiplying the Euclidean division by

 

n

 

on both sides, we 

get

 

n · m = p · q · n + n · r

 

. Since

 

p | n · m

 

and

 

p | p · q · n

 

,

 

p | n · r

 

. Because

 

0 < r < p

 

, we have

 

p ̸ | r

 

. Since

 

q > 0

 

, we have

 

r < m

 

. So

 

p | n · r

 

,

 

p ̸ | n

 

, and

 

p ̸ | r

 

with

 

r < m

 

, which contradicts the minimality of

 

m

 

.

 

VII.B.3 Fundamental Theorem of Arithmetic 

As prime numbers cannot be decomposed, they are the building blocks of all other numbers. 

This is what is stated in the Fundamental Theorem of Arithmetic (FTA):
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Fundamental Theorem of Arithmetic

 

Every number

 

n > 1

 

can be written in a unique way as a product of prime factors.

 

Here the uniqueness of the decomposition is what makes the result beautiful. Indeed, it 

makes intuitive sense that if a number can be decomposed, and said components themselves 

are decomposed, at one point the decomposition will only have elements that cannot be 

broken down any further, in our cases prime numbers. What is less intuitive is that this 

decomposition is unique: regardless of how the decomposition goes, in the end the same basic 

elements will always be there. Note that the uniqueness is understood up to commutativity:

 

21 = 7 · 3 = 3 · 7

 

is the decomposition of

 

21

 

into

 

3

 

and

 

7

 

. 

Also note that once again

 

0

 

and

 

1

 

are excluded from the Theorem. Number

 

0

 

can 

be written in infinitely many ways that all require the use of

 

0

 

itself, which is not prime:

 

0 = 0 · 5 · 13 = 0 · 3 · 29 · 101 = . . .

 

. Number

 

1

 

can be written in a unique way, but it requires 

the use of the non-prime number

 

1

 

:

 

1 = 1

 

.

 

Proof of the Fundamental Theorem of Arithmetic

 

As a decomposition breaks down a number into smaller ones but not necessarily 

the previous one, the proof uses strong induction. Note that both existence and 

uniqueness have to be proved. 

Base case

 

n = 2

 

. 

Existence

 

n = 2

 

is a product of primes. 

Uniqueness

 

Any other decomposition

 

2 = p1 

· · · pn

 

would violate the primal- 

ity of

 

2

 

, hence it is unique. 

Inductive case

 

Assume that for any

 

m < n

 

,

 

m

 

can be written uniquely as a 

product of primes. 

• If

 

n

 

is prime, it is a product of primes. Any other decomposition

 

n = 

p1 

· · · pn

 

contradicts the primality of

 

n

 

, hence it is unique. 

• If

 

n

 

is not prime: 

Existence

 

Let

 

m

 

be a divisor of

 

n

 

with

 

1 < m < n

 

. Then there is a

 

k

 

such that

 

m · k = n

 

, and we also have

 

1 < k < n

 

. By induction 

hypothesis,

 

m = p1 

· p2 

· · · pi

 

is a product of primes and so is

 

k = 

p′ 

1 

· p′ 

2 

· · · p′ 

j

 

. As a result

 

n = m · k = p1 

· p2 

· · · pi 

· p′ 

1 

· p′ 

2 

· · · p′ 

j

 

is a 

product of primes. 

Uniqueness

 

Assume that there are distinct decomposition of primes for

 

n

 

:

 

q1 

· q2 

· · · qi 

= q 

′ 

1 

· q 

′ 

2 

· · · q 

′ 

j

 

. So

 

q1 

| q 

′ 

1 

· q 

′ 

2 

· · · q 

′ 

j

 

. By repeatedly 

applying Euclid’s Lemma, we can show that

 

q1

 

divides one of the

 

q 

′ 

ℓ

 

: 

either

 

q1 

| q 

′ 

1

 

, or

 

q1 

| q 

′ 

2 

· · · q 

′ 

j

 

; in the latter case either either

 

q1 

| q 

′ 

2

 

, or

 

q1 

| q 

′ 

3 

· · · q 

′ 

j

 

; and so on until we find an index

 

ℓ

 

such that

 

q1 

| q 

′ 

ℓ

 

. Since 

they are both primes, that means

 

q1 

= q 

′ 

ℓ

 

. So there are two distinct 

decompositions for

 

n

 

q1 

= q2 

· · · qi 

= q 

′ 

1 

· · · q 

′ 

ℓ − 1 

· q 

′ 

ℓ +1 

· · · q 

′ 

j

 

. Since

 

n

 

q1 

< n

 

, 

this contradict the induction hypothesis.

 

Introduction to Discrete Mathematics 115



 

Chapter VII Number Theory

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

25

 

26

 

(a) Crossing out multiples of 2.
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(b) Crossing out multiples of 3.
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(c) Crossing out multiples of 5.
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(d) Crossing out multiples of 7, 11, 13. 

Figure VII.2: Sieve of Eratosthenes up to 26. 

VII.B.4 Checking primality 

A consequence of the FTA is that every number is either prime or a product of primes. So 

in order to know whether a number

 

n

 

is prime, it is sufficient to try to divide by all prime 

numbers smaller than

 

n

 

, which reduces the number of divisions to try. 

This idea is at the core of the Sieve of Eratosthenes , which works as follows: 

1. Write all the numbers in a table (up to a certain limit). 

2. Start at 2, strikeout all multiples of 2, as they won’t be primes. 

3. Move to the next non-stricken number

 

p

 

: as it has not been stricken out, it is not a 

multiple of any other prime so

 

p

 

is a prime number. 

4. Strikeout all multiples of

 

p

 

, as they won’t be primes. 

5. Repeat from point 3 until the end of the table is reached. 

6. All non-stricken numbers are the primes. 

An example up to 26 is given in Figure VII.2. 

Note that there are other (faster) methods to check if a number is prime, but they are 

beyond the scope of this course. 

VII.B.5 Decomposition into prime factors 

As the order of the prime factors do not matter, we usually write the decomposition starting 

from the lowest prime number to the highest. If a prime number appears more than one, 

then all the occurrence are to be gathered in a single power of a prime. For example

 

24 = 2 · 2 · 2 · 3 = 23 · 3

 

.
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60

 

6

 

10

 

2

 

3

 

2

 

5

 

Figure VII.3: Decomposition of 60 into prime factors. 

The proof of the FTA gives a procedure to decompose a number

 

n

 

into prime factors, 

based on the two sub-cases of the inductive case: 

• If the number is prime, the decomposition is

 

n = n

 

. 

• Otherwise: find a divisor

 

d

 

of

 

n

 

and decompose

 

n

 

d

 

and

 

d

 

independently. 

For example:

 

60 = 6 · 10 = (2 · 3) · (2 · 5) = 22 · 3 · 5

 

. The uniqueness of the decomposition 

means that it does not really matter what divisor is chosen, the end result will be the same. 

When calculating as a human, it is often more practical to use the factors that spring to 

mind; in the case of

 

60

 

, splitting it as

 

6 · 10

 

was quite natural. On paper, it is not uncommon 

to write these decompositions in a tree-like pattern ,as is done in Figure VII.3. 

Another method which is a bit more tedious but more systematic and hence easier 

to program in a computer is to always trying prime numbers until they do not divide in 

anymore:

 

60 = 2 · 30 = 2 · 2 · 15 = 2 · 2 · 3 · 5 = 22 · 3 · 5

 

. It is more systematic in part 

because one does not actually need to know when a number is prime: a non-prime number

 

d

 

will never be found as a factor since the prime factors of

 

d

 

would have been factored out 

already. So it does not hurt (for a computer, a human may be a bit smarter than that when 

prime numbers are known) to try all the numbers. In the example above,

 

12

 

is not found 

as a factor because all the factors

 

2

 

and

 

3

 

have been factored out already. This method has 

the added advantage of already providing the factors in the usual order. 

To decompose by hand, a couple of basic criteria of divisibility allow for a fast check of 

whether a prime number is a factor: 

2

 

Last digit is even (0, 2, 4, 6, 8). 

3

 

The sum of the digits is a multiple of 3: 3, 6, 9, or a number with more digits that can 

also be summed in the same fashion.

 

↬

 

This fact is 

proved in Sec- 

tion VII.E.4.ii.

 

5

 

Last digit is either 0 or 5.

 

Exercise VII.4

 

Decompose the following numbers into prime factors: 

1. 100 

2. 198 

3. 102 

4. 105 

5. 43 

6. 1125

 

VII.B.6 From the decomposition to the list of divisors 

As prime factors are a particular kind of divisors, they are quite useful in order to find all 

the divisors. Indeed, the prime factor decomposition of a number and any of its divisor are 

related.
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Proposition

 

Let

 

n, m ∈ N

 

. Assume that the decomposition of

 

n

 

into prime factors is

 

n = pk1 

1 

· 

pk2 

2 

· · · pki 

i

 

. If

 

m | n

 

, then the decomposition of

 

m

 

into prime factors is

 

m = p
k 

′ 

1 

1 

· 

p
k 

′ 

2 

2 

· · · p
k 

′ 

i 

i

 

where for any

 

i, k 

′ 

i 

≤ ki

 

.

 

Proof

 

Take a number

 

n ∈ N

 

and its decomposition into prime factors:

 

n = pk1 

1 

· pk2 

2 

· · · pki 

i

 

. 

Let

 

m ∈ N

 

and assume that

 

m | n

 

. Then for any prime factor

 

p

 

of

 

m

 

, it is also a 

prime factor of

 

n

 

. This can be proved by repeatedly applying Euclid’s Lemma, as was 

done in the proof of the FTA. Since this process can be repeated on

 

m

 

p

 

which divides

 

n

 

p

 

, in the end every prime factor of

 

m

 

is also a prime factor of

 

n

 

. As a result we can 

write

 

m = p
k 

′ 

1 

1 

· p
k 

′ 

2 

2 

· · · p
k 

′ 

i 

i

 

where for any

 

i, k 

′ 

i 

≤ ki

 

.

 

Remark that in this proposition, some powers in

 

m

 

may be

 

0

 

, that only means that this 

prime factor of

 

n

 

is not a factor of

 

m

 

. Also note that the factors (or powers of factors) 

appearing in

 

n

 

but not in

 

m

 

allow to calculate

 

n

 

m

 

:

 

n

 

m 

= p
k1 

− k 

′ 

1 

1 

· p
k2 

− k 

′ 

2 

2 

· · · p
ki 

− k 

′ 

i 

i

 

. 

Since a divisor of

 

n

 

share the same prime factores with lower powers, listing all the 

possible power combination for each prime yields the list of all the divisors of

 

n

 

:

 

p0 

1 

· p0 

2 

· · · p0 

i 

= 

1

 

,

 

p1 

1 

· p0 

2 

· · · p0 

i

 

, . . . ,

 

pk1 

1 

· p0 

2 

· · · p0 

i

 

,

 

pk1 

1 

· p1 

2 

· · · p0 

i

 

,. . . ,

 

pk1 

1 

· pk2 

2 

· · · p0 

i

 

, . . .

 

pk1 

1 

· pk2 

2 

· · · pki 

i 

= n

 

. 

For example:

 

60 = 22 · 31 · 51

 

so its divisors are: 

•

 

20 · 30 · 50 = 1

 

•

 

21 · 30 · 50 = 2

 

•

 

22 · 30 · 50 = 4

 

•

 

20 · 31 · 50 = 3

 

•

 

21 · 31 · 50 = 6

 

•

 

22 · 31 · 50 = 12

 

•

 

20 · 30 · 51 = 5

 

•

 

21 · 30 · 51 = 10

 

•

 

22 · 30 · 51 = 20

 

•

 

20 · 31 · 51 = 15

 

•

 

21 · 31 · 51 = 30

 

•

 

22 · 31 · 51 = 60

 

Exercise VII.5

 

1. Decompose

 

1575

 

into prime factors. 

2. List all its divisors.

 

VII.B.7 Infinity of primes 

As prime numbers are the building blocks of integers, getting to know them a bit better 

is necessary to better understand arithmetics. One of the first question to answer is: how 

many primes are they? The answer is:

 

Theorem

 

There are infinitely many prime 

numbers.
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Proof

 

We will use a proof by contradiction. Assume, by contradiction, that there is only 

finitely many prime numbers. They can be listed as:

 

p1 

, p2 

, . . . , pn

 

. 

Let

 

m = 1 + 

∏n 

i =1 

pi 

= 1 + p1 

· p2 

· · · pn

 

. That is

 

m

 

is the product of all the primes, 

plus

 

1

 

. 

For any

 

i ∈ { 1 , . . . , p }

 

, consider the Euclidean division of

 

m

 

by

 

pi

 

: we have

 

m = pi 

· 

( p1 

· p2 

· · · pi − 1 

· pi +1 

· · · pn)+1

 

. So the remainder of the division is

 

1

 

, hence

 

pi 

̸ | m

 

. So

 

m

 

cannot be decomposed into a product of primes, which contradicts the Fundamental 

Theorem of Arithmetic.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

Now that we know that there are infinitely many primes, there are more questions 

pertaining to “how many” there are that can be asked. For example, one can ask how many 

prime numbers are smaller than or equal to a given integer

 

n

 

. It has been shown (but will 

not be proved here), that as

 

n

 

grows, the number of primes smaller than

 

n

 

grows as

 

n

 

ln( n )

 

. 

Otherwise stated, if a number is randomly selected between

 

1

 

and

 

n

 

(for a big enough

 

n

 

), 

the probability of selecting a prime number is

 

1

 

ln( n )

 

. So the bigger the number

 

n

 

, the less 

likely a prime number is to be selected: prime numbers become rarer as

 

n

 

grows. This is 

known as the Prime Number Theorem, proved by Hadamard and Poussin in the late 19th 

century. 

VII.C Greatest Common Divisor and Least Com- 

mon Multiple 

VII.C.1 Definitions 

Based on the building blocks that are the prime numbers, one can compare other numbers 

to one another, according to how they are built. So two numbers are alike up to the prime 

factors that they share, which is akin to saying that they are alike up to the largest divisor 

they share:

 

Definition: Greatest Common Divisor (GCD)

 

The Greatest Common Divisor of

 

n

 

and

 

m

 

(both

 

> 0

 

) is the 

largest number

 

p

 

such that

 

p | n

 

and

 

p | m

 

. It is written

 

gcd( n, m )

 

.

 

For example: let’s calculate

 

gcd(12 , 27)

 

. The divisors of

 

12

 

are:

 

1 , 2 , 3 , 4 , 6 , 12

 

. the 

divisors of

 

27

 

are:

 

1 , 3 , 9 , 27

 

. The common divisors are therefore

 

1

 

,

 

3

 

, and

 

3

 

is the largest, 

so

 

gcd(12 , 27) = 3

 

. 

For

 

24

 

and

 

35

 

, the divisors are

 

1

 

,

 

2

 

,

 

3

 

,

 

4

 

,

 

6

 

,

 

8

 

,

 

12

 

,

 

24

 

and

 

1

 

,

 

5

 

,

 

7

 

,

 

35

 

, respectively. The 

only common divisor is

 

1

 

, so

 

gcd(24 , 35) = 1

 

. 

For

 

4

 

and

 

36

 

, the divisors are

 

1

 

,

 

2

 

,

 

4

 

and

 

1

 

,

 

2

 

,

 

3

 

,

 

4

 

,

 

6

 

,

 

9

 

,

 

12

 

,

 

18

 

,

 

36

 

, so

 

1

 

,

 

2

 

,

 

4

 

are common 

and

 

gcd(4 , 36) = 4

 

. 

Remark that

 

1

 

is always a common divisor, although not always the greatest one. One 

consequence is that the GCD is always defined for any two numbers. When

 

gcd( n, m ) = 1

 

,

 

n

 

and

 

m

 

are co-prime . 

The GCD can be read from the lattice of divisibility (see Figure VII.1 page 110) as
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follows: from

 

n

 

and

 

m

 

, take all the arrows backwards (that corresponds to divisors), and 

the first time these explorations meet is the GCD. For example to calculate

 

gcd(12 , 27)

 

from 

the lattice: from

 

24

 

explore

 

8

 

and

 

12

 

, then

 

4

 

and

 

6

 

then

 

2

 

and

 

3

 

, then

 

1

 

. From

 

27

 

explore

 

9

 

, then

 

3

 

, then

 

1

 

. The first time they meet is

 

3

 

, so

 

gcd(12 , 27) = 3

 

. 

The meeting point (this is lattice terminology), has a dual notion: the join. Namely, 

for the meet we explored downward in the lattice, while for the join we explore upward. 

Upward exploration means exploring multiples, so the first time these explorations join, the 

least common multiple is found:

 

Definition: Least Common Multiple (LCM)

 

The Least Common Multiple of

 

n

 

and

 

m

 

(both

 

> 0

 

) is the smallest 

number

 

p > 0

 

such that

 

n | p

 

and

 

m | p

 

. It is written

 

lcm( n, m )

 

.

 

For examples, let’s calculate

 

lcm(6 , 8)

 

. Non-zero multiples of

 

6

 

include

 

6

 

,

 

12

 

,

 

18

 

,

 

24

 

,

 

30

 

,

 

36

 

,

 

42

 

,

 

48

 

,. . . Non-zero multiples of

 

8

 

include

 

8

 

,

 

16

 

,

 

24

 

,

 

32

 

,

 

40

 

,

 

48

 

,. . . The common one include

 

24 , 48 , . . .

 

, so the smallest is

 

24

 

and

 

lcm(6 , 8) = 24

 

. Note that on the lattice of Figure VII.1, 

the explorations went:

 

6

 

,

 

12

 

,

 

24

 

and

 

8

 

,

 

16

 

,

 

24

 

(

 

16

 

is not displayed) so they join at

 

24

 

. 

In the case of

 

9

 

and

 

6

 

, multiples are

 

9

 

,

 

18

 

,

 

27

 

,

 

36

 

,

 

45

 

,

 

54

 

,. . . and

 

6

 

,

 

12

 

,

 

18

 

,

 

24

 

,

 

30

 

,

 

36

 

,

 

42

 

,

 

48

 

,

 

54

 

,

 

. . .

 

, respectively. The common multiples being

 

18

 

,

 

54 , . . .

 

we have

 

lcm(9 , 6) = 18

 

. 

For

 

14

 

and

 

15

 

, the multiples are

 

14

 

,

 

28

 

,

 

42

 

,

 

56

 

,

 

70

 

,

 

84

 

,

 

98

 

,

 

112

 

,

 

126

 

,

 

140

 

,

 

154

 

,

 

168

 

,

 

182

 

,

 

196

 

,

 

210 , . . .

 

and

 

15

 

,

 

30

 

,

 

45

 

,

 

60

 

,

 

75

 

,

 

90

 

,

 

105

 

,

 

120

 

,

 

135

 

,

 

150

 

,

 

165

 

,

 

180

 

,

 

195

 

,

 

210

 

,. . . So

 

lcm(15 , 14) = 210

 

. Note that here

 

210 = 14 · 15

 

. 

We can remark that

 

0

 

is always a common multiple, but as it is not interesting, it is 

excluded from the definition. Another easy common multiple of

 

n

 

and

 

m

 

is

 

n · m

 

. While it 

may not be the smallest, its existence ensures that the LCM is always defined. 

VII.C.2 Properties 

As the definitions of GCD and LCM are symmetric for

 

n

 

and

 

m

 

, these notions are symmet- 

rical:

 

Proposition: Symmetry

 

Let

 

n, m ∈ N

 

and assume

 

n, m > 0

 

. 

•

 

gcd( n, m ) = gcd( m, n )

 

. •

 

lcm( n, m ) = lcm( m, n )

 

.

 

As noted, the GCD is related to how prime factors are shared between

 

n

 

and

 

m

 

. This 

gives a method to compute GCD, and LCM, based on the decompositions:

 

Proposition: GCD and LCM from prime factor decomposition

 

Let

 

n, m ∈ N

 

and assume

 

n, m > 0

 

. Let

 

n = pk1 

1 

· pk2 

2 

· · · pki 

i

 

and

 

m = 

pj1 

1 

· pj2 

2 

· · · pji 

i

 

be the decompositions into prime factors of

 

n

 

and

 

m

 

. Then: 

•

 

gcd( n, m ) = p
min( k1 

,j1) 

1 

· p
min( k2 

,j2) 

2 

· · · p
min( ki 

,ji) 

i

 

. 

•

 

lcm( n, m ) = p
max( k1 

,j1) 

1 

· p
max( k2 

,j2) 

2 

· · · p
max( ki 

,ji) 

i

 

.
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Note that in this proposition we assume that the prime number appearing in the decom- 

positions are identical because some powers might be

 

0

 

. For example we write

 

12 = 22 · 31 · 50

 

and

 

15 = 20 · 31 · 51

 

. Based on this

 

gcd(12 , 15) = 20 · 31 · 50 = 3

 

and

 

lcm(12 , 15) = 22 · 31 · 51 = 60

 

.

 

Proof

 

Let

 

d

 

be a common divisor of

 

m

 

and

 

n

 

. As we remarked in Section VII.B.6

 

d

 

can be 

written

 

pr1 

1 

· pr2 

2 

· · · pri 

i

 

with for any

 

ℓ ∈ { 1 , . . . , i }

 

,

 

rℓ 

≤ kℓ

 

(since

 

d | n

 

) and

 

rℓ 

≤ jℓ

 

(since

 

d | m

 

). So

 

rℓ 

≤ min( kℓ 

, jℓ)

 

. Now consider

 

g = p
min( k1 

,j1) 

1 

· p
min( k2 

,j2) 

2 

· · · p
min( ki 

,ji) 

i

 

. 

We just proved that

 

g

 

is a common divisor to

 

n

 

and

 

m

 

. Now for any divisor

 

d

 

, since 

the power associated to every prime number

 

pℓ

 

in

 

d

 

is

 

rℓ 

≤ min( kℓ 

, jℓ)

 

,

 

d | g

 

, so

 

d ≤ g

 

, 

as a result

 

g

 

is the greatest common divisor. 

The reasoning is similar for the LCM: any common multiple

 

d

 

can be written

 

pr1 

1 

· 

pr2 

2 

· · · pri 

i

 

with for any

 

ℓ ∈ { 1 , . . . , i }

 

,

 

rℓ 

≥ kℓ

 

(since

 

n | d

 

) and

 

rℓ 

≥ jℓ

 

(since

 

m | d

 

). 

So

 

rℓ 

≥ max( kℓ 

, jℓ)

 

. Therefore

 

q = p
max( k1 

,j1) 

1 

· p
max( k2 

,j2) 

2 

· · · p
max( ki 

,ji) 

i

 

is indeed a 

common multiple of

 

n

 

and

 

m

 

. In addition, any other common multiple is also a 

multiple of

 

q

 

since the power associated with prime

 

pℓ

 

in

 

d

 

is at least

 

max( kℓ 

, jℓ)

 

.

 

Corollary

 

gcd( n, m ) · lcm( n, m ) = n · m

 

.

 

Proof

 

In

 

n · m

 

every prime factor

 

pℓ

 

has power

 

kℓ 

+ jℓ 

= min( kℓ 

, jℓ) + max( kℓ 

, jℓ)

 

.

 

Indeed we have

 

3 · 60 = 12 · 15

 

:

 

3 · 60 = (20 · 31 · 50) · (22 · 31 · 51) = 22 · 32 · 51 = 180 

12 · 15 = (22 · 31 · 50) · (20 · 31 · 51) = 22 · 32 · 51 = 180 .

 

Exercise VII.6

 

Calculate using the decomposition into prime factors: 

1.

 

gcd(36 , 21)

 

and

 

lcm(36 , 21)

 

. 

2.

 

gcd(78 , 24)

 

3.

 

lcm(45 , 33)

 

VII.C.3 Euclid’s Algorithm 

Although the above provides a procedure to calculate the GCD and LCM of two numbers, it 

is highly inefficient as it requires to first decompose into prime factors. There is a more effi- 

cient way to calculate the GCD, called Euclid’s Algorithm. Then from the GCD, calculating 

the LCM can be done using the formula

 

lcm( n, m ) = 

n · m

 

gcd( n,m )

 

.
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Proposition

 

Let

 

n, m ∈ N

 

and assume

 

n, m > 0

 

. Let

 

n = m · q + r

 

be the Euclidean division of

 

n

 

by

 

m

 

. 

• If

 

r = 0

 

, then

 

gcd( n, m ) = m

 

. 

• If

 

r > 0

 

(i.e.

 

m ̸ | n

 

), then

 

gcd( n, m ) = gcd( m, r )

 

.

 

Proof

 

• If

 

r = 0

 

then

 

m | n

 

so

 

m

 

is a divisor of

 

n

 

; as

 

m

 

is also a divisor of

 

m

 

, it is a 

common divisor. There cannot be a larger one as it would not divide

 

m

 

. 

• Let

 

d

 

be a common divisor of

 

n

 

and

 

m

 

. Then

 

d | m · q

 

and

 

d | m · q + r

 

, so

 

d | r

 

. 

Reciprocally, a divisor of

 

m

 

and

 

r

 

is a divisor of

 

n = m · q + r

 

. This is true in 

particular for the greatest divisor.

 

This property gives rise to a recursive procedure to calculate the GCD of two numbers:

 

Euclid’s Algorithm

 

If

 

m | n

 

, then

 

gcd( n, m ) = m

 

, otherwise

 

gcd( n, m ) = gcd( m, r )

 

where

 

r

 

is the remain- 

der in the Euclidean division of

 

n

 

by

 

m

 

.

 

So it is possible to calculate

 

gcd( n, m )

 

by writing successive divisions. Each time

 

m

 

replaces

 

n

 

and

 

r

 

replaces

 

m

 

. The last non-zero remainder is the GCD of

 

n

 

and

 

m

 

. 

Note that while it is in practice easier to assume that

 

n ≥ m

 

, it is not required by the 

algorithm. When

 

n < m

 

,as the division of

 

n

 

by

 

m

 

will have a remainder of

 

n

 

, and the next 

division is

 

m

 

divided by

 

n

 

. For example, let’s calculate

 

gcd(24 , 136)

 

: 

24 = 136 · 0+24 ⇝ 136 = 24 · 5+16 ⇝ 24 = 16 · 1+ 8 ⇝ 16 = 8 · 2+0 

So

 

gcd(24 , 136) = 8

 

.

 

Exercise VII.7

 

Use Euclid’s Algorithm to calculate: 

1.

 

gcd(364 , 122)

 

2.

 

gcd(121 , 374)

 

3.

 

gcd(764 , 224)

 

Exercise VII.8

 

1. Use Euclid’s Algorithm to calculate

 

gcd(21 , 13)

 

. 

2. Fibonacci’s sequence is defined recursively as

 

Fn +2 

= Fn +1 

+ Fn

 

,

 

F0 

= F1 

= 1

 

. 

a. Prove by strong induction that for

 

n > 0

 

,

 

0 < Fn 

< Fn +1

 

. 

b. Prove that for any

 

n ∈ N

 

,

 

gcd( Fn +1 

, Fn) = 1

 

. 

� 

In the proofs above, be careful about the base case.
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VII.C.4 Applications: fractions 

While this is not really new, it is nice to see the operations done on fractions under the new 

light of arithmetics. 

A fraction

 

n

 

m

 

can be simplified by dividing both numerator and denominator by a common 

divisor of

 

n

 

and

 

m

 

. To be as efficient as possible, said divisor should be the largest, hence

 

gcd( n, m )

 

:

 

n

 

m 

= 

n

 

gcd( n,m )

 

m

 

gcd( n,m )

 

A consequence is that

 

n

 

m

 

is irreducible if and only if

 

n

 

and

 

m

 

are co-prime. 

In order to add (or subtract) fractions

 

n

 

m

 

and

 

p

 

q

 

, they must be put over the same de- 

nominator. As this denominator must be a multiple of

 

m

 

and

 

q

 

, but still be the smallest to 

preserve fractions as simplified as possible,

 

lcm( m, q )

 

must be used. What is actually used 

to make

 

n

 

m

 

as an equivalent fraction with denominator

 

lcm( m, q )

 

is all the factors of

 

q

 

that 

are not factors of

 

m

 

, namely

 

q

 

gcd( m,q )

 

. Indeed in the denominator

 

m · 

q

 

gcd( m,q ) 

= 

m · q

 

gcd( m,q ) 

= 

lcm m, q

 

. A similar idea is used for fraction

 

p

 

q

 

, yielding the following formula:

 

n

 

m 

+ 

p

 

q 

= 

n · 

q

 

gcd( m,q ) 

+ p · 

m

 

gcd( m,q )

 

lcm( m, q )

 

Although it is not easy to read, it is easily implemented in a computer program. For 

fraction additions as a human, it is actually simpler to consider prime factor decomposition. 

For example: 

154

 

140 

= 

21 · 50 · 71 · 111

 

22 · 51 · 71 · 110 

= 

111

 

21 · 51 

= 

11

 

10 

3

 

14 

+ 

5

 

12 

= 

3

 

21 · 30 · 71 

+ 

5

 

22 · 31 · 70 

= 

3 · 21 · 31 · 70 + 5 · 20 · 30 · 71

 

22 · 31 · 71 

= 

18 + 35

 

22 · 31 · 71 

= 

53

 

84 

VII.D Diophantine Equations 

VII.D.1 Extension to

 

Z

 

So far, this chapter treated only natural numbers. But what par tof that could actually 

works in

 

Z

 

? 

Actually, a lot, since the sign information is only one extra factor. 

First, divisibility can still be defined as before. The only difference is that in

 

Z

 

, it is no 

longer an order:

 

− n | n

 

and

 

n | − n

 

, but

 

n ̸ = − n

 

. As there is still reflexivity and transitivity, 

but no antisymmetry, so this is called a pre-order . 

Euclidean division can still be defined for

 

n, m ∈ Z

 

:

 

n = m · q + r

 

with

 

0 ≤ r < | m |

 

. 

Note that the remainder is still positive, even though that may be counter intuitive. For 

example, for

 

± 17

 

divided by

 

± 3

 

, we have the following four cases: 

•

 

17

 

by

 

3

 

:

 

17 = 3 · 5 + 2

 

•

 

− 17

 

by

 

3

 

:

 

− 17 = 3 · ( − 6) + 1

 

•

 

17

 

by

 

− 3

 

:

 

17 = ( − 3) · ( − 5) + 2
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•

 

− 17

 

by

 

− 3

 

:

 

− 17 = ( − 3) · 6 + 1

 

In computer programming, the remainder operation (usually % ) does not work in the mathe- 

matical way. In most programming languages the remainder is so that

 

−| m | ≤ n % m < | m |

 

. 

To find the mathematical remainder, one has to use

 

(( n % m ) + m )% m

 

. 

Primes numbers are only positive, so

 

− 2

 

is not prime, for example. That allows the FTA 

to still hold, with the added sign information: a negative number

 

n < − 2

 

is decomposed 

into

 

n = − pk1 

1 

· pk2 

2 

· · · pki 

i

 

. 

Similarly, GCD and LCM are defined to always be positive:

 

gcd( n, m ) = gcd( | n | , | m | )

 

and

 

lcm( n, m ) = lcm( | n | , | m | )

 

. 

VII.D.2 Definition and Bézout’s Theorem 

A Diophantine equation is an equation where solutions are only sought in

 

Z

 

.

 

b

 

It is named 

after the 

ancient Greek 

mathematician 

Diophantus.

 

We will 

restrict ourselves to linear Diophantine equations with 2 variables: equations of the form

 

ax + by = c

 

, where

 

a, b, c ∈ Z

 

are parameters and

 

x

 

and

 

y

 

the unknown variables, for 

example:

 

11 x + 3 y = 7

 

. 

These equations are fairly easy to solve for reals (e.g.

 

(0 , 

7

 

3)

 

is a real solution to

 

11 x +3 y = 

7

 

), but when restricting to integers it becomes more difficult to find solutions. Thinking of 

this problem graphically, a linear Diophantine equation defines a line, but we are only 

interested on the points that are on the grid, and finding these special points make the 

problem harder. In the case of

 

11 x + 3 y = 7

 

, there are some integral solutions, for example

 

( − 7 , 28)

 

or

 

(14 , − 49)

 

. Bézout’s Theorem provides a way of determining whether such integral 

solutions exist, and the proof gives a method to actually find these solutions when they exist.

 

Bézout Theorem

 

The equation

 

ax + by = c

 

has: 

• Infinitely many integer solutions if

 

gcd( a, b ) | c

 

. 

• No integer solution if

 

gcd( a, b ) ̸ | c

 

.

 

The proof consists in finding a solution

 

( x0 

, y0)

 

to

 

ax + by = gcd( a, b )

 

, in a separate 

Lemma which proof contains the actual procedure to find a solution. Then it is possible to 

find all the solutions from

 

( x0 

, y0)

 

. These solutions can then be transformed to solutions of

 

ax + by = c

 

if

 

gcd( a, b ) | c

 

. Then we show the reciprocal: if

 

ax + by = c

 

has a solution then

 

gcd( a, b ) | c

 

.

 

Lemma

 

Diophantine Equation

 

ax + by = gcd( a, b )

 

has a solution.

 

Proof of the Lemma

 

The idea behind this proof, and the practical method that can be used to find solutions 

is as follows. We write Euclid’s algorithm, and then read it backwards. The last-but- 

one line is

 

ri − 1 

= ri 

· qi+gcd( a, b )

 

, which can be rewritten as

 

gcd( a, b ) = ri − 1 

− ri 

· qi

 

. 

Then write the line before as

 

ri 

= ri − 2 

− ri − 1 

· qi − 1

 

and so on until reaching

 

a

 

and

 

b

 

. 

To write the formal proof, we use the Extended Euclid’s Algorithm which actually
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calculates the solution as the algorithm unfolds. Think can be thought of as incorpo- 

rating the backward reading of the algorithm as we go. 

First, some notation: in this proof

 

n ÷ m

 

is the quotient in the Euclidean division:

 

n = m · ( n ÷ m ) + r

 

,

 

0 ≤ r < m

 

. Then we define three sequences as follows: 

•

 

r0 

= a

 

,

 

r1 

= b

 

, for any

 

n ∈ N

 

,

 

rn +2 

= rn 

− ( rn 

÷ rn +1) · rn +1

 

•

 

x0 

= 1

 

,

 

x1 

= 0

 

, for any

 

n ∈ N

 

,

 

xn +2 

= xn 

− ( rn 

÷ rn +1) · xn +1

 

•

 

y0 

= 0

 

,

 

y1 

= 1

 

, for any

 

n ∈ N

 

,

 

yn +2 

= yn 

− ( rn 

÷ rn +1) · yn +1

 

• The sequences are defined until

 

rn

 

reaches

 

0

 

. 

Behind these definitions is the following idea.

 

( rn)n ∈ N

 

is the sequence of the remain- 

ders in Euclid’s algorithm. So each time

 

rn +2

 

is the remainder in the Euclidean 

division of

 

rn

 

by

 

rn +1

 

. As was proved in the proof of Euclid’s Algorithm, we have 

that for

 

n ∈ N

 

,

 

gcd( a, b ) = gcd( rn 

, rn +1)

 

. 

Now sequences

 

( xn)n ∈ N

 

and

 

( yn)n ∈ N

 

are a bit harder to understand as is. What 

matters is that at any step, we maintain the equality

 

rn 

= a · xn 

+ b · yn

 

. Taking this 

equality just before the remainder sequence reaches

 

0

 

(

 

rn +1 

= 0

 

) gives us

 

gcd( a, b ) = 

a · xn 

+ b · yn

 

, and therefore integral solutions to the equation. 

Let’s prove by induction that for

 

n ∈ N

 

,

 

rn 

= a · xn 

+ b · yn

 

. 

Base case:

 

Here there are two base case:

 

0

 

and

 

1

 

.

 

n = 0

 

a · x0 

+ b · y0 

= a · 1 + b · 0 = a = r0

 

.

 

n = 1

 

a · x1 

+ b · y1 

= a · 0 + b · 1 = b = r1

 

. 

Induction Case:

 

Assume for

 

n

 

and

 

n +1

 

the proposition holds, i.e.

 

rn 

= a · xn+ b · yn

 

and

 

rn +1 

= a · xn +1 

+ b · yn +1

 

. Then:

 

a · xn +2 

+ b · yn +2 

= a · ( xn 

− ( rn 

÷ rn +1) · xn +1) + b · ( yn 

− ( rn 

÷ rn +1) · yn +1) 

= a · xn 

+ b · yn 

− ( rn 

÷ rn +1)( a · xn +1 

+ b · yn +1) 

= rn 

− ( rn 

÷ rn +1) · rn +1 

a · xn +2 

+ b · yn +2 

= rn +2

 

So for

 

n ∈ N

 

,

 

rn 

= a · xn+ b · yn

 

, and when

 

rn +1 

= 0

 

we have

 

gcd( a, b ) = a · xn+ b · yn

 

, 

so

 

( xn 

, yn)

 

is a solution.

 

The calculation of Extended Euclid’s Algorithm for

 

34

 

and

 

13

 

is given in Table VII.1. 

While any computer implementation should use this extended algorithm, when on paper, 

however, it is less tedious to just rewind the usual Euclid’s algorithm. To facilitate the 

writing, each division is rewritten so that the remainder is the difference between the dividend 

and the product of the quotient and divisor:

 

n = m · q + r ⇔ r = n − m · q

 

. For

 

34

 

and

 

13

 

,
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n

 

Division

 

rn

 

xn

 

yn

 

Check

 

0

 

34

 

1

 

0

 

34 · 1 + 13 · 0 = 34

 

1

 

13

 

0

 

1

 

34 · 0 + 13 · 1 = 13

 

2

 

34 = 13 · 2 + 8

 

8

 

1

 

− 2

 

34 · 1 + 13 · ( − 2) = 34 − 26 = 8

 

3

 

13 = 8 · 1 + 5

 

5

 

− 1

 

3

 

34 · ( − 1) + 13 · 3 = − 34 + 39 = 5

 

4

 

8 = 5 · 1 + 3

 

3

 

2

 

− 5

 

34 · 2 + 13 · ( − 5) = 68 − 65 = 3

 

5

 

5 = 3 · 1 + 2

 

2

 

− 3

 

8

 

34 · ( − 3) + 13 · 8 = − 102 + 104 = 2

 

6

 

3 = 2 · 1 + 1

 

1

 

5

 

− 13

 

34 · 5 + 13 · ( − 13) = 170 − 169 = 1

 

7

 

2 = 1 · 2 + 0

 

0

 

Details of calculations for

 

xn

 

and

 

yn

 

: 

x2 

= x0 

− 2 · x1 

= 1 y2 

= y0 

− 2 · y1 

= − 2 x3 

= x1 

− 1 · x2 

= − 1 y3 

= y1 

− 1 · y2 

= 3 

x4 

= x2 

− 1 · x3 

= 2 y4 

= y2 

− 1 · y3 

= − 5 x5 

= x3 

− 1 · x4 

= − 3 y5 

= y3 

− 1 · y4 

= 8 

x6 

= x4 

− 1 · x5 

= 5 y6 

= y4 

− 1 · y5 

= − 13 

Table VII.1: Extended Euclid’s Algorithm for

 

34

 

and

 

13

 

. 

it would be done as follows: 

34 = 13 · 2 + 8 ⇔ 8 = 34 − 13 · 2 (VII.1) 

13 = 8 · 1 + 5 ⇔ 5 = 13 − 8 · 1 (VII.2) 

8 = 5 · 1 + 3 ⇔ 3 = 8 − 5 · 1 (VII.3) 

5 = 3 · 1 + 2 ⇔ 2 = 5 − 3 · 1 (VII.4) 

3 = 2 · 1 + 1 ⇔ 1 = 3 − 2 · 1 (VII.5) 

2 = 1 · 2 + 0 ⇝ gcd(34 , 13) = 1 (VII.6) 

Starting from

 

1 = 3 − 2 · 1

 

in Equation VII.5, we rewrite

 

2

 

using Equation VII.4, then

 

3

 

using Equation VII.3 until reaching an expression using our original numbers

 

34

 

and

 

13

 

:

 

1 = 3 − 2 · 1 [Rewriting

 

1

 

using Equation VII.5] 

= 3 − (5 − 3 · 1) = 3 · 2 − 5 [Rewriting

 

2

 

using Equation VII.4] 

= (8 − 5 · 1) · 2 − 5 = 8 · 2 − 5 · 3 [Rewriting

 

3

 

using Equation VII.3] 

= 8 · 2 − (13 − 8 · 1) · 3 = 8 · 5 − 13 · 3 [Rewriting

 

5

 

using Equation VII.2] 

= (34 − 13 · 2) · 5 − 13 · 3 = 34 · 5 − 13 · 13 [Rewriting

 

8

 

using Equation VII.1] 

1 = 34 · 5 + 13 · ( − 13) [Integral solution found]

 

Therefore the couple

 

(5 , − 13)

 

is an integral solution.

 

Proof of Bézout’s Theorem

 

First, assume that

 

gcd( a, b ) | c

 

. Be the above Lemma, equation

 

ax + by = gcd( a, b )

 

has a solution, which we name

 

( x0 

, y0)

 

. Let

 

k ∈ Z

 

, then let

 

xk 

= x0 

+ k · 

b

 

gcd( a,b )

 

and
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yk 

= y0 

− k · 

a

 

gcd( a,b )

 

. So 

axk 

+ byk 

= a · 

( 

x0 

+ k · 

b

 

gcd( a, b ) 

) 

+ b · 

( 

y0 

− k · 

a

 

gcd( a, b ) 

) 

= 

ax0 

+ by0 

+ k · 

( 

ab − ba

 

gcd( a, b ) 

) 

= ax0 

+ by0 

= gcd( a, b ) 

Hence

 

( xk 

, yk)

 

is also a solution. Note that dividing by

 

gcd( a, b )

 

is not necessary to 

obtain a solution, it is necessary to obtain all solutions. 

Since

 

gcd( a, b ) | c

 

, we can write

 

c = p · gcd( a, b )

 

. Let

 

( xk 

, yk)

 

be a solution of

 

ax + by = gcd( a, b )

 

. Then

 

a ( xk 

· p ) + b ( yk 

· p ) = gcd( a, b ) · p = c

 

, so

 

( xk 

· p, yk 

· p )

 

is a 

solution of

 

ax + by = c

 

. 

For the reciprocal, assume that

 

ax + by = c

 

has a solution, let’s prove that

 

gcd( a, b ) | c

 

. 

Let

 

d

 

be a common divisor to

 

a

 

and

 

b

 

. Then

 

d | ax + by = c

 

. In particular

 

gcd( a, b )

 

is a common divisor of

 

a

 

and

 

b

 

, so

 

gcd( a, b ) | c

 

.

 

Corollary

 

When

 

a

 

and

 

b

 

are co-prime all equations

 

ax + by = c

 

have solutions.

 

Proof

 

Assume

 

a

 

and

 

b

 

are co-prime. Therefore

 

gcd( a, b ) = 1

 

, so

 

gcd( a, b ) | c

 

, 

hence

 

ax + by = c

 

have an infinity of integral solutions.

 

Exercise VII.9

 

For the following equations, determine if they have integral solutions, and if so exhibit 

such a solution. Optionally: give the form of all solutions. 

1.

 

75 x + 40 y = 5

 

2.

 

12 x + 35 y = 2

 

3.

 

86 x + 36 y = 7

 

4.

 

23 x + 42 y = 1

 

5.

 

268 x + 28 y = 6

 

6.

 

124 x + 36 y = − 8

 

VII.E Congruence 

VII.E.1 The congruence relation 

The congruence relation modulo

 

n

 

relates numbers that are separated by a multiple of

 

n

 

:
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Definition: Congruence modulo

 

n

 

Let

 

n ∈ N

 

, the congruence modulo

 

n

 

relation is

 

Conn 

= { ( m, p ) ∈ Z × Z | ∃ k ∈ Z , m = p + n · k } .

 

When

 

( m, p ) ∈ Conn

 

, we write

 

m ≡ p ( mod n )

 

.

 

Note that if

 

n = 0

 

, this relation boils down to identity, and is not very interesting. In 

the sequel, every time the congruence relation modulo

 

n

 

is mentioned, it can be assumed 

that

 

n > 0

 

. 

This can be reformulated in terms of remainder in the Euclidean division by

 

n

 

:

 

Proposition

 

Let

 

n ∈ N

 

with

 

n > 0

 

, and

 

m, p ∈ Z

 

.

 

m

 

and

 

p

 

are congruent modulo

 

n

 

iff they have the same remainder in the Euclidean division by

 

n

 

.

 

Proof

 

⇒

 

Assume

 

m = p + n · k

 

. The Euclidean divisions of

 

m

 

and

 

p

 

by

 

n

 

are, respectively,

 

m = n · q + r

 

and

 

p = n · q 

′+ r 

′

 

(with

 

0 ≤ r, r 

′ < n

 

). Then

 

n · q + r = n · q 

′+ r 

′+ n · k

 

. 

So

 

n · ( q − q 

′ − k ) = r 

′ − r

 

and

 

n | r 

′ − r

 

. But

 

− n < r 

′ , r < n

 

so

 

r 

′ − r = 0

 

, 

therefore

 

r = r 

′

 

.

 

⇐

 

Assume

 

m = n · q + r

 

and

 

p = n · q 

′+ r

 

(with

 

0 ≤ r < n

 

). Then setting

 

k = q − q 

′

 

, 

we have

 

m = p + n · k

 

.

 

Here are several examples of equivalences by congruence relations: 

•

 

23 ≡ 58 ( mod 5)

 

because

 

58 = 5 · 11 + 3

 

and

 

23 = 5 · 4 + 3

 

. 

•

 

23 ≡ 3 ( mod 5)

 

because

 

23 = 5 · 4 + 3

 

and

 

3 = 5 · 0 + 3

 

. 

•

 

− 17 ≡ 7 ( mod 8)

 

because

 

− 17 = 8 · ( − 3) + 7

 

and

 

7 = 7 · 0 + 7

 

. 

•

 

21 ≡ 51 ( mod 3)

 

because

 

21 = 3 · 7 + 0

 

and

 

51 = 3 · 17 + 0

 

. 

•

 

21 ≡ 0 ( mod 5)

 

because

 

21 = 3 · 7 + 0

 

and

 

0 = 3 · 0 + 0

 

. 

•

 

43 ≡ 16 ( mod 3)

 

because

 

43 = 3 · 14 + 1

 

and

 

16 = 3 · 5 + 1

 

. 

•

 

43 ≡ 1 ( mod 5)

 

because

 

43 = 3 · 14 + 1

 

and

 

1 = 3 · 0 + 1

 

. 

•

 

47 ≡ 35 ( mod 3)

 

because

 

47 = 3 · 15 + 2

 

and

 

35 = 3 · 11 + 2

 

. 

•

 

47 ≡ 2 ( mod 5)

 

because

 

47 = 3 · 15 + 2

 

and

 

2 = 3 · 0 + 2

 

.

 

Theorem

 

Let

 

n ∈ N

 

. Congruence modulo

 

n

 

is an equivalence relation.

 

Remark that this was proved in the case

 

n = 5

 

in Exercise V.2. The general case is not 

much different, and is reproduced here for completeness’ sake.
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Proof

 

If

 

n = 0

 

, then

 

Conn 

= Id

 

which is an equivalence relation. Otherwise, we can use the 

above proposition to prove reflexivity, symmetry, and transitivity. 

R

 

Let

 

m ∈ Z

 

.

 

m

 

has the same remainder as

 

m

 

in the division by

 

n

 

. 

S

 

Let

 

m, p ∈ Z

 

. Assume

 

m ≡ p ( mod n )

 

. Then

 

m

 

has the same remainder as

 

p

 

in 

the division by

 

n

 

, which can be rephrased as

 

p

 

has the same remainder as

 

n

 

in 

the division by

 

n

 

, so

 

p ≡ m ( mod n )

 

. 

T

 

Let

 

m, p, q ∈ Z

 

. Assume

 

m ≡ p ( mod n )

 

and

 

p ≡ q ( mod n )

 

. Then, in the 

division by

 

n

 

,

 

m

 

has the same remainder as

 

p

 

, and

 

p

 

has the same remainder as

 

q

 

, so

 

m

 

has the same remainder as

 

q

 

and

 

m ≡ q ( mod n )

 

.

 

VII.E.2 Equivalence classes and canonical representative 

Let

 

n ∈ N

 

,

 

n > 0

 

. The congruence relation modulo

 

n

 

being an equivalence relation, we 

can consider its equivalence classes. As congruence relates numbers that share the same 

remainder in the Euclidean division by

 

n

 

, there are

 

n

 

equivalence classes, which can be 

canonically represented by this remainder:

 

[0] , [1] , . . . , [ n − 1]

 

. For any

 

p ∈ { 0 , . . . , n − 1 }

 

,

 

[ p ]

 

contains integers of the form

 

n · k + p

 

. This is why we usually try to write

 

m ≡ r ( mod n )

 

with

 

0 ≤ r < n

 

being the remainder of the division by

 

n

 

. In that case we also sometimes 

write

 

m mod n = r

 

; this is a useful shorthand for “

 

r

 

is the remainder of

 

m

 

in the Euclidean 

division by

 

n

 

”. 

Consider the equivalence classes reached when counting from

 

0

 

to infinity. We start at

 

[0]

 

, then

 

[1]

 

, then all the way to

 

[ n − 1]

 

. then the equivalence class of

 

n

 

is

 

[0]

 

, the class of

 

n +1

 

is

 

[1]

 

, and so on: we have a cycle of classes appearing, which we can represent in a ring, 

as is done in Figure VII.4 for

 

n = 13

 

. Note that going backwards into negative numbers also 

yields a cycle:

 

− 1

 

is in the class

 

[ n − 1]

 

,

 

− 2

 

in

 

[ n − 2]

 

, etc until

 

− ( n − 1)

 

is in the class

 

[1]

 

(as

 

− ( n − 1) = − n + 1

 

),

 

− n

 

is in the class

 

[0]

 

, then

 

− ( n + 1)

 

is in the class

 

[ − 1]

 

again, as 

we cycle back to the first class. 

Another way to understand this representation is to imagine that the line of integers 

(infinite on both sides) is coiled into a spring so that each ring contains

 

n

 

numbers . That 

way all numbers that are separated by

 

n

 

are on top of one another. Looking from the 

perspective of the equivalence relation means looking at the coil from the side, and only 

seeing a ring of

 

n

 

numbers. 

The set of classes, which is the quotient of

 

Z

 

by equivalence classes modulo

 

n

 

, is named

 

Z /n Z

 

.

 

Exercise VII.10

 

Calculate: 

1.

 

37 mod 8

 

(i.e. find

 

x

 

such that

 

37 ≡ x ( mod 8)

 

and

 

0 ≤ x < 8

 

). 

2.

 

− 437 mod 7

 

(i.e. find

 

x

 

such that

 

− 437 ≡ x ( mod 7)

 

and

 

0 ≤ x < 7

 

).
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0

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

+1

 

Figure VII.4: The ring of integers modulo 13. 

VII.E.3 Modulo Arithmetic 

What makes

 

Z /n Z

 

is that we can define addition and multiplication of elements of classes 

directly. These calculations are called modulo arithmetic . 

VII.E.3.i Addition of equivalence classes 

The addition of two classes

 

[ m ]

 

and

 

[ p ]

 

is defined as

 

[ m ] + [ p ] = [ m + p ]

 

. For example with

 

n = 13

 

:

 

[2] + [5] = [7]

 

,

 

[9] + [11] = [20] = [7]

 

. One can check on Figure VII.4 that starting 

from

 

[2]

 

and incrementing

 

5

 

times yields

 

7

 

. And starting from

 

[9]

 

and incrementing

 

11

 

times 

yields

 

7

 

as well, although crossing from

 

12

 

to

 

0

 

. 

This addition has good properties, which are actually similar to addition in

 

Z

 

(the 

usual addition), and actually are deducted directly from them. First, it is commutative:

 

[ m ] + [ p ] = [ m + p ] = [ p + m ] = [ p ] + [ m ]

 

. It is also associative:

 

([ m ] + [ p ]) + [ q ] = 

[( m + p ) + q ] = [ m + ( p + q )] = [ m ] + ([ p ] + [ q ]) = [ m ] + [ p ] + [ q ]

 

. 

There is neutral element (a “zero”):

 

[0]

 

is such that for any

 

[ m ] ∈ Z /n Z

 

,

 

[0] + [ m ] = [ m ]

 

Every class has an additive inverse (an “opposite”): for any

 

[ m ] ∈ Z /n Z

 

, the opposite of

 

[ m ]

 

is

 

[ n − m ]

 

:

 

[ m ] + [ n − m ] = [ n ] = [0]

 

. For example with

 

n = 13

 

: the opposite of

 

[2]

 

is

 

[13 − 2] = [11]

 

because

 

[2] + [11] = [13] = [0]

 

. 

All these properties make

 

Z /n Z

 

a commutative group with respect to this addition 

operation. 

VII.E.3.ii Multiplication with equivalence classes 

The multiplication of two classes

 

[ m ]

 

and

 

[ p ]

 

is defined as

 

[ m ] × [ p ] = [ m · p ]

 

. 

In this case it is less obvious why the product of the remainders is the remainder of 

the product (in that particular ring of course). Let’s write the Euclidean divisions by

 

n

 

:

 

m = n · q + r

 

and

 

p = n · q 

′ + r 

′

 

.

 

m · p = n2 · q · q 

′ + n · q · r 

′ + n · q 

′ · r + r · r 

′ = n · ( n · q · q 

′ + q · r 

′ + q 

′ · r ) + r · r 

′
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So modulo

 

n

 

, the term

 

n · ( n · q · q 

′ + q · r 

′ + q 

′ · r )

 

is equivalent to

 

0

 

(as a multiple of

 

n

 

), so

 

[ m · p ] = [ r · r 

′]

 

. Note that

 

[ r · r 

′]

 

mays not be a canonical representative, and would need to 

be divided by

 

n

 

:

 

r · r 

′ = n · k + r 

′′

 

with

 

0 ≤ r 

′′ < n

 

. 

For example with

 

n = 13

 

:

 

[2] × [5] = [10]

 

,

 

[4] × [7] = [28] = [2]

 

. 

This multiplication also has somme good properties. It is commutative and associative 

(as is the underlying multiplication in

 

Z

 

). There is a neutral element (“one”):

 

[1]

 

is such that 

for any

 

[ m ] ∈ Z /n Z

 

,

 

[1] × [ m ] = [ m ]

 

. Furthermore, multiplication distributes over addition:

 

[ m ] × ([ p ] + [ q ]) = [ m ] × [ p ] + [ m ] × [ q ]

 

. Again, this is proved by using distributivity in

 

Z

 

. 

All these properties make

 

Z /n Z

 

a commutative ring . Note that this term is a mathe- 

matical term, and not all rings have the ring-shape that

 

Z /n Z

 

has. 

Modular inverse 

In the case of addition, all classes have an opposite. We can try to find such a multiplica- 

tive inverse (“reciprocal’). For

 

[ m ] ∈ Z /n Z

 

, the reciprocal of

 

[ m ]

 

would be a class

 

[ p ] ∈ Z /n Z

 

such that

 

[ m ] × [ p ] = [1]

 

. That would mean

 

[ m · p ] = 1

 

. So finding

 

[ p ]

 

is the same as finding

 

p

 

and

 

k

 

such that

 

m · p = k · n + 1

 

. This is the same as solving the Diophantine Equation

 

m · x + n · y = 1

 

. By Bézout’s Theorem, there is a solution iff

 

gcd( m, n ) = 1

 

, i.e.

 

n

 

and

 

m

 

co-primes. So some classes have an inverse: the ones where

 

gcd( m, n ) = 1

 

. 

For example with

 

n = 6

 

:

 

5

 

and

 

6

 

being co-primes,

 

[5]

 

has a reciprocal: it can be found 

by solving

 

5 x + 6 y = 1

 

. This can be done by Euclid’s algorithm or by guessing a solution; 

here

 

(5 , − 4)

 

is a solution as

 

5 · 5 − 6 · 4 = 25 − 24 = 1

 

. Therefore

 

[5] × [5] = [25] = [1]

 

. On 

the other hand,

 

2

 

is not co-prime with

 

6

 

, so

 

2

 

does not have a reciprocal. 

If

 

n

 

is prime, then for any

 

0 < m < n

 

,

 

gcd( m, n ) = 1

 

, so in that case all classes except

 

[0]

 

have an inverse. For example with

 

n = 13

 

, which is prime, all classes (but

 

[0]

 

) have a 

reciprocal that can be calculated by solving a Diophantine equation.

 

[3] × [9] = [27] = [1]

 

,

 

[7] × [2] = [14] = [1]

 

. In that case,

 

Z /n Z

 

is a commutative field . 

VII.E.3.iii Modular exponentiation 

As is the case in

 

Z

 

, exponentiation in

 

Z /n Z

 

is defined as the iterated multiplication:

 

[ m ]p = [ m ] × [ m ] × · · · × [ m ]︸

 

︷︷

 

︸ 

p times 

= [ m × m × · · · × m︸

 

︷︷

 

︸ 

p times 

] = [ mp]

 

In practice, whether by hand or for computers, it is easier to calculate

 

[ mp]

 

by successively 

calculating

 

[ m ]

 

,

 

[ m2] = [ m ] × [ m ]

 

,

 

[ m3] = [ m2] × [ m ]

 

. . . as each time calculations involve 

numbers between

 

0

 

and

 

n2

 

. 

For example, to calculate

 

510 mod 3

 

, the inefficient way would be to actually compute

 

510 = 9765625

 

then divide this big number by

 

3

 

. A computer could handle that (because it 

is still relatively small), but by hand, it is much better to compute within the ring

 

Z / 3 Z

 

to 

keep numbers low:

 

510 mod 3 = (5 mod 3)10 mod 3 

= 210 mod 3 = ((2 mod 3) × (29 mod 3) mod 3 

= (((2 × 2) mod 3) × (28 mod 3)) mod 3 = 1 × (28 mod 3) 

= (((2 × 2) mod 3) × (26 mod 3)) mod 3 = 1 × (26 mod 3) 

= (((2 × 2) mod 3) × (24 mod 3)) mod 3 = 1 × (24 mod 3) 

= (((2 × 2) mod 3) × (22 mod 3)) mod 3 = 1 × (22 mod 3) 

510 mod 3 = (2 × 2) mod 3 = 1
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Note that here we used the most basic exponentiation algorithm that simply performs

 

p

 

multiplications to compute

 

[ m ]p

 

.

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

More efficient algorithms such as the fast exponentiation 

which uses

 

O (log( p ))

 

multiplications can also be used in

 

Z /n Z

 

. For

 

510 mod 3

 

that would 

go as follows:

 

510 mod 3 = 

((
(5 mod 3)2 mod 3

)2 mod 3 × (5 mod 3)2 mod 3 

) 

mod 3 

= 

((
22 mod 3

)2 mod 3 × 22 mod 3 

) 

mod 3 

= 

(
12 mod 3 × 1

) 

mod 3 

= (1 × 1) mod 3 

= 1 mod 3 

510 mod 3 = = 1

 

Exercise VII.11

 

In

 

Z / 5 Z

 

(i.e. the equivalence classes modulo

 

5

 

). 

1. Calculate

 

[3] + [4]

 

. 

2. Calculate

 

[2] + [3]

 

. 

3. Find the additive inverse of

 

[1]

 

. 

4. Calculate

 

[4] × [4]

 

. 

5. Calculate the multiplicative inverse of

 

[3]

 

. 

6. Calculate

 

[2]7

 

.

 

VII.E.4 Applications 

Calculation using congruences and modulo arithmetic have applications into everyday life. 

The most commonly used one is the RSA protocol that is at the heart of credit card security, 

so it is fair to say that it is used billions of times every day. 

VII.E.4.i Toolbox (Lemmas) 

We first state a couple of handy lemmas that will be used throughout.

 

Lemma: “Modulo-a-product lemma”

 

If

 

n

 

and

 

m

 

are co-prime numbers and

 

p ≡ q ( mod n )

 

and

 

p ≡ q ( mod m )

 

, then

 

p ≡ q ( mod n · m )

 

.

 

Proof

 

By definition of the congruence relations modulo

 

n

 

and

 

m

 

, respectively:

 

p = k · n + q

 

and

 

p = h · m + q

 

, for some

 

k , h ∈ Z

 

. So

 

k · n = h · m

 

. Since

 

n | h · m

 

but shares no 

factor with

 

m

 

(as they are co-primes), we deduct that

 

n | h

 

. We can therefore write

 

h = n · j

 

for some

 

j ∈ Z

 

. So

 

p = j · ( n · m ) + q

 

and

 

p ≡ q ( mod n · m )

 

.

 

Fermat’s Little Theorem

 

If

 

n

 

is prime then for

 

0 < p < n

 

,

 

pn − 1 ≡ 1 ( mod n )

 

.
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The proof of Fermat’s Little Theorem requires a couple of tools of the next chapter, and 

therefore is proved in Section VIII.B.2.ii. 

VII.E.4.ii Divisibility criteria 

Being able to test divisibility at a glance helps a lot to factor a number. Some criteria, such 

as the ones for

 

2

 

and

 

5

 

are quite easy to prove without a real use of modulo arithmetic: 

since 10 is a multiple of

 

2

 

(resp. of

 

5

 

), only the last digit matter. 

For

 

3

 

and

 

9

 

, the criteria can be proved using modulo arithmetic:

 

Proposition: Divisibility by 3

 

A number is a multiple of 3 iff the sum of the digits is a multiple of 3.

 

Proposition: Divisibility by 9

 

A number is a multiple of 9 iff the sum of the digits is a multiple of 9.

 

Proof (of both criteria)

 

A number in base 10 can be written as a sum of powers of

 

10

 

multiplied by the digit. 

Formally, let

 

x ∈ Z

 

:

 

x = 

∑n 

i =0 

di10
i = d0 

· 100+ d1 

· 101+ d2 

· 102+ · · · + dn 

· 10n

 

(here

 

d0

 

is the least significant digit, the rightmost one). 

Since

 

10 ≡ 1 ( mod 3)

 

, so each

 

10i ≡ 1 mod 3

 

. So

 

x ≡ 

n∑ 

i =0 

di 

≡ d0 

+ d1 

+ d2 

+ · · · + dn 

( mod 3) .

 

As a result

 

x

 

is a multiple of

 

3

 

iff

 

x ≡ 0 ( mod 3)

 

iff

 

∑n 

i =0 

di 

≡ 0 ( mod 3)

 

.

 

Similarly,

 

10 ≡ 1 ( mod 9)

 

, so each

 

10i ≡ 1 mod 9

 

. So

 

x ≡ 

n∑ 

i =0 

di 

≡ d0 

+ d1 

+ d2 

+ · · · + dn 

( mod 9) .

 

As a result

 

x

 

is a multiple of

 

9

 

iff

 

x ≡ 0 ( mod 9)

 

iff

 

∑n 

i =0 

di 

≡ 0 ( mod 9)

 

.

 

For example: is

 

354541

 

divisible by

 

3

 

?

 

354541 = 300000+50000+4000+500+40+1 = 3 · 105+5 · 104+4 · 103+5 · 102+4 · 101+1 · 100 .

 

In

 

Z / 3 Z

 

,

 

354541 ≡ 3 + 5 + 4 + 5 + 4 + 1 ≡ 22 ≡ 2 + 2 ≡ 4 ≡ 1 ( mod 3)

 

. So

 

354541

 

is not 

divisible by

 

3

 

; in fact we know the remainder in the division of

 

354541

 

by

 

3

 

is

 

1

 

. 

VII.E.4.iii Chinese Remainder Theorem 

This Theorem is called “Chinese” because it is attributed to Chinese mathematician Sun-tzu.
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Chinese Remainder Theorem

 

Let

 

k ∈ N

 

. Let

 

n1 

, n2 

, . . . , nk 

∈ N

 

be pairwise co-primes:

 

∀ i, j , i ̸ = j → gcd( ni 

, nj) = 

1

 

. Then for any numbers

 

a1 

, a2 

, . . . ak 

∈ N

 

, there exists

 

q

 

such that for any

 

i

 

,

 

q ≡ 

ai 

( mod ni)

 

. 

In addition, all solutions are equivalent modulo

 

n = n1 

· n2 

· · · nk

 

.

 

As is often the case for of existential statements, the proof is constructing an element to 

exhibit. In that sense, the proof itself is more interesting than the result because it provides 

a procedure to find the solution.

 

Proof

 

Let

 

n1 

, n2 

, . . . , nk 

∈ N

 

be pairwise co-primes and

 

a1 

, a2 

, . . . an 

∈ N

 

. For

 

i ∈ { 1 , . . . , k }

 

, 

let

 

mi 

= 

n

 

ni 

= n1 

· · · ni − 1 

· ni +1 

· · · nk

 

, the product of all the

 

( nj)j ∈{ 1 ,...,k }

 

except

 

ni

 

. 

As

 

ni

 

does not share any prime factor with any of the other

 

( nj)j ∈{ 1 ,...,k }

 

, it does not 

share a factor with

 

mi

 

either:

 

mi

 

and

 

ni

 

are co-primes. By Bézout’s Theorem, there 

is a solution

 

( xi 

, yi)

 

to

 

ni 

· xi 

+ mi 

· yi 

= 1

 

. Note that we can rephrase the above by 

considering that

 

yi

 

is the inverse of

 

mi

 

in

 

Z /niZ

 

. So we have

 

mi 

· yi 

≡ 1 ( mod ni)

 

. 

As

 

mi

 

is the product of the

 

( nj)j ∈{ 1 ,...,k } ,j ̸ = i

 

, for

 

j ̸ = i

 

,

 

nj 

| mi

 

, therefore

 

mi 

· yi 

≡ 

0 ( mod nj)

 

. 

Define

 

q = 

∑k 

j =1 

aj 

· mj 

· yj

 

. For

 

i ∈ { 1 , . . . , k }

 

, consider

 

q mod ni

 

, i.e. consider

 

q

 

in

 

Z /niZ

 

: 

q ≡ 

k∑ 

j =1 

aj 

· mj 

· yj 

( mod ni) 

≡ ai 

· mi 

· yi 

+ 

i − 1∑ 

j =1 

aj 

· mj 

· yj 

+ 

k∑ 

j = i +1 

aj 

· mj 

· yj 

( mod ni) 

≡ ai 

· 1 + 

i − 1∑ 

j =1 

aj 

· 0 + 

k∑ 

j = i +1 

aj 

· 0 ( mod ni) 

q ≡ ai 

( mod ni) 

So

 

q

 

is a solution to all the modulo equations. 

Let

 

n = n1 

· n2 

· · · nk

 

Assume both

 

q

 

and

 

q 

′

 

are solutions. Then for

 

i ∈ { 1 , . . . , k }

 

,

 

q ≡ ai 

( mod ni)

 

and

 

q 

′ ≡ ai 

( mod ni)

 

, so by transitivity

 

q 

′ ≡ q ( mod ni)

 

. By 

the “Modulo-a-product lemma”,

 

q 

′ ≡ q ( mod n )

 

. Reciprocally,

 

q

 

is a solution and

 

q 

′ ≡ q ( mod n )

 

then

 

q 

′ = q + h · n = q 

′ + h · ni 

· mi

 

so for any

 

i

 

,

 

q 

′ ≡ q ( mod ni)

 

. As 

for any

 

i ∈ { 1 , . . . , k }

 

,

 

q ≡ ai 

( mod ni)

 

, by transitivity we have that

 

q 

′ ≡ ai 

( mod ni)

 

so

 

q 

′

 

is also a solution.

 

For example, let’s try to find the smallest positive integer

 

q

 

such that

 

q ≡ 4 ( mod 5)

 

,

 

q ≡ 3 ( mod 6)

 

,

 

q ≡ 5 ( mod 7)

 

. First we see that since

 

5

 

,

 

6

 

and

 

7

 

are co-primes (

 

5

 

and

 

7

 

are 

primes and

 

6 = 2 · 3

 

), so we can use the procedure laid out in the proof above. 

We first need to calculate the multiplicative inverse of the product of two of our modulos 

modulo the third one; namely:

 

134 Introduction to Discrete Mathematics



 

Number Theory Chapter VII

 

•

 

6 × 7

 

in

 

Z / 5 Z

 

•

 

5 × 7

 

in

 

Z / 6 Z

 

•

 

5 × 6

 

in

 

Z / 7 Z

 

Inverse of

 

42

 

in

 

Z / 5 Z

 

: We can start by seeing that

 

42 ≡ 2 ( mod 5)

 

, so we can look for the 

inverse of

 

2

 

, instead of

 

42

 

. That makes the Diophantine equation simpler, and usually 

one can guess a solution rather than compute Euclid’s algorithm and revert it. In this 

case, the equation is

 

5 x +2 y = 1

 

. And since

 

5 · 1 = 5

 

and

 

2 · 2 = 4

 

and their difference 

is

 

1

 

, we can guess a solution:

 

(1 , − 2)

 

. Although

 

− 2

 

is not an element of

 

Z / 5 Z

 

, its 

representative is

 

3

 

. And we can check that

 

2 · 3 = 6 ≡ 1 ( mod 5)

 

. 

Inverse of

 

35

 

in

 

Z / 6 Z

 

: Again

 

35 ≡ 5 ( mod 6)

 

, so we solve

 

6 x + 5 y = 1

 

, for which

 

(1 , − 1)

 

is a solution. So we use

 

5

 

, the representative of

 

− 1

 

in

 

Z / 6 Z

 

:

 

5 · 5 = 25 ≡ 1 ( mod 6)

 

. 

Inverse of

 

30

 

in

 

Z / 7 Z

 

: Here we need to inverse

 

2

 

in

 

Z / 7 Z

 

as

 

30 ≡ 2 ( mod 7)

 

. Solving

 

7 x + 2 y = 1

 

yields

 

(1 , − 3)

 

, so the inverse is

 

4

 

:

 

2 · 4 = 8 ≡ 1 ( mod 7)

 

. 

With these inverse, we define

 

q0 

= 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 = 1629

 

. By construction

 

q0

 

satisfies the conditions, but it can nonetheless be checked: 

1629 = 5 · 325 + 4 1629 = 6 · 271 + 3 1629 = 7 · 232 + 5 

Or using modulo arithmetic: 

q0 

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 ( mod 5) 

≡ 4 · 126 + (3 · 7 · 5) · 5 + (5 · 6 · 4) · 5 ( mod 5) 

≡ 4 · 1 + (3 · 7 · 5) · 0 + (5 · 6 · 4) · 0 ( mod 5) 

q0 

≡ 4 ( mod 5) 

q0 

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 ( mod 6) 

≡ (4 · 7 · 3) · 6 + 3 · 175 + (5 · 5 · 4) · 6 ( mod 6) 

≡ (4 · 7 · 3) · 0 + 3 · 1 + (5 · 5 · 4) · 0 ( mod 6) 

q0 

≡ 3 ( mod 6) 

q0 

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 ( mod 7) 

≡ (4 · 6 · 3) · 7 + (3 · 5 · 5) · 7 + 5 · 120 ( mod 7) 

≡ (4 · 6 · 3) · 0 + (3 · 5 · 5) · 0 + 5 · 1 ( mod 7) 

q0 

≡ 5 ( mod 7) 

Note however that

 

q0

 

may not be the smallest such positive integer. Since all solutions 

are equivalent modulo

 

5 · 6 · 7 = 210

 

, we can actually compute the solution we are looking 

for by taking the remainder of

 

q0

 

in the division by

 

210

 

:

 

q0 

= 210 · 7 + 159

 

. So the number 

we are looking for is

 

159

 

. Once again we know by construction that it is a solution, but we 

can check for good measure: 

159 = 5 · 31 + 4 159 = 6 · 26 + 3 159 = 7 · 22 + 5
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Exercise VII.12

 

John has some flowers. He tries tried to group them by bunches of 9 but he had 5 

flowers left. He then tries to group them by bunches of 10 and was left with 7 flowers. 

He tried to group them by bunches of 11 and was left with 3 flowers. 

1. How many flowers does John have (at the minimum)? 

2. Can you suggest a number of flowers per bunch that would divide evenly?

 

VII.E.4.iv RSA cryptography

 

i

 

This is for your 

personal culture 

more than to 

be applied in 

this course.

 

The RSA cryptography protocol, named after its three inventors Ron Rivest, Adi Shamir, 

and Len Adleman is the protocol behind secure communication. It is found in credit card 

payment protocols, online authentication ( https protocol for example), and many more. 

The principle is as follows. First, construct three integers

 

e

 

,

 

d

 

, and

 

n

 

such that for every 

integer

 

m

 

we have

 

( me)d ≡ m ( mod n )

 

. Then publish

 

e

 

and

 

n

 

(which are collectively known 

as the public key ), while

 

d

 

is kept secret (this is the private key ). Because there is a public 

and a private key, RSA is called an asymmetric protocol. 

Given a message that needs to be transmitted, the first step is to translate the message 

into an integer

 

m ∈ N

 

such that

 

0 ≤ m < n

 

. This translation algorithm is public, so from

 

m

 

the original message can be retrieved. In addition, the message can be cut into packets, 

each converted to an integer and glued back when translated back. In that case each integer 

is transmitted using the RSA protocol. For simplicity, we will focus on what happens when 

the integer

 

m

 

is given; it will be called the “message”, even though it is only an integer. 

To encrypt a message, calculate

 

me mod n

 

using the recipient’s public key. The rightful 

recipient can then decrypt by calculating

 

( me)d ( mod n )

 

, which is

 

m

 

and can be translated 

back into the message. Note that only using the right value

 

d

 

gives the original message, so 

only the intended recipient can retrieve the value

 

m

 

. 

This protocol can also be used to sign a document. The key holder can provide a message

 

m

 

along with

 

md mod n

 

. Anyone with the public key is able to calculate

 

( md)e ( mod n )

 

and find

 

m

 

. In this case, only the key holder would have been able to calculate

 

md mod n

 

, 

thus ensuring that he is the sender of the message. 

VII.E.4.iv.a Constructing the keys 

What remains to be shown is how to construct these values

 

e

 

,

 

d

 

, and

 

n

 

such that for every 

integer

 

m

 

we have

 

( me)d ≡ m ( mod n )

 

. In addition,

 

d

 

should be hard to find, otherwise the 

security of the protocol is weak. 

To build a new RSA pair of public and private key, we start by choosing two (big) prime 

numbers

 

p

 

and

 

q

 

, with

 

p ̸ = q

 

. These integers, although not used in the protocol itself, must 

be kept secret since it would otherwise be easy to reconstruct the secret key. Then we set

 

n = p · q

 

. Note that although

 

n

 

is part of the public key, it is hard to find

 

p

 

and

 

q

 

by 

factoring

 

n

 

, as there is no efficient algorithm to do so. In essence, to find

 

p

 

and

 

q

 

from

 

n

 

one 

would have to try all values smaller than

 

√

 

n

 

. When

 

p

 

and

 

q

 

are big numbers, say

 

1024

 

-bit 

integers, that means there is about

 

21024 ≃ 10308

 

values to try as a factor of

 

n

 

. 

Then calculate

 

k = lcm( p − 1 , q − 1)

 

(kept secret as well). This can be done by performing 

Euclid’s algorithm on

 

p − 1

 

and

 

q − 1

 

to find

 

gcd( p − 1 , q − 1)

 

; then

 

lcm( p − 1 , q − 1) = 

( p − 1)( q − 1)

 

gcd( p − 1 ,q − 1)

 

. Choose

 

e < k

 

and co-prime with

 

k

 

; usually the value chosen at this step
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e = 216 + 1

 

, which is a prime number. Finally,

 

d

 

can be calculated as the inverse of

 

e

 

in

 

Z /k Z

 

by solving the Diophantine Equation

 

e · d + k · y = 1

 

. 

So building the keys is a somewhat convoluted procedure, but it takes relatively little 

time on a computer. As we have seen, finding

 

p

 

and

 

q

 

from

 

e

 

and

 

n

 

is a hard problem since 

it involve factoring. The day an efficient (i.e. polynomial) algorithm is found for factoring 

is the day RSA stops being secure at all and the whole modern cryptographic world would 

collapse. It is, however, unlikely to happen any time soon. 

VII.E.4.iv.b Proving correctness 

What remains to be proved is that the keys

 

e

 

,

 

d

 

, and

 

n

 

that we built actually have the 

essential property required to encrypt/decrypt or sign messages using the RSA protocol.

 

Theorem: Correctness of RSA

 

Using

 

e

 

,

 

d

 

, and

 

n

 

as constructed above, for 

every integer

 

m

 

we have

 

( me)d ≡ m ( mod n )

 

.

 

Proof

 

Consider integers

 

p, q , n, k , e, d

 

build as described above. By construction we have

 

e · d − 1 = k · y

 

for some

 

y

 

. Since

 

k = lcm( p − 1 , q − 1)

 

, we have

 

k = i0 

· ( p − 1)

 

and

 

k = j0 

· ( q − 1)

 

for some integers

 

i0 

, j0 

∈ N

 

. By setting

 

i = i0 

· y

 

and

 

j = j0 

· y

 

, we 

have

 

e · d − 1 = ( p − 1) · i = ( q − 1) · j

 

, so

 

e · d = 1 + ( p − 1) · i = 1 + ( q − 1) · j

 

. 

Let

 

m ∈ N

 

. Let’s prove that

 

me · d ≡ m ( mod p )

 

. Using

 

e · d = 1 + ( p − 1) · i

 

, we 

can write

 

me · d ≡ m1+( p − 1) · i ≡ m · m( p − 1) · i ≡ m · 

(
mp − 1 

)i 

( mod p )

 

. By Fermat’s 

Little Theorem,

 

mp − 1 ≡ 1 ( mod p )

 

, so

 

m · 

(
mp − 1 

)i ≡ m · 1i ≡ m ( mod p )

 

. Hence

 

me · d ≡ m ( mod p )

 

. 

We can do a similar proof to show that

 

me · d ≡ m ( mod q )

 

, using

 

e · d = 1+ ( q − 1) · j

 

. 

As

 

p

 

and

 

q

 

are distinct primes, they are co-primes, so by the “Modulo-a-product 

lemma” we have

 

me · d ≡ m ( mod p · q )

 

, so

 

me · d ≡ m ( mod n )

 

.
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Chapter VIII Introduction to Combinatorics

 

VIII.A What is Combinatorics? 

The term combinatorics can be though as a fancy word for counting . The main thing that is 

being counted it the number of elements in a set

 

S

 

from its definition or description. Usually 

the set being consider is built from some sets of know size, given by a parameter: we are 

looking for a function of these parameters. The set

 

S

 

is a combination of the underlying 

sets, hence the name combinatorics . 

In computer science, combinatorics are used to evaluate the complexity of some algo- 

rithms, for example when all the elements of the set have to be considered: evaluating 

the size of the set allows to evaluate the overall complexity. In statistics and probability, 

when randomly selecting an element in a set

 

S

 

with uniform probability, each element has 

probability

 

1

 

| S |

 

of being chosen; so knowing

 

| S |

 

allows to compute these probabilities. 

This chapter is a brief introduction to combinatorics. Some of its content is more a revisit 

on some notions described in earlier chapters. The idea is more to provide methods than 

formulas, as each combinatorics problem is different from the other. Some of the questions 

we will consider are: 

• How many subsets are there in a set of size

 

n

 

? 

• How many subsets of size

 

k

 

are there in a set of size

 

n

 

? 

• How many propositional formulas (up to logical equivalence) exist when there are

 

n

 

propositional variables? 

VIII.A.1 Different approaches to combinatorics 

When faced with a combinatorics problem, there are three main ways to approach the 

problem. 

Reformulation: Reformulate the description in order to have the number of elements ap- 

pear. This is the most direct approach, which works well for relatively simple cases. 

For example, to calculate the number of subsets of a set of size

 

n

 

, one can think of a 

subset as follows: for every element, it can be in the set or not, so there are

 

2n

 

sets. 

This was the approach taken in Section IV.B.2 when discussing the cardinality of the 

powerset. 

Induction: Find a recurrence relation that relates the size of the set based on the underlying 

sets. This method works best when there is a single underlying set

 

S0

 

on which set

 

S

 

is built so

 

| S |

 

is a single variable function of

 

| S0 

|

 

:

 

| S | = f ( | S0 

| )

 

. The base case 

corresponds to

 

| S0 

| = 0

 

, i.e. when the underlying set is empty. Then inductive 

case expresses the number of combinations when

 

| S0 

| = n + 1

 

using the number of 

combinations for

 

| S0 

| = n

 

: express

 

f ( n + 1)

 

as an expression using

 

f ( n )

 

. A closed 

form can be conjectured and proved by induction.

 

↬

 

In 

Section VI.C.2, 

several 

recurrence 

relations are 

transformed 

into a closed 

form using this 

method.

 

Using the same example as above: let

 

f ( n )

 

be the number of subsets of a set of size

 

n

 

. 

Base case:

 

n = 0

 

: There is only one subset, the empty set, so

 

f (0) = 1

 

. 

Inductive case:

 

For a set

 

S

 

of size

 

n + 1

 

, take one element

 

e ∈ S

 

. Consider the 

subsets of

 

S \ { e }

 

. There are

 

f ( n )

 

subsets. Then a subset of

 

S

 

is either a subset 

of

 

S \ { e }

 

or a subset of

 

S \ { e }

 

to which

 

e

 

was added, therefore

 

f ( n +1) = 2 f ( n )

 

.
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Proving that this function yields the closed form

 

f ( n ) = 2n

 

is left as exercise to the 

reader. 

Indirect counting: This method is best described by this explanation: “To count the 

number of sheep, count the number of sheep legs and divide by 4”. In practice it 

means that it is sometimes easier to count objects more than once, and then divide to 

account for this multiple counting. 

An example of this situation is counting how many handshakes occurred in a meeting 

of

 

n

 

people. Everyone shook the hand of everyone else, so

 

n − 1

 

hands. In total that 

makes

 

n ( n − 1)

 

handshakes But that means we counted the handshake between two 

people

 

A

 

and

 

B

 

twice: once as

 

A

 

shaking

 

B

 

’s hand, and once as

 

B

 

shaking

 

A

 

’s hand. 

Therefore the actual number of handshakes is

 

n ( n − 1)

 

2

 

. 

VIII.A.2 Some basic tools 

Sets can be built in a variety of ways from others. But some basic operations on sets are at 

the heart of most constructions. Therefore knowing how these operations affect cardinalities 

allows to calculate the size of the resulting set. Note that some of these tools already appear 

in Chapter IV, but are reproduced here for completeness’ sake.

 

Proposition

 

• The number of tuples in the Cartesian product of

 

p

 

sets of sizes

 

n1 

, n2 

, . . . , np

 

is

 

∏p 

i =1 

ni 

= n1 

· n2 

· · · np

 

. 

• The number of subsets a set of size

 

n

 

is

 

2n

 

. 

• The number of ways to arrange (i.e. pick an order) of a set of size

 

n

 

is

 

n ! = 

n∏ 

i =1 

i = 1 · 2 · · · n.

 

It is also known as the number of permutations of the set.

 

Proof

 

Only the last point remains to be proved. Two proofs will actually be done, each 

illustrating a different approach. 

Reformulation: If we select elements from first to last, there are

 

n

 

ways to pick the 

first one, then

 

n − 1

 

way to take the second one, all the way down to only

 

1

 

way to pick the last element remaining. Therefore the number of ways to pick 

an order of a set of size

 

n

 

is

 

n · · · 2 · 2 = 

∏n 

i =1 

i = n !

 

. 

Induction: Let’s find a recurrence relation for the number of permutations. Let

 

π ( n )

 

be the number of permutations in a set of size

 

n

 

. We’ll prove that it corresponds 

to

 

n !

 

at the same time, i.e. that

 

π ( n ) = n !

 

. 

Base case:

 

If

 

n = 1

 

, there is only one way to arrange a singleton, so there 

is

 

π (1) = 1

 

arrangement. As

 

1! = 1

 

, the base case matches what is to be
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proved. Technically

 

n = 0

 

is the actual base case. There is also one way 

to arrange the empty set, so

 

π (0) = 1

 

, and that works with the conjecture 

as well because

 

0! = 1

 

. 

Inductive case:

 

To add the

 

n +1

 

th element to one of the order for

 

n

 

elements, 

it could be put before any of the

 

n

 

elements or at the last position, so there 

are

 

n + 1

 

choices for that. Therefore

 

π ( n + 1) = ( n + 1) · π ( n )

 

. Assume

 

π ( n ) = n !

 

. Then

 

π ( n + 1) = ( n + 1) · π ( n ) = ( n + 1) · ( n !) = ( n + 1)!

 

. So 

the induction holds. 

Therefore there are

 

n !

 

ways to arrange a set of size

 

n

 

.

 

VIII.B Choosing

 

k

 

among

 

n

 

VIII.B.1 Definition, calculation, and closed form 

When “Choosing

 

k

 

among

 

n

 

”, we are counting how many ways are there to choose

 

k

 

elements 

among

 

n

 

, without any element repeating. In more formal terms, this amounts to count how 

many subsets of exactly

 

k

 

elements a set

 

S

 

of size

 

n

 

has:

 

∣∣∣ 

{
A ⊆ S 

∣∣| A | = k 

} 

∣∣∣

 

There are several common ways to denote that number, although they are all read “from

 

n

 

choose

 

k

 

”. The one I’ll use in this book is

 

(
n 

k 

)

 

, also called Newton’s notation. You may 

sometimes see the notation

 

C 

k
n

 

, the

 

C

 

standing for combination . 

VIII.B.1.i A recurrence relation 

To calculate the actual value of

 

(
n 

k 

)

 

, we can try to find a recurrence relation. Let

 

S

 

be a 

set with

 

n

 

elements. First assume

 

0 < k ≤ n

 

. To choose

 

k

 

elements from

 

S

 

, consider one 

element

 

e ∈ S

 

. Then either choose: 

• to exclude

 

e

 

and then choose

 

k

 

elements from

 

S \ { e }

 

. 

• or to include

 

e

 

and then choose

 

k − 1

 

elements from

 

S \ { e }

 

, and add

 

e

 

to the set. 

That provides the recurrence relation:

 

(
n 

k 

) 

= 

(
n − 1 

k 

) 

+ 

(
n − 1 

k − 1 

)

 

Now the cases when we cannot assume that

 

0 < k ≤ n

 

are the base cases.

 

k = 0

 

There is only one way to pick

 

0

 

elements (the empty set), so

 

(
n 

0 

) 

= 1

 

for

 

n ≥ 0

 

.

 

n < k

 

There is no way to take more elements than there are in the set so

 

(
n 

k 

) 

= 0

 

.

 

k < 0

 

There is no way to take a negative number of elements so

 

(
n 

k 

) 

= 0

 

.
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Figure VIII.1: Calculating some

 

(
n 

k 

)

 

from the recurrence relation.

 

Proposition: Recurrence relation for

 

(
n 

k 

)

 

Let

 

S

 

be a set with

 

n

 

elements. Then

 

(
n 

k 

) 

= 

   

1 if k = 0 

0 if n < k or k < 0(
n − 1 

k 

)
+ 

(
n − 1 

k − 1 

) 

otherwise

 

Before finding a closed form, we can calculate some of these values and lay them out in 

2-dimensions. This is done in Figure VIII.1. In this figure, arrows represent the contribution 

of a coefficient in the other: so for example arrows from

 

(
4 

2 

)

 

and

 

(
4 

3 

)

 

to

 

(
5 

3 

)

 

represent the 

fact that

 

(
4 

2 

)
+ 

(
4 

3 

) 

= 

(
5 

3 

)

 

. What we can remark (and which will be formally proved once we 

have a closed form), is that there are zeroes on all the fringes. These correspond to the base 

case

 

n < k

 

. As they don’t really impact the calculation we can actually leave them out of 

the depiction (here they are semi-transparent). There should also be zeroes when

 

k < 0

 

but 

this was left out of the picture. 

We can also notice that there are ones on the edges:

 

(
n 

0 

) 

= 

(
n 

n 

) 

= 1

 

. That make sense 

because there is only one way to choose

 

n

 

from

 

n

 

: choosing the whole set. More generally, 

we can notice that there is symmetry:

 

(
n 

k 

) 

= 

( 

n 

n − k 

)

 

. Again, intuitively that makes sense 

because choosing

 

k

 

elements to take is like choosing

 

n − k

 

elements to leave. To highlight 

this symmetry, the

 

(
n 

k 

)

 

are often displayed in a triangle, called Pascal’s Triangle , depicted 

in Figure VIII.21. 

VIII.B.1.ii A closed form 

It is possible to do a direct proof from the problem to a closed-form formula, by indirect 

counting and reformulating the problem. First choose the first element: there

 

n

 

possibilities. 

Then there are

 

n − 1

 

possibilities for the second, as we don’t want repetition. This continues

 

1Both Figures VIII.1 and VIII.2 were adapted from https://tex.stackexchange.com/questions/17522/ 

pascals-triangle-in-tikz
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Figure VIII.2: Pascal’s Triangle. 

until all

 

k

 

elements are chosen, so we have counted

 

n · ( n − 1) · · · ( n − k + 2) · ( n − k + 1)

 

options. Note that this can be rewritten as

 

n !

 

( n − k )! 

= 

n · ( n − 1) ··· ( n − k +2) · ( n − k +1) · ( n − k ) ··· 1

 

( n − k ) ··· 1 

= 

n · ( n − 1) · · · ( n − k +2) · ( n − k +1)

 

But choosing so we have counted the same sets several 

times: picking

 

a

 

, then

 

b

 

, then

 

c

 

is the same as picking

 

b

 

then

 

a

 

, then

 

c

 

: we must divide by 

all the ways we had to pick the same set. Since there are

 

k !

 

possible orderings of this set of 

size

 

k

 

, we obtain

 

(
n 

k 

) 

= 

n !

 

( n − k )! · k !

 

Remark that this works for

 

0 ≤ k ≤ n

 

, otherwise the reasoning does not really work, and

 

(
n 

k 

)

 

is

 

0

 

. 

As this kind of proof might seem a little informal, it is best to prove the result by 

induction, using the recurrence relation. Although to do so we had to have a closed form to 

state the induction hypothesis.

 

Theorem: Closed form for

 

(
n 

k 

)

 

(
n 

k 

) 

= 

{ 

n !

 

( n − k )! · k ! 

if 0 ≤ k ≤ n 

0 otherwise

 

Remark: this formula directly gives . If you are not convinced, or just want to prove 

that it matches the recurrence relation, we will do a proof by induction.

 

Proof

 

The proof will use strong induction. The property we want to prove is

 

(
n 

k 

) 

= 

n !

 

( n − k )! · k ! 

⇔ 

(
n 

k 

) 

= 

(
n − 1 

k 

)
+ 

(
n − 1 

k − 1 

)

 

. 

Base cases:
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k = 0

 

n !

 

( n − k )! · k ! 

= 

n !

 

n ! · 0! 

= 

n !

 

n ! · 1 

= 1

 

, so the property holds for

 

k = 0

 

.

 

n < k

 

,

 

k < 0

 

it is

 

0

 

in both formulas, so the property holds in these cases. 

Inductive case: Assume the property holds for every

 

( k 

′ , n′) ≺ ( k , n )

 

, where

 

≺

 

is 

the strict lexicographic ordering. In particular, it holds for

 

( k − 1 , n − 1)

 

and 

for

 

( k , n − 1)

 

.

 

(
n 

k 

) 

= 

(
n − 1 

k 

)
+ 

(
n − 1 

k − 1 

) 

= 

( n − 1)!

 

( n − 1 − k )! · k ! 

+ 

( n − 1)!

 

( n − 1 − ( k − 1))! · ( k − 1)! 

= 

( n − 1)! · ( n − k )

 

( n − k )! · k ! 

+ 

( n − 1)! · k

 

( n − k )! · k ! 

= 

( n − 1)! · ( n − k )+( n − 1)! · k

 

( n − k )! · k ! 

= 

( n − 1)! · ( n − k + k )

 

( n − k )! · k ! 

= 

( n − 1)! · n

 

( n − k )! · k !(
n 

k 

) 

= 

( n )!

 

( n − k )! · k !

 

So the equality holds for

 

( k , n )

 

. 

Therefore the property holds for any

 

k

 

and

 

n

 

.

 

Corollary

 

For

 

n, k ∈ N

 

,

 

(
n 

k 

) 

= 

( 

n 

n − k 

)

 

and

 

(
n 

1 

) 

= 

( 

n 

n − 1 

) 

= n

 

.

 

Proof

 

• For the first point:

 

(
n 

k 

) 

= 

n !

 

( n − k )! · k ! 

= 

n !

 

k ! · ( n − k )! 

= 

( 

n 

n − k 

) 

.

 

•

 

(
n 

1 

) 

= 

( 

n 

n − 1 

)

 

by the above. In this particular case we have:

 

(
n 

1 

) 

= 

n !

 

( n − 1)! · 1! 

= 

n · ( n − 1) · · · 1

 

( n − 1) · · · 1 

= n.

 

VIII.B.2 Binomial coefficients 

VIII.B.2.i Binomial expansion 

Collectively, all the

 

(
n 

k 

)

 

are known as the binomial coefficients , because they appear as the 

coefficients in the expansion of the binomial

 

( x + y )n

 

. This is actually where they were 

introduced as first by Newton, rather than for counting.
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Theorem

 

( x + y )n = 

n∑ 

k =0 

(
n 

k 

) 

xk y 

n − k

 

Proof

 

We prove the result by induction. 

Base case:

 

n = 0

 

:

 

( x + y )0 = 1 = 1 · x0 y0

 

, so the property holds. 

Inductive case: Assume the property holds for

 

n

 

, let’s prove it holds for

 

n + 1

 

.

 

( x + y )n +1 = ( x + y ) · ( x + y )n = ( x + y ) · 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y 

n − k 

)

 

by induction hypothesis. We can now distribute: 

( x + y )n +1 = x · 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y 

n − k 

) 

+ y 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y 

n − k 

) 

= 

( 

n∑ 

k =0 

(
n 

k 

) 

xk +1 y 

n − k 

) 

+ 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y 

n − k +1 

) 

Now the idea is twofold: we’ll need to combine like terms; and we’ll need to 

have terms that match the result we want, namely terms using

 

n + 1

 

instead 

of

 

n

 

.

 

( x + y )n +1 = 

( 

n∑ 

k =0 

(
n 

k 

) 

xk +1 y( n +1) − ( k +1) 

) 

+ 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y( n +1) − k 

)

 

To make like terms appear, we remark that in the left sum we have

 

k + 1

 

while 

we have

 

k

 

in the right sum. But as

 

k

 

is only the summation variable, it can be 

renamed, as long as the sum bounds are changed to: so summing for

 

k

 

going 

from

 

0

 

to

 

n

 

is the same as summing for

 

k +1

 

going from

 

1

 

to

 

n +1

 

. To more easily 

see what’s going on, let’s perform this change in two steps: first set

 

i = k + 1

 

, 

so the sum in

 

k

 

from

 

0

 

to

 

n

 

becomes a sum in

 

i

 

from

 

1

 

to

 

n +1

 

. Then, because 

the summation variable is bound within the sum, it can be

 

α

 

-renamed

 

↬

 

See 

Section II.B.6 

for details 

about variable 

scope and 

renaming.

 

into

 

k

 

: 

( x + y )n +1 = 

(
n +1∑ 

i =1 

( 

n 

i − 1 

) 

xi y( n +1) − i 

) 

+ 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y( n +1) − k 

) 

= 

(
n +1∑ 

k =1 

( 

n 

k − 1 

) 

xk y( n +1) − k 

) 

+ 

( 

n∑ 

k =0 

(
n 

k 

) 

xk y( n +1) − k 

) 

Now we do have like terms, but the summation bounds are not the same, so we 

cannot combine all the terms. We need to separate the terms that don’t match
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to be able to actually perform the sum. Note that the terms that don’t match 

are

 

xn +1

 

, corresponding to

 

k = n + 1

 

in the first sum and

 

y 

n +1

 

corresponding 

to

 

k = 0

 

in the second. The resulting sums will both have

 

k

 

going from

 

1

 

to

 

n

 

. 

( x + y )n +1 = 

(
n 

n 

) 

xn +1 y0 + 

( 

n∑ 

k =1 

( 

n 

k − 1 

) 

xk y( n +1) − k 

) 

+ 

(
n 

0 

) 

x0 y 

n +1 + 

( 

n∑ 

k =1 

(
n 

k 

) 

xk y( n +1) − k 

) 

= 

(
n 

n 

) 

xn +1 y0 + 

(
n 

0 

) 

x0 y 

n +1 + 

( 

n∑ 

k =1 

( 

n 

k − 1 

) 

xk y( n +1) − k + 

(
n 

k 

) 

xk y( n +1) − k 

) 

= 

(
n 

n 

) 

xn +1 y0 + 

(
n 

0 

) 

x0 y 

n +1 + 

( 

n∑ 

k =1 

( 

( 

n 

k − 1 

) 

+ 

(
n 

k 

) 

) xk y( n +1) − k 

) 

Using the recurrence property

 

( 

n 

k − 1 

)
+ 

(
n 

k 

) 

= 

(
n 

k 

)

 

:

 

( x + y )n +1 = 

(
n 

n 

) 

xn +1 y0 + 

(
n 

0 

) 

x0 y 

n +1 + 

( 

n∑ 

k =1 

(
n + 1 

k 

) 

xk y( n +1) − k 

)

 

Now to reintegrate

 

xn +1

 

and

 

y 

n +1

 

, we can remark that

 

(
n 

n 

) 

= 

(
n +1 

n +1 

) 

= 1

 

and

 

(
n 

0 

) 

= 

(
n +1 

0 

) 

= 1

 

. So 

( x + y )n +1 = 

(
n + 1 

n + 1 

) 

xn +1 y0 + 

(
n + 1 

0 

) 

x0 y 

n +1 + 

( 

n∑ 

k =1 

(
n + 1 

k 

) 

xk y( n +1) − k 

) 

= 

n +1∑ 

k =0 

(
n + 1 

k 

) 

xk y( n +1) − k 

So the property holds for

 

n + 1

 

, therefore it holds for every

 

n ∈ N

 

.

 

For example we can expand

 

( x + y )4 = x4+4 x3 y +6 x2 y2+4 xy3+ y4

 

. In practice, calculat- 

ing this expansion can be done by using Pascal’s Triangle (Figure VIII.2) and remembering 

that the powers of

 

x

 

and

 

y

 

always sum to

 

n

 

. 

A consequence of this expansion is that by setting both

 

x

 

and

 

y

 

to

 

1

 

, we have:

 

n∑ 

k =0 

(
n 

k 

) 

= 2n

 

This also makes sense in terms of our original formulation in combinatorics. Adding for all 

the

 

k

 

how many subsets of

 

k

 

elements exist is just counting all the subsets, of which there 

are

 

2n

 

.
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VIII.B.2.ii Number Theory with binomial coefficients 

As the coefficients are integers, it makes sense to take a look in terms of number theory. 

Namely, how do

 

(
n 

k 

)

 

behave modulo

 

n

 

?

 

Theorem: Freshman’s dream

 

If

 

n

 

is prime, then

 

( x + y )n ≡ xn + y 

n ( mod n )

 

.

 

This theorem is called Freshman’s dream as a joke to unexperienced mathematicians who 

try to expand a binomial by simply distributing the powers. Of courses that does not work 

in

 

R

 

(or even

 

Q

 

,

 

Z

 

, or

 

N

 

), but is a particular property of

 

Z /n Z

 

with

 

n

 

prime. The proof of 

the Theorem relies on the following Lemma:

 

Lemma: Binomial with

 

n

 

prime

 

If

 

n

 

is prime, then for

 

0 < k < n

 

,

 

n | 

(
n 

k 

)

 

.

 

Proof

 

The closed-form formula provides

 

(
n 

k 

) 

= 

n !

 

( n − k )! · k !

 

. In this formula, all prime factors 

of

 

( n − k )!

 

and

 

k !

 

are smaller than

 

n

 

, therefore do not divide

 

n

 

(by primality) and 

cannot be divided by

 

n

 

. As a result

 

n

 

, which is a factor of the numerator, cannot be 

simplified in the fraction. Since

 

(
n 

k 

)

 

is an integer (as the recurrence relation shows), 

then

 

n

 

is a factor of

 

(
n 

k 

)

 

.

 

Proof of Freshman’s Dream

 

Write the binomial expansion

 

( x + y )n = 

∑n 

k =0 

(
n 

k 

)
xk y 

n − k

 

. Since for

 

0 < k < n

 

,

 

n | 

(
n 

k 

)

 

by the above Lemma,

 

(
n 

k 

) 

≡ 0 ( mod n )

 

and the term is canceled. What 

remains is

 

( x + y )n ≡ 

(
n 

0 

)
x0 y 

n − 0 + 

(
n 

n 

)
xn y 

n − n ≡ xn + y 

n ( mod n )

 

.

 

Using Freshman’s dream , we can now proof Fermat’s Little Theorem (stated in Sec- 

tion VII.E.4.i and used to prove the correctness of the RSA protocol in Section VII.E.4.iv).

 

Fermat’s Little Theorem

 

If

 

n

 

is prime then for

 

0 < p < n

 

,

 

pn − 1 ≡ 1 ( mod n )

 

.

 

Proof of Fermat’s Little Theorem

 

We first prove that

 

pn ≡ p mod n

 

for

 

p ∈ N

 

by induction on

 

p

 

. 

Base case:

 

p = 0

 

:

 

pn ≡ 0n ≡ 0 ( mod n )

 

. 

Induction case: Assume the Theorem holds for

 

p

 

. 

By Freshman’s dream ,

 

( p + 1)n ≡ pn + 1n ( mod n )

 

. But

 

pn ≡ p ( mod n )

 

by induction hypothesis and

 

1n ≡ 1 ( mod n )

 

. Therefore we have

 

( p + 1)n ≡ 

p + 1 ( mod n )

 

and the property holds for

 

p + 1
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Therefore for every

 

p ∈ N

 

,

 

pn ≡ p mod n

 

. 

Now we assume that

 

0 < p < n

 

. Write

 

pn ≡ p ( mod n )

 

as

 

pn = p + k n

 

for some

 

k

 

. Then

 

p ( pn − 1 − 1) = k n

 

. But

 

n ̸ | p

 

(since

 

0 < p < n

 

) so by Euclid’s Lemma

 

n | ( pn − 1 − 1)

 

and

 

pn − 1 − 1 = k 

′ n

 

for some

 

k 

′

 

. We can write

 

pn − 1 = 1+ k 

′ n

 

therefore

 

pn − 1 ≡ 1 ( mod n )

 

.
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