
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Open Educational Resources Queensborough Community College

2021

Introduction to Discrete Mathematics: An OER for MA-471 Introduction to Discrete Mathematics: An OER for MA-471

Mathieu Sassolas
CUNY Queensborough Community College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/qb_oers/179

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/qb_oers
https://academicworks.cuny.edu/qb
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/qb_oers/179
https://academicworks.cuny.edu/qb_oers/179
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Introduction to Discrete Mathematics:

An OER for MA-471

Mathieu Sassolas

2021-11-17

Department of Mathematics and Computer Science

Queensborough Community College

City University of New York

Student version

This Open Education Resource is licensed under the Creative

Commons Attribution-NonCommercial 4.0 International License.

Contents

Foreword iii

I Propositional Logics 1

I.A Introduction . 2

I.B Boolean Algebra . 3

I.C Classifying formulas . 14

II First-order logic (FO) 19

II.A Predicates . 20

II.B Quantifiers . 21

II.C Equivalence in first-order logic . 27

III Proof systems and proof patterns 31

III.A What is a proof? . 32

III.B Proof systems . 33

III.C From formal proofs to mathematical proofs 41

IV Set Theory 49

IV.A Sets over a domain . 50

IV.B Sets of sets . 58

IV.C Sets of tuples . 60

V Equivalence and Order Relations 73

V.A Equivalence relations . 74

V.B Order relations . 80

VI Sequences and Recurrence 87

VI.A Sequences . 88

VI.B Proofs by induction . 93

VI.C Application: Growth and complexity . 97

VII Number Theory 107

VII.A Division of integers . 108

VII.B Prime numbers . 113

VII.C Greatest Common Divisor and Least Common Multiple 119

VII.D Diophantine Equations . 123

VII.E Congruence . 127

VIII Introduction to Combinatorics 139

VIII.A What is Combinatorics? . 140

VIII.B Choosing

k

among

n

. 142

Introduction to Discrete Mathematics i

Foreword

Objectives

Topics

This book was developed with the syllabus of MA-471: Introduction to Discrete Mathe-

matics of Queensborough Community College (QCC) in mind. It therefore bears the same

objectives, which can be summarized as follows.

The first objective is to define and discuss the meaning of truth in mathematics. We ex-

plore logics, both propositional (Chapter I) and first-order (Chapter II), and the construction

of proofs, both formally and human-targeted (Chapter III).

Using the proof tools, this book then explores some very fundamental definitions of

mathematics through set theory (Chapter IV). This theory is then put in practice in several

applications. The particular (but quite widespread) case of equivalence and order relations is

developed in Chapter V. Chapter VI introduces sequences and proofs by induction. Number

Theory is the focus of Chapter VII. Finally, a small introduction to combinatorics is given

in Chapter VIII.

As the name indicates, this book is an introduction , so most topics touched in this book

would deserve a book in their own right.

Math or Computer Science?

The topics of this book oscillate between Computer Science and Mathematics. This is

because theoretical computer science (the science part, that can be done with pen and

paper rather than on a computer) needed in its inception to properly define truth and

the mechanics of truth so that a machine could handle it. As a result, throughout the

book some references are made to computer science and sometimes programming. A reader

unfamiliar with these concepts can skip these parts, but for a computer programmer the

relations between the theoretical concepts and their application in programming should

help understand the theory better. In any case, knowing theoretical foundations helps being

a better programmer, whether programming is learned before or after taking this course.

Take-home message

As the course touches lots of fundamental aspects of math, the book contains lots of defini-

tions and vocabulary. Although it is necessary for the book to be self-contained, the vocab-

ulary is not the most important idea of the book. What matters most is that it introduces

and uses proof techniques. These techniques provide powerful tools and problem-solving

strategies to approach any mathematical problem. In addition, they set a high standard for

argumentation in everyday life: wrong arguments and wrong proofs are more easily detected

when the mind knows what to expect from an actual well-formed proof. This protection

against misleading arguments is valuable regardless of future coursework and career.

Introduction to Discrete Mathematics iii

Chapter Foreword

How to use this book

Writing Intensive

The Mathematics and Computer Science department at QCC designated the course MA-

471 as Writing intensive . That means students must produce a certain amount of written

material throughout the semester.

In the context of this course, the main focus of the writing will be proofs. As a result,

reading the proofs in this book should provide many examples as to what is expected in

writing such proofs, as it is different from writing an English essay.

Margin notes

This book uses a relatively wide margin that allows for extensive marginal notes. They are

color-coded for your convenience:

• Green notes indicate an internal reference within the book. In PDF form, the links

are clickable and lead to the pointed section.

↬

An internal

reference.

• Dark red notes (all with the same text) indicate this part is more part of mathematical

culture, usually some concepts that should be expanded more but do not fit within

the scope of the course.

i

This is for your

personal culture

more than to

be applied in

this course.

• Bright red notes indicate that you must proceed carefully.

�

A warning.

• Yellow notes are uncategorized notes.

b

A note.

They include (among others) historical com-

ments and fun facts.

Student vs Instructor version

This textbook exists in two versions: the student and instructor version. The only difference

between the two is the presence of exercise answers in the Instructor version.

This version is the Student version. If you are an instructor looking for the instructor

version, please contact me at MSassolas@qcc.cuny.edu .

Comments, bug reports, reuses

This book has been put in circulation on-line without being extensively tested (especially

by students). I welcome any suggestions and comments, even if only to report a typo, by

email at MSassolas@qcc.cuny.edu .

If you wish to reuse this book with modification and need access to the LATEX source,

you can also reach out to me. I cannot promise the source is clean, though. This work is

being published under the Creative Commons Attribution-NonCommercial 4.0 International

License , so any derivative work should “include at least the same license elements as the

license applied to the original material” (https://creativecommons.org/faq/).

iv Introduction to Discrete Mathematics

mailto:MSassolas@qcc.cuny.edu?Subject=MA-471 OER textbook
mailto:MSassolas@qcc.cuny.edu?Subject=MA-471 OER textbook
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/faq/#if-i-derive-or-adapt-material-offered-under-a-creative-commons-license-which-cc-licenses-can-i-use

Foreword Chapter

Sources and acknowledgments

This book was created from the slides used in class developed for the course in Fall 2020 and

Spring 2021 semesters. The writing style of the book may be an indication of this origin, as

it was intended as an extended version of the course as given in talk and slides. (The initial

intent was to have enough space to write the longest proofs properly.)

While the slides themselves and therefore this book were my personal writing, they were

inspired by my readings at the time. These include, but are not limited to:

• Lecture notes and exercises for this course from my colleague Dr. Kwang Hyun Kim.

• Mathematics for Computer Science by Eric Lehman, Tom Leighton, and Albert Meyer;

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-042j-mathematics-for-computer-science-fall-2010/readings/ .

• Wikipedia, for historical points and notation examples.

• Stackoverflow and TEXample for LATEX/Tikz code for figures (the source is indicated

in the text).

Introduction to Discrete Mathematics v

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/

Chapter I

Propositional Logics

Chapter contents

I.A Introduction . 2

I.A.1 What is truth? . 2

I.A.2 Propositions . 2

I.A.3 Natural language vs mathematical language 3

I.B Boolean Algebra . 3

I.B.1 The building blocks: Propositional variables and operators . . 3

I.B.1.i Propositional variables 3

I.B.1.ii Boolean values and operators 4

I.B.2 Truth table for formulas . 6

I.B.2.i Example: Writing the truth table for

(q ∧ r) ∨ (p ∧ (q ∨ r))

7

I.B.2.ii Logical equivalence . 8

I.B.2.iii Remark: Equivalence and if-and-only-if 9

I.B.3 Putting the Algebra back into Boolean Algebra 9

I.B.3.i Neutrality and Absorption 9

I.B.3.ii Double negation and Idempotence 10

I.B.3.iii Commutativity, Associativity, Distributivity 10

I.B.3.iv De Morgan’s laws, Contraposition 11

I.B.3.v Constructing operators from others 12

I.B.3.vi Calculating in the Boolean algebra 14

I.C Classifying formulas . 14

I.C.1 Formula categories . 14

I.C.2 Classifying formulas, in practice 15

I.C.2.i Example:

φ = (p ∨ q) → (p ∧ ¬ r ∧ q)

. 16

I.C.2.ii Example:

ψ = (p ∧ q) → (p ∨ q)

. 16

I.C.3 Satisfiability . 17

I.C.3.i The satisfiability problem: SAT 17

I.C.3.ii The NP class . 18

Introduction to Discrete Mathematics 1

Chapter I Propositional Logics

I.A Introduction

I.A.1 What is truth?

“What is truth?” is both a very deep and very broad question. It has been asked by

philosophers for centuries (at least since the Greek antiquity), and have received some partial

answers, depending on what discipline focuses on the issue. In the context of this book, we

will take the mathematicians’ approach, and more precisely the logicians’ approach. We can

summarize this as follows:

Truth is either something we assume to be true, or

something we can build as true from other truths.

Although this definition seems self-contained, it leaves two (big) opportunities for inter-

pretation:

• What should be the truth that we assume?

• By what mechanisms can we build new truths?

There is actually no one good answer to that, and logicians are still actively working on

this topic: Playing with these parameters generate a wild bunch of logical systems . In this

book we will only see two such systems: Propositional calculus (in this chapter) and Natural

Deduction system (in Chapter III).

I.A.2 Propositions

The framework described above is still too broad to be tackled formally by logics: in natural

language (here English), there are lots of context that is implicit in a statement. For example

“My name is John” is a true statement only if uttered by someone actually named John; “It

is raining” may be true or false, depending on the time and place of the statement. Even

mathematical statements can bear some uncertainty: “

2 x − 3 = 0

” may be a true or false

statement, depending on the value of

x

.

As a result, the statements that are studied in logics are only propositions : statements

that are either true or false, regardless of context. It does not matter whether you actually

know the truth value of the statement, what matter is that it is definite. For example “It

rained on the current location of QCC on June 17th, 1076” is a proposition: it is either

true or false, even though nobody knows which. Other, somewhat simpler, examples of

proposition include:

• “

1 + 1 = 2

” is a true proposition.

• “

2 + 2 = 3

” is a false proposition.

• “

∫ 1

0

∫ 1

0

1

1 − xy

dx dy =

π2

6

” is a true proposition, although it is not obvious why!

As noted before, statements that include external parameters (such as a free variable

↬

The notion of

free variable

will be studied

with more

detail in

Section II.B.6.

) are

not propositions. Sentences that are not statements are not propositions either:

• “Let’s go!” is an injunction, not a statement, hence not a proposition.

2 Introduction to Discrete Mathematics

Propositional Logics Chapter I

• “What time is it?” is a question, not a statement, therefore not a proposition.

• ”

3 x2 − 7 = 0

depends on the value of

x

, so it is not a proposition.

• “This statement is false” is a paradox: it is neither true or false.

Exercise I.1

For each of the following statements, decide whether it is a “Proposition” or “Not a

proposition”.

1. The exponential function is its own derivative.

2. There exists a finite quantity of prime numbers.

3. How are you doing?

4. There exists an infinite number of ways to write 3 as the sum of three cubes.

5.

x2 − 2 x + 5 = 9

6.

x3 − 2 x2 − 18 x + 9 = 0

when

x = 3

I.A.3 Natural language vs mathematical language

Even when context is clear, the English language has ways to produce completely correct

sentences (grammatically speaking) that can be interpreted in several ways. This ambiguity

usually stems from internal references: connectors or pronouns can refer to more than one

part of the sentence. An example of this ambiguity can be found in the song Lola , by The

kinks (it is completely deliberate): “I’m glad I’m a man and so is Lola”. Does “so” refer

to the fact that the speaker is “glad” or to the fact that he is “a man”? A simpler – and

probably involuntary – ambiguity is also found in the tabloid headline “A mother beats up

her daughter because she was drunk”, where the “she” can refer to either of the protagonists.

And without pronouns, parsing (i.e. performing grammatical analysis) a sentence might

in itself be difficult: “John saw the man on the mountain with a telescope”. The trouble a

human has to parse this shows the immense difficulty a computer would!, despite the great

progress shown in the field of Natural Language Processing (which is not at all the topic of

this book).

But the difficulty do not end here: in English, a word can have several meanings, which

we know to interpret based on social context. Compare the sentences “You can have chicken

or fish” with “Since you like Turner, you may like Monet or Pissarro”: in the first case, it

is implied that you cannot have both meal options, while in the second case you may like

both painters. In the mathematical context, we will give a single meaning to the word “or”,

with a formal definition, in order to avoid this kind of confusion.

I.B Boolean Algebra

I.B.1 The building blocks: Propositional variables and oper-

ators

I.B.1.i Propositional variables

Although propositions represent an statement on the real world, it is not really what is the

focus of logics: what matters is how thes propositions relate to each other. As a result, the

Introduction to Discrete Mathematics 3

Chapter I Propositional Logics

actual content of the proposition can usually be abstracted away through a propositional

variable.

A propositional variable is a name (usually a single letter) used to

represent a proposition. By habit, we mostly use the letters

p

,

q

,

r

.

Sometimes a letter closer to the content of the proposition is used. For example, we

can write the following to define some propositional variables that represent “real-life” state-

ments.

• Let

c

be the proposition “Socrates is a cat”

• Let

s

denote the proposition “It is snowing”

• We define

t

as the proposition “John is taller than Bob”

In most cases, propositional variables denote a yet undetermined proposition: we can

reason on propositions before knowing (or without caring) whether it is true or false.

I.B.1.ii Boolean values and operators

I.B.1.ii.a Syntax

Propositional variables are sometimes called atomic1 propositions , because they are the

base building blocks of more complex propositions. We denote by

AP

the set of all atomic

propositions, which are the propositional variables we will use.

What joins these building blocks are the boolean operators

b

Booleans are

named after

English logician

Georges Boole.

, and the result of said combi-

nation is called a formula (plural: formulas , or formulae to be pedantic). By habit, formulas

are denoted using the Greek letters

φ

or

ψ

(and sometimes

ξ

).

The boolean values and operators are as follows:

b

Use

⊤

and

⊥

when

handwriting

because letters

T

and

F

can

easily be

confused.

⊤

True: the value of a true proposition. When writing in plain-text it can be replaced by

the letter

T

.

⊥

False: the value of a false proposition. When writing in plain-text it can be replaced by

the letter

F

.

¬

Negation (“not”), unary operator.

∧

Conjunction (“and”), binary operator.

∨

Disjunction (“or”), binary operator.

⊕

XOR (“exclusive-or”), binary operator.

→

Implication (“if. . . then”), binary operator.

↔

Iff (“if and only if”), binary operator.

The above definition of what a formula is is often summarized with a grammar :

φ := ⊤|⊥| p ∈ AP |¬ φ | φ ∧ φ | φ ∨ φ | φ ⊕ φ | φ → φ | φ ↔ φ

To read these grammars, just replace

φ

by “a formula” and the

|

symbol by “or”: A formula

is

⊤

, or

⊥

, or a propositional variable, or the

¬

of a formula, or the

∧

of two formulas. . .

1Atomic means “which cannot be cut” in Greek.

4 Introduction to Discrete Mathematics

Propositional Logics Chapter I

φ

¬ φ

⊤

⊥

⊥

⊤

(a) Negation:

¬

φ

ψ

φ ∧ ψ

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊤

⊥

⊥

⊥

⊥

(b) Conjunction:

∧

φ

ψ

φ ∨ ψ

⊤

⊤

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊥

⊥

⊥

(c) Disjunction:

∨

φ

ψ

φ ⊕ ψ

⊤

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊤

⊥

⊥

⊥

(d) XOR:

⊕

φ

ψ

φ → ψ

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊤

⊤

⊥

⊥

⊤

(e) Implication:

→

φ

ψ

φ ↔ ψ

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊤

⊥

⊥

⊥

⊤

(f) Iff:

↔

Figure I.1: Truth tables for Propositional Logics.

I.B.1.ii.b Semantics

Up to now, only symbols have been given: this is called the syntax of the logics. But the

symbols have no actual meaning: we are missing the semantics of the logics. In the case of

propositional logics, the semantics of the operators gives the truth value of the compound

formula based on the truth value of the sub-formulas. Since all combination of truth values

for sub-formulas must be considered, the semantics of an operator is given in a truth table

that lists all these possibilities.

The truth tables of the above operators are displayed in Figure I.1. As the name indicates,

Negation turns true into false and false into true.

Conjunction, that we read as “and”, is true only if both sub-formulas are true. Dually,

disjunction, that we read as “or”, is true if at least one of the sub-formula is. This is a

different interpretation than the usual English one: it is an inclusive or : to the “chicken or

fish” question, logicians allow themselves to answer “both”. The exclusive or is closer to the

English interpretation: it is true when exactly one of the sub-formula is. So “chicken xor

fish” forces you to choose one of them only. Remark that the actual meaning of “chicken

or fish” is often “not(chicken and fish)”, because you are perfectly allowed to have neither,

which does not work with the interpretation of

∨

or

⊕

. . .

Implication mimics “if. . . then. . . ”: for

φ → ψ

to be true, whenever

φ

(called the premise)

holds, then so must

ψ

(the conclusion). Note that when

φ

is not true, there is no obligation

whatsoever on

ψ

: so for a false premise, the implication will always be true, as shown in the

examples below:

•

2 + 2 = 4 → 1 ̸ = 0

is true because both parts are true

•

42 × 0 = 0 → π = 42

is false because even though the left part is true, the right part

is false

•

1 + 2 = 5 →

1

2

< 3

is true because

1 + 2 = 5

is false (

1

2

< 3

happens to be true)

•

1

2

>

7

8

→ 1 + 1 = 7

is true because

1

2

>

7

8

is false (

1 + 1 = 7

happens to be false)

Introduction to Discrete Mathematics 5

Chapter I Propositional Logics

So as long as the premise is false, the conclusion can be anything. That allows for some

seemingly strange statements to be true: “if 1=0, then the moon is larger than the earth” is

a true sentence!

I.B.1.ii.c Precedence

Mathematical operators

+

,

×

, etc have an order of precedence: an implicit order of

operations that we don’t have to indicate with parenthesis (usually summed up as the

acronym PEMDAS). Similarly, logical operators also have an order of precedence to avoid

some parentheses:

•

¬

has the highest precedence:

¬ p ∧ q

is to be understood as

(¬ p) ∧ q

.

•

∧

has precedence over

∨

:

p ∨ q ∧ r

is to be understood as

p ∨ (q ∧ r)

(but it is usually

clearer to still use parenthesis in this case).

•

→

has lower precedence than

∧

and

∨

(and

¬

), but higher precedence than

↔

:

p →

q ↔ p → q ∨ r

is to be understood as

(p → q) ↔ (p → (q ∨ r))

.

The

⊕

has no real fixed precedence: it depends on the context. For example, in the C

programming language (and its derivatives like C++) it is between

∧

and

∨

, but mathe-

matical texts might use another convention. So it is better to use parenthesis when using

the exclusive or.

I.B.2 Truth table for formulas

Based on the semantics of the operators, one can calculate the semantics of any formula. This

is done by computing the truth table for this formula: finding for every possible combination

of truth value of the atomic propositions, called a valuation , what is the truth value of the

whole formula.

The procedure is as follows:

1. Make one column for each variable.

2. Write all possible sets of values for the variables appearing, that creates

2n

lines if

there are

n

variables, as depicted in Figure I.2. It helps to follow some method in

order not to forget any line. For example, in the tables displayed in Figure I.2, the

rightmost variable has alternation of

⊤

and

⊥

, the variable to its left has blocks of

2

⊤

, then

2

⊥

, then blocks of

4 = 22

, etc until the leftmost variable has blocks of

2n − 1

⊤

and a block of

2n − 1

⊥

.

3. Decompose the formula to find the sub-formulas . This is done is the reverse order of

operations: start with the operator that would be applied last; its operand(s) are the

sub-formulas. Then proceed similarly to decompose the sub-formulas until variables

are reached. It helps to give names to the sub-formulas.

4. Write a column for each sub-formula, starting from the least complex and ending in

the whole formula.

5. Fill the columns using the truth tables for the operators, based on the value present

in the column of the operands.

6 Introduction to Discrete Mathematics

Propositional Logics Chapter I

p

q

. . .

⊤

⊤

⊤

⊥

⊥

⊤

⊥

⊥

(a) Truth table for two variables

p

q

r

. . .

⊤

⊤

⊤

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊥

⊥

⊥

⊤

⊤

⊥

⊤

⊥

⊥

⊥

⊤

⊥

⊥

⊥

(b) Truth table for three variables

Figure I.2: Line structure of truth tables for 2 or 3 variables.

φ

ξ

ψ = p ∧ ξ

φ ∨ ψ

p

q

r

q ∧ r

q ∨ r

p ∧ (q ∨ r)

(q ∧ r) ∨ (p ∧ (q ∨ r))

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊥

⊥

⊤

⊤

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊤

⊤

⊤

⊤

⊥

⊤

⊥

⊤

⊥

⊥

⊤

⊥

⊥

⊥

⊥

⊤

⊥

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

Figure I.3: Truth table for

(q ∧ r) ∨ (p ∧ (q ∨ r))

.

I.B.2.i Example: Writing the truth table for

(q ∧ r) ∨ (p ∧ (q ∨ r))

1. There are 3 variables, so we can start by drawing a truth table with 3 columns for

p, q , r

.

2. We write all possible combinations in

23 = 8

lines as in Figure I.2(b).

3.

(q ∧ r) ∨ (p ∧ (q ∨ r))

has sub-formulas

φ = (q ∧ r)

and

ψ = p ∧ (q ∨ r)

, which in turns

has sub-formula

ξ = q ∨ r

.

4. A column is added for

φ, ξ , ψ

, and one column for the whole formula.

5. The lines are filled using the appropriate columns: for example, column

φ

and

ξ

are

filled using only columns

q

and

r

, column

p

does not matter. Column

ψ

is filled using

column

p

and

ξ

, the other ones do not matter. Note that since it is a conjunction, the

truth table for conjunction is used: column

ψ

has a

⊤

only when both columns

p

and

ξ

have a top in this line.

The end result is displayed in Figure I.3.

Introduction to Discrete Mathematics 7

Chapter I Propositional Logics

p

q

r

q ∨ r

p ∧ (q ∨ r)

(p ∧ q)

(p ∧ r)

(p ∧ q) ∨ (p ∧ r)

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊤

⊥

⊤

⊤

⊤

⊥

⊤

⊤

⊥

⊤

⊤

⊤

⊥

⊤

⊤

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊤

⊤

⊤

⊥

⊥

⊥

⊥

⊥

⊤

⊥

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊤

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

Figure I.4: Joint truth table for

p ∧ (q ∨ r)

and

(p ∧ q) ∨ (p ∧ r)

.

I.B.2.ii Logical equivalence

Definition: Logical Equivalence

Two formulas using the same set of atomic variables are said to be logically equivalent

if they are true for exactly the same combination of the truth value of the variables.

Equivalently, two equivalent formulas have the same last column in their truth table.

This is written by the symbol

≡

, to differentiate from syntactical equality (which is denoted

with the usual

=

symbol).

For example

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

: as we can see in the truth table of Figure I.4

where both

p ∧ (q ∨ r)

and

(p ∧ q) ∨ (p ∧ r)

are gathered in the same table, the fifth and eight

columns are identical.

Exercise I.2

1. Build the truth tables of the following formulas:

a.

¬ p ∨ q

b.

¬ p ∨ ¬ q

c.

¬ (p ∨ q)

d.

¬ (p ∧ q)

e.

¬ p ∧ ¬ q

f.

¬ q → ¬ p

g.

(p → q) ∧ (q → p)

h.

¬ (p ⊕ q)

i.

(p ∧ q) ∨ (¬ p ∧ ¬ q)

j.

p → q

a

k.

p ↔ q

2. Which of these formulas are equivalent to each other?

Practical instructions:

• Use a single (wide) truth table.

• A spreadsheet document works well for this. In this case, use NOT , AND , OR ,

XOR , -> , <-> instead of symbols and color columns in the same color if they are

logically equivalent.

aNo real work needed in this question and the next, this is for Question 2.

8 Introduction to Discrete Mathematics

Propositional Logics Chapter I

I.B.2.iii Remark: Equivalence and if-and-only-if

b

Here “at the

same time” is

an abuse of

language to

mean “for the

same truth

values of the

propositional

variables

appearing in

the formulas”.

The if-and-only-if

l ef tr ig htar r ow

operator is true whenever its operands are true at the

same time and false at the same time. This idea is really close from logical equivalence:

both sides of the

≡

symbol are true at the same time and false at the same time. And

indeed these notions are related:

For any formulas

φ

and

ψ

,

φ ≡ ψ

means

φ ↔ ψ ≡ ⊤

.

As a result,

↔

is sometimes (abusively) referred to as the equivalence operator. This con-

fusion must not hide from the mind that these two “equivalences” actually work at different

levels:

• The

↔

is an operator defined at the logical level, and its result may be true or false.

• The

≡

is a relation

↬

We explore

relations in

Chapter V, and

this particular

type of relation

in Section V.A.

defined at the mathematical level (i.e. the level at which math-

ematician communicate with each other as humans) and implicitly states that the

equivalence holds.

In other terms, when

φ ↔ ψ

is false, the statement “

φ ≡ ψ

” is a mathematical mistake, a

reasoning error, that should not have been written.

I.B.3 Putting the Algebra back into Boolean Algebra

The equivalences found in Exercise I.2 show that we can rewrite some formulas into others.

This is the base for the calculation rules that form Propositional Calculus . The structure

made of the boolean values and the properties of the operator is called Boolean Algebra ,

because it shares some structural properties with real algebra (the “usual” algebra on num-

bers). To some extent,

⊤

can be thought to be

1

,

⊥

to be

0

,

∧

to be

×

and

∨

to be

+

. The

correspondence is not perfect since

1+ 1 = 1

with booleans; indeed, booleans have only two

“numbers”! That does not prevent electrical engineers to use these notations instead of

⊤

and

⊥

, and seeing it that way can help in memorizing the rules.

No proofs will be provided for these rules, as it is left as an exercise to the reader to

build the truth tables that show logical equivalence for the rules not covered by Exercise I.2.

I.B.3.i The special case of

⊤

and

⊥

: Neutrality and Absorption

The boolean values

⊤

and

⊥

are not variables: they are the possible values that every

formula can take. They also have a special role regarding the operators

∧

and

∨

.

Namely, whenever

⊤

is present in a conjunction, it does not affect the result. Similarly,

⊥

does not affect the result of a disjunction. This is called neutrality , and we say that

⊤

is the neutral element for conjunction and that

⊥

is the neutral element for disjunction .

Remark that we have the same thing in real algebra:

x + 0 = x

and

x × 1 = x

(

0

is the

neutral element for addition,

1

is the neutral element for multiplication).

Furthermore, whenever

⊤

is present in a disjunction, the result will always be

⊤

, re-

gardless of the other operands. And

⊥

makes any conjunction

⊥

, regardless of the other

operand. This property is called absorption

b

Some sources

use the term

domination

instead of

absorption.

That

vocabulary

relates to the

boolean algebra

as a lattice

rather than an

algebra , so

absorption will

be used in this

book.

and we say that

⊤

is absorbing for disjunction

and that

⊥

is absorbing for conjunction . This is similar to real algebra only for

0

:

x × 0 = 0

(

0

is absorbing for multiplication).

Introduction to Discrete Mathematics 9

Chapter I Propositional Logics

For any formula

φ

:

φ ∧ ⊤ ≡ φ φ ∨ ⊥ ≡ φ (Neutrality)

φ ∨ ⊤ ≡ ⊤ φ ∧ ⊥ ≡ ⊥ (Absorption)

I.B.3.ii Doing the same thing twice: Double negation, Idempotence, and

the rest

As negation changes the truth value from true to false and vice versa, performing it twice

bring us back to the starting point: therefore a double negation can be eliminated.

Another interesting case to consider is trying to apply a binary operator to the same

operand twice. From the point of view of truth table, that means we need to consider the two

lines

⊤ , ⊤

and

⊥ , ⊥

(the first and fourth in the truth tables as displayed in Figures I.1(b-f)).

What we see is that for both conjunction and disjunction, line

⊤ , ⊤

yield

⊤

and line

⊥ , ⊥

yield

⊥

. Therefore applying a conjunction (or a disjunction) to the same value twice will

always produce this very original value. This property is called idempotence : we say that

∧

is idempotent , and that

∨

is idempotent .

The case of the other operators can also be considered, also is it of lesser importance

in practice. In these cases, the value produced is always the same regardless of the original

value.

For any formula

φ

:

¬ (¬ φ) ≡ φ (Double negation elimination)

φ ∧ φ ≡ φ φ ∨ φ ≡ φ (Idempotence)

φ ⊕ φ ≡ ⊥ φ → φ ≡ ⊤ φ ↔ φ ≡ ⊤

I.B.3.iii Commutativity, Associativity, Distributivity

For an operator, commutativity denotes the fact that its operands can appear in any order

without affecting the result of the operation. In real algebra, it is the case for both multipli-

cation and addition:

x × y = y × x

and

x + y = y + x

. In the case of boolean algebra, what

need to be considered to establish commutativity are the lines of the truth tables where

the operands are different: lines

⊤ , ⊥

and

⊥ , ⊤

(the second and third in the truth tables as

displayed in Figures I.1(b-f)). We can see that conjunction, disjunction, exclusive-or, and

iff are commutative. On the other hand, implication is not commutative as

⊥ → ⊤

is true

but

⊤ → ⊥

is false. Note that the choice of the symbols used to represent these operators

reflects this: the symbols for the commutative operators are symmetrical, but the

→

of the

implication is not.

Commutativity

For any formulas

φ

and

ψ

:

φ ∧ ψ ≡ ψ ∧ φ φ ∨ ψ ≡ ψ ∨ φ φ ⊕ ψ ≡ ψ ⊕ φ φ ↔ ψ ≡ ψ ↔ φ

10 Introduction to Discrete Mathematics

Propositional Logics Chapter I

Associativity refers to the fact that when two of the same operation is to be performed,

the order in which they are performed does not matter. In some sense, an associative

operator has no precedence with itself because order does not matter. In real algebra,

both addition and multiplication are associative. In boolean algebra, proving associativity

requires to look at a table with three variables, and comparing the cases where operations

are performed left-to-right and right-to-left. The result, left as an exercise to the reader,

is that conjunction, disjunction, exclusive-or, and iff are associative. On the other hand,

implication is not associative:

(⊥ → ⊤) → ⊥

is false but

⊥ → (⊤ → ⊥)

is true. As a result,

we ought to define the order of operation in which

φ → ψ → ξ

should be interpreted: it is

to be understood as

φ → (ψ → ξ)

, meaning implications must be calculated from right to

left (but parentheses are advised anyway).

b

We say that

→

is right-

associative .

Associativity

For any formulas

φ

,

ψ

, and

ξ

:

φ ∧ ψ ∧ ξ ≡ (φ ∧ ψ) ∧ ξ ≡ φ ∧ (ψ ∧ ξ) φ ∨ ψ ∨ ξ ≡ (φ ∨ ψ) ∨ ξ ≡ φ ∨ (ψ ∨ ξ)

φ ⊕ ψ ⊕ ξ ≡ (φ ⊕ ψ) ⊕ ξ ≡ φ ⊕ (ψ ⊕ ξ) φ ↔ ψ ↔ ξ ≡ (φ ↔ ψ) ↔ ξ ≡ φ ↔ (ψ ↔ ξ)

Distributivity is the capacity of an operator to “enter the parenthesis of another one”. The

most common example is the distributivity of multiplication over addition in real algebra:

x × (y + z) = x × y + x × z

. In the case of boolean algebra, distributivity is much more

widespread. Indeed, not only conjunction is distributive over disjunction (this was actually

proved through the truth table of Figure I.4), but also the other way around: disjunction is

distributive over conjunction (the proof is left as an exercise to the reader).

Distributivity

For any formulas

φ

,

ψ

, and

ξ

:

φ ∧ (ψ ∨ ξ) ≡ (φ ∧ ψ) ∨ (φ ∧ ξ) φ ∨ (ψ ∧ ξ) ≡ (φ ∨ ψ) ∧ (φ ∨ ξ)

There are actually more distributive properties in the boolean algebra, but listing them

all would be more confusing that enlightening (although one will be proved in Exercise I.3).

Remark that distributivity can work in reverse: factoring can also be performed using

the same rules, but from right to left.

I.B.3.iv Playing with negation: De Morgan’s laws, Contraposition

As we should have seen in Exercise I.2, negation does not distribute directly over conjunction

or disjunction. For example

¬ (⊤ ∨ ⊥)

is false (as the negation of

⊤

), while

¬⊤ ∨ ¬⊥)

is true

(as the disjunction of

⊥

and

⊤

). Indeed, to distribute the negation, one must also change the

operator: negation transforms disjunction into conjunction and vice versa. These properties

are gathered under the name of De Morgan’s laws .

b

Named after

the British

logician

Augustus De

Morgan who

formalized

them.

The De Morgan’s laws seem trivial, but they really express the duality at play between

disjunction and conjunction, which we can rephrase by describing their truth tables (Fig-

ures I.1(b-c)) with the following similar sentences:

• The conjunction is only true when both operands are true.

• The disjunction is only false when both operands are false.

Introduction to Discrete Mathematics 11

Chapter I Propositional Logics

De Morgan’s laws

For any formulas

φ

and

ψ

:

¬ (φ ∧ ψ) ≡ ¬ φ ∨ ¬ ψ ¬ (φ ∨ ψ) ≡ ¬ φ ∧ ¬ ψ

Negation also behaves in a special way with implication. The negation of an implication

does not look like an implication, as we will see in Section I.B.3.v. What is more interesting

is the implication of the negations: it is also an implication, but is reversed (the proof of

this is in Exercise I.2). The implication

¬ ψ → ¬ φ

is called the contrapositive of

φ → ψ

.

The fact that they are equivalent is quite useful for proofs.

↬

More details on

proofs by

contraposition

in Sec-

tion III.C.4.iii.

Contrapositive

For any formulas

φ

and

ψ

:

φ → ψ ≡ ¬ ψ → ¬ φ

I.B.3.v Constructing operators from others

The last set of rules are about rewriting operators using others. As a result, there is no one

“basic” set of operators, but several equivalent presentations of the logic. Fewer symbols

mean an easier formalization but expressing an actual statement would be more complex.

I.B.3.v.a From

¬

,

∧

, and

∨

The simplest (in cognitive rather than mathematical terms) set of “basic” operators is

using only

¬

,

∧

, and

∨

, and building the others from them. Note that, using De Morgan’s

laws, using only one of

∧

or

∨

would be sufficient, but it is usual to have them both for

symmetry. Also remark that

⊤

and

⊥

are not “basic” operators here, because they can be

constructed. Namely,

⊤

is the disjunction

φ ∨ ¬ φ

, which is called the excluded middle : a

formula is either true or false (in which case its negation is true), there is no “middle” option.

b

In Latin the

name is tertium

non datur ,

literally

meaning “no

third possibility

is given”.

Symmetrically,

⊥

is defined as the conjunction

φ ∧ ¬ φ

: no proposition can be both true and

false (in which case its negation is true), that would be a contradiction .

The case of implication is quite useful, since it allows to replace the non-commutative,

non-associative

→

operator by a combination of

¬

and the commutative and associative

∧

and

∨

. As proved in Exercise I.2, the implication

φ → ψ

is equivalent to

¬ φ ∨ ψ

. Note that

as a result, the negation of the implication is not an implication.

↬

See Exercise I.3

Question 1.

The exclusive-or and iff can be defined in a symmetrical way from each other: indeed,

the XOR is true when the operands differ, which is when the iff is true, so they are the

negation from one another. The XOR can be expressed in a way that follows its name of

“exclusive or”: for

φ ⊕ ψ

to be true,

φ ∨ ψ

must be true, but also, we need to exclude the

case when both operands are true, i.e. the case

φ ∧ ψ

. As a result we can rewrite

φ ⊕ ψ

as

(φ ∨ ψ) ∧ ¬ (φ ∧ ψ)

.

12 Introduction to Discrete Mathematics

Propositional Logics Chapter I

For any formulas

φ

and

ψ

:

⊤ ≡ φ ∨ ¬ φ (Excluded middle) ⊥ ≡ φ ∧ ¬ φ (Contradiction)

φ → ψ ≡ ¬ φ ∨ ψ (Rewriting of

→

) φ ⊕ ψ ≡ (φ ∨ ψ) ∧ ¬ (φ ∧ ψ)

φ ↔ ψ ≡ ¬ (φ ⊕ ψ) ≡ φ → ψ ∧ ψ → φ ≡ (φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)

I.B.3.v.b From

→

and

⊥

i

This is for your

personal culture

more than to

be applied in

this course.

One of the smallest set of operators that can recreate all others is

→

and

⊥

. In practice

this is highly inefficient, but it allows for a very succinct definition of the logic’s grammar.

Because of this inefficiency, once an operand has been recreated we will use it instead of its

definition using only

→

and

⊥

.

⊤

We define

⊤ ≡ ⊥ → ⊥

. As we can see by looking at the truth table of the implication

(Figure I.1(e)), whenever the premise (left side of the

→

) is

⊥

, the implication is true.

So in particular,

⊥ → ⊥

is always true.

¬

We define

¬ φ ≡ φ → ⊥

:

• whenever the premise is false, the implication is true;

• whenever the premise is true, the implication is only true if the conclusion is too,

but

⊥

is never true so here the implication is false.

Another way to connect this to the usual definition is to rewrite

φ → ⊥

as

¬ φ ∨ ⊥ ≡ ¬ φ

.

But although that allows to understand why it works, it is not a good way to define

¬

in this context.

∨

We define

φ ∨ ψ ≡ ¬ φ → ψ

. One way to understand (but not really prove) this definition

is, as above, by rewriting the implication:

¬ φ → ψ ≡ ¬¬ φ ∨ ψ ≡ φ ∨ ψ

. To prove the

correctness of this definition semantically, one need to consider all cases:

• If

φ

is true, then

¬ φ

is false and the implication is true.

• If

φ

is false, then the implication is only true when

ψ

is, which is the same

semantics as the disjunction.

Note that the way we tend to interpret this implication by first looking at the premise

and not even considering the conclusion if the premise is false is akin to the evaluation

of boolean formulas in some programming languages called lazy evaluation (or short

circuit): when evaluating

φ ∨ ψ

, when

φ

is true

ψ

is not evaluated.

∧

We define

φ ∧ ψ ≡ ¬ (¬ φ ∨ ¬ ψ)

: this follows from De Morgan’s laws.

The other operators can be recreated from

¬

,

∧

, and

∨

, as mentioned in Section I.B.3.v.a.

Introduction to Discrete Mathematics 13

Chapter I Propositional Logics

I.B.3.vi Calculating in the Boolean algebra

Using the rules above allow to calculate in the boolean algebra in a similar way that we would

in real algebra. The only additional principle to be added it the substitution principle : if

φ ≡ ψ

, then

φ

can be replaced by

ψ

in another expression.

Calculating in the boolean algebra is often more efficient that building the truth tables

in order to prove equivalences. In these calculation, indicating what rule was used allows to

make sure that no mistake is made. For example:

(p → q) ∨ (p → r) ≡ (¬ p ∨ q) ∨ (¬ p ∨ r) [Rewriting of

→

]

≡ ¬ p ∨ q ∨ ¬ p ∨ r [Associativity of

∨

]

≡ ¬ p ∨ ¬ p ∨ q ∨ r [Commutativity of

∨

]

≡ (¬ p ∨ ¬ p) ∨ (q ∨ r) [Associativity of

∨

]

≡ ¬ p ∨ (q ∨ r) [Idempotence of

∨

]

(p → q) ∨ (p → r) ≡ p → (q ∨ r) [Rewriting of

→

]

Exercise I.3

Using the rulesa of Boolean Algebra:

1. Prove that

¬ (p → q)

is logically equivalent to

p ∧ ¬ q

.

2. Prove that

(p → q) ∧ (p → r)

is logically equivalent to

p → (q ∧ r)

.

3. Prove that

(p ∧ q) → p

is logically equivalent to

⊤

.

4. Prove that

(p → q) ∧ p ∧ ¬ q

is logically equivalent to

⊥

.

5. Prove that

((p → q) → p) → p

is logically equivalent to

⊤

(Peirce’s Law).

6. Prove that

(p ∨ (q ∧ ¬ r)) → p

is logically equivalent to

p ∨ ¬ q ∨ r

.

aIndicate which rule was used.

I.C Classifying formulas

I.C.1 Formula categories

Formulas can be classified into three main categories:

• Formulas that are true regardless of the truth value of the propositional variables,

called tautologies . These formulas are logically equivalent to

⊤

, and their truth table

(the last column) contains only

⊤

. For example, the excluded middle

p ∨ ¬ p

is a

tautology; so is

(p ∧ q) → p

.

• Formulas that are false regardless of the truth value of the propositional variables,

called contradictions . These formulas are logically equivalent to

⊥

, and their truth

table (the last column) contains only

⊥

. For example, the contradiction

p ∧ ¬ p

is a

contradiction

b

The statement

“the

contradiction

p ∧ ¬ p

is a

contradiction”

is a tautology!

; so is

(p → q) ∧ p ∧ ¬ q

.

• All other formulas, that are neither tautologies nor contradictions are called contingent

formulas. The term contingent refers to the fact that the truth value of the formula

is contingent (i.e. depends) on the truth value of the propositional variables. For

a formula to be contingent, there needs to be at least a valuation of propositional

variables that makes the formula true, and one that makes the formula false. In the

truth table (the last column), that corresponds to having at least a line

⊤

and a line

14 Introduction to Discrete Mathematics

Propositional Logics Chapter I

⊥

. For example,

(p → q) ∧ ¬ q

is contingent: it is true for

p = q = ⊥

, and false for

p = ⊤

and

q = ⊥

.

I.C.2 Classifying formulas, in practice

One way to classify a formula is to build the truth table. It is however often inefficient: for

n

propositional variables, the truth table has

2n

lines.

There are better methods for all three cases:

• To prove that a formula

φ

is a tautology, it is sufficient to use propositional calculus

and show that

φ ≡ ⊤

.

• To prove that a formula

φ

is a contradiction, it is sufficient to use propositional calculus

and show that

φ ≡ ⊥

.

• To prove that a formula

φ

is contingent, it is sufficient to exhibit a valuation that

makes the formula

⊤

, and another that makes the formula

⊥

.

For contingent formulas, finding these valuations may also be done without building the

truth table, but through a bit of guesswork, based on the operators in the formula. We work

in a top-down approach, similar to the decomposition into sub-formulas to build the truth

table. If the formula is. . .

p

For atomic propositions, choose

⊤

to make it true and

⊥

to make it false. Whenever a

choice of truth value is made for an atomic proposition, keep it in mind: another later

choice cannot contradict it.

¬ φ

• To make a negation true, the operand have to be false: so try to make

φ

false.

• To make a negation false, the operand have to be true: so try to make

φ

true.

φ ∧ ψ

• To make a conjunction true, both operands have to be true: so try to make both

φ

and

ψ

true.

• To make a conjunction false, only one operand needs to be false: choose one

between

φ

and

ψ

and try to make it false.

φ ∨ ψ

• To make a disjunction true, only one operand needs to be true: choose one

between

φ

and

ψ

and try to make it true.

• To make a disjunction false, both operands have to be false: so try to make both

φ

and

ψ

false.

φ → ψ

• An easy way to make an implication true is to try to make the left handside false:

try to make

φ

false. If that fails, try to make

ψ

true.

• The only way to make an implication false is to try to make the left handside

true and the right handside false: try to make

φ

true and

ψ

false.

Introduction to Discrete Mathematics 15

Chapter I Propositional Logics

If a contradiction appears (for example

p

should be both

⊤

and

⊥

), then either come back

to the last choice that was made (for example when trying to make a disjunction true) and

choose the other way. Note that although this technique is more efficient in practice, it is

not guaranteed to always be, and you might end up trying all combinations anyway.

It is also possible that after trying all choices, it seems impossible to make a given formula

true (resp. false).

b

“(resp. . . .)”

indicates that

this paragraph

is actually two

paragraphs:

one without the

parentheses,

and one where

“true” is

replaced by

“false”,

“contradiction”

by “tautology”,

etc.

Unlike exercises, which may explicitly ask to prove that a formula belongs

to a certain category, you may have started this procedure without the knowledge that

it was contingent. In this case, it means the formula seems to be a contradiction (resp.

tautology). But, as this trial-and-error technique is not a formal exploration of all cases

(which would be the truth table), it remains to be proved that the formula is a contradiction

(resp. tautology), usually by reducing it to

⊥

(resp.

⊥

) through calculus.

I.C.2.i Example:

φ = (p ∨ q) → (p ∧ ¬ r ∧ q)

Make

φ

true. It’s an implication, so having

(p ∨ q)

be false is sufficient. In order to do

that, set both

p

and

q

to

⊥

. There is no constraint on

r

. So

p, q = ⊥

and say

r = ⊤

makes

φ

true.

Make

φ

false. It’s an implication, so we need

p ∨ q

to be true while

p ∧ ¬ r ∧ q

is false. For

p ∨ q

, we can chose one of them to be true, and see if it works, for example set

p

to

⊤

.

Now for

(p ∧ ¬ r ∧ q)

, we can chose one of the operands to be false, but not

p

because

we already assumed it to be

⊤

. So if we choose

¬ r

to be false, that means

r

is

⊤

(and

q

does not matter). So for example

p, r = ⊤

and

q = ⊥

makes

φ

false.

As we have exhibited a valuation that makes

φ

true and another one that makes

φ

false, we

can classify

φ

as a contingent formula.

I.C.2.ii Example:

ψ = (p ∧ q) → (p ∨ q)

Make

ψ

true. It’s an implication, so having

p ∧ q

be false is sufficient. For example by

having

p, q = ⊥

, formula

ψ

is true.

Make

ψ

false. It’s an implication, so we need

p ∧ q

to be true while

p ∨ q

is false. So we

need to set

p

and

q

to

⊤

. To make

p ∨ q

, they must both be false, but we have already

set them

⊤

, to it seems impossible to find a valuation that makes the formula false!

As we succeeded in finding a valuation that makes

ψ

true, but not a valuation that makes

ψ

false, it seems that

ψ

is a tautology. It remains to be proved, for example using a reduction

to

⊤

:

ψ = (p ∧ q) → (p ∨ q)

≡ ¬ (p ∧ q) ∨ (p ∨ q) [Rewriting of

→

]

≡ (¬ p ∨ ¬ q) ∨ (p ∨ q) [De Morgan’s Law]

≡ ¬ p ∨ ¬ q ∨ p ∨ q [Associativity of

∨

]

≡ p ∨ ¬ p ∨ q ∨ ¬ q [Commutativity of

∨

]

≡ (p ∨ ¬ p) ∨ (q ∨ ¬ q) [Associativity of

∨

]

≡ ⊤ ∨ ⊤ [Excluded middle]

ψ ≡ ⊤ [

⊤

is absorbing for

∨

]

16 Introduction to Discrete Mathematics

Propositional Logics Chapter I

We also could have used a truth table to prove the same fact (for two variables it is still

relatively small):

p

q

p ∧ q

p ∨ q

(p ∧ q) → (p ∨ q)

⊤

⊤

⊤

⊤

⊤

⊤

⊥

⊥

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊥

⊥

⊥

⊥

⊤

Exercise I.4

1. Prove that the following formulas are contingent:

a.

p ∨ (q ∧ (r → p))

b.

(p ↔ r) ∧ (q → ¬ r)

2. Prove that the following formulas are tautologies:

a.

((p → q) ∧ p) → q

b.

(p → q) ∨ (q → p)

c.

((p → q) ∧ ¬ q) → ¬ p

3. Prove that the following formulas are contradictions:

a.

(p ⊕ q) ∧ (p ↔ q)

b.

(q → p) ∧ (p → r) ∧ q ∧ ¬ r

4. Classify the following formulas as tautologies, contradictions, or contingent for-

mulas:

a.

(p → (r ∨ ¬ p)) → q

b.

(p → r) ∨ (¬ p → q)

c.

p → ((r ∨ ¬ p) → q)

I.C.3 Satisfiability

i

This is for your

personal culture

more than to

be applied in

this course.

There is a fourth category of formulas that is of interest: satisfiable formulas. A satisfiable

formula is a formula that is not a contradiction; otherwise said it is either contingent or a

tautology. That means at least for one particular valuation, the formula is true:there is at

least a line in the truth table that is

⊤

. So to prove that a formula is satisfiable, one has to

exhibit a valuation that makes the formula

⊤

.

I.C.3.i The satisfiability problem: SAT

The satisfiability problem, or SAT for short, is asking, for a formula

φ

, whether it is satis-

fiable. It is an important problem in practice because lost of situations can be understood

as an instance of a SAT problem. For example, the fact for a critical system to be in an

error state (think: failure of a spacecraft) can be modeled into a propositional logic formula,

albeit with lots of propositional variables. If this formula is satisfiable, that means there is

the possibility of an error, which should be corrected before the system is actually launched.

Given the number of variables, this problem ought to be solved by a computer program

rather than a human. From what we saw above, we can deduct two ways of solving this

problem:

• Build the truth table, which amounts to testing all

2n

possibilities when there are

n

variables; this is the brute-force approach. This grows very fast! In critical systems,

Introduction to Discrete Mathematics 17

Chapter I Propositional Logics

100 variables would actually be a small number.To put things in perspective, there are

about

280

atoms in the universe.

• Another way would be to guess a valuation that does satisfy the formula. In this

case, that would mean only

n

guesses, one for each variable. After the guesses, we

just have to verify that the formula is indeed true with this valuation (it takes about

as much time as reading the formula). This method is non deterministic : it requires

the ability to guess. Although current actual computers cannot guess, theoretical

computers with this ability can be conceived; and quantum computing may one day

provide real computers that can make such guesses.

There are better ways to solve SAT without guessing, but they are only better in practice,

and in some (very particular) instances may still require a full exploration of the whole

2n

cases. So guessing is more efficient that any technique that we know.

I.C.3.ii The NP class

Problems like SAT, that can be solved by guessing a “small” number of times are said to

be in NP , which stands for Non deterministic Polynomial . Formally: the number of guesses

and the checking time must be smaller than a polynomial on the size of the input. In the

case of SAT, the size of the input is the length of the formula

l

, which is bigger than the

number of variables

n

, and we need

n

guesses and

l

calculation steps to check the guess. So

SAT is an NP problem.

Furthermore, every problem that requires guesses can actually be interpreted as a satis-

fiability problem for a given formula: we say that SAT is NP -complete .

So far, it is unknown whether SAT could be solved with a polynomial number of instruc-

tions but without guesses (a.k.a a deterministic polynomial-time algorithm). Answering this

question would mean giving an answer to the “Is

P = NP

?” question (and winning a million

dollars in the process). If there is a deterministic polynomial-time algorithm, that would

mean that every problem that can be reduced to SAT (such as checking for potential error

in a critical system) could be solved efficiently in all cases. It would also have less desirable

consequences: for example, many currently used cryptographic protocols rely on the fact

that it is not possible to guess a solution, and using a brute-force approach would take too

long. Having a polynomial-time procedure to find a solution would wreak havoc on security

systems.

It is, however, unlikely that this is the case, and most computer scientists believe that

P ̸ = NP

But until there is a proof of that, every result that uses that must start with a

caveat. It is actually not uncommon to find in the literature results that start with the

phrase “Assuming

P ̸ = NP

. . . ” and proofs that end by “if this is false then

P = NP

”.

18 Introduction to Discrete Mathematics

Chapter II

First-order logic (FO)

Chapter contents

II.A Predicates . 20

II.A.1 Interpretations and semantics 20

II.A.2 Notations and vocabulary . 21

II.A.3 Predicates and boolean operators 21

II.B Quantifiers . 21

II.B.1 Universal quantifier: Always . 21

II.B.2 Existential quantifier: Sometimes 22

II.B.3 Negated quantifiers: Never, Not always 22

II.B.4 Finding the truth value of quantified formula 23

II.B.5 Quantification on several variables 24

II.B.6 Variable scope, freeness and boundedness 25

II.B.7 Remarks . 25

II.B.7.i A new look on the satisfiability problem 25

II.B.7.ii Abbreviations for easier maths 26

II.B.7.iii Second- (or more) -order logic 27

II.C Equivalence in first-order logic . 27

II.C.1 Syntactical calculation . 27

II.C.1.i Calculation rules . 27

II.C.1.ii Quantifier alternation 29

II.C.2 Semantic proofs . 29

II.C.2.i Proving non-equivalence 29

II.C.2.ii Proving equivalence 30

Introduction to Discrete Mathematics 19

Chapter II First-order logic (FO)

II.A Predicates

Propositions, that were the focus of Chapter I are weak, in the sense that they can express

very little. Since they can only represent something that is definitely true or false, there is

no place for the nuance of “it depends”. For example “

x2 − 2 x + 5 = 9

” is not a proposition

because it depends on

x

: this statement falls out of the scope of propositional logics, but it

is still worth considering.

Since the truth value of the statement depends on the value of

x

, we can write it as a

function

R

that takes a value

x

(a real number) and assigns the truth value

⊤

or

⊥

: this is

called a predicate . For example

R (42)

is

⊥

,

R (1 +

√

5)

is

⊤

, and

R (π)

is

⊥

.

Remark that as soon as a value is given for

x

,

R (x)

become a proposition, and can be

used as such with the boolean algebra operators.

Definition: Predicate

A predicate is a function that associates to

n

values in a domain a truth value in

{⊤ , ⊥}

.

To use a programmer’s point of view, a predicate is a function that takes some arguments

and returns a boolean value.

II.A.1 Interpretations and semantics

Providing the domain, which is what kind of values can be used for the arguments, is essential

to actually evaluating a predicate. Technically, providing the domain is not sufficient: one

has to give a meaning to all the operators in the predicate. In this book, and unless otherwise

specified, we will assume that mathematical symbols are used with their usual meaning:

+

means addition,

×

means multiplication. And when dealing with numbers, we will use the

usual order predicates

b

They are indeed

predicates:

given two

values, these

operators may

be true or false.

<

(strictly less than),

≤

(less than or equal to),

≥

(greater than or

equal to),

>

(strictly greater than).

Also note that, in its most abstract definition, we do not need to provide what exactly is

the meaning of a predicate to be able to write formulas using it, for example

P (x) ∧ P (y) →

Q (x, y)

is a formula that is syntactically correct. But to give its semantics , i.e. its meaning,

one need to provide a domain for

x

and

y

, the definition of predicates

P

and

Q

, as well as

the definition of any symbols used in the definition o

P

and

Q

. Together, they are called an

interpretation of the formula.

It may be the case that a predicate is not defined by a mathematical formula but by

a description, although it is less formal. For example, let

D (n, k)

be the predicate over

integers that is true when

n

is a multiple of

k

; in this case

D (− 42 , 7)

is

⊤

and

D (12 , 5)

is

⊥

, for instance.

In most cases, the informal definition is only given as intuition to the reader, and the

formal definition is still present: let

P (a, b, c)

be the predicate over integers that is true when

(a, b, c)

is a Pythagorean triple, i.e. when

a2 + b2 = c2

. In this case

P (1 , 2 , 3)

is

⊥

because

12 + 22 = 1 + 4 = 5 ̸ = 9 = 32

; but

P (3 , 4 , 5)

is

⊤

because

32 + 42 = 9 + 16 = 25 = 52

.

20 Introduction to Discrete Mathematics

First-order logic (FO) Chapter II

II.A.2 Notations and vocabulary

It is customary to denote predicates using a capital letter.

P

,

Q

, and

R

, are mostly used (in

similarity with

p

,

q

,

r

for propositional variables), but other letters that relate more to the

meaning of the predicate can also be used (for example, above

D

is used because

D (n, k)

is

true when

k

divides

↬

Section VII.A.1

is devoted to

the concept of

divisibility.

n

).

In addition, when the domain is known, variables used in predicates usually follow the

cultural habits of the domain: so

x

,

y

,

z

would be used for real numbers,

n

,

k

,

p

,

m

for

integers, etc.

Predicates are categorized by the number of variables they use.

Arity of a predicate

• A predicate with no variable is called a proposition .

• A predicate with a single variable is called a unary predicate.

• A predicate with a two variables is called a binary predicate.

• A predicate with a three variables is called a ternary predicate.

• A predicate with

n

variables is called an

n

-ary predicate.

So in the predicates given above,

R

is unary,

D

is binary, and

P

is ternary.

II.A.3 Predicates and boolean operators

As remarked above, predicates can be used as atomic formulas (like propositions). Truth

value of the whole formula depends on the truth value of all predicates and the rules (truth

tables) for each operators (see Figure I.1). For example, over the domain of integers, with

D

and

P

defined as above:

•

P (a, b, c) ∨ D (c, a)

is true for

a = 1

,

b = 2

,

c = 3

(because

3

is a multiple of

1

), but

false for

a = 7

,

b = 8

,

c = 9

(it is not a Pythagorean triple and

9

is not a multiple

of

7

).

•

(P (a, b, c) ∧ D (a, k) ∧ D (b, k)) → D (c, k)

is actually true for all values

a, b, c, k

: this

formula states that if

a, b, c

is a Pythagorean triple where

a

and

b

are multiple of the

same number

k

, then so is

c

.

II.B Quantifiers

II.B.1 Universal quantifier: Always

In the example above, it does not really matter what the values of

a, b, c, k

are: the formula

will always be true. So we can actually evaluate the truth value of this formula even

before values for the variables are assigned. It is actually the goal of lots of mathematical

statements: mathematics are about general truths, that hold “for every

x

”, or, in the context

of predicates, regardless of the value of the variables in the predicate.

This is denoted using a universal quantifier , written by the symbol

∀

, which is read “ for

all ”. This symbol is followed by the variable it quantifies.

Introduction to Discrete Mathematics 21

Chapter II First-order logic (FO)

For example:

∀ x, P (x)

is a formula which is true if for all value

x

in the domain,

P (x)

is true. This formula is actually in itself a proposition: it does not depend on the value of

variable

x

, which is bound by the quantifier.

The universally quantified statement is a stronger

b

A statement

φ

is stronger than

ψ

if

φ

implies

ψ

, but not the

other way

around.

statement than having to say indi-

vidually that all versions of the predicate are true. For example, let

P (x)

be the predicate

defined on real numbers by

x +1 > x

. The proposition

∀ x, P (x)

is true. Saying so is stronger

than saying

0 + 1 > 0

is a true proposition, and so is

1

2

+ 1 >

1

2

, and

π + 1 > π

. . . (that has

no end!).

II.B.2 Existential quantifier: Sometimes

As in the satisfiability problem

↬

The

satisfiability

problem is

described in

Section I.C.3.

, it is interesting to know when a predicate is true for some

values. One does not have to actually know what are the values that make a predicate

true to use the fact that is sometimes true. In some sense, this is what is done when we

define numbers such as

√

2

: its exact value is not given, but this number that is positive

and such that its square is two exists (somewhere between

1 . 4

and

1 . 5

, to give a very broad

approximation); we just name it

√

2

to facilitate notations.

This is denoted using a existential quantifier , written by the symbol

∃

, which is read as

“ there exists ”. This symbol is followed by the variable it quantifies.

For example:

∃ x, P (x)

is a formula, which is true if there exists a value

x

in the domain

such that

P (x)

is true. This formula is actually in itself a proposition: it does not depend

on the variable, which is bound by the quantifier.

The existentially quantified statement is a weaker statement than actually giving a value

for which the predicate is true. For example, let

P (x)

be the predicate

2 x + 3 = 0

. The

proposition

∃ x, P (x)

is true over the reals. Saying so gives less information than saying that

2 ×

(
−3

2

)
+ 3 = 0

, which actually provides the value for

x

.

II.B.3 Negated quantifiers: Never, Not always

There are two ways to express that something is never true.

• We can say that it is always false:

∀ x, ¬ P (x)

.

• We can say that there is no way to make it true:

¬∃ x, P (x)

.

Similarly, there are two ways to express that something is not always true.

• We can say that it is not the case that it is always true:

¬∀ x, P (x)

.

• We can say that there at least one way to make it false:

∃ x, ¬ P (x)

.

That gives us a version of De Morgan’s laws for quantifiers.

De Morgan’s Laws for quantifiers

∀ x, ¬ P (x) ≡ ¬∃ x, P (x) ¬∀ x, P (x) ≡ ∃ x, ¬ P (x)

On finite domains, we can relate that to the De Mogan’s laws for conjunction and dis-

junction as follows. Assume the domain contains values

{ x1

, . . . , xn

}

. Formula

∀ x, P (x)

is,

in that case, the same as

P (x1) ∧ · · · ∧ P (xn)

: it must be true for all the values

x1

, . . . , xn

.

22 Introduction to Discrete Mathematics

First-order logic (FO) Chapter II

On the other hand,

∃ x, P (x)

is, in that case, the same as

P (x1) ∨ · · · ∨ P (xn)

: it must be

true for at least on of the the values

x1

, . . . , xn

. So we can write:

¬∀ x, P (x) ≡ ¬ (P (x1) ∧ · · · ∧ P (xn)) ≡ ¬ P (x1) ∨ · · · ∨ ¬ P (xn) ≡ ∃ x, ¬ P (x)

¬∃ x, P (x) ≡ ¬ (P (x1) ∨ · · · ∨ P (xn)) ≡ ¬ P (x1) ∧ · · · ∧ ¬ P (xn) ≡ ∀ x, ¬ P (x)

II.B.4 Finding the truth value of quantified formula

Given an interpretation (domain and meaning of the predicates), the truth value of a quan-

tified formula can be exhibited through a proof. In some sense, calculating the truth value of

a propositional formula is also a proof, albeit being a purely calculating one using the truth

tables of the operators. In the case of first order logic, the proof must take into account the

quantifiers. and the structure of the proof will change depending on what is being proved.

• To prove that

∃ x, P (x)

is true, it is sufficient to exhibit one value

a

in the domain and

show that

P (a)

is true. The choice of

a

is completely up to the proof-writer, and is

made keeping in mind what

P

is to ensure that it will actually be true. For example,

to prove that

∃ x, x2 = x

over the reals, one can chose

x = 1

and show that

12 = 1

, or

do the same with

0

. But it would not work with another value: so if you chose

x = 42

,

you won’t be able to prove this statement.

• To prove that

∀ x, P (x)

is true, it must be shown that

P (x)

holds for any value of

x

.

Such proofs usually start with the words “Let

x

be an element of the domain”. For

example to prove

∀ x, x2 + 1 > x

over reals, the proof would start by “Let

x

be a real

number”. When such a value is chosen, we have no say in the choice of

x

(we say it is

chosen by “the universe”), and cannot make careless assumptions about it.

↬

In Sec-

tion III.C.4.v

we discuss how

to prove this

kind of

statement using

careful

assumptions in

a proof by

cases.

• Proving that

∀ x, P (x)

is false, is like proving that

¬∀ x, P (x) ≡ ∃ x, ¬ P (x)

is true, so

it is sufficient to exhibit one value

a

in the domain and show that

P (a)

is false. This

value

a

is then called a counterexample .

• Proving that

∃ x, P (x)

is false, is like proving that

¬∃ x, P (x) ≡ ∀ x, ¬ P (x)

is true, so it

must be shown that

P (x)

does not hold for any value of

x

. As in the above case, the

proof would start with “Let

x

be an element of the domain”; in this case it must then

be proved that

P (x)

is false.

Exercise II.1

In the following exercises, you have to prove your claim (or at least give the proof

structure).

1. Let

P (x)

be the predicate “

x2 ≥ 0

”. What is the truth value of

∀ x, P (x)

. . .

a. when the domain is the integers?

b. when the domain is the reals?

c. when the domain is the complex numbers?

2. Let

Q (x)

be the predicate “

4 x − 3 = 0

”. What is the truth value of

∃ x, Q (x)

. . .

a. when the domain is the integers?

b. when the domain is the reals?

Introduction to Discrete Mathematics 23

Chapter II First-order logic (FO)

II.B.5 Quantification on several variables

There can be more than one quantified variable, hence more than one quantifier per formula.

For example, with a single binary predicate, we can have the following formulas:

∀ x, ∀ y , Q (x, y) ∃ x, ∀ y , Q (x, y) ∀ x, ∃ y , Q (x, y) ∃ x, ∃ y , Q (x, y)

∀ y , ∀ x, Q (x, y) ∃ y , ∀ x, Q (x, y) ∀ y , ∃ x, Q (x, y) ∃ y , ∃ x, Q (x, y)

When the quantifier is the same, the order does not actually matter:

•

∀ x, ∀ y , Q (x, y)

is the same as

∀ y , ∀ x, Q (x, y)

can be abbreviated

∀ x, y , Q (x, y)

•

∃ x, ∃ y , Q (x, y)

is the same as

∃ y , ∃ x, Q (x, y)

and can be abbreviated

∃ x, y , Q (x, y)

This is because in the proof of these statements, the choices are always made by the same

“person”: the proof-writer (to prove that

∃ x, y , Q (x, y)

is true or that

∀ x, y , Q (x, y)

is false),

or the universe (to prove that

∀ x, y , Q (x, y)

is true or that

∃ x, y , Q (x, y)

is false). the order

in which the choices are performed is therefore irrelevant.

This is not the case when the quantifiers are different. To illustrate this, let us consider

four cases using predicate

Q (x, y)

being

x + y = 0

over the integers.

∀ x, ∀ y , Q (x, y)

This formula is false. We can prove it using the counterexample

x = 42

and

y = 0

.

∃ x, ∀ y , Q (x, y)

This formula is false: let

x

be an integer; then choosing

y = x + 1

we have

x + y = x + x + 1 = 2 x + 1

which can’t be

0

for any integer.

∀ x, ∃ y , Q (x, y)

This formula is true: let

x

be an integer; then choosing

y = − x

we have

x + y = x − x = 0

.

∃ x, ∃ y , Q (x, y)

This formula is true: choosing

x = y = 0

yields

x + y = 0 + 0 = 0

.

Note that in this particular case,

x

and

y

have the same role in the predicate so

∃ y , ∀ x, Q (x, y)

and

∃ x, ∀ y , Q (x, y)

are similar; this is not the case in general!

In the example above, the choice of

y

after the choice of

x

allowed the proof to work: the

value of

y

depends on the value of

x

. In the proof of

∃ x, ∀ y , Q (x, y)

, since we claim that it

is false, we are playing the role of the universe in a proof trying to prove that it is true: for

any choice of

x

by the proof-writer, the universe could have chosen a value of

y

that makes

Q (x, y)

false.

Exercise II.2

Let

R (x, y)

be the predicate “

x × y = 1

”.

1. What is the truth value of

∃ x, ∃ y , R (x, y)

. . .

a. when the domain is the integers?

b. when the domain is the reals?

2. What is the truth value of

∃ x, ∀ y , R (x, y)

. . .

a. when the domain is the integers?

b. when the domain is the reals?

3. What is the truth value of

∀ x, ∃ y , R (x, y)

. . .

a. when the domain is the integers?

24 Introduction to Discrete Mathematics

First-order logic (FO) Chapter II

b. when the domain is the reals?

4. What is the truth value of

∀ x, ∀ y , R (x, y)

. . .

a. when the domain is the integers?

b. when the domain is the reals?

II.B.6 Variable scope, freeness and boundedness

Variable that are not bound by a quantifier are called free variables. A formula with free

variables is not a proposition, but it can be seen as a predicate on these variables.

A quantifier only binds in its scope : by default, the scope of a quantifier is everything

that appears after the quantifier; but it can be restricted using parentheses. For example:

•

∀ x, P (x) → Q (x, y)

has free variable

y

only; could be viewed as a unary predicate

R (y)

.

•

(∀ x, P (x)) ∧ Q (x, y)

has free variables

x

and

y

, because outside of the parentheses

x

is not bound anymore; could be viewed as a binary predicate

R

′(x, y)

.

The concept of scope is similar to the one used in programming: variables declared in a

function only exist until the end of this function’s code; a variable defined inside a loop only

exists within the loop.

A bound variable can be renamed throughout its scope (this is called

α

-renaming) with-

out affecting the truth value of the formula: the change is purely syntactic. For example,

we can rename the bound

x

into

z

in the above example:

(∀ x, P (x)) ∧ Q (x, y)

α
⇝ (∀ z , P (z)) ∧ Q (x, y) .

This renaming is useful in this case so that human readers distinguish better the scope of

the quantified variable, but it doesn’t change the definition of

R

′(x, y)

.

Exercise II.3

Determine the free variables in the following formulas:

1.

P (x, y) ∧ (∀ z , Q (z , y))

2.

∀ x, Q (x) → (∃ y , R (x, y))

3.

(∀ y , Q (y)) ∧ ∃ x, P (x, y)

II.B.7 Remarks

II.B.7.i A new look on the satisfiability problem

A boolean formula

φ

using free variables

p1

, . . . , pn

is actually a

n

-ary predicate interpreted

over the domain

{⊤ , ⊥}

, and using the semantics of Boolean algebra for operators. This

point of view shines a new light on the problem of classifying formulas (see Section I.C).

Namely:

• A formula is satisfiable if for some valuation its truth value is

⊤

, so

φ

is satisfiable if

∃ p1

, . . . , pn

, φ (p1

, . . . , pn)

is true.

Introduction to Discrete Mathematics 25

Chapter II First-order logic (FO)

• A formula is a tautology if for all valuation its truth value is

⊤

, so

φ

is a tautology if

∀ p1

, . . . , pn

, φ (p1

, . . . , pn)

is true.

• A formula is a contradiction if for all valuation its truth value is

⊥

, so

φ

is a contra-

diction if

∀ p1

, . . . , pn

, ¬ φ (p1

, . . . , pn)

is true; or

¬∃ p1

, . . . , pn

, φ (p1

, . . . , pn)

is true, i.e.

∃ p1

, . . . , pn

, φ (p1

, . . . , pn)

is false.

The proof structure that is used when classifying propositional formulas simply follows

from the structure of the quantifiers in the corresponding first-order formula. For example,

to prove that a formula

φ (p1

, . . . , pn)

is contingent, it must be proved that it is not a tautol-

ogy and not a contradiction: It is not a tautology if

∀ p1

, . . . , pn

, φ (p1

, . . . , pn)

is false. This

is proved by finding a counter-example, i.e. a value in the domain

{⊤ , ⊥}

for each variable

p1

, . . . , pn

(which is called a valuation) such that

φ (p1

, . . . , pn)

is false. It is not a contra-

diction if

∀ p1

, . . . , pn

, ¬ φ (p1

, . . . , pn)

is false (or, equivalently, if

∃ p1

, . . . , pn

, φ (p1

, . . . , pn)

is

true). This is also proved using a counter-example: a value in the domain

{⊤ , ⊥}

for each

variable

p1

, . . . , pn

such that

φ (p1

, . . . , pn)

is true.

II.B.7.ii Abbreviations for easier maths

Quantifiers are used, sometimes in hiding, throughout mathematical statements. To simplify

the writing and remain closer to what the statement would look in natural language, some

abbreviations are often used. It is however necessary to keep in mind what is the exact

meaning of these abbreviations, as it guides the proof structure.

II.B.7.ii.a Restricting the domain

It is useful to restrict the domain to which the quantifiers actually apply: instead of

considering the full domain on which a universal quantifier must hold, or from which a value

can be chosen for a existential quantifier, only a part of it is used.

↬

Parts of the

domain are

called sets , a

notion fully

developed in

Chapter IV.

This restriction is denoted using the symbol

∈

, which is read as “in” or “belonging to”:

∀ x ∈ A . . .

and

∃ x ∈ A

mean the domain of this variable is restricted to

A

. Formally

A

is

given by a predicate

A (x)

that is true when

x

is in this sub-part

A

. Then the meaning of

this restricted domain is as follows:

•

∀ x ∈ A, P (x)

is actually

∀ x, A (x) → P (x)

.

•

∃ x ∈ A, P (x)

is actually

∃ x, A (x) ∧ P (x)

.

Remark that it differs depending on the type of quantifier, but that De Morgan’s laws

still work with these “restricted domain quantifiers”. It can be proved using the rules of

propositional calculus and De Morgan’s laws for quantifiers:

¬∀ x ∈ A, P (x) ≡ ¬∀ x, A (x) → P (x) [Expansion of the abbreviation]

≡ ∃ x, ¬ (A (x) → P (x)) [De Morgan’s Law for

∀

]

≡ ∃ x, ¬ (¬ A (x) ∨ P (x)) [Rewriting of

→

]

≡ ∃ x, ¬¬ A (x) ∧ ¬ P (x) [De Morgan’s Law]

≡ ∃ x, A (x) ∧ ¬ P (x) [Double negation elimination]

¬∀ x ∈ A, P (x) ≡ ∃ x ∈ A, ¬ P (x) [Contraction of the abbreviation]

26 Introduction to Discrete Mathematics

First-order logic (FO) Chapter II

II.B.7.ii.b Uniqueness

To denote that a single element of the domain makes the predicate true, the symbol

∃ !

is used. It is read as “there exists a unique”. The formula

∃ ! x, P (x)

is a shorthand for

∃ x, P (x) ∧ (∀ y , P (y) → x = y)

: there is an element

x

that satisfies the predicate, and any

element of the domain that satisfies the predicate is

x

.

II.B.7.iii Second- (or more) -order logic

Propositional logics is logics without any quantifiers. In first-order logic, there is quantifi-

cation on variables of the domain, that are used in predicates.

We can go one step further,

i

This is for your

personal culture

more than to

be applied in

this course.

and in second-order logic, we can quantify on variables

of the predicates , to write formulas such as this one:

∀ P , ∃ Q, ∀ x, P (x) → ∃ y , Q (x, y)

. So

technically, the first-order formula

∀ x, P (x) → ∃ y , Q (x, y)

is a second-order predicate with

free variables

P

, and

Q

, which are instantiated when an interpretation is provided.

But why stop here? In third-order logic, there can also be quantification over second

order predicates. This could go on; if it goes as high as we want, we obtain higher-order

logic (HOL).

In practice, above second-order, the properties of

n

-order and HOL are somewhat similar,

and third-order and above are not studied individually. Second order is however worth

studying on its own, in particular the fragment that only allows unary predicates, which is

called Monadic Second Order . Unfortunately, discussing MSO in more depth is way beyond

the scope of this course.

II.C Equivalence in first-order logic

II.C.1 Syntactical calculation

In the same manner that syntactical calculation is possible through the algebraic rules of

propositional calculus, it is possible to perform syntactical calculations in first-order logic.

The fact that it is syntactical means that:

• There is no domain set.

• We don’t get to see the meaning of the predicates.

• Hence there is no functions (operators) in there, except the logical operators.

Equivalences that are thus proved are valid regardless of the interpretation.

II.C.1.i Calculation rules

Since first-order is built on propositional logic, the rules of calculations for FO also uses the

rules of propositional calculus. In order to deal with the quantifiers, calculus for FO also

uses:

• De Morgan’s Laws for quantifiers (

¬∀ ≡ ∃¬

and

¬∃ ≡ ∀¬

)

• Rules regarding the scope of the bounded variables.

• Rules regarding how quantifiers interact with other operators.

Introduction to Discrete Mathematics 27

Chapter II First-order logic (FO)

The first set of rules regards the change of the scope of a quantifier. As these rules work

both ways, and the scope can be extended or reduced. A scope reduction, which can be

reduced to nothing, eliminating the quantifier is only possible if the quantifier was actually

useless: this is why these rules are known as the null quantification rules. For a scope

extension to be allowed (i.e. to be without effect on the truth value), this extension must

not capture a variable: that means that the variable whose scope is extended must not have

appeared free beforehand in its new scope. Note that if the variable appeared but is bound,

it can be

α

-renamed, and therefore not appear anymore. Formally:

Null quantification rules

Assume

φ

is a formula where

x

is not a free variable. Then:

∀ x, φ ≡ φ ∀ x, (P (x) ∨ φ) ≡ (∀ x, P (x)) ∨ φ

∃ x, φ ≡ φ ∃ x, (P (x) ∧ φ) ≡ (∃ x, P (x)) ∧ φ

The second set of rules regards the interaction of quantifiers with the conjunction and

disjunction operators. As previously noted, on a finite domain, a universal quantifier can

be seen as a conjunction, while an existential quantifier can be seen as a disjunction. It is

therefore not a surprise that universal quantifier behaves well with conjunction and universal

quantifier with disjunction, even for infinite domains.

Quantifier distribution

(∀ x, P (x)) ∧ (∀ x, Q (x)) ≡ ∀ x, (P (x) ∧ Q (x))

(∃ x, P (x)) ∨ (∃ x, Q (x)) ≡ ∃ x, (P (x) ∨ Q (x))

In addition, syntactical rules can be used as well (such as

∃ x ∃ y

rewritten as

∃ x, y

).

All together, these rules are used to prove equivalences as in algebra. For readability, we

indicate which rule was used in each step.

For example, we can show that

∀ x, (P (x) → ¬∃ y , Q (y)) ≡ ∀ x, y , ¬ P (x) ∨ ¬ Q (y)

.

∀ x, (P (x) → ¬∃ y , Q (y)) ≡ ∀ x, (¬ P (x) ∨ ¬∃ y , Q (y)) [Rewriting of

→

]

≡ ∀ x, (¬ P (x) ∨ ∀ y , ¬ Q (y)) [De Morgan’s Law for

∃

]

≡ ∀ x, ((∀ y , ¬ Q (y)) ∨ ¬ P (x)) [Commutativity of

∨

]

≡ ∀ x, (∀ y , (¬ Q (y) ∨ ¬ P (x))) [Null quantification]

≡ ∀ x, (∀ y , (¬ P (x) ∨ ¬ Q (y))) [Commutativity of

∨

]

∀ x, (P (x) → ¬∃ y , Q (y)) ≡ ∀ x, y , (¬ P (x) ∨ ¬ Q (y))) [Syntactical shortcut]

Exercise II.4

Assume

φ

is a formula where

x

is not a free variable. Prove the following equivalences

using the rulesa of first-order calculation:

1.

(∀ x, P (x)) ∧ φ ≡ ∀ x, (P (x) ∧ φ)

2.

(∃ x, P (x)) ∨ φ ≡ ∃ x, (P (x) ∨ φ)

3.

∀ x, (φ → P (x)) ≡ φ → (∀ x, P (x))

4.

∃ x, (φ → P (x)) ≡ φ → (∃ x, P (x))

28 Introduction to Discrete Mathematics

First-order logic (FO) Chapter II

5.

∀ x, (P (x) → φ) ≡ (∃ x, P (x)) → φ

6.

∃ x, (P (x) → φ) ≡ (∀ x, P (x)) → φ

7.

¬∀ x, (P (x) → Q (x)) ≡ ∃ x, P (x) ∧ ¬ Q (x)

Remark: Once you have proved that an equivalence holds, it can be used in the

following ones.

aIndicate which rule was used.

II.C.1.ii Quantifier alternation

i

This is for your

personal culture

more than to

be applied in

this course.

Using the equivalences of Exercise II.4, we can see that it is possible to use these rules (and

composite rules) to put any first-order formula in a given form. It is done as follows:

• Put all quantifiers to the front. Using

α

-renaming, we can make it so all the quantifiers

have distinct variables.

• Pushed all negations to the inside (at least after all quantifiers), using De Morgan’s

law as necessary.

• Gather (syntactically) similar quantifiers that are together.

The end result is a formula of the following form, called prenex normal form :

∃ x1 , 1

, . . . , x1 ,n1

, ∀ y1 , 1

, . . . , y1 ,p1

, ∃ x2 , 1

, . . . , x2 ,n2

,

∀ y2 , 1

, . . . , y2 ,p2

· · · ∃ xk , 1

, . . . , x2 ,nk

, ∀ yk , 1

, . . . , yk ,pk

,

P (x1 , 1

. . . , x1 ,n1

, y1 , 1

, . . . , xk , 1

, . . . , x2 ,nk

, yk , 1

, . . . , yk ,pk)

Not that it is possible that the first quantifier is actually a

∀

, or the last a

∃

.

The number

k

in the prenex normal form is called the number of quantifier alternation .

It is an indicator of how complex the formula is. Intuitively, to prove a formula with

k

quantifier alternations, the prover will make a choice, then take unknown variables from the

domain (chosen by the universe, and which can depend on the prover’s choice), then the

prover again choses, taking into account the value chosen by the universe, etc

k

times. The

choice of the first values has a great influence on the later choices, and it is possible, when

writing such a proof, that it turns out later that the choice was not good, and you need to

backtrack.

II.C.2 Semantic proofs

II.C.2.i Proving non-equivalence

Although proving equivalence is often more useful, proving non-equivalence has one partic-

ular application: showing that would-be rules of calculations are actually not valid. For

example, is

(∀ x, P (x)) ∨ (∀ x, Q (x))

equivalent to

∀ x, (P (x) ∨ Q (x))

?

To prove non-equivalence in propositional logic, what is needed is a valuation for which

one formula is true while the other is false. This amounts to finding a line in the truth

table where the formulas differ. In first-order, there is no truth table, but the principle is

the same, although what must be chosen is not the truth value of propositional variables,

Introduction to Discrete Mathematics 29

Chapter II First-order logic (FO)

but the interpretation, i.e. a domain and a meaning for all predicates. So one must find an

interpretation that makes one of the formula

⊤

while the other is

⊥

.

For example, to prove

(∀ x, P (x)) ∨ (∀ x, Q (x)) ̸≡ ∀ x, (P (x) ∨ Q (x))

, we can choose the

domain as the integers,

P (x)

meaning “

x

is even”, and

Q (x)

meaning “

x

is odd”.

On the left handside, we have that

(∀ x, P (x)) ∨ (∀ x, Q (x))

is

⊥

because:

•

∀ x, P (x)

is false since

P (1)

is false.

•

∀ x, Q (x)

is false since

P (0)

is false.

On the right handside, we have

∀ x, (P (x) ∨ Q (x))

is

⊤

because for any integer, it is either

even or odd. In this particular case, the left handside always implies the right handside.

Why it doesn’t work in the other direction is because on the left, there are two different

variables (we could

α

-rename one:

(∀ x, P (x)) ∨ (∀ y , Q (y))

), which can take two different

values, while on the right handside there is a single variable. If

(∀ x, P (x)) ∨ (∀ y , Q (y))

is

true, it is true in particular for the case where

x

and

y

are instantiated with the same value.

Exercise II.5

Prove that

(∃ x, P (x)) ∧ (∃ x, Q (x)) ̸≡ ∃ x, (P (x) ∧ Q (x))

II.C.2.ii Proving equivalence

i

This is for your

personal culture

more than to

be applied in

this course.

Proving equivalence of two first-order formulas using the semantics is also possible. It is

actually the only way to prove the basic Null quantification and Quantifier distribution

rules given above.

Since the equivalence must hold for any interpretation, the proof must consider “an

interpretation” without actually knowing what it is. Then for this unspecified interpretation,

one must prove that if one formula is true in an interpretation, so is the other; if it is false,

so is the other.

For example let’s prove semantically that

∀ x, (P (x) → ¬∃ y , Q (y)) ≡ ∀ x, y , ¬ P (x) ∨

¬ Q (y)

:

Let

D

be a domain and

P , Q

predicates.

• Assume

∀ x, (P (x) → ¬∃ y , Q (y))

is true. We can

α

-rename it into

∀ t, (P (t) → ¬∃ z , Q (z))

Let

x, y ∈ D

. We have by hypothesis

P (x) → ¬∃ z , Q (z)

.

– Assume we have

P (x)

; then

¬∃ z , Q (z)

, in particular

Q (y)

is false so we have

¬ Q (y)

, hence

¬ P (x) ∨ ¬ Q (y)

.

– Assume we don’t have

P (x)

, then we have

¬ P (x) ∨ ¬ Q (y)

.

• Assume

∀ x, (P (x) → ¬∃ y , Q (y))

is false. Then for some

x ∈ D

,

P (x) → ¬∃ y , Q (y))

is

false. That implication can only be false if

P (x)

is true and

¬∃ y , Q (y)

is false, meaning

∃ y , Q (y)

is true. Let’s take such a

y

. Then for these particular

x

and

y

, we have

P (x)

,

so

¬ P (x)

is false; and we have

Q (y)

, so

¬ Q (x)

is false. As a result,

¬ P (x) ∨ ¬ Q (y)

is

false, and we have a counterexample to

∀ x, y , ¬ P (x) ∨ ¬ Q (y)

, so this formula is false.

So regardless of the domain and predicate interpretation, these formulas are equivalent.

30 Introduction to Discrete Mathematics

Chapter III

Proof systems and proof patterns

Chapter contents

III.A What is a proof? . 32

III.A.1 Formal vs human proofs . 32

III.A.2 Vocabulary . 32

III.B Proof systems . 33

III.B.1 Rule-based systems . 33

III.B.2 Hilbert-style Natural Deduction system for propositional logic . 33

III.B.2.i The rules . 33

III.B.2.ii Writing proofs . 35

III.B.2.iii Examples . 35

III.B.2.iv Tricks for creating proofs in ND 37

III.B.3 Natural deduction for first-order logic 38

III.B.4 Other proof systems . 39

III.B.4.i Some equivalent systems 39

III.B.4.ii Intuitionistic logic . 39

III.B.4.iii Sequent calculus . 40

III.B.4.iv All the other proof systems 40

III.C From formal proofs to mathematical proofs 41

III.C.1 Human proofs . 41

III.C.2 Decomposition of the statement 42

III.C.3 The art of writing a proof . 42

III.C.4 Proof patterns . 43

III.C.4.i Proving a quantified statement 43

III.C.4.ii Direct proof by implication 44

III.C.4.iii Proof by contrapositive 44

III.C.4.iv Proof by contradiction 44

III.C.4.v Proof by cases . 45

III.C.4.vi Proving iff as two implications 46

III.C.4.vii Chains of iffs . 47

III.C.4.viii Chains of iffs using implications 47

III.C.5 Remarks . 47

III.C.5.i All the other rules . 47

III.C.5.ii On the boldness of arrows 48

III.C.5.iii Practicing proof techniques 48

Introduction to Discrete Mathematics 31

Chapter III Proof systems and proof patterns

III.A What is a proof?

A proof is a formal way to produce true statements from other true statements. These

original true statements may have been proved in a similar manner, or just assumed true:

they are hypotheses . The construction of mathematics in layers of proofs from the initial

hypotheses, which are named axioms , explains why math is in itself cumulative: the math

curriculum of Kindergarten is still used when studying calculus.

3

4

x

Figure III.1: A right

rectangle

For example, when applying the Pythagorean identity, to prove

that

x = 5

in Figure III.1 on the right, the truth of the Pythagorean

theorem is used. The assumption that the Pythagorean theorem

holds is valid as long as we accept the initial axioms of geometry

(known as Euclid’s axioms) and mathematics. These axioms are often

implicit.

In another example, when proving that the diagonals of a rect-

angle have equal length, the fact that it is a rectangle is used as an

hypothesis. In this case the hypothesis is very local: not all shapes

are rectangles, we just assume that the shape under consideration is

one. Of course, the usual axioms are also needed in order to produce

this proof.

III.A.1 Formal vs human proofs

In this chapter, we will first consider proofs in the logical sense, for both propositional and

first-order logics. These proofs are really a calculation, and are well suited for a formal

setting. Indeed, some of the proof systems mentioned here are used in automatic theorem

provers, or rather proof assistant, which are computer-aided mathematical proofs.

When discussing between humans, these formal systems that do not allow any detail to

be spared are harder to understand than natural language. So in the second part of this

chapter, we will discuss the writing of proofs in English. Although technically less formal,

writing proofs in natural language actually mimics the calculation rules of the proof systems.

As a result, the techniques used to create a formal or a human-readable proof are somewhat

similar, in the sense that both proofs rely on an observation of the hypotheses and the

structure of the statement being proved.

III.A.2 Vocabulary

As we have seen, assumptions can come in two flavors, which are technically the same, but

philosophically quite different. Axioms are assumptions that are expected to be always true

regardless of the context, for example: “there is a single line that goes through two distinct

points”. Hypotheses , on the other hand, are not necessarily true in general, for example:

“Let ABC be a right rectangle”. So, as axioms are not expected to change, hypotheses can

be introduced at will.

The new true statement that results of a proof without hypotheses is called a Theo-

rem . Note that hypotheses can actually be contained within the theorem. For example the

Pythagorean Theorem “If

AB C

is a right triangle in

C

, then

AC2 + B C2 = AB2

” implic-

itly contains the hypothesis that the triangle is right as the premise of an implication but

the full sentence does not require any hypothesis (beyond the axioms of mathematics and

geometry).

32 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

The term theorem literally means “a thing from God” in Latin. In math this term is

used for results deemed important (this being a purely subjective notion). For less important

results, other terms are often used:

Lemma An intermediate result not important in itself, but used to proved a theorem.

Corollary An easy consequence of a theorem. What is easy being subjective also; a good

example is when the corollary is a particular case of the theorem.

Proposition A theorem of lesser importance; it is implied that it is proven to be a true

proposition.

Scholia Literally a “comment”: an intermediate result proved during the proof of a theorem

that deserves a statement in its own right (as an afterthought).

III.B Proof systems

III.B.1 Rule-based systems

Formal proof systems are based on deduction rules : from one or more statement, called the

premises , the rule allows to produce a new statement, called the conclusion . Rules that have

no premises are called axioms : they are deemed always true.

The rules are written using the

⊢

symbol, which is read as “proves”. So

φ1

, . . . , φn

⊢ ψ

means that

ψ

can be proved when

φ1

, . . . , φn

are assumed. Here

φ1

, . . . , φn

forms the

premise, while

ψ

the conclusion.

This notation is used to denote a statement proved under some hypotheses and sometimes

the rules themselves, as is the case in the Natural Deduction (ND) system.

III.B.2 Hilbert-style Natural Deduction system for proposi-

tional logic

This system was introduced by mathematician and logician David Hilbert in the beginning

of the 20th century to formalize the human-made proofs.

III.B.2.i The rules

In this system there 11 deduction rules and no axioms:

The rules of Natural Deduction system

Negation introduction,

¬

-I

p → q , p → ¬ q ⊢ ¬ p

Negation elimination,

¬

-E

¬ p ⊢ p → q

Double negation elimination,

¬¬

-E

¬¬ p ⊢ p

Conjunction introduction,

∧

-I

p, q ⊢ p ∧ q

Conjunction elimination (left and right),

∧

-E

l

and

∧

-E

r

p ∧ q ⊢ p

and

p ∧ q ⊢ q

Disjunction introduction (left and right),

∨

-I

l

and

∨

-I

r

p ⊢ p ∨ q

and

q ⊢ p ∨ q

Introduction to Discrete Mathematics 33

Chapter III Proof systems and proof patterns

Disjunction elimination,

∨

-E

p ∨ q , p → r, q → r ⊢ r

Iff introduction,

↔

-I

p → q , q → p ⊢ p ↔ q

Iff elimination,

↔

-E

p ↔ q ⊢ p → q

and

p ↔ q ⊢ q → p

Implication introduction (conditional proof),

→

-I

p ⊢ q

becomes

⊢ p → q

.

Implication elimination (Modus ponens),

→

-E

p, p → q ⊢ q

All rules have abbreviated named. They are formed with the symbol for the operator

and I for introduction or E for elimination. Rules that have two versions (conjunction

elimination and disjunction introduction) have two abbreviations to indicate whether the

left or right version is being considered;

Let’s consider all the rules and the intuition behind them. The negation introduction

rule states that if a proposition

p

implies both a proposition

q

and its negation, then we

have proved the negation of

p

. The idea is that

p

would imply a contradiction.

The negation elimination rule simply states that if the negation of

p

has been proved,

then

p

implies anything.

Double negation elimination states that the proof of the negation of the negation of a

proposition proves the proposition itself.

Conjunction introduction states that two independent proofs of

p

and

q

provide a proof

of their conjunction

p ∧ q

. On the other hand, a conjunction elimination takes a proof of

p ∧ q

and uses it to make in particular a proof of

p

(or a proof of

q

).

Disjunction introduction states that a proof of

p

proves the weaker statement

p ∨ q

.

Disjunction elimination is more involved. There is no way to just eliminate a disjunction

on its own: when

p ∨ q

has been proved, one cannot know which of

p

or

q

to chose. This rule

bypasses this difficulty by using a third proposition

r

implied by both

p

and

q

, independently.

So it does not matter which of

p

or

q

would be chosen, because

r

would be proved anyway.

The Iff rules are just a translation of the fact that Iff is implication in both directions.

The conditional proof rule allows to convert a premise of the proof into a premise of the

statement. It allows to make theorems that implicitly contain hypotheses.

The modus ponens allows to apply an implication: when the implication has been proved

and the premise of said implication has been proved as well, that proves the conclusion. This

is what is at hand when applying a theorem (usually an implication): it must be proved

that all the premises hold in order to be able to apply it and obtain the conclusion of the

theorem.

Remarks

Note that these rules are about what is provable , not what is true . This is why the

explanations above refrain from using phrases like “if

p

is true”. This subtle distinction is

developed further in Section III.B.4.iv.

Also these rules provide deduction , not equivalence. Some of the rules produce a con-

clusion that is a weaker statement than the premise, that is to say a statement that is

implied by the premise. Examples of these are the conjunction elimination and disjunction

introduction rules.

34 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

III.B.2.ii Writing proofs

A proof in the Natural Deduction (ND) system consists of lines of propositions that have

been proved or assumed. To create a new line, hence a new proposition, one has to use

one of the 11 rules above, or add an hypothesis. The rule used must be indicated next to

the proposition, with reference to the rule’s premises. The

⊢

(“proves”) symbol is not used

within the proof itself.

There are two ways to introduce an hypothesis. The first is as an hypothesis of what is

being proved. Namely, if in the end the goal is to prove

φ1

, . . . , φn

⊢ ψ

, then each of the

φi

can be introduced using the (meta-)rule Premise .

The second way to introduce an hypothesis is through a local assumption, with the

rule Assumption . Anything can be assumed in this manner, but every assumption must be

discharged by the end of the proof. Discharging is done through the conditional proof rule:

the assumed hypothesis become the premise of an implication. It must however be noted that

when an hypothesis is discharged, everything that was proved under this assumption cannot

be used anymore. In order to highlight what was under which assumption, it is common

to use indentation or adequate numbering (the latter is the approach taken here). Crossing

out the lines no longer usable is also possible, but it hinders readability (see Figure III.2).

Another “rule” that can be used when writing proofs is the Reiteration rule, that simply

repeats a proposition proved earlier. Using this rule is never necessary, it only enhances the

readability of the proof in some cases.

There are no additional rules. In particular, it is not possible to use rules of proposi-

tional calculus in this setting. For example, the rewriting of the implication arrow is not

possible; technically, it can be allowed but only after being proved once (which is done in

Exercise III.1). Then normally it should be proved again each time it is being used.

III.B.2.iii Examples

III.B.2.iii.a

⊢ p → p

This first example is very simple. What we can see is first that is does require a proof.

Now to prove the statement

p → p

, which is an implication, the natural way is to assume

the premise and try to prove the conclusion under the assumption of the premise (which is

trivial here). Finally, the conditional proof discharges our assumption of the premise and

provides a proof of the implication.

(1) p [Assumption, discharged in (2)]

(1.1) p [Reiteration of (1)]

(2) p → p [Conditional proof on (1) and (1.1)]

III.B.2.iii.b

(¬ p → ¬ q) ⊢ (q → p)

In this case, we can start by writing all the hypotheses as premises. Then, because we

need to prove an implication, we assume the premise

q

and try to prove

p

. In this case, we

have little choice but to try to use our premise.

As an implication, it could be used in a modus ponens, disjunction elimination, iff

introduction, or negation introduction. Disjunction elimination would be hard to use, since

we don’t have a disjunction to start with. Similarly, iff introduction would require

¬ q → ¬ p

,

and also would provide an iff which is not really needed.

Introduction to Discrete Mathematics 35

Chapter III Proof systems and proof patterns

(1) ¬ p → ¬ q [Premise]

(2) q [Assumption]

discharged

(2.1) ¬ p [Assumption]

discharged

(2.1.1)

q [Reiteration of (2)]

(2.2)

¬ p → q [Conditional proof on (2.1) and (2.1.1)]

(2.3)

¬¬ p [Negation introduction on (1) and (2.2)]

(2.4)

p [Double negation elimination on (2.3)]

(3) q → p [Conditional proof on (2) and (2.4)]

Figure III.2: Proof of

(¬ p → ¬ q) ⊢ (q → p)

using crossing-out.

The modus ponens requires a bit more attention: if we assume

¬ p

, we could have

¬ q

.

That seems to be a contradiction with the fact that we have assumed

q

. But there is no rule

that says that having both

q

and

¬ q

is an issue per se.

On the other hand, we can show that

¬ p

implies both

q

and

¬ q

, then use the negation

introduction rule, which was our last choice. Then having

¬¬ p

will yield

p

, which was our

goal.

In ND, it translates as follows:

(1) ¬ p → ¬ q [Premise]

(2) q [Assumption, discharged in (3)]

(2.1) ¬ p [Assumption, discharged in (2.2)]

(2.1.1) q [Reiteration of (2)]

(2.2) ¬ p → q [Conditional proof on (2.1) and (2.1.1)]

(2.3) ¬¬ p [Negation introduction on (1) and (2.2)]

(2.4) p [Double negation elimination on (2.3)]

(3) q → p [Conditional proof on (2) and (2.4)]

Note that reading the ND proof on its own might seem very artificial. But this proof was

constructed by starting from both ends at the same time: what we have (the hypothesis)

and what we want. Then we considered the rules available to use, selecting the ones that

go us closer to the goal.

III.B.2.iii.c

(p ∧ ¬ q) → q ⊢ p → q

In this case, once again the start and end of the proof is given by the structure of the

hypothesis and conclusion we want to prove: we write down the hypothesis as a premise,

and we assume

p

, to be discharged in the end once we have proved

q

.

Intuitively, we can see why

q

should be true under hypotheses

(p ∧ ¬ q) → q

and

p

: for

both these to hold, either

¬ q

is true then it implies

q

, or it is not then that means we have

q

. This intuition based on the possible truth values for

q

does not however yield a proof in

ND: it would have to assume the excluded middle

q ∨ ¬ q

, which is not a base rule. Part

of this reasoning nonetheless can give us an idea: if

¬ q

is true, then it implies

q

. That is

sufficient to be able to prove

¬ q → q

(under the aforementioned hypotheses). While not a

contradiction, the only way for this to hold is for

q

to be true; again, this does not constitute

a proof in ND. One must first prove

¬ q → ¬ q

, then to introduce the negation to obtain

¬¬ q

.

36 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

The resulting proof in the Natural Deduction system is:

(1) (p ∧ ¬ q) → q [Premise]

(2) p [Assumption, discharged in (3)]

(2.1) ¬ q [Assumption, discharged in (2.2)]

(2.1.1) p ∧ ¬ q [Conjunction introduction on (2) and (2.1)]

(2.1.2) q [Modus Ponens on (1) and (2.1.1)]

(2.2) ¬ q → q [Conditional proof on (2.1) and (2.1.2)]

(2.3) ¬ q [Assumption]

(2.3.1) ¬ q [Reiteration of (2.3)]

(2.4) ¬ q → ¬ q [Conditional proof on (2.3) and (2.3.1)]

(2.5) ¬¬ q [Negation introduction on (2.2) and (2.4)]

(2.6) q [Double negation elimination on (2.5)]

(3) p → q [Conditional proof on (2) and (2.6)]

III.B.2.iii.d

⊢ p ∨ ¬ p

(excluded middle)

First, let’s once again remark that we cannot just use a truth table to prove the excluded

middle. We have to rely entirely on the available rules.

This proof is more advanced, and harder to develop from scratch without having the

central idea: we will do a proof by contradiction. Namely, we will prove that assuming the

negation of our formula allows to prove the formula itself:

¬ φ → φ

, where

φ = p ∨ ¬ p

. Then

because

¬ φ → ¬ φ

trivially, by introduction of negation we obtain

¬¬ φ

, then

φ

.

Proving

p ∨ ¬ p

from

¬ (p ∨ ¬ p)

is a bit tricky in itself. Since it is a disjunction, one must

choose in advance which part will be proved. In this case, we will prove

¬ p

, by proving that

p

implies both

φ

and its negation (by assumption). Note that in this case we could have

chosen to prove

p

by proving that

¬ p

implies both

φ

and its negation.

The resulting ND proof is as follows:

(1) ¬ (p ∨ ¬ p) [Assumption, discharged in (2)]

(1.1) p [Assumption, discharged in (1.2)]

(1.1.1) p ∨ ¬ p [Disjunction introduction on (1.1)]

(1.2) p → (p ∨ ¬ p) [Conditional proof on (1.1) and (1.1.1)]

(1.3) p [Assumption, discharged in (1.4)]

(1.4) p → ¬ (p ∨ ¬ p) [Conditional proof on (1.3) and (1)]

(1.5) ¬ p [Negation introduction on (1.2) and (1.4)]

(1.6) p ∨ ¬ p [Disjunction introduction on (1.5)]

(2) ¬ (p ∨ ¬ p) → p ∨ ¬ p [Conditional proof on (1) and (1.6)]

(3) ¬ (p ∨ ¬ p) [Assumption, discharged in (4)]

(4) ¬ (p ∨ ¬ p) → ¬ (p ∨ ¬ p) [Conditional proof on (3) and (3)]

(5) ¬¬ (p ∨ ¬ p) [Negation introduction on (2) and (4)]

(6) p ∨ ¬ p [Double negation elimination on (5)]

III.B.2.iv Tricks for creating proofs in ND

It is often difficult to start writing a proof in the Natural Deduction system directly. As

in the above example, it is easier to start by making a plan of the proof, starting from

both what we have and what we want, and paying good attention to the structure of these

formulas in order to mentally list all the rules that could be applied at this point.

Introduction to Discrete Mathematics 37

Chapter III Proof systems and proof patterns

Exercise III.1

Prove in the Natural Deduction system:

1.

p ∨ s

from hypotheses

(p ∧ q) ∨ r

and

r → s

2.

(¬ p ∧ q) → t

from hypotheses

r → p

,

¬ r → s

, and

s → t

.

3.

¬ p ∨ q

from hypothesis

p → q

(You don’t have to do both versions.)

a. Easy version: add

p ∨ ¬ p

as an hypothesis.

b. Hard version: get inspiration from the proof of

p ∨ ¬ p

, but don’t use it

directly.

�

Do not use the

rules of

propositional

calculus!

III.B.3 Natural deduction for first-order logic

Extension from propositional logic to first-order logic was done through the introduction of

variables and quantifiers. The extension to proof systems is similar: we need to introduce

some rules to deal with the quantifiers. As is the case for other operators, there is an

introduction rule, named generalization , and an elimination rule, named instantiation , for

each quantifier.

In order to prevent scoping issues, some restrictions apply. A quantifier can be introduced

only if it uses a new variable

b

Such a new

variable is

called a fresh

variable

. And this new variable does not replace one that appeared

in an hypothesis: that would amount to performing the replacement only partially, and

that could mean assuming a variable could take two different values (see the examples in

Section II.C.2.i).

In addition, we will use the following notation for variable substitution :

P (a/x)

means

P

where every occurrence of

x

is replaced by

a

.

The rules of Natural Deduction system, extension to first-order

Existential generalization,

∃

-I

P (a) ⊢ ∃ x, P (x/a)

if

a

does not appear free in any

premise or assumption and

x

does not appear in

P

.

Existential instantiation,

∃

-E

∃ x, P (x) ⊢ P (y /x)

where

y

is a new symbol (think:

constant).

Universal generalization,

∀

-I

P (y) ⊢ ∀ x, P (x/y)

if

y

does not appear free in any

premise or assumption and

x

does not appear in

P

.

Universal instantiation,

∀

-E

∀ x, P (x) ⊢ P (a/x)

.

Example:

(∀ x, P (x)) → (∃ y , P (y))

(1) ∀ x, P (x) [Assumption]

(1.1) P (z) [Universal instanciation on (1)]

(1.2) ∃ y , P (y) [Existential generalization on (1.1)]

(2) (∀ x, P (x)) → (∃ y , P (y)) [Conditional proof on (1) and (1.2)]

38 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

Exercise III.2

Prove in the Natural Deduction System:

(∃ x, ¬ P (x) ∧ Q (x))

from hypotheses

∃ x, ¬ P (x)

and

∀ y , Q (y)

III.B.4 Other proof systems

i

This is for your

personal culture

more than to

be applied in

this course.

The Natural Deduction system presented above is just a deduction system. There are lots

of possible variations, which may or may not yield an equivalent system, two systems being

equivalent if they can prove exactly the same statements.

III.B.4.i Some equivalent systems

One simple variation that would provide the same proof system would be to keep only the

the conjunction introduction and the implication introduction and elimination rules (modus

ponens and conditional proof), and replace all other rules by an axiom of the corresponding

implication. For example, conjunction elimination would be replaced by the axioms

⊢ p ∧

q → p

and

⊢ p ∧ q → q

. And Negation introduction would be replaced by the axiom

((p → q) ∧ (p → ¬ q)) → ¬ p

. So instead of applying a rule, the modus ponens would be

applied on the premises joined by a conjunction if more than one premise is required.

This change is purely syntactical, and it is relatively easy to see why the system thus

produced is equivalent. For other systems, it is not as easy to see (and no proof will be

provided here). For example, the system defined by Jan Łukasiewicz only uses the modus

ponens (

p → q , p ⊢ q

) and replaces the other axioms for propositional logic by the following

few axioms:

p → (q → p) (¬ p → ¬ q) → (q → p) (p → (q → r)) → ((p → q) → (p → r))

III.B.4.ii Intuitionistic logic

It is possible to use the same rule system, but removing the Double negation elimination

rule. The logic thus created is called intuitionistic logic , in opposition to the classical logic

used up to now.

In this system, it is impossible to prove the excluded middle or the contraposition rule,

or to use proofs by contradiction: proving

¬¬ φ

does not prove

φ

.

b

Proving “the

impossibility of

a proof” is not

straightforward,

as one need to

consider all

possible proofs !

That means that in order

to prove

p ∨ ¬ p

, you have to either prove that

p

holds or that

¬ p

holds. This illustrates the

difference between the truth and the provability .

As a consequence, to prove an existential statement

∃ x, P (x)

one cannot prove that there

is a contradiction if we assume

∀ x, ¬ P (x)

: an actual value for

x

that satisfies

P (x)

has to

be exhibited. This approach is called constructive .

Classical logic seems more natural to modern mathematicians who have been using it

all their lives, but when Hilbert proposed his system with this double negation rule, some

logicians and philosophers deemed it unrealistic because it allowed non-constructive proofs.

This is where the term intuitionistic comes from: only constructive proofs were considered

compatible with the intuition that to prove the existence of something one need to show it.

Introduction to Discrete Mathematics 39

Chapter III Proof systems and proof patterns

III.B.4.iii Sequent calculus

The structure of the Natural Deduction system mimics how proofs are written on paper:

linearly. But when planning the proof, we often see that there are different parts of the

proof that are independent. For example, when proving a conjunction

φ ∧ ψ

, the proofs of

φ

and of

ψ

may be completely independent, have local assumptions, etc.

As a result, it makes more sense to write the proofs not as a succession of lines but as

a tree . This is the approach taken in the sequent calculus , invented by Gerhard Gentzen in

the 1930s.

A sequent is

Γ ⊢ ∆

that keep the list of all hypothesis and provable statements (under

these assumptions). So if

Γ = { φ1

, . . . , φn

}

and

∆ = { ψ1

, . . . , ψk

}

, the sequent

Γ ⊢ ∆

should

be understood as

φ1

∧ · · · ∧ φn

proves

ψ1

∨ · · · ∨ ψk

. The are written in a vertical way: on

top are what is proved, on the bottom the new sequent: since the sequent contains both

hypothesis and conclusion, assumptions are always indicated on the left handside of the

sequent.

For example the rule corresponding to modus ponens is Cut , while the conditional proof

is implication right (

→r

) :

Γ ⊢ p, ∆ Γ′ , p ⊢ ∆′

Γ , Γ′ ⊢ ∆ , ∆′

Cut

Γ , p ⊢ q , ∆

Γ , ⊢ p → q , ∆

→r

This tree structure allows to make proofs about proofs. The most well-know result about

proofs in sequent calculus is the Cut elimination Theorem that states the Cut rule is actually

not necessary. This result mimics the idea that in math, you can do without intermediate

results as long as you prove them again from scratch.

The other beautiful result about sequent calculus is that to obtain the intuitionistic

version of the logic, the only restriction that is needed is to require the right handside of the

sequent to be a single formula.

III.B.4.iv All the other proof systems

Whenever a proof system is introduced, equivalence to the one shown here is not the most

important feature. What is matter is whether the system is sound and complete .

b

The term

validity is used

rather than

truth.

Soundness means that all statements than can be proved in this systems are true. For

propositional logic, validity corresponds to what truth tables provide. For first-order logic,

validity means true for any interpretation (domain and meaning of predicate).

Completeness means that for every true statement can be proved. In the case of state-

ments with premises, that means that if

φ → ψ

is a true statement, then

φ ⊢ ψ

is provable.

Proving soundness is usually relatively easy. The plan of the proof is as follows:

• for each axiom, prove that it is true.

• for each rule, prove that if the premise is true, so is the conclusion.

• since everything deemed provable was through these axioms and rules, if it is proved

it is correct.

Completeness is more complex to prove, because all possible statements have to be

considered. Or rather, since these proofs are often by contradiction, we assume that for

a given statement, there is no proof, and from that extract a valuation that makes the

statement false.

40 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

The Natural deduction system developed above is sound and complete both for propo-

sitional and first-order logics.

Gödel Incompleteness Theorem

The fact that the ND system in this chapter is both sound and complete may sound

contradictory if you have heard about Gödel Incompleteness Theorem:

Gödel Incompleteness Theorem

Any deduction system that can express second-order arithmetic cannot be at the same

timed defined by a finite number of axioms and rules, sound, and complete.

But this not a contradiction: it only applies to systems that allows second-order arith-

metic, so more expressive than first order. In addition, the notion of completeness used in

this theorem is slightly different: it means that for any formula

φ

, either

φ

or its negation

¬ φ

can be proved. Soundness can also be defined in an analogous way by requiring that for

no formula

φ

both

φ

and its negation

¬ φ

can be proved.

This theorem however applies to any logical model that might be created to formalize

the logics behind mathematical reasoning. It forbids any finite axiomatization: or any set

of finite axioms we admit, there will be some statements that cannot be neither proved nor

disproved. This statement (or its negation for that matter) could be added as a new axiom

in the theory, which will enable proofs of more statements. It is for example frequent to

have mathematical theorems that state “Assuming the axiom of choice. . . ”. But regardless

of how many axioms are added, there will always be some other unprovable statement, and

this process will never stop.

III.C From formal proofs to mathematical proofs

III.C.1 Human proofs

Despite being called natural deduction , the proof system described in he first part of this

chapter is not completely natural. In fact, it was actually created in order to formalize what

were he proofs written at the time, in order to formally verify them. In this chapter, the

reverse approach has been taken: now that we have seen the formal system, we can get

inspiration from it, in particular paying attention to the structure of the statement in order

to devise and write up a proof.

It must be noted that human proofs go beyond first order logic (we allow ourselves

to reason in higher order), and that the set of axioms we are using is not entirely clear.

As remarked above, there will always be some axiom that is missing. It didn’t prevent

mathematicians to try to approach an axiomatization of the mathematics we write.

b

It is tempting

to call the

proofs humans

write as

natural , but

they are the

product of our

mathematical

culture. The

question of

whether math

is natural is left

open for the

consideration of

philosophers.

One

such axiomatization is called Zermelo–Fraenkel set theory with the Axiom of choice , a.k.a.

ZFC .

When writing proofs, we allow for a less formality than for ND or other proof systems. It

must be kept in mind that the reader of the proof is in this case also a human! For example,

complete sentences are used instead of merely pointing to a rule (which is often implicit).

In first (or higher) order, the domain is often implicit: even when it is not mentioned,

the statements proved are usually only valid in this given interpretation (for example real

Introduction to Discrete Mathematics 41

Chapter III Proof systems and proof patterns

numbers with the usual operators). In addition, to improve readability, the proofs can be

cut in several lemmas that are used later. Some lemmas are just theorems that you learned

in school that can be used without being proved again.

So in the end, what remains from natural deduction? As the structure of the statement

guides the proof, the deduction rules provide proof patterns that can be applied in order to

write a proof.

III.C.2 Decomposition of the statement

Although the statement to prove is often in English (or another human language) and so

will be the proof, formalizing into a mathematical statement highlights its internal structure

and may help choosing which of the proof pattern (described next) to apply.

In addition, exhibiting the structure can also avoid errors such as quantifier confusion

and scope mistakes.

For example, the statement “Every real number that is non-zero has a multiplicative

inverse” can be translated into the formula:

∀ x, (x ̸ = 0) → ∃ y , x × y = 1

, keeping in mind

that the domain is the real numbers. This translation highlights that it is a universal

statement, so it can be proved using the usual pattern for a universal statement, and the

proof will start as follows: “Let

x

be a real number.” Then we need to prove the statement

(x ̸ = 0) → ∃ y , x × y = 1

, which is an implication, so it should be proved using a pattern

that deals with implication, and so on until the statement is fully proved.

Exercise III.3

Exhibit the structure of the following statements by transforming them into a first-

order formula, indicating the interpretation of predicates and the domain. For exam-

ple the statement There is no greatest integer can be transformed into

¬∃ x, ∀ y , P (x, y)

where

P (x, y)

is the predicate

x ≥ y

, the domain being the integers.

Do not try to prove them (it may not be possible!).

1. Every integer can be written as the sum of 2 squares.

2. Every positive real number has a square root.

3. The cosine function has zeroes.

4. The cosine function has at least two distinct zeroes.

5. There is a neutral elementa for multiplication in real numbers.

6. Every odd square can be written as the sum of three odd numbers.

aRemember for example that

⊥

is neutral for

∨

in Boolean algebra because

⊥

does not affect a

disjunction.

III.C.3 The art of writing a proof

Writing a proof, which is a text intended for the explanation of a reasoning, is a process that

requires some form of literary skill, although it falls into the category of technical writing,

so style is not of utmost importance.

There are however some codes and techniques that can be applied to make a proof more

readable.

The first is that a proof can mix formal and informal statements: having both a formula

and a sentence saying the same thing helps the reader use the one he prefers to understand

42 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

said statement. Usually, the sentence is easier to understand, but the formula relieves any

ambiguity that the natural language may bring.

When writing a proof, it is usually not created in the order that it is read. As there are

subformulas inside a formula, a proof will consist of several parts. These parts are usually

obvious when the proof is being devised, so it helps the writer to draft a plan of the proof

first. But this plan can also help the reader understand the proof! It is therefore a good

idea to keep the plan in the final proof. In that sense, technical writing differs from essays,

where the plan has to bu concealed in the text. So when writing a proof, do not refrain from

using intermediate titles or bullet points. In this book I often use framed subformulas in

order to help the reader understand which part is being treated. See for example the proofs

that formulas are contingent in Section I.C.2.

Throughout the writing of a proof, or even right after having written it, the proof may

appear too big to be easily understood in one go. In that case, it is worthwhile (if possible)

to write part of the proof as the proof of a lemma: the proof of the lemma will be separate

from the proof of the theorem, and the lemma will only be applied in the proof of the

theorem. This is akin to, in programming, separating the code of a big function into an

auxiliary function that is called by the main function. In both cases it is not always possible

and it requires a bit of experience to perform this separation elegantly.

It is common to end the proof by writing q.e.d. , which stands for the Latin phrase Quod

erat demonstrandum , meaning “what was to be shown”. It is often symbolized by a square at

the bottom right of the proof (seen here at the end of this paragraph). In research papers,

using this square is a visual cue that allows the reader to skip the proof without missing any

of the text of the paper.

III.C.4 Proof patterns

III.C.4.i Proving a quantified statement

The techniques and patterns for quantifiers was actually already covered in Section II.B.4,

but we revisit them here both for exhaustiveness and to highlight the link with natural

deduction.

III.C.4.i.a Existential quantifiers

To prove

∃ x, P (x)

, it is sufficient to exhibit one value

a

in the domain and show that

P (a)

is true. That corresponds to the Existential generalization rule

P (a) ⊢ ∃ x, P (x/a)

.

Proving that

¬∀ x, P (x)

means proving the equivalent existential formula

∃ x, ¬ P (x)

,

so it is sufficient to exhibit one value

a

in the domain and show that

P (a)

is false (a

counterexample).

III.C.4.i.b Universal quantifiers

To prove

∀ x, P (x)

, it must be shown that

P (x)

holds for any value of

x

. That corresponds

to the Universal generalization rule

P (y) ⊢ ∀ x, P (x/y)

. In practice, we use the same symbol

for the quantified variable and the uncontrolled value used in the proof. So the proof of a

statement of the form prove that

∀ x, P (x)

would start with the words “Let

x

be an element

of the domain”.

b

The proof could

start with “Let

y

be an element

of the domain”,

but it is less

confusing to use

the same

symbol as the

quantifier so

that the reader

can match it.

For example to prove

∀ n, 2 n2 + 1 ≥ 3 x

over integers, the proof would start by “Let

n

be

an integer”.

Introduction to Discrete Mathematics 43

Chapter III Proof systems and proof patterns

Proving

¬∃ x, P (x)

means proving the universal statement

∀ x, ¬ P (x)

: it must be shown

that

P (x)

does not hold for any value of

x

.

III.C.4.ii Direct proof by implication

Implications are the most common form of statements. As explained before, most theorems

are implications, since the premise of the implication contains the hypotheses. Implications

can be proved in a variety of manners.

The most straightforward, and hence named the direct proof , relies on the conditional

proof rule: to prove

p → q

, assume

p

and prove

q

.

For example, let’s prove the following statement: “For an integer

n

, if

n

is even, then

n2

is even”. First, we can exhibit the formula corresponding to this statement:

∀ n, n is even →

n2 is even

. And since it is a universal statement the proof starts by “Let

n

be an integer”.

Then the statement that remains to be proved is the implication

n is even → n2 is even

,

which can be proved by a direct proof: “Assume

n

is even. We need to prove that

n2

is even”.

b

Note that here

we restate what

needs to be

proved to

remind the

reader (and

ourselves) of

the plan of the

proof.

In this case the proof of

n2 is even

is obtained by calculation. The full proof is therefore as

follows:

Proof of “For an integer

n

, if

n

is even, then

n2

is even”

Let

n

be an integer. Assume

n

is even. We need to prove that

n2

is

even Then

n

can be written

n = 2 p

. So

n2 = (2 p)2 = 4 p2 = 2(2 p2)

,

hence

n2

is even.

III.C.4.iii Proof by contrapositive

To prove an implication

p → q

, it is possible to prove

¬ q → ¬ p

instead. This relies not on a

base rule of the deduction system, but rather on the fact that

¬ q → ¬ p ⊢ p → q

(proved in

Section III.B.2.iii.b).

Proofs usually begin by the words “Let’s prove the contrapositive, namely that. . . ” to

indicate to the reader the plan of the proof.

This type of proof when the conclusion seems to have more information or manipulable

variables than the premise of the implication. Typically, proving that for any integer

n

, if

n2

is even, then

n

is even: it is easier to reason on

n

than on a perfect square

n2

.

Proof of “For an integer

n

, if

n2

is even, then

n

is even”

Let’s prove the contrapositive, namely that if

n

is odd, then

n2

is odd. Assume

n

is odd, then

n = 2 p + 1

for some

p

. Hence

n2 = (2 p + 1)2 = 4 p2 + 4 p + 1 =

2(2 p2 + 2 p) + 1

is odd.

III.C.4.iv Proof by contradiction

This technique relies on assuming the negation of what needs to be proven, and deduce a

contradiction . For readability, these proofs usually indicate that this is the approach taken:

“Assume, by contradiction, that. . . ” or “We will use a proof by contradiction. Assume

that. . . ”

The contradiction can take two forms: either assuming

¬ p

allows to prove

p

, then the

idea is that what was proved is

¬ p → p

. Then the proof would go as follows : we can

44 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

trivially prove that

¬ p → ¬ p

, so by negation introduction we have

¬¬ p

and by double

negation elimination we have

p

. In actual proofs the latter part is omitted and replaced by

the symbol E before concluding that the original (non negated) proposition is now proved.

In other cases, the contradiction is proved by proving both

q

and

¬ q

for some other

proposition. The rest of the proof would follow the same idea as before; and as before it is

replaced by the E symbol.

Note that since this proof scheme uses the double negation elimination, it only works

because we reason in classical logics, but would not be allowed in a constructionist (intu-

itionistic) mathematical world.

(that is often omitted, and the proof ends at this point uses the same idea as the negation

introduction rule

p → q , p → ¬ q ⊢ ¬ p

, combined with double negation elimination.

This pattern is quite efficient when dealing with quantified statements, especially when

proving non-existence: to prove

¬∃ x, P (x)

, assume

∃ x, P (x)

and exhibit a contradiction?

What makes the proof easier in this case is that it is usually easier to prove a contradiction

when there is an

x

to calculate on. This can also be seen as proving

∀ x, ¬ P (x)

by taking an

x

and then assuming by contradiction that

P (x)

holds (by De Morgan’s Law on quantifiers).

A very famous example of a proof by contradiction is proving that

√

2

is irrational, i.e.

there does not exist integers

p

and

q

such that

p

q

=

√

2

. Proving non-existence is an arduous

task, so we use a proof by contradiction in order to have values

p

and

q

on which to reason

and calculate.

Proof that

√

2

is irrational

Assume, by contradiction, that

√

2

is rational.

Then it can be written as an irreducible fraction: there are two integers

p

and

q

that do not have a common divisor such that

√

2 =

p

q

.

Therefore

√

2
2

=

(

p

q

)2

so

2 =

p2

q2

, and

2 q2 = p2

(Eq.1).

So

p2

is even. By the Lemma that was proved in Section III.C.4.iii,

p

is also

even: it can be written as

p = 2 p′

.

In that case,

p2 = (2 p′)2 = 4 p′ 2

, and (Eq.1) becomes

2 q2 = 4 p′ 2

, which is

equivalent to

q2 = 2 p′ 2

.

That means

q2

is even, so

q

is even, which contradicts the fact that

p

and

q

had no common divisor. E

As a result our assumption that

√

2

is rational is false, so

√

2

is irrational.

III.C.4.v Proof by cases

As the name indicates, this proof pattern consists in separating the hypotheses into cases,

then proving the theorem for each of the cases. This is akin to using the disjunction elim-

ination rule:

p ∨ q , p → r, q → r ⊢ r

. In practice there may be more than two cases:

p1

∨ p2

∨ · · · ∨ pn

, p1

→ r, p2

→ r, . . . , pn

→ q ⊢ r

.

When the theorem that is to be proven is an implication, the hypotheses is the premise

of the implication (that is assumed): instead of proving

p → q

, prove

p → r1

∨ r2

∨ · · · ∨ rn

.

Then prove

r1

→ q

,

r2

→ q

, . . . , and

rn

→ q

.

When the statement is not an implication, it is possible to split in cases using the

knowledge of the domain, for example using the excluded middle on a well chosen predicate.

The difficulty is to know how to chose this predicate: for integers there is even/odd, for all

Introduction to Discrete Mathematics 45

Chapter III Proof systems and proof patterns

numbers there is positive/negative/zero. In other cases the statement may provide some

indication.

For example, to prove that “For an integer

n

, if

n

is not a multiple of

3

, then

n2 = 3 k +1

for some

k

”, which we can write as the formula

∀ n, P (n) → ∃ k , Q (n, k)

, with

P (n)

being

“

n

is not a multiple of

3

” and

Q (n, k)

being “

n2 = 3 k + 1

”. This being a universally

quantified formula, we can deal with this quantifier by taking an arbitrary

n

: “Let

n

be an

integer”. Then we need to find predicates

R1(n)

and

R2(n)

such that

P (n) → R1(n) ∨ R2(n)

,

R1(n) → ∃ k , Q (n, k)

, and

R2(n) → ∃ k , Q (n, k)

. In this case, the premise gives us a hint: if

n

is not a multiple of

3

, then we can try to create cases based on what happens when

n

is

divided

↬

Division is

understood

here as

Euclidean

division with

quotient and

remainder.

This concept is

explained in

details in

Section VII.A.2.

by

3

. That provides two cases: remainder is

1

or

2

, and each case is treated using

calculation. The full proof is as follows:

Proof of “For an integer

n

, if

n

is not a multiple of

3

,

then

n2 = 3 k + 1

for some

k

”

Let

n

be an integer. Since

n

is not a multiple of

3

, the remainder

in the Euclidean division of

n

by

3

is either

1

or

2

. So

n

can be

written either as

3 p + 1

or

3 p + 2

for some

p

• Assume

n = 3 p + 1

, then

n2 = (3 p + 1)2 = 9 p2 + 6 p + 1 =

3(3 p2 + 2 p) + 1

; we choose

k = 3 p2 + 2 p

.

• Assume

n = 3 p + 2

, then

n2 = (3 p + 2)2 = 9 p2 + 12 p +

4 = 9 p2 + 12 p + 3 + 1 = 3(3 p2 + 6 p + 1) + 1

; we choose

k = 3 p2 + 6 p + 1

.

In both cases we can find

k

such that

n2 = 3 k +1

, which concludes

the proof.

III.C.4.vi Proving iff as two implications

There are several possibilities to prove

p ↔ q

. The first one is to see this statement as

the conjunction of two statements:

p → q

and

q → p

(called the converse of

p → q

). The

converse

q → p

is also written

p ← q

, so we speak of the right-to-left implication (and

p → q

is the left-to-right implication). This mimics the approach of the iff introduction rule in ND.

Since there are two independent parts to these proofs, it helps to keep track of what is

being proved by highlighting the plan of the proof. One way to do that is to indicate which

direction is being proved.

Then there are many choices on how to prove these statements. They need not be proved

in the same manner, as the examples below show.

III.C.4.vi.a Two direct proofs

The blunt approach is to use two direct proofs: prove

p → q

and

q → p

. For example we

can prove the simple statement “

n

is even iff

n + 1

is odd” on integers this way.

46 Introduction to Discrete Mathematics

Proof systems and proof patterns Chapter III

Proof of “For any integer

n

,

n

is even iff

n + 1

is odd”

→

Assume

n

is even:

n = 2 p

, so

n + 1 = 2 p + 1

is odd.

←

Assume

n + 1

is odd:

n + 1 = 2 p + 1

, so

n = 2 p

is even.

III.C.4.vi.b One direct and one contrapositive proof

The contrapositive can be used to prove the converse: prove

p → q

and

¬ p → ¬ q

. This

pattern is the source of the name “ if and only if ” comes from: if

p

then

q

; only if

p

then

q

.

Proof of “For any integer

n

,

n

is even iff

n2

is even”

→

n = 2 p

, so

n2 = 4 p2 = 2(2 p2)

is even.

←

By contrapositive, see Section III.C.4.iii.

Or the contrapositive is used for the right-to-left implication:

q → p

and

¬ q → ¬ p

Proof of “For any real

x

,

↔ x2 > x ↔ (x > 1 ∨ x < 0)

”

→

By contrapositive assume

¬ (x > 1 ∨ x < 0)

, so

x ≤ 1

and

x ≥ 0

, hence

x2 ≤ x

.

←

By cases

x > 1 → x2 > x

and

x < 0 → x < 1 → x2 > x

.

III.C.4.vii Chains of iffs

Proving an iff

p ↔ q

can be done by introducing intermediate propositions that are also

equivalent to

p

and

q

:

p ↔ r1

↔ r2

↔ · · · ↔ rn

↔ q

So in this case we have a chain of iffs.

The idea is that every equivalence

p ↔ r1

,

ri

↔ ri +1

,

rn

↔ q

, should be easy, or even

trivial.

This is what happens when solving equations:

2 x + 3 = 0 ↔ 2 x = − 3 ↔ x = −3

2

III.C.4.viii Chains of iffs using implications

In the case of a proof of

p ↔ q ↔ r

(or more than 3), the several iffs can be proved using a

chain of implications that loops back to the first proposition:

p → q → r → p

Note that in this case all the propositions are equivalent to each other. It is also implied

that all equivalences are interesting (which is not the case of using a chain of trivial iffs to

prove a single interesting iff).

III.C.5 Remarks

III.C.5.i All the other rules

Not all rules of ND have been used in the presentation of the proof patterns. One such rule

is the conjunction introduction. It can actually be presented as a proof pattern, but it is

Introduction to Discrete Mathematics 47

Chapter III Proof systems and proof patterns

not really interesting: to prove

p ∧ q

, prove

p

and prove

q

.

Other rules are actually used as instantiation : all these rules are used when using another

result (usually a theorem). It may be the quantifier instantiation rules or the modus ponens,

or even the weakening rules of conjunction elimination (if you have

p ∧ q

, you have

p

in

particular) and disjunction introduction (if you have

p

you have

p ∨ q

).

III.C.5.ii On the boldness of arrows

Some texts use

⇒

to mean implication, instead of

→

, and the symbol

⇔

to mean iff, instead

of

↔

.

This difference comes from the difference of worlds that these arrows live in: in mathe-

matics, the “double” version is used, while the simple version denotes the logical connectors

(as in proof systems). They are indeed linked, but technically they are different.

In the remainder of this book, I’ll use

⇒

and

⇔

in math (and

→

and

↔

in formulas

only)

III.C.5.iii Practicing proof techniques

Apart from the exercise below, applying the proof techniques discussed in this chapter make

little sense without an actual application domain. As a result, the remainder of this book

will be the applications of the proof techniques: every proof written will try to emphasize

the proof patterns used, and it is expected that exercises are solved in the same manner.

Exercise III.4

For each of the following statement:

• Identify the statement’s structure by transforming it into a first-order formula.

• Prove the statement, indicating the proof technique being used.

1. There is a solution to the system

{

4 x + 5 y = 2

− 2 x + y = 6

2. For any real

x

, there is a value

y

such that

cos2(x) + y2 = 1

.

3. There are no integers

n

and

p

such that

6 n + 3 p = 2

.

4. For any integers

n

and

p

, such that one is even and the other is odd, their sum

is odd.

48 Introduction to Discrete Mathematics

Chapter IV

Set Theory

Chapter contents

IV.A Sets over a domain . 50

IV.A.1 Definition, vocabulary, notations 50

IV.A.1.i The writing of sets . 50

IV.A.1.ii Usual domains . 50

IV.A.2 Boolean algebra on sets . 51

IV.A.2.i Sets and first-order logic 51

IV.A.2.ii Boolean operators for sets 51

IV.A.2.iii Venn Diagrams . 53

IV.A.2.iv Proving theorems about sets 53

IV.A.3 Cardinality . 56

IV.A.4 Disjointedness, coverings, and partitions 57

IV.A.4.i Disjoint sets . 57

IV.A.4.ii Coverings . 57

IV.A.4.iii Partitions and Disjoint Unions 58

IV.B Sets of sets . 58

IV.B.1 The nature of the elements . 58

IV.B.2 The powerset . 59

IV.B.3 Defining natural numbers from sets 60

IV.C Sets of tuples . 60

IV.C.1 Cartesian products . 61

IV.C.1.i Definition . 61

IV.C.1.ii Cardinality . 61

IV.C.1.iii Examples . 62

IV.C.2 Relations . 62

IV.C.2.i Definition . 62

IV.C.2.ii Examples . 63

IV.C.2.iii Projection . 63

IV.C.2.iv Relations in relational databases 64

IV.C.3 Functions . 64

IV.C.3.i Definition and notations 64

IV.C.3.ii Special cases for domains and co-domain 65

IV.C.3.iii Injection, surjection, bijection 67

IV.C.3.iv Injection, surjection, bijection and cardinality 68

Introduction to Discrete Mathematics 49

Chapter IV Set Theory

IV.A Sets over a domain

IV.A.1 Definition, vocabulary, notations

The notion of set is fundamental to mathematics. It is actually possible to build all cur-

rent mathematics from the concept of sets. So let’s focus a little bit on the theory of set

manipulation, starting with the very definition of sets.

Definition: Set

A set is an unordered collection of elements.

The elements of the set are written enclosed between

{

and

}

.

As such, this definition may bring more questions than it answers. So let’s give more

details on the three essential features of a set mentioned in the above definition:

Unordered means that order does not matter. So the set

{ 1 , 2 , 3 }

could also be written

{ 2 , 1 , 3 }

,

{ 1 , 3 , 2 }

, or using any other order of numbers

1

,

2

, and

3

.

Collection means that every element can only appear once. So

{ 1 , 2 , 1 , 3 }

is not a set.

b

Sets with

repetition are

called

multi-sets.

Elements are objects that belong to the domain. Which domain is being used is usually

given as part of the definition of the set itself.

We write

x ∈ A

, read as “

x

belongs to

A

” to denote that

x

is an element of the set

A

.

We write

x / ∈ A

to denote that

x

is not an element of the set

A

. For example

2 ∈ { 1 , 2 , 3 }

,

and

5 / ∈ { 1 , 2 , 3 }

.

IV.A.1.i The writing of sets

Defining and denoting a set can be done in several ways. The simplest is to simply give the list

of all the elements of the set: this is called the roster method . For example:

A = { 3 , 2 , 12 , 42 }

.

One obvious limitation to this notation is that it only works with finite sets, and can easily

get tedious for big sets.

It is therefore common to use ellipsis to denote a big, or even infinite, set. For example

I42

= { 1 , 2 , . . . , 42 }

is the set of integers from

1

to

42

;

M7

= { 0 , 7 , 14 , 21 , . . . }

is the set of

positive integers that are multiples of

7

. It is up to the reader to replace the “

. . .

” with the

actual elements. As a result, it can lead to ambiguity and should be used with care.

A better (because more formal) way to define sets, whether finite or infinite, is to use

the set-builder notation :

{ x | P (x) }

where

P

is a unary predicate. In English, this notation

is read as “the set of elements

x

such that

P (x)

”. For example,

{ x | x > 5 }

is “the set of

numbers

x

such that

x > 5

”.

IV.A.1.ii Usual domains

In this notation, the domain should also be given (so the above example is not completely

correct as such). Usual domains are given abbreviations in order to fit in the notation and

are separated from the variable using the

∈

(“in”) symbol.

N

, Natural numbers:

{ 0 , 1 , 2 , 3 , . . . }

are whole positive numbers (and yes zero is included

in the natural numbers). Using this domain, one can define the set of positive multiples

50 Introduction to Discrete Mathematics

Set Theory Chapter IV

of

7

as

M7

= { n ∈ N | ∃ k ∈ N , n = 7 k }

. They are called natural because they are the

simplest numbers that are used to count actual objects.

Z

, Integers:

{ 0 , 1 , − 1 , 2 , − 2 , 3 , . . . }

. Positive or negative whole numbers. Using this do-

main, one can define the set of perfect cubes as

C =

{
n ∈ Z

∣∣ ∃ k ∈ Z , n = k3

}

.

Q

, Rational numbers:

{

p

q

∣∣∣

p, q ∈ Z and q ̸ = 0

}

, the numbers that can be written as the

ratio of two integers. These are also numbers that can be written with a repeating

pattern after the decimal point: for example

2

7

= 0 . 285714285714 · · · = 0 .

285714

.

Using this domain, one can define the set of reciprocals of powers of two as follows:

{
q ∈ Q

∣∣ ∃ n ∈ N , q =

1

2n

}

.

R

, Real numbers: formally, they are defined limits of sequences of rational numbers.

These are also numbers that can be written with a decimal point, not necessarily

with a repeating pattern:

π = 3 . 141592653589793238462643 . . .

Using this domain,

one can define the set of numbers greater than

5

as

{ x ∈ R | x > 5 }

.

C

, Complex numbers: real numbers enriched with

i =

√

− 1

, making it a two-dimensional

domain. Complex numbers are outside the scope of this course, so this notation is

mentioned for completeness’ sake but will rarely be used.

b

Fun fact: the

original

notations for

these domains

are bold letters

N , Z , Q , R , C .

They were

transcribed on

the board of

classrooms with

double bars,

and this

notation is now

common in

typeset texts

such as this

one.

In this book I may also use

D

to denote an unspecified domain.

Exercise IV.1

Convert these informally described sets into a set-builder notation (you may need to

extrapolate):

1. The set of real numbers between

−
√

2

(included) and

3 π

(excluded).

2. Rational positive numbers.

3.

{ 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , . . . , 79 }

.

IV.A.2 Boolean algebra on sets

IV.A.2.i Sets and first-order logic

Sets and first-order predicates are intertwined, to the point that it isn’t uncommon to read

that ”a first-order unary predicate is a set”. Why is that so? In the set-builder notation, a

predicate is used to define the set. But the relation also goes the other way around: a set

A

defines a unary predicate:

PA(x)

interpreted as

x ∈ A

: the predicate is true whenever

x

is

an element of

A

.

For example, the set

M7

of positive multiples of

7

defines the predicate

P7

that is true

whenever the number is a multiple of

7

:

P7(42)

is true because

42 ∈ M7

;

P7(29)

is false

because

29 / ∈ M7

.

IV.A.2.ii Boolean operators for sets

Since sets are unary predicates, whatever can be done with predicates can be done on sets.

In particular, sets can be combined using boolean operators. Slightly different notations are

used in order not to confuse the set and the underlying predicate, but the process really

mimics the propositional Boolean Algebra of Section I.B. Technically, the operators below

Introduction to Discrete Mathematics 51

Chapter IV Set Theory

create another Boolean Algebra; the domain being the sets instead of the truth values

⊤

and

⊥

.

∅

, The empty set. It corresponds to predicate

⊥

:

∅ = { x ∈ D | ⊥}

.

D

, The whole domain. It corresponds to predicate

⊤

:

D = { x ∈ D | ⊤}

.

∩

, Intersection. It corresponds to the conjunction:

A ∩ B = { x ∈ D | x ∈ A ∧ x ∈ B }

.

An element belongs to the intersection if it belongs to both sets, and the intersection

is the set of all such elements. For example

3 ∈ { 1 , 2 , 3 } ∩ { 2 , 3 , 5 , 7 }

, and

{ 1 , 2 , 3 } ∩

{ 2 , 3 , 5 , 7 } = { 2 , 3 }

.

∪

, Union. It corresponds to the disjunction:

A ∪ B = { x ∈ D | x ∈ A ∨ x ∈ B }

. An element

belongs to the union if it belongs to at least one of the sets (like disjunction, union is

inclusive), and the union is the collection of elements of both these sets. For example,

7 ∈ { 1 , 2 , 3 } ∪ { 2 , 3 , 5 , 7 }

, and

{ 1 , 2 , 3 } ∪ { 2 , 3 , 5 , 7 } = { 1 , 2 , 3 , 5 , 7 }

.

, Complement. It corresponds to the negation:

A = { x ∈ D | ¬ (x ∈ A) }

. An element

belongs to the complement if it does not belong to the set.

⊆

, Inclusion. It corresponds to an implication:

A ⊆ B

iff

∀ x, x ∈ A → x ∈ B

. Contrary

to the above operators, this operation returns a truth value, not a set. For example

{ 3 , 5 , 7 } ⊆ { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

because every element of

{ 3 , 5 , 7 }

is also an element of

{ 1 , 2 , 3 , 4 , 5 , 6 , 7 }

.

=

, Equality It corresponds to iff:

A = B

iff

∀ x, x ∈ A ↔ x ∈ B

. As for inclusion, this

operator returns a truth value, not a set.

The operators above are the most common ones, that match the operators of boolean

algebra. Other operators, which are more syntactical shortcuts than new definitions, are

also used:

⊇

, Superset: the reverse of inclusion:

A ⊇ B

iff

B ⊆ A

.

⊈

, Non-inclusion: the negation of inclusion

A ⊈ B

iff it is not the case that

A ⊆ B

, i.e.

∃ x, x ∈ A ∧ x / ∈ B

.

⊊

, Strict inclusion: inclusion but not equality:

A ⊊ B

iff

A ⊆ B

and

B ⊈ A

.

\

, Relative complement:

A \ B = { x ∈ D | x ∈ A ∧ ¬ x ∈ B } = A ∩

B

removes from

A

all elements of

B

. For example

{ 1 , 2 , 3 , 4 , 5 , 6 } \ { 2 , 3 , 5 , 7 } = { 1 , 4 , 6 }

.

△

, Symmetric difference:

A △ B = { x ∈ D | x ∈ A ⊕ x ∈ B } = { x ∈ D | (x ∈ A ∨ x ∈

B) ∧ ¬ (x ∈ A ∧ x ∈ B) } = (A ∪ B) \ (A ∩ B)

contains elements that are in

A

or in

B

,

but not both.

Exercise IV.2

Write the result of the following set operations as a roster or set-builder notation:

1.

A = { 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 } ∩ { 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 }

2.

B =

{ x ∈ R | x2 > 5 } ∪ { x ∈ R | x2 < 5 }

52 Introduction to Discrete Mathematics

Set Theory Chapter IV

A

B

(a)

A ∩ B

A

B

(b)

A ∪ B

A

(c)

A

A

B

(d)

A \ B

A

B

(e)

A △ B

Figure IV.1: Venn diagrams for operations on sets. In gold is the result of the operation.

B

A

(a)

A ⊆ B

A

B

(b)

A ∩ B = ∅

Figure IV.2: Venn diagrams for relations of sets.

IV.A.2.iii Venn Diagrams

Venn diagrams are circles (or other shapes) that represent sets. Looking at unions or in-

tersections of sets on such diagrams can help understand the problem at hand. It does not

replace a proof but drawing such diagrams on draft paper may help writing it.

In Figure IV.1 are represented in Venn diagram form the result of the main operations

for two sets. In some cases there are more than two and the drawing becomes more complex,

but also more necessary to understand the situation!

It is common that some hypotheses are given about sets. These situations can also be

drawn as Venn diagrams, as is done for two example in Figure IV.2.

IV.A.2.iv Proving theorems about sets

Proving things about sets can be done using this underlying structure and the relation

with the Boolean operations. Namely, whenever an inclusion

A ⊆ B

needs to be proved, a

universally quantified implication must be proved: take an element

x

, assume

x ∈ A

, and

prove that

x ∈ B

. For a set equality, the inclusion must be proved in both directions.

In the case of sets built through operators, it is useful to rewrite the set definition as

boolean operations on predicates. For example if there is an hypothesis that

x ∈ A1

∪ A2

,

then

x ∈ A1

or

x ∈ A2

, and in this case a proof by cases is probably the way to go.

While most proofs involve some domain-specific assumptions (usually implied or gathered

Introduction to Discrete Mathematics 53

Chapter IV Set Theory

in theorems that are known by both the writer and the reader), a couple of results can be

proved in general about sets. Below are some examples and exercises of such proofs.

IV.A.2.iv.a

A ⊆ A

The statement

A ⊆ A

is a universally quantified implication: we need to prove

∀ x, x ∈

A → x ∈ A

. As usual, we need to take an element of the domain, then assume the premise,

and finally prove the conclusion, which is trivial in this case (which make the proof sound a

bit strange). The proof is as follows:

Proof of

A ⊆ A

Let

x

be an element of the domain. Assume

x ∈ A

. Then

x ∈ A

.

IV.A.2.iv.b

A ⊆ D

As in the previous case,

A ⊆ D

is a universally quantified implication: we need to prove

∀ x, x ∈ A → x ∈ D

. The proof is also quite trivial:

Proof of

A ⊆ D

Let

x

be an element of the domain. Assume

x ∈ A

.

Since

x

is in the domain we have

x ∈ D

.

IV.A.2.iv.c

∅ ⊆ A

Expanding the implication, what needs to be proved is

∀ x, x ∈ ∅ → x ∈ A

.

Proof of

∅ ⊆ A

Let

x

be an element of the domain. Assume

x ∈ ∅

. This is

false (

⊥

), so it implies anything, in particular

x ∈ A

.

IV.A.2.iv.d

A ∩ B ⊆ A

We need to prove

∀ x, x ∈ A ∩ B → x ∈ A

.

A ∩ B ⊆ A

Let

x

be an element of the domain. Assume

x ∈ A ∩ B

. By

definition

x ∈ A

and

x ∈ B

, so in particular

x ∈ A

.

IV.A.2.iv.e Identities

Most identities of Boolean algebra carry over to set algebra. No proof will be given for

these (some are asked as exercises), only the idea behind it by mapping the identity to the

corresponding property of boolean algebra.

54 Introduction to Discrete Mathematics

Set Theory Chapter IV

Identities for set algebra

•

A ∪ B = B ∪ A

(by commutativity of

∨

).

•

A ∩ B = B ∩ A

(by commutativity of

∧

).

•

A ∪

A = D

(by the excluded middle).

•

A ∩

A = ∅

(by contradiction).

•

A = A

(by double negation).

•

A ∪ B =

A ∩

B

(by De Morgan’s Law).

•

A ∩ B =

A ∪

B

(by De Morgan’s Law).

IV.A.2.iv.f

A ∩ B ⊆ A

A ∩ B ⊆ A

is a quantified implication

∀ x, x ∈ A ∩ B → x ∈ A

. The conclusion is

proved from the premise using what resembles the conjunction elimination rule of Natural

Deduction (see Chapter III).

Proof of

A ∩ B ⊆ A

Let

x

be an element of the domain. Assume

x ∈ A ∩ B

.

Then

x ∈ A

and

x ∈ B

. In particular,

x ∈ A

.

The similar (dual)

A ⊆ A ∪ B

is left as exercise.

IV.A.2.iv.g

A ⊆ B ⇔

B ⊆

A

A ⊆ B ⇔

B ⊆

A

is an equivalence. If we break down both sides of the equivalence,

what needs to be proved is that

(∀ x, x ∈ A → x ∈ B) ↔ (∀ x, x / ∈ B → x / ∈ A)

. Rewriting

the

/ ∈

as the negation of

∈

, we obtain:

(∀ x, x ∈ A → x ∈ B) ↔ (∀ x, ¬ (x ∈ B) → ¬ (x ∈ A))

.

Using the contrapositive inside the right handside, we actually have to prove

(∀ x, x ∈ A →

x ∈ B) ↔ (∀ x, x ∈ A → x ∈ B)

, which holds trivially (syntactically even).

The formal proof consists in these rewritings (although the above proof is completely valid

and probably clearer since it includes English explanations, the proof below is technically

sufficient):

Proof of

A ⊆ B ⇔

B ⊆

A

B ⊆

A ⇔ (∀ x, x / ∈ B → x / ∈ A) ⇔ (∀ x, ¬ (x ∈ B) →

¬ (x ∈ A)) ⇔ (∀ x, x ∈ A → x ∈ B) ⇔ A ⊆ B

Introduction to Discrete Mathematics 55

Chapter IV Set Theory

Exercise IV.3

Prove that for any set

A

and

B

:

1.

A ⊆ A ∪ B

2.

A ∩ B =

A ∪

B

Exercise IV.4

Prove that the four following statements are equivalent to each other:

A ⊆ B A ∩ B = A A ∪ B = B

B ⊆

A

Hint: You must prove the following chain of equivalences:

A ⊆ B ⇔ A ∩ B = A ⇔ A ∪ B = B ⇔

B ⊆

A.

IV.A.3 Cardinality

The cardinality of a set is its size:

Definition: Cardinality

The cardinality of a set is the number of elements

it contains. The cardinality of

A

is written

| A |

.

For example

|{ 1 , 2 , 5 , 42 }| = 4

;

|{⊤ , ⊥}| = 2

. The empty set, with no elements, has

cardinality

0

:

|∅| = 0

. A set with cardinality

1

, i.e. containing a single element (for example

|{ 78 }| = 1

) is called singleton .

While it is easy to find the cardinality of finite sets in roster notation (it is only a

matter of counting, it may become harder when the set is given in the set-builder notation.

For example, for the set

{ x ∈ N | x > 12 ∧ x ≤ 73 }

, we must reason that we have all

integers between 12 excluded and 73 included. That means

73 − 12 = 61

element, therefore

|{ x ∈ N | x > 12 ∧ x ≤ 73 }| = 61

.

For finite sets, the counting eventually stops to an actual number (which may be very

big). For infinite sets, the counting of the element never stops. The cardinality of an infinite

set is not a number, but

+ ∞

. That is actually the definition of finite or infinite set:

Finite vs infinite set

A finite set is a set whose cardinality is not

+ ∞

: a set

A

is finite if

| A | ∈ N

.

All the usual domains are infinite:

| N | = + ∞

,

| Z | = + ∞

,

| Q | = + ∞

,

| R | = + ∞

,

| C | = + ∞

. It can also be the case for some other sets, for example set

M7

= { n ∈ N | ∃ k ∈

N , n = 7 k }

is infinite, so

| M7

| = + ∞

. There are also infinitely many elements in the interval

of reals between

0

and

1

(usually written

[0 , 1]

):

|{ x ∈ R | 0 ≤ x ≤ 1 }| = + ∞

.

Intuitively, there should be fewer elements in

M7

than in the whole domain

N

. Is that

really the case? And how dos the size of

[0 , 1]

compare to

R

? and to

N

? In Section IV.C.3.iv,

we will discuss how to compare cardinalities of infinite sets.

56 Introduction to Discrete Mathematics

Set Theory Chapter IV

Exercise IV.5

Give the cardinality of all the sets of Exercises IV.1 and IV.2.

IV.A.4 Disjointedness, coverings, and partitions

IV.A.4.i Disjoint sets

Sets that don’t have any common element are called disjoint. This notion can also be

generalized to more than two sets, requiring than no element is in more than one of the set.

This situation is illustrated with a Venn diagram in Figure IV.2(b).

Definition: Disjoint sets

• Two sets

A

and

B

are disjoint if

A ∩ B = ∅

.

• A collection of sets

A1

, A2

, . . . , An

are pairwise disjoint if

for any

i, j ∈ { 1 , . . . , n }

,

Ai

∩ Aj

= ∅

.

For example

{ n ∈ Z | n < 0 }

and

{ n ∈ Z | ∃ p ∈ Z , n = p2 }

are disjoint. And intervals

[− 3 , 5)

,

[5 , 12]

,

[4 π , 42)

are pairwise disjoint.

Proofs of disjointedness can be either direct or by contradiction. In a direct proof,

assume that an element is in one of the set and prove that it is not in the other. In a

proof by contradiction, assume that there is an element that is in two sets and prove a

contradiction. When there are more than two sets there are more proofs required: one for

each pair of sets; although in some cases a proof by contradiction will work for all pairs at

once.

IV.A.4.ii Coverings

A notion dual to disjointedness is coverability: several sets cover a single set

X

if all the

elements of

X

can be found in at least one of the sets. This notion can also be defined for

more than two sets.

Definition: Covering

• Two sets

A

and

B

cover a set

X

if

A ∪ B ⊇ X

.

• Two sets

A

and

B

exactly cover a set

X

if

A ∪ B = X

.

• A collection of sets

A1

, A2

, . . . , An

cover a set

X

if

A1

∪ A2

∪ · · · ∪ An

=

⋃n

i =1

Ai

⊇ X

.

b

The

⋃n

i =1

Ai

notation is read

“the union for

i

from

1

to

n

of

the

Ai

s”.

• A collection of sets

A1

, A2

, . . . , An

exactly cover a set

X

if

A1

∪ A2

∪ · · · ∪ An

=

⋃n

i =1

Ai

= X

.

For example,

{ 0 , 1 , 2 , 4 }

and

{ 1 , 3 , 5 }

cover

{ 1 , 2 , 3 , 4 , 5 }

. And

{ 1 , 4 }

,

{ 1 , 2 , 3 }

and

{ 2 , 5 }

exactly cover

{ 1 , 2 , 3 , 4 , 5 }

.

To prove that a set is covered, any element must be shown to be in at least one of the

sets. As a result, proofs by cases that will match the sets are usually the way to go for these

Introduction to Discrete Mathematics 57

Chapter IV Set Theory

properties.

IV.A.4.iii Partitions and Disjoint Unions

When a group of sets are both disjoint and exactly cover a set, they form a partition of the

set.

Definition: Partition and Disjoint Union

• Two disjoint non-empty sets

A

and

B

that exactly cover

X

form a partition

of

X

. We then write

X = A ⊎ B

and

X

is called the disjoint union of

A

and

B

.

• A collection of pairwise disjoint non-empty sets that exactly cover

X

form a

partition of

X

:

X = A1

⊎ A2

⊎ · · · ⊎ An

=

⊎n

i =1

Ai

is called the disjoint union

of all the

Ai

s.

For example

{ 0 }

and

{ x ∈ Z | x ̸ = 0 }

form a partition of

Z

. And

{ x ∈ N | x is even }

and

{ x ∈ N | x is odd }

is a partition of

N

. With more than two sets,

{ 0 }

,

{ x ∈ R | x > 0 }

,

{ x ∈ R | x < 0 }

is a partition of

R

.

The extra condition that excludes empty sets is added to the definition mostly to facilitate

combinatorics theorems such as counting the number of partitions of a finite set.

↬

See

Chapter VIII

for an

introduction to

combinatorics.

Exercise IV.6

Let

Z

be the domain of work. For each collection of sets below, determine whether

they are:

• pairwise disjoint, (

A ∩ B = ∅

, (

A ∩ C = ∅

,

B ∩ C = ∅

))

• covering

Z

, (

A ∪ B (∪ C) = Z

) It is always the case that

A ∪ B (∪ C) ⊆ Z

;

what remains to be proved to be a covering is that

Z ⊆ A ∪ B (∪ C)

.

• conclude about whether they form a partition of the domain.

1.

A = { n ∈ Z | n > 37 }

and

B = { n ∈ Z | n ≤ − 12 }

2.

A = { n ∈ Z | n < 37 }

and

B = { n ∈ Z | n ≥ − 12 }

3.

A = { n ∈ Z | n > 37 }

,

B = { n ∈ Z | n ≤ − 12 }

, and

C = {− 11 , − 10 , . . . , 36 , 37 }

IV.B Sets of sets

IV.B.1 The nature of the elements

The elements in a set can be of any nature. Although the most common objects in mathe-

matics and the first studied in the curricula are numbers, it is possible to have other values:

for example the set

{⊤ , ⊥}

contains the boolean values.

The objects need not be very precisely defined, as long as they have a name. Hence it is

perfectly possible to declare a set

{ a, b, c, d }

containing four objects.

Or the objects can be sets themselves. In terms of logics, as a set is a predicate, a set

of set is a second-order predicate. Since we allow also to have sets of sets of sets, etc, this

means we are working in higher-order logic.

↬

See

Section II.B.7.iii

for a discussion

of the orders of

logic.

Let’s take an example:

X =

{
{ 1 , 2 , 3 , 4 } , { 2 , 3 , 4 , 5 } , { 3 , 4 , 5 , 6 }

}

. This set

X

has 3 el-

ements (

| X | = 3

), that happen to be sets. We can think of it as

X = { A, B , C }

with

58 Introduction to Discrete Mathematics

Set Theory Chapter IV

A = { 1 , 2 , 3 , 4 }

,

B = { 2 , 3 , 4 , 5 }

, and

C = { 3 , 4 , 5 , 6 }

. So

{ 1 , 2 , 3 , 4 } ∈ X

, since this set is an

element of

X

. But

{ 1 , 2 , 3 , 4 } ⊈ X

! because

1

for example, is not an element of

X

.

One must pay attention to what the elements are in a set. Sometimes the size of the

brackets can help, but the typesetting is not guaranteed to be precise enough to discriminate.

And it can be tricky, since non-homogeneous sets are allowed as well (even though their use

is quite rare):

{

{ 1 , 3 } , 2 ,

{
5 , 7 , 13 , { 2 , 8 , 16 }

}}

is a completely valid set, containing elements

that are sets (some of them also containing sets. . .) and some numbers.

Exercise IV.7

For each of the following statements, determine whether it is true or false (justify

your answer):

1.

∅ ∈ {{ 0 , 1 } , { 3 , 7 }}

2.

∅ ⊆ {{ 0 , 1 } , { 3 , 7 }}

3.

3 ∈ {{ 0 , 1 } , { 3 , 7 }}

4.

{ 0 , 1 } ⊆ {{ 0 , 1 } , { 3 , 7 }}

5.

{{ 3 , 7 }} ⊆ {{ 0 , 1 } , { 3 , 7 }}

6.

{ 0 , 1 } ∈ {{ 0 , 1 } , { 3 , 7 }}

IV.B.2 The powerset

One particular set of sets, is, given a set, the set of all its subsets.

Definition: Powerset

For a set

A

, the powerset of

A

, written

P (A)

is

the set of subsets of

A

:

P (A) = { X | X ⊆ A }

.

For example

P (N) = { A | A ⊆ N }

is the set of subsets of

N

. We have

∅ ∈ P (N)

,

N ∈ P (N)

,

{ 2 , 3 , 5 , 7 , 11 } ∈ P (N)

,

{ k ∈ N | k is even } ∈ P (N)

,

{ k ∈ N |∃ j ∈ N , j2 = k } ∈ P (N)

(among others).

While the powerset of

A

depends on the elements of

A

, in all cases

∅ ∈ P (A)

and

A ∈ P (A)

: this was proved when showing that

∅ ⊆ A

(Section IV.A.2.iv.c) and

A ⊆ A

(Section IV.A.2.iv.a), respectively.

In general, an element

X

of

P (A)

can be constructed by choosing, for each element of

A

,

whether it will be in

X

or not. For the finite set

{ 1 , 2 , 3 }

, if none are chosen to be in the set

then the empty set is created, if only

1

is chosen then

{ 1 }

is created, if

1

and

3

are chosen

then

{ 1 , 3 }

is created, and so on until

{ 1 , 2 , 3 }

is created when all elements are chosen to be in

the set. As a result we build

P ({ 1 , 2 , 3 }) =

{
∅ , { 1 } , { 2 } , { 3 } , { 2 , 3 } , { 1 , 3 } , { 1 , 2 } , { 1 , 2 , 3 }

}

.

This construction also provides the cardinality of the powerset: since for each element

there is one choice (two options), there are

2| A |

possible elements in the powerset. Knowing

this cardinality can also help control that there is no missing element (set) when building

the powerset. In the example above, we count

8 = 23

elements in

P ({ 1 , 2 , 3 })

, which is

consistent with

|{ 1 , 2 , 3 }| = 3

.

Properties of the powerset

For any set

A

:

•

∅ ∈ P (A)

•

A ∈ P (A)

•

|P (A) | = 2| A |

Introduction to Discrete Mathematics 59

Chapter IV Set Theory

Exercise IV.8

Calculate

P ({⊤ , ⊥})

. Verify your answer using the cardinality.

IV.B.3 Defining natural numbers from sets

i

This is for your

personal culture

more than to

be applied in

this course.

It was mentioned in this chapter’s introduction that sets are at the basis of mathematics.

Indeed, there is a way to define natural numbers from sets.

This construction, due to John Von Neumann, does not appear really natural at first

if given directly. It may be clearer if we go backwards from what we want: the natural

numbers. One way to see natural numbers is to consider that you start from nothing,

0

,

then add

1

, to obtain

1

. If you add

1

again, you get

2

, and so on. So natural numbers are

constructed from zero and the ability to get to the next number: the successor operation,

usually noted

S

:

S (0) = 1

,

S (1) = S (S (0)) = 2

, and so on. This approach, called Peano

arithmetic, does construct the natural numbers, but requires the zero to start the process.

The idea of Von Neumann is to use sets instead of numbers: the number

n

will just be

a set of cardinality

n

. So number

0

is the empty set

∅

.

Because numbers are sets, the successor operation

S

needs to be defined using these sets

as well: an operation that adds one element to the set, in order to have the cardinality

increase by one. That element is the set itself:

S (x) = x ∪ { x }

.

The construction starts as follows:

0 = ∅

1 = S (0) = ∅ ∪ {∅} = {∅} = { 0 }

2 = S (1) = { 0 } ∪ {{ 0 }} = { 0 , { 0 }} = { 0 , 1 }

3 = { 0 , 1 } ∪ {{ 0 , 1 }} = { 0 , 1 , { 0 , 1 }} = { 0 , 1 , 2 }

...

Note that the sets thus produced are highly non-homogeneous:

0

is a set,

1

is a set of

sets,

2

is a set containing both sets and sets of sets, etc.

And since all numbers are created from the natural numbers, we can see all numbers as

being just sets.

IV.C Sets of tuples

Among the variety of objects that can go in a set are couples , and more generally tuples .

A couple is an ordered pair of elements, noted between parentheses: each of the two

component has as distinct role, and cannot be swapped with its neighbor. For example the

couple

(1 , 2)

is different from the couple

(2 , 1)

. One of the best know use of couples is for

coordinates on a plane: the first component is the

x

-coordinate (a.k.a abscissa, horizontal)

while the second component is the

y

-coordinate (a.k.a. ordinate, vertical), and point

(1 , 2)

is different from point

(2 , 1)

.

Tuples are a generalization of couples to more than two components. Other name for

tuples include

n

-uples, where

n

can either be replaced with an actual number (then couples

are

2

-uples) or left unspecified.

60 Introduction to Discrete Mathematics

Set Theory Chapter IV

IV.C.1 Cartesian products

IV.C.1.i Definition

Since each component of a tuple is relatively independent from the other, it is not uncommon

for each component to take value over a different domain. For example,

(⊤ , 3)

is a couple

where the first component is a boolean value and the second a number.

The tuples are therefore elements of a domain which is built as the Cartesian product

of the domains for each component. Sometimes referred to as the cross product , the name

Cartesian is a reference to philosopher and mathematician René Descartes.

This idea also works for sets in the domains: a tuple is an element of the Cartesian

product of several sets if each component belongs to the set in the product. Formally:

Definition: Cartesian product

• For two sets

A

and

B

, the Cartesian product of

A

and

B

is

A × B = { (x, y) | x ∈ A ∧ y ∈ B } ,

the set of couples where the first component is an element of

A

and the second component an element of

B

.

• For

n

sets

A1

, . . . , An

, the Cartesian product of the

Ai

s is

A1

× · · · × An

= { (x1

, . . . , xn) | ∀ i ∈ { 1 , . . . , n } , xi

∈ Ai

} ,

the set of tuples where the

i

-th component belongs to

Ai

.

Cartesian products over domains are frequently used to specify what goes into each

component. For example, to define a triple containing an integer, a real, and a natural

number, one can just write: “ ‘let

t ∈ R × Z × N

”, or “let

(x, k , n) ∈ R × Z × N

” in order to

give a name to each of the components. This can be done for variables, which is often the

case in proofs of universally quantified formula, for instance, or just to particular value, for

example

(42 , π , ⊤) ∈ N × R × {⊤ , ⊥}

.

IV.C.1.ii Cardinality

In a Cartesian product, each component is independent. So in order to build an element of

the product, one can choose an element in the first set, when there are

| A |

choices, then an

element in the second set, where there are

| B |

choices. As a result, there are

| A | · | B |

choices

for elements of the product. This can be generalized for products of more than two sets:

Cardinality of Cartesian Products

The cardinality of the Cartesian product is the product of the cardinalities

of the sets. Namely:

• For two sets

A

and

B

,

| A × B | = | A | · | B |

.

• For

n

sets

A1

, . . . , An

,

| A1

× · · · An

| = | A1

| · · · | An

| =

∏n

i =1

| Ai

|

.

b

The

∏n

i =1

notation is read

“the product for

i

from

1

to

n

of. . . ”.

Introduction to Discrete Mathematics 61

Chapter IV Set Theory

IV.C.1.iii Examples

•

{− 1 , 0 , 1 } × {⊤ , ⊥} = { (− 1 , ⊤) , (0 , ⊤) , (1 , ⊤) , (− 1 , ⊥) , (0 , ⊥) , (1 , ⊥) }

. We can check

that cardinalities match:

|{− 1 , 0 , 1 } × {⊤ , ⊥}| = 3 · 2 = 6

• The coordinates of a point is the plane is an element of

R × R

(also written

R2

). In

space it is in

R × R × R = R3

.

• The product of two finite sets:

{
0 , 1 , . . . , n } × { 0 , 1 , . . . , p } = { (0 , 0) , (0 , 1) , . . . , (0 , p) ,

(1 , 0) , (1 , 1) , . . . , (1 , p) ,

...

...

. . .

...

(n, 0) , (n, 1) . . . , (n, p)
}

Although we used an ellipsis, we can see based on the rectangular display of the set

that the cardinality is indeed

(n + 1) · (p + 1)

.

•

{ p ∈ N | p is even } × { p ∈ N | p is odd } = { (p1

, p2) ∈ N × N | p1

is even and p2

is odd }

,

contain for example the elements

(0 , 1)

,

(2 , 7)

,

(42 , 93)

.

Exercise IV.9

1. Calculate

{⊤ , ⊥} × { a, b, c }

.

2. Give three (distinct) elements of

Z × { x ∈ N | ∃ y ∈ N , y2 = x }

.

3. How many elements are in

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } × { a, b, c, . . . , z }

? (Do not

build the whole set!)

IV.C.2 Relations

IV.C.2.i Definition

As remarked above, in Cartesian products each component is independent from the others.

That is useful when all tuples of a certain type have to be considered, but there is relatively

few information in it.

In relations , on the other hand, there are only some of the tuples. The choice of these

tuples carries some information that goes beyond the type of each component. As for sets

over a domain, choosing which values are included and which are not can be done through a

predicate. In this case, the arity of the predicate will depend on the number of components.

Binary relations are the most common relations and some particular types of binary relations

will be studied in more details in Section IV.C.3 and Chapter V.

Definition: Relation

• A binary relation is a subset of a Cartesian product:

R ⊆ D1

× D2

. It can be

defined by a binary predicate:

{ (x, y) ∈ D1

× D2

| P (x, y) }

.

• A relation is a subset of a Cartesian product :

R ⊆ D1

× · · · × Dn

. It can be

defined by an

n

-ary predicate:

{ (x1

, . . . , xn) ∈ D1

× · · · × Dn

| P (x1

, . . . , xn) }

.

62 Introduction to Discrete Mathematics

Set Theory Chapter IV

For binary relations,

(x, y) ∈ R

is read “

x

is in relation with

y

by

R

”. Sometimes an infix

notation is used and we write

xR y

. Usually for infix notations the relation is named with a

symbol rather than a letter (see Chapter V for several examples of such relations).

As for sets, the link between relations and predicates goes both ways: a relation defined

a predicate that is true when the tuple is in the relation.

Note that by definition a Cartesian product is a relation, although a relation need not

be a Cartesian product.

IV.C.2.ii Examples

•

Pol = { (n, p) ∈ Z × Z | n3 = 3 p2 + 5 }

relates only the integers

n

and

p

that verify the

specific equality

n3 = 3 p2+5

. One such pair is

(2 , 1)

, because

23 = 8

and

3 · 12+5 = 8

.

Another one is

(8 , 13)

, because

83 = 512

and

3 · 3 · 132+5 = 3 · 169+5 = 507+5 = 512

.

(Other pairs include

(2 , − 1)

and

(8 , − 13)

; there does not seem to be any other pair in

this example, although it may not be easy to prove formally.)

• Relation

Rec = { (n, q) ∈ Z × Q | n ̸ = 0 ∧ q =

1

n

}

relates non-zero integers and their

reciprocal.

•

L = { (x, y) ∈ R × R | y = 2 x + 3 }

defines a line in the plane.

•

Pyth = { (a, b, c) ∈ N3 | a2+ b2 = c2 }

is a ternary relation that contains all Pythagorean

triples: integer values that could be legs and hypotenuse of a right triangle.

•

Abs = { (n, p) ∈ Z2 | n2 = p2 }

relates integers that are either equal or opposite (

n = p

or

n = − p

); otherwise said, it relates integers with the same absolute value.

• Relation

Leq = { (n, p) ∈ Z2 | ∃ k ∈ N , n + k = p }

relates

n

to any integer that can be

obtained by adding another positive integer to

n

. This is a convoluted way of saying

that it relates

n

to any number greater than or equal to

n

. So

n

and

p

are in this

relation if and only if

n ≤ p

. Note that this is a way to formally define what it means

to be greater than or equal to, and this relation

Leq

is represented by the infix symbol

≤

.

IV.C.2.iii Projection

Projection of a tuple onto some of its components means ignoring the others. For example

projecting

(1 , 2)

over the first component yields

1

. And projecting

(π , 42 ,

2

3)

over it’s first

and third components yields

(π ,

2

3)

.

This notion is extended to sets: the projection of a relation onto some components is the

relation made of the projected tuples over this component. To know whether a tuple is the

projection of another one, the original tuple must have been in the relation. The missing

components have to be filled with some values in order to build a tuple of the original

relation. This is done through an existential quantifier. In the case of binary relations,

this formally means that the projection

R ⊆ D1

× D2

over the first component is the set

{ x ∈ D1

| ∃ y ∈ D2

, (x, y) ∈ R }

.

In the case of more than two components, the projection is defined the same way, al-

though the notations are a bit more involved in order to separate the components that are

preserved through projection and the ones that are not. The definition below is given more

for completeness’ sake that to be actually applied in the context of this book or course. The

Introduction to Discrete Mathematics 63

Chapter IV Set Theory

T =

firstName

lastName

phoneNumber

John

Doe

1234567890

Jane

Doe

3456789120

Bob

Smith

1723456890

...

...

...

Figure IV.3: A table (relation) in a relational database.

projection of

R ⊆ D1

× · · · × Dn

onto the set of components

B = { i1

, . . . , ik

} ⊆ { 1 , . . . , n }

(with

i1

< · · · < ik

) is the relation

{ (xi1

, . . . , xik) ∈ Di1

× · · · × Dik

| ∃ y1

∈ D1

, . . . , ∃ yn

∈ Dn

, (∀ i ∈ B , xi

= yi) ∧ (y1

, . . . , yn) ∈ R }

Note that for the special case of a Cartesian product, the projection of

A × B

over the

first component is the whole set

A

. Or for more than two components, the projection of a

Cartesian product

D1

× · · · × Dn

onto the set of components

B = { i1

, . . . , ik

} ⊆ { 1 , . . . , n }

(with

i1

< · · · < ik

) is the Cartesian product

Di1

× · · · × Dik

.

In this book, the projection on the

i

-th component is written

σi

(although notations can

vary, this one is pretty frequent in the literature). For example,

σ2({ (x, y) ∈ N2 | x2 = y }) =

{ y ∈ N | ∃ x ∈ N , x2 = y }

is the set of squares.

Exercise IV.10

1. Give three (distinct) elements of

{ (n, x) ∈ N × R | n = x2 + 1 }

.

2. Calculate the projection on the first component of

{ (x, y) ∈ N × N | x = 2 y +1 }

.

Give a set-builder notation and an English description.

IV.C.2.iv Relations in relational databases

i

This is for your

personal culture

more than to

be applied in

this course.

Some database systems, among which all the system of the SQL family are called relational

databases . Although it is convenient to think of the data in these databases as tables where

the data is organized in columns (see Figure IV.3), a table is actually a relation.

The type of each column is given by a domain (words , numbers, numbers with

k

dig-

its. . .). The table itself is a subset of the Cartesian product of the domains, i.e. a relation:

T ⊆ words × words × digits10

, where

T

is the table of Figure IV.3. As a result, a line of such

a table is called a tuple in the database nomenclature.

Extracting data from such a database by finding tuples that satisfy a criterion (for

example lastName being “Doe”) using an SQL query is like building a subset based on that

relation: the SQL query SELECT * FROM T WHERE lastName="Doe" corresponds to the set

{ (f , l , p) ∈ T | l = “Doe” }

.

IV.C.3 Functions

IV.C.3.i Definition and notations

The great strength of relation is that it allows to relate values together. One particular way

to relate values is to attach to each value of one domain to a single corresponding value

64 Introduction to Discrete Mathematics

Set Theory Chapter IV

in the other domain. That is the principle of functions : to each value associate, usually

through calculation, one particular image .

Definition: (Partial) Function

A function is a binary relation

f ⊆ D1

× D2

where each element of

D1

is in relation

with at most one element of

D2

:

∀ x ∈ D1

, ∃ y ∈ D2

, (x, y) ∈ f → ∀ z ∈ D2

, (x, z) ∈

f → z = y

.

Examples of relations that are functions include

Rec = { (n, q) ∈ Z × Q | n ̸ = 0 ∧ q =

1

n

}

relates non-zero integers and their reciprocal and the linear function

L = { (x, y) ∈ R × R |

y = 2 x + 3 }

. On the other hand, relation

Abs = { (n, p) ∈ Z2 | n2 = p2 }

is not a function,

since for example

1

is in relation both with

1

and

− 1

.

In graphical form, this is illustrated in Figure IV.4. The relation of Figure IV.4(a) is not

a function since

1

is in relation both with

A

and

B

. In Figures IV.4(b-f), the represented

relations are function since every element of

D1

is related to at most a single element of

D2

.

Functions are so widespread in mathematics that specific notations and vocabulary. The

only value

y

that is in relation with

x

through

f

is called the image of

x

and is written

f (x)

. In the notation

f (x)

,

x

is the argument of function

f

. In that case

x

is then called

a pre-image of

y

. There can be several pre-images; the set of preimages of

y

is denoted

f

− 1(y)

.

Domain

D1

is the domain of

f

. The projection

σ1(f)

, the “first components” of

f

, is the

domain of definition . It may not match exactly the domain. For example in function

Rec

,

0

is an element of the domain but not the domain of definition.

Domain

D2

is the co-domain of

f

. The projection

σ2(f)

, the “second components” of

f

,

is called the range .

To indicate the domain and co-domain, it is customary to write:

f : D1

→ D2

which is

read as “

f

is a function from

D1

to

D2

”.

b

The arrow here

is not an

implication!

The notion of image is extended to subsets of the domain:

f (A) = { f (x) | x ∈ A }

. So

in particular

f (D1)

is the range of

f

. Similarly, the set of pre-images of a subset

B

of the

codomain is

f

− 1(B) = { x | f (x) ∈ B }

. So in particular

f

− 1(D2)

is the domain of definition

of

f

.

IV.C.3.ii Special cases for domains and co-domain

IV.C.3.ii.a Functions from

R

to

R

The first relations encountered in the mathematics curriculum are relations over real

numbers with real co-domain: relations in

R × R

. In this case it is possible to graph all

the points (ordered pairs of coordinates) in the plane. Using the vertical line test , it is the

possible to check whether the relation is a function: a vertical line must not intersect the

graph in more than one point.

x

-coordinates where a vertical line does intersect the graph

once provide the domain of definition. Using a horizontal line can provide the range of the

function:

y

-coordinates where the horizontal line intersects the graph at least once are in

the range.

Introduction to Discrete Mathematics 65

Chapter IV Set Theory

1

2

3

4

D1

A

B

C

D

D2

(a) A relation that is not a function.

1

2

3

4

D1

A

B

C

D

D2

(b) A partial function.

1

2

3

4

D1

A

B

C

D

D2

(c) A total function (neither injective nor surjective).

1

2

3

4

D1

A

B

C

D2

(d) A surjection (not injective).

1

2

3

D1

A

B

C

D

D2

(e) An injection (not surjective)

1

2

3

4

D1

A

B

C

D

D2

(f) A bijection: both injective and surjective.

Figure IV.4: Illustration of functions: total, injective, surjective, bijective.

66 Introduction to Discrete Mathematics

Set Theory Chapter IV

IV.C.3.ii.b Functions with multiple arguments

Although functions are a special case of binary relations, it is possible to have more

than one argument, and have a tuple as an image. In this case, the domain and co-domain

are understood as a Cartesian product of other domains. A function

f

with

n

arguments

can be defined as

f : D1

× · · · × Dn

→ D′

1

× · × D′

k

. In this case it means that for every

tuple

(x1

, . . . , x2)

there is at most one image

(y1

, . . . , yk)

. So although, technically, writing

f ⊆ D1

× · · · × Dn

× D′

1

× · × D′

k

and

f (⊆ D1

× · · · × Dn) × (D′

1

× · × D′

k)

is the same, separating

domain and co-domain allows to determine on which domain the criterion must apply.

IV.C.3.iii Injection, surjection, bijection

In this section, we assume that

f : D1

→ D2

is a function.

IV.C.3.iii.a Total functions

When the domain and the domain of definition coincide, the function is total . Formally,

f

is total if

∀ x ∈ D1

, ∃ y ∈ D2

, (x, y) ∈ f

. Otherwise it is a partial function.

When

f

is total, we can also write

f ∈ DD1

2

since for every element of

D1

we have the

choice of any element of

D2

. So for a finite domain

A

, with

| A | = n

, and co-domain

B

, with

| B | = p

, there exists

pn

functions from

A

to

B

.

Function

Rec

above is partial since domain and domain of definition do not coincide: the

function is not defined for

0

. Function

L

, on the other hand, is total.

In Figure IV.4(b), the function is not total since

3

has no image. Functions represented

in Figures IV.4(c-f), on the other hand, are all total since every element of the domain has

an image.

IV.C.3.iii.b Surjections

When the co-domain and the range coincide, the function is surjective . Formally,

∀ y ∈

D2

, ∃ x ∈ D1

, (x, y) ∈ f

.

Function

Rec

is not surjective, since not all rational numbers are reciprocals of an integer.

For example

2

5

is not in the range. Function

L

is surjective, since every number

y ∈ R

has

a pre-image; namely, the preimage of

y

is the singleton

{

y − 3

2

}

.

Functions represented in Figures IV.4(b,c,e) are not injective: there is at least an element

(

D

,

D

, and

C

, respectively) that has no preimage. In Figures IV.4(d,f), the function is

surjective.

IV.C.3.iii.c Injections

A total function is injective if every element of the co-domain has at most one pre-image.

Otherwise said, two values of the domain cannot share an image. This is formalized by the

formula

∀ x1

, x2

∈ D1

, f (x1) = f (x2) → x1

= x2

, which states that the only way for two

values

x1

, x2

to have the same image is to be equal.

When a function is injective, the pre-image of any element of the range is a singleton.

In that case it is customary, although a slight abuse of notation, to write

f

− 1(y)

for the

pre-image itself. So for function

L

that is injective, one could write

L− 1(y) =

y − 3

2

.

Introduction to Discrete Mathematics 67

Chapter IV Set Theory

In Figures IV.4(c,d), the functions are not injective since

C

has pre-images

1

and

4

,

and

A

has pre-images

2

and

3

, respectively. In Figures IV.4(e,f), the depicted functions are

injective.

IV.C.3.iii.d Bijections

A total function both injective and surjective is called bijective , (sometimes also referred

to as a one-to-one mapping).

Bijective functions have an inverse : relation

f

− 1 : B → A

defined as

{ (y , x) ∈ B × A |

(x, y) ∈ f }

. Relation

f

− 1

:

• is a function because

f

is injective;

• is total because

f

is surjective;

• is surjective because

f

is total (which is a condition to be injective).

Since the inverse function associates to any element of

B

its pre-image, the same notation

is used. The term inverse relates to the fact that if

f

is combined with

f

− 1

, the identity

function is created. In other terms, the effect of

f

and

f

− 1

cancel each other. Formally:

∀ x ∈ A, f

− 1(f (x)) = x

and

∀ y ∈ B , f (f

− 1(y)) = y

.

Function

L

, being both injective and surjective, is bijective. Its inverse function

L− 1 :

R → R

is defined as for any

y ∈ R

,

L− 1(y) =

y − 3

2

. In Figure IV.4(f), the function is bijective.

Exercise IV.11

For each of the following relations, determine whether it is a function, and if so:

• whether it is a total function

– if not give the domain of definition

– if so whether it is injective

• whether it is surjective, if not give the range.

All your answers must be justified by a proof!

1.

{ (x, y) ∈ R × R | 6 x + 2 y = 5 }

2.

{ (x, y) ∈ R × R | x · y = 42 }

3.

{ (x, y) ∈ R × R | y = cos(x) }

4.

{ (x, y) ∈ R × [− 1 , 1] | y = cos(x) }

5.

{ (x, y) ∈ [0 , π] × [− 1 , 1] | y = cos(x) }

6.

{ (x, y) ∈ R × R | x = cos(y) }

IV.C.3.iv Injection, surjection, bijection and cardinality

IV.C.3.iv.a Functions for cardinality comparison

In this section, assume

f : A → B

is a total function.

If

f

is injective, then every element of

A

points to a different element of

B

. So there

must be at least as many elements in

B

as there are in

A

:

| A | ≤ | B |

.

If

f

is surjective, then every element of

B

is pointed by at least an element of

A

. So

there must be at least as many elements in

A

as there are in

B

:

| A | ≥ | B |

.

If

f

is bijective, then we have both

| A | ≤ | B |

and

| A | ≥ | B |

, therefore

| A | = | B |

.

Note that this idea works both for finite and infinite sets. And that provides a way to

compare the cardinality of infinite sets.

68 Introduction to Discrete Mathematics

Set Theory Chapter IV

Let

A

and

B

be two sets.

•

| A | ≤ | B |

iff there exists an injection from

A

to

B

.

•

| A | ≥ | B |

iff there exists a surjection from

A

to

B

.

•

| A | = | B |

iff there exists a bijection between

A

and

B

.

IV.C.3.iv.b Proof techniques for cardinality comparison

So in order to prove that sets

A

and

B

have the same cardinality, there are several

possibilities.

• Exhibit a bijection between

A

and

B

: find a function

f : A → B

, prove that it is

bijective.

• Or exhibit an injection from

A

to

B

and an injection from

B

to

A

: find a function

g : A → B

and a function

h : B → A

; prove that both are injective.

Note that if

f : A → B

is bijective, then both

f

and

f

− 1

are injective. Choosing

g = f

and

h = f

− 1

would therefore follow the second approach. The advantage of the second approach

is that

h

need not be the inverse of

g

, which is sometimes easier.

Proving that one set is strictly larger is often more involved: to prove

| A | > | B |

, it must

be proved that there is no injection from

A

to

B

. Proving the absence of an object is difficult

in a direct proof. The usual approach is to assume that there is an injection and show a

contradiction.

IV.C.3.iv.c The pigeonhole principle

The above theorem on cardinality can also be used the other way round: if set

A

has

more elements than set

B

, then there cannot be an injection from

A

into

B

. This idea is

what is formalized in the pigeonhole principle : If there are

n

pigeons and

p < n

pigeonholes,

then there is at least a hole with two or more pigeons.

Formally, it can be reformulated as follows. Assume

| A | = n

and

| B | = p

with

p < n

,

then:

• There is no injection from

A

to

B

.

• For any total function

f : A → B

, there exists

x1

, x2

∈ A

such that

x1

̸ = x2

and

f (x1) = f (x2)

.

This principle is a useful proof tool. For example, assume a set

X

is partitioned into

n

sets:

X = A1

⊎ A2

⊎ · · · ⊎ An

. For any

n + 1

elements of

X

, at least two belong to the same

set

Ai

. This is because mapping

n +1

elements into the subset they belong to cannot be an

injection.

IV.C.3.iv.d Countability

The usual domains

N

,

Z

,

Q

, and

R

are all infinite. But to compare these infinites, one

must use injections (or prove they do not exist).

Introduction to Discrete Mathematics 69

Chapter IV Set Theory

First, we can remark that we have the inclusions

N ⊆ Z ⊆ Q ⊆ R

, so we have

| N | ≤

| Z | ≤ | Q | ≤ | R |

. (To exhibit an injection when there is inclusion, simply use the identity

function

Id (x) = x

, which is clearly injective.)

N

being the smallest of our usual domains, we will try to compare cardinalities to

| N |

.

Definition: Countable

A set

A

is countable if

| A | ≤ | N |

.

The term countable stems from the fact that the elements of a countable set can be

attributed a unique number, called an index (which is what is done when counting), even if

that continues to infinity. Not that in particular all finite sets are countable.

The first result, that might seem counterintuitive at first, is as follows:

Theorem

Z

and

Q

are countable sets:

| N | = | Z | = | Q |

.

This theorem is proved by providing injections into

N

.

Inject

Z

in

N

We need to find a function

f : Z → N

such that no two elements of

Z

have the same image. The problem is to fold a number line that extends in both direction

into a number line that only extends into the positive integers. The solution is to insert a

negative number between two positive numbers, and to count as follows:

Value (in

Z

)

0

1

− 1

2

− 2

. . .

Index (in

N

)

0

1

2

3

4

. . .

Formally, our function

f

will map strictly positive numbers go to odd numbers while negative

numbers (and 0) will go to even numbers. For

p ∈ Z

, if

p > 0

,

f (p) = 2 p − 1

and if

p ≤ 0

,

f (p) = − 2 p

.

Note that a similar idea can be used in order to prove that the set of even natural

numbers is a big as the whole set of natural numbers, by injecting

N

into the even numbers.

i

This is for your

personal culture

more than to

be applied in

this course.

Inject

Q

into

N

This is actually performed in two steps:

• Inject

Q

into

Z × Z

. This part is rather straightforward. We can define

f

by taking,

for any rational number written as a fraction

p

q

,

f

(

p

q

)

= (p, q)

. Not that technically

there are more than one choice for

p

and

q

, but this can be resolved either by asking

that

p

q

is an irreducible fraction, or by using the Axiom of Choice which states that it

is possible to choose one value from the infinitely many fractions that can represent

p

q

.

Function

f

is an injection: any pair

(p, q)

corresponds to at most one rational number

p

q

.

• Inject

Z × Z

in

N

. This is more involved, and will not actually be shown here in full

formality. One way to perform this injection, is to index

Z × Z

by

N

using a spiral

in the plane of integers, as depicted in Figure IV.5. While this is, in my opinion,

convincing enough to understand why this injection is possible, it does not constitute

a formal proof. It is however not easy to formally define a function from this idea,

as calculating the index from the coordinates is not direct. Other proofs exist that

70 Introduction to Discrete Mathematics

Set Theory Chapter IV

(− 4 , − 2)

(− 4 , − 1)

(− 4 , 0)

(− 4 , 1)

(− 4 , 2)

...

...

(− 3 , − 2)

(− 3 , − 1)

(− 3 , 0)

(− 3 , 1)

(− 3 , 2)

...

...

(− 2 , − 2)

(− 2 , − 1)

(− 2 , 0)

(− 2 , 1)

(− 2 , 2)

...

...

(− 1 , − 2)

(− 1 , − 1)

(− 1 , 0)

(− 1 , 1)

(− 1 , 2)

...

...

(0 , − 2)

(0 , − 1)

(0 , 0)

(0 , 1)

(0 , 2)

...

...

(1 , − 2)

(1 , − 1)

(1 , 0)

(1 , 1)

(1 , 2)

...

...

(2 , − 2)

(2 , − 1)

(2 , 0)

(2 , 1)

(2 , 2)

...

...

(3 , − 2)

(3 , − 1)

(3 , 0)

(3 , 1)

(3 , 2)

...

...

(4 , − 2)

(4 , − 1)

(4 , 0)

(4 , 1)

(4 , 2)

...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

.

.

.

. . .

. . .

.

.

.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Figure IV.5: Injecting

Z × Z

into

N

, a graphical idea.

do not use this spiral idea exist but use more involved tools and therefore will not be

provided here.

IV.C.3.iv.e Uncountability

The case of

R

is different from

Q

. Intuitively, the difference between rational numbers

and real numbers can be interpreted as a difference in the quantity of information they carry.

The decimals in a rational number is a repeating pattern, so it is sufficient to remember

the pattern to be able to reconstruct the number with arbitrary precision. For real irrational

numbers, there is no repeating pattern, so all the decimals (infinitely many of them!) have

to be stored in order to achieve arbitrary precision.

So for any rational number, even with a very long repeating pattern, there will be an

infinity of irrational number slightly different around it. This idea of slightly changing the

numbers is what makes

R

much bigger than

N

:

Theorem

The set of real numbers is uncountable:

| R | > | N |

.

i

This is for your

personal culture

more than to

be applied in

this course.

The proof of uncountability of

R

that follows is due to Georg Cantor. It is a proof by

contradiction called the diagonalization proof (or diagonalization argument), and goes as

follows.

Assume, by contradiction, that

| R | = | N |

. Then we have a bijection

f

between

N

and

R

.

Note that here

f

is not the indexing function, but

f

− 1

is. For a real number

x

,

f

− 1(x)

give the index of the real number

x

. On the other hand, for any natural number

n

,

f (n)

gives the

n

-th real number.

We can therefore write all the real numbers in the order they are indexed:

f (1)

,

f (2)

, . . . , aligning them on the decimal point. Then consider the real number

z =

Introduction to Discrete Mathematics 71

Chapter IV Set Theory

z = 0 .

f (0) = 677 .

8

0

4

2

3

0

9

1

2

9

2

3

7

. . .

9

f (1) = 741 .

3

4

8

8

6

3

1

7

1

1

0

0

9

. . .

5

f (2) = − 592 .

6

3

9

7

6

5

6

8

4

8

3

6

8

. . .

0

f (3) = − 230 .

2

0

3

5

6

1

6

0

0

9

1

3

4

. . .

6

f (4) = 639 .

8

1

5

3

2

1

5

8

5

1

1

8

8

. . .

3

f (5) = − 570 .

3

8

8

2

3

0

8

5

3

8

3

4

0

. . .

1

f (6) = − 467 .

9

9

7

8

2

7

9

0

1

8

4

8

8

. . .

0

f (7) = − 276 .

7

3

3

6

2

4

6

1

0

0

8

3

4

. . .

2

f (8) = 795 .

4

6

2

1

3

0

4

2

5

3

4

7

6

. . .

6

. . . / ∈ f (N)

...

. . .

Figure IV.6: Cantor’s diagonalization argument.

0 .d1

d2

d3

. . .

(where

di

is the

i

-th digit after the decimal point) built as follows:

• Take the first digit after the decimal point of

f (1)

, and add 1 to it (truncating

10 to 0): this is

d1

.

• Take the second digit after the decimal point of

f (2)

, and add 1 to it (truncating

10 to 0): this is

d2

.

...

• Take the

i

-th digit after the decimal point of

f (i)

, and add 1 to it (truncating

10 to 0): this is

di

.

...

• Continue for infinitely many steps.

An illustration of this process that uses the digits of the diagonal (hence the name)

is given Figure IV.6.

For any

i ∈ N

,

z

differs from

f (i)

at least in digit

i

, so

z ̸ = f (i)

. So

z

has no pre-image

by

f

, and

f

is not surjective, and that contradicts the assumption that

f

is bijective. E

Therefore

| R | ̸ = | N |

, and since

| R | ≥ | N |

that means

| R | > | N |

.

72 Introduction to Discrete Mathematics

Chapter V

Equivalence and Order Relations

Chapter contents

V.A Equivalence relations . 74

V.A.1 Definition and notation . 74

V.A.1.i Formal and informal definitions 74

V.A.1.ii Proving equivalence 74

V.A.1.iii Notations . 75

V.A.2 Equivalence classes . 76

V.A.2.i Definition . 76

V.A.2.ii Partition using equivalence classes 77

V.A.2.iii Quotient by an equivalence relation 77

V.A.2.iv Equivalence classes in mathematics 78

V.B Order relations . 80

V.B.1 Definition and notation . 80

V.B.1.i Formal and informal definition 80

V.B.1.ii Proving a relation is an order 81

V.B.1.iii Notations for orders 82

V.B.1.iv Strict orders . 82

V.B.2 Partial v total orders . 83

V.B.3 Lexicographic orders . 84

V.B.3.i Definition . 84

V.B.3.ii Lexicographic orders are orders 85

V.B.3.iii Lexicographic orders and totality 86

Introduction to Discrete Mathematics 73

Chapter V Equivalence and Order Relations

V.A Equivalence relations

Equivalence relations are a special kind of relations between elements of the same set or

domain. In English, two objects are equivalent if they are the same for a given purpose .

And if the saying states that “if it talks like a duck and it walks like a duck, then it must be

a duck”, the mathematician would be more prudent and only state that ”it is equivalent to

a duck regarding the talking and walking”.

V.A.1 Definition and notation

V.A.1.i Formal and informal definitions

The criteria on which the equivalence is performed can be about anything. The only condi-

tion is that it follows the three conditions of the following definition:

Definition: Equivalence relation

A binary relation

R ⊆ A × A

is an equivalence relation if it is:

Reflexive

∀ x ∈ A, (x, x) ∈ R

Symmetric

∀ x, y ∈ A, (x, y) ∈ R → (y , x) ∈ R

Transitive

∀ x, y , z ∈ A, (x, y) ∈ R ∧ (y , z) ∈ R → (x, z) ∈ R

Reflexivity states that every element is equivalent to itself. This makes intuitive sense: an

object is equivalent to itself for every purpose. So a relation that does not see as equivalent

an object with itself cannot be an equivalence relation.

Symmetry means that if

x

is equivalent to

y

, then

y

is equivalent to

x

. The order does

not matter; in English we actually say that “two objects are equivalent”, and the grammar

does not indicate any order either.

Transitivity requires than if

x

is equivalent to

y

and

y

equivalent to

z

, then

x

is equivalent

to

z

as well. In this the math departs a bit from the intuition. In English, “equivalent” can

be understood as ”almost the same”, and transitivity may not be assumed when speaking of

almost the same objects. This ambiguity is at the heart of Sorites paradoxes : if a heap of

10000 rice grains is equivalent to a heap of 9999 rice grains, which is equivalent to a heap

of 9998 rice grains, . . . , which is equivalent to a heap of 1 grain; if there is transitivity, a

heap of 10000 grains is equivalent to a heap of 1 grain, which sounds absurd. Transitivity is

therefore required in the mathematical definition in order to prevent this kind of situation:

a heap of 1 grain has to actually be equivalent to a heap of 10000 grains for the “equivalence”

to be well defined (this equivalence can be for example “being a heap containing rice”).

When all the criteria are met, the relation is said to be an equivalence relation over

A

,

indicating the domain by the same sentence. In that case, to elements in relation are said

to be “equivalent up to the relation”.

V.A.1.ii Proving equivalence

Whenever a relation is claimed to be an equivalence relation, this fact must be proved. The

proof follows the definition: it is in three parts to deal separately with reflexivity, symmetry,

and transitivity (labeling the parts of the proof with R, S, T is advised). Each part is a

74 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

universally quantified statement, so variables of the set have to be taken: 1 for reflexivity,

2 for symmetry, 3 for transitivity. Then, for symmetry and transitivity, the premise of the

implication has to be assumed in order to prove the conclusion. The assumption of the

premise combined with the definition of the relation usually provides enough to prove the

conclusion rather easily. As a result, all proofs that a relation is an equivalence relation look

alike.

V.A.1.ii.a Example: Identity relation

On any set

A

, the identity relation

Id = { (x, x) | x ∈ A }

is an equivalence relation.

Although this proof is rather trivial, it still follows the aforementioned plan:

R

Let

x ∈ A

. By definition of Id ,

(x, x) ∈ Id

, so Id is reflexive.

S

Let

x, y ∈ A

. Assume

(x, y) ∈ Id

. Then

y = x

, so

(y , x) = (x, x) ∈ Id

. So Id is

symmetric.

T

Let

x, y , z ∈ A

. Assume

(x, y) ∈ Id

and

(y , z) ∈ Id

. Then

x = y

and

y = z

.

Therefore

x = z

and

(x, z) ∈ Id

. As a result Id is transitive.

Since, Id is reflexive, symmetric, and transitive, it is an equivalence relation.

V.A.1.ii.b Example: Integral part

On the set of reals, define

F = { (x, y) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

.

Intuitively, this relation deems relates all numbers that have the same integral part:

2

is related to

2 . 39

, to

5

2

, to

e

(

2 . 718 . . .

), to

√

5

(

2 . 236 . . .

), or any number that is

2

point

something. Of course that means

e

is related to

2

, and to

√

5

as well, so symmetry and

transitivity do seem to hold.

It can be proved that

F

is an equivalence relation:

R

Let

x ∈ R

. We have

⌊ x ⌋ = ⌊ x ⌋

so

(x, x) ∈ F

, so

F

is reflexive.

S

Let

x, y ∈ R

. Assume

(x, y) ∈ F

. That means, by definition of

F

, that

⌊ x ⌋ = ⌊ y ⌋

.

Then

⌊ y ⌋ = ⌊ x ⌋

and

(y , x) ∈ F

. So

F

is symmetric.

T

Let

x, y , z ∈ R

. Assume

(x, y) ∈ F

and

(y , z) ∈ F

. That means, by definition of

F

, that

⌊ x ⌋ = ⌊ y ⌋

and

⌊ y ⌋ = ⌊ z ⌋

. As a result

⌊ x ⌋ = ⌊ z ⌋

and

(x, z) ∈ F

, so

F

is

transitive.

Since,

F

is reflexive, symmetric, and transitive, it is an equivalence relation.

V.A.1.iii Notations

Since equivalence relations are binary, it is common to use an infix symbol to denote them:

a symbol written in between the two variables or values.

Introduction to Discrete Mathematics 75

Chapter V Equivalence and Order Relations

And to highlight the symmetric nature of these relations, symmetrical symbols are often

used:

≡

,

∼

,

≈

,

≃

,

▷◁

,

∼=

. The equality symbol

=

is, despite being symmetrical, being

“reserved” for the identity relation, and is therefore not used for any other.

Definitions are often written using the infix symbol, for example: “Let

∼ = { (n, p) ∈ Z2 |

n2 = p2 }

”. Note that the set-builder notation is not always used to define these relations.

More often, an English statement of the same fact is used instead. For example the above

relation can also be introduced as such: “Let

∼

be the relation over

Z

defined as

n ∼ p

if

and only if

n2 = p2

”.

Remark that using a symmetrical symbol does not make the relation symmetrical or

even an equivalence relation, that must be proved separately!

Exercise V.1

Prove that the following relations are equivalence relations.

1. Relation

≡

over

N × N

defined as

(n1

, p1) ≡ (n2

, p2)

iff

n1

+ p1

= n2

+ p2

.

2.

≈ = { (x, y) ∈ R × R | cos(x) = cos(y) and sin(x) = sin(y) }

.

3. Relation

≃

over

Z × (N \ { 0 })

defined as

(p1

, q1) ≃ (p2

, q2)

iff

p1

· q2

= p2

· q1

.

4.

∼ = { (n, p) ∈ Z × Z | ∃ k ∈ Z , n = p + 5 k }

.

V.A.2 Equivalence classes

V.A.2.i Definition

Elements that are equivalent to each other are all equivalent together, by transitivity. In the

example above of relation

F = { (x, y) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

, elements

2

,

2 . 39

,

5

2

,

e

, are

√

5

all equivalent together. They can therefore be grouped together into an equivalence class .

Definition: Equivalence class

Let

≈

be an equivalence relation over a set

A

.

The equivalence class of

x

for is the set

[x]≈

= { y ∈ A | x ≈ y }

Sometimes the relation is omitted and the equivalence class is simply denoted

[x]

when

the relation is clear from the context.

An immediate consequence of this definition is that being equivalent and being in the

equivalence class is the same:

Lemma

Let

≈

be an equivalence relation over

A

.

Then

x ≈ y

if and only if

[x]≈

= [y]≈

.

Proof

This is an equivalence, which we can prove by proving implication in both directions:

x ≈ y ⇒ [x]≈

= [y]≈

and

x ≈ y ⇐ [x]≈

= [y]≈

.

⇒

Assume

x ≈ y

. To prove a set equality we prove set inclusion in both directions:

76 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

[x]≈

⊆ [y]≈

and

[x]≈

⊇ [y]≈

.

⊆

Let

t ∈ [x]≈

, by definition

t ≈ x

, and by transitivity

t ≈ y

. By symmetry

y ≈ t

so

t ∈ [y]≈

. As a result

[x]≈

⊆ [y]≈

.

⊇

The converse inclusion is proved in a similar way (only the point where

symmetry is used changes); it could be omitted but is given here for com-

pleteness’ sake. Let

t ∈ [y]≈

, by definition

t ≈ y

. By symmetry

y ≈ t

and

by transitivity

x ≈ t

so

t ∈ [x]≈

. As a result

[y]≈

⊆ [x]≈

.

Therefore

[x]≈

= [y]≈

.

⇐

Assume

[x]≈

= [y]≈

. We have in particular

y ∈ [y]≈

(by reflexivity) so

y ∈ [x]≈

hence

y ≈ x

and by symmetry

x ≈ y

.

For example, the set

[2]F

contains all real numbers that have integral part of

2

:

2 ∈ [2]F

,

5

2

∈ [2]F

,

e ∈ [2]F

,

√

5 ∈ [2]F

, Note that

[2]F

= [
√

5]F

, and any of the equivalent value

could have been chosen as a representative.

V.A.2.ii Partition using equivalence classes

The second consequence of the definition of equivalence classes is that it not only groups

equivalent elements together: it puts every element in a single equivalence class. Formally:

Theorem

Let

≈

be an equivalence relation over a set

A

. Equivalence

classes for

≈

over

A

form a partition of

A

.

Proof

First, by reflexivity, every element

x ∈ A

is in

[x]≈

. So every classes is non-empty

(

[x]≈

contains at least

x

) and together they cover

A

:

⋃

x ∈ A[x]≈

= A

.

What remains to be proved is that equivalence classes are pairwise disjoint: two

equivalence classes that are not identical are disjoint. We prove the contrapositive:

two equivalence classes that are not disjoint are identical.

Let

[x]≈

and

[y]≈

be equivalence classes. Assume that

[x]≈

and

[y]≈

are not disjoint.

That means

[x]≈

∩ [y]≈

̸ = ∅

so there exists an element

t ∈ [x]≈

∩ [y]≈

, i.e.

t ∈ [x]≈

and

t ∈ [y]≈

. By definition of

t ∈ [x]≈

, we have

t ≈ x

. By definition of

t ∈ [y]≈

, we

have

t ≈ y

. By symmetry and transitivity, we have

x ≈ y

, which means

[x]≈

= [y]≈

by the above Lemma.

V.A.2.iii Quotient by an equivalence relation

Since equivalence classes partitions

A

, this set can be seen as “zoomed out” through the

prism of an equivalence relation

≈

: two elements that are equivalent for

≈

will be seen as

the same.

This is called the quotient of

A

by

≈

. It is defined as follows:

Introduction to Discrete Mathematics 77

Chapter V Equivalence and Order Relations

Definition: Quotient by

≈

Let

≈

be an equivalence relation over

A

. The quotient of

A

by

≈

is

A/≈

= { [x]≈

| x ∈ A }

, the set of equivalence relations of

≈

.

V.A.2.iii.a Example: Quotient by integral part

For example over the reals, the relation

F = { (x, y) ∈ R × R | ⌊ x ⌋ = ⌊ y ⌋}

groups into

equivalence classes all numbers that start with the same integer (this is only completely

true for positive numbers; for negative numbers it is a slight approximation since

⌊− 4 ⌋ =

⌊− 3 . 14 ⌋ = − 4

).

So an equivalence class can be represented by that integer, so the quotient of

R

by

F

is

{ [n]F

| n ∈ Z }

. That means that

R /F

is just like

Z

: we say that

R /F

is isomorphic to

Z

,

since these sets behave the same for all mathematical purposes.

b

For sets, being

isomorphic is

also an

equivalence

relation!

V.A.2.iii.b Example: Quotient by equivalent fraction

Consider another example. Let

≃

be the relation over

Z × (N \ { 0 })

defined as

(p1

, q1) ≃

(p2

, q2)

iff

p1

· q2

= p2

· q1

. This relation can be seen as marking as equivalent fractions that

represent the same number. Proving it is an equivalence relation was done in Exercise V.1,

Question 1.

The quotient of

Z × (N \ { 0 })

by

≃

has one element per rational number; it is actually

a way to construct the set of rationals:

Q = (Z × (N \ { 0 })) /≃

V.A.2.iv Equivalence classes in mathematics

V.A.2.iv.a Logical equivalence

As the name indicates, logical equivalence is an equivalence relation over propositional

formulas. Remember that logical equivalence is defined as follows:

φ ≡ ψ

iff for any valuation

of atomic proposition,

φ

is true if and only if

ψ

is true.

↬

See

Section I.B.2.ii.

Proving it is an equivalence is pretty

straightforward and is left to the reader as an exercise.

The more interesting question here is: what do equivalence classes look like? What

would be a good representative? As logically equivalent formulas share the same truth

table (the last column), a truth table represents all formulas that are true exactly for these

combinations of truth values for atomic propositions.

We can evan count how many classes there are. For

n

atomic propositions, there are

2n

lines in a truth table. Each can be either

⊤

or

⊥

, so

2

choices. As a result there are

22
n

classes.

For example with 2 variables there are

22
2

= 16

formulas that are sufficient to describe

all formulas up to logical equivalence . For

3

propositional variables, there are

22
3

= 256

possible truth tables.

i

This is for your

personal culture

more than to

be applied in

this course.

Remark that the truth table itself is not a formula, and sometimes it is better to use an

actual formula as the representative. There are several options for that, which are called

normal forms , among which the conjunctive normal form and the disjunctive normal form.

The disjunctive normal form is the one that resembles the most to the truth table: it is built

78 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

as the disjunction of all lines where the formula is true, each line being the conjunction of

atomic propositions (when

⊤

) or their negation (when

⊥

).

p

q

r

φ

⊤

⊤

⊤

⊥

⊤

⊤

⊥

⊤

⊤

⊥

⊤

⊥

⊤

⊥

⊥

⊤

⊥

⊤

⊤

⊤

⊥

⊤

⊥

⊥

⊥

⊥

⊤

⊤

⊥

⊥

⊥

⊥

Figure V.1: A truth ta-

ble: an equivalence class

for the logical equivalence

relation.

For example for formula

φ

whose truth table is given in

Figure V.1 is equivalent to

(p ∧ q ∧ ¬ r) ∨ (p ∧ ¬ q ∧ ¬ r) ∨ (¬ p ∧ q ∧ r) ∨ (¬ p ∧ ¬ q ∧ r) .

In this disjunction, the first term

p ∧ q ∧ ¬ r

corresponds to

the second line, where

p

is

⊤

,

q

is

⊤

, and

r

is

⊥

so

¬ r

is

⊤

.

This line was selected because

φ

is

⊤

, and so were the fourth,

fifth, and seventh lines, corresponding to the other terms in the

disjunction.

Conjunctive normal form is obtained as the negation of

the disjunctive normal form of the negation. In practice, that

means building a disjunctive normal form using lines where the

formula is

⊥

, then negating this formula and applying De Mor-

gan’s laws and double negation elimination in order to obtain

a conjunction of disjunctions.

In the example of Figure V.1, the conjunctive normal form

is obtained as:

¬ ((p ∧ q ∧ r) ∨ (p ∧ ¬ q ∧ r) ∨ (¬ p ∧ q ∧ ¬ r) ∨ (¬ p ∧ ¬ q ∧ ¬ r)) ≡

¬ (p ∧ q ∧ r) ∧ ¬ (p ∧ ¬ q ∧ r) ∧ ¬ (¬ p ∧ q ∧ ¬ r) ∧ ¬ (¬ p ∧ ¬ q ∧ ¬ r) ≡

(¬ p ∨ ¬ q ∨ ¬ r) ∧ (¬ p ∨ ¬¬ q ∨ ¬ r) ∧ (¬¬ p ∨ ¬ q ∨ ¬¬ r) ∧ (¬¬ p ∨ ¬¬ q ∨ ¬¬ r) ≡

(¬ p ∨ ¬ q ∨ ¬ r) ∧ (¬ p ∨ q ∨ ¬ r) ∧ (p ∨ ¬ q ∨ r) ∧ (p ∨ q ∨ r)

V.A.2.iv.b Similar triangles

In geometry, similar triangles are triangle that bear the same proportions. It is formally

defined over triplets of points in the plane (each being two coordinates), as

AB C ∼ A′ B

′ C

′

iff

AB

A′ B

′

=

B C

B

′ C

′

=

AC

A′ C

′

.

In geometrical terms, similar triangles are triangles that are the same up to scaling,

rotation, and mirror image.

Technically, this relation is a subset of

((R × R) × (R × R) × (R × R)) × ((R × R) × (R ×

R) × (R × R)) = ((R2)3)2

, but no one writes it that convoluted way!

Exercise V.2

1. Let

≈ = { (x, y) ∈ R × R | cos(x) = cos(y) and sin(x) = sin(y) }

. It was

proved to be an equivalence relation in Exercise V.1, Question 2. What are the

equivalence classes of

≈

? Describe the classes in English or formally.

2. Let

∼ = { (n, p) ∈ Z × Z | ∃ k ∈ Z , n = p + 5 k }

. It was proved to be an

equivalence relation in Exercise V.1, Question 4. What are the equivalence

classes of

∼

Describe the classes in English or formally; at least give how many

there are.

Introduction to Discrete Mathematics 79

Chapter V Equivalence and Order Relations

A

B

C

A′′

B

′′

C

′′

A′

B

′

C

′

Figure V.2: Similar triangles

AB C

,

A′ B

′ C

′

, and

A′′ B

′′ C

′′

.

V.B Order relations

V.B.1 Definition and notation

V.B.1.i Formal and informal definition

An order relation, or order for short, allows to compare elements. The choice of the com-

parison criterion is given in the relation’s definition. This is defined as follows:

Definition: Order relation

A binary relation

R ⊆ A × A

is an order relation over

A

if it is:

Reflexive

∀ x ∈ A, (x, x) ∈ R

Antisymmetric

∀ x, y ∈ A, ((x, y) ∈ R ∧ (y , x) ∈ R) → x = y

Transitive

∀ x, y , z ∈ A, (x, y) ∈ R ∧ (y , z) ∈ R → (x, z) ∈ R

Reflexivity requires that elements compare to themselves.

Antisymmetry requires states that the only way for elements to compare in both direction

is to be equal. This property ensures that the relation is one-direction only.

Transitivity is conform to intuition: if

a

is smaller than

b

and

b

is smaller than

c

, then

a

is smaller than

c

.

Symmetry v Antisymmetry

Remark than antisymmetry is not the negation of symmetry. It is possible for a relation

to be both symmetric and antisymmetric. In this case, whenever

(x, y) ∈ R

,

(y , x) ∈ R

by symmetry, then

x = y

by antisymmetry. That means the only relations that are both

symmetric and antisymmetric are included in the identity relation.

In addition, a relation can be neither symmetric nor antisymmetric. For example over the

set

{− 1 , 0 , 1 }

, consider relation

⊸ = { (− 1 , − 1) , (− 1 , 0) , (− 1 , 1) , (0 , 0) , (1 , − 1) , (1 , 0) , (1 , 1) }

.

80 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

We don’t have symmetry because

1 ⊸ 0

but not

0 ⊸ 1

. We don’t have antisymmetry either

because

− 1 ⊸ 1

and

1 ⊸ − 1

, but

− 1 ̸ = 1

.

V.B.1.ii Proving a relation is an order

The definition being in three parts, proofs that a relation is an order relation will follow

the same plan; it is useful to clearly mark these parts using the letter R, A, T. Then for

reflexivity take one element, two for antisymmetry, and three for reflexivity. This plan is

actually very similar to the one used for equivalence relations (see Section V.A.1.ii).

V.B.1.ii.a Example: Identity relation

It was proved in Section V.A.1.ii.a that the identity relation

Id = { (x, x) | x ∈ A }

is reflexive and transitive. As noted above, it is also antisymmetric: if

(x, y) ∈ Id

and

(y , x) ∈ Id

, then by definition

x = y

.

V.B.1.ii.b Example: Less than or equal to

Relation

Leq = { (n, p) ∈ Z2 | ∃ k ∈ N , n + k = p }

, which corresponds to

≤

, is an order.

Although that seems obvious since

≤

is “the” very first order relation that is introduced on

numbers, it ought to be proved formally. In this case, two numbers are related when there

exists a natural number satisfying a property. When

(n, p) ∈ Leq

is assumed, then we will

take such a number

k

(existential instantiation). When it must be proved that

(n, p) ∈ Leq

,

we must exhibit such a value (existential generalization).

R

Let

n ∈ Z

. We have

n + 0 = n

, so by choosing

k = 0

we have

(n, n) ∈ Leq

. So

Leq

is reflexive.

A

Let

n, p ∈ Z

. Assume

(n, p) ∈ Leq

and

(p, n) ∈ Leq

. Then there exists

k , k

′ ∈ N

such that

n + k = p

and

p + k

′ = n

. So

n + k + k

′ = n

, so

k + k

′ = 0

. That

means

k = k

′ = 0

, so

n = p

. As a result,

Leq

is antisymmetric.

T

Let

n, p, m ∈ Z

. Assume

(n, p) ∈ Leq

and

(p, m) ∈ Leq

. Then there exists

k , k

′ ∈ N

such that

n + k = p

and

p + k

′ = m

. So

n + k + k

′ = m

. Let

k

′′ = k + k

′

. We have

n + k

′′ = m

, so

(n, m) ∈ Leq

. As a result

Leq

is transitive.

Relation

Leq

is reflexive, antisymmetric, and transitive. Therefore it is an order

relation.

V.B.1.ii.c Example: Divisibility

↬

Section VII.A.1

is devoted to

the concept of

divisibility.

On natural numbers,

D = { (n, p) ∈ N2 | ∃ k ∈ N , n = k · p }

is called the divisibility

relation: when

(n, p) ∈ D

, we say that

p

divides

n

(

n

is a multiple of

p

).

We can prove it is an order relation:

Introduction to Discrete Mathematics 81

Chapter V Equivalence and Order Relations

R

Let

n ∈ N

. We have

n = 1 · n

. So by choosing

k = 1

we have

(n, n) ∈ D

, hence

D

is reflexive.

A

Let

n, p ∈ N

. Assume

(n, p) ∈ D

and

(p, n) ∈ D

. Then there are

k , k

′ ∈ N

such

that

n = k · p

and

p = k

′ · n

, and

n = k · k

′ · n

. So

k · k

′ = 1

, hence

k = m = 1

and

n = p

. As a result

D

is antisymmetric.

T

Let

n, p, m ∈ N

. Assume

(n, p) ∈ D

and

(p, m) ∈ D

. Then there are

k , k

′ ∈ N

such that

n = k · p

and

p = k

′ · m

, and

n = k · k

′ · m

. Let

k

′′ = k · k

′

. We have

n = k

′′ · m

so

(n, m) ∈ D

and

D

is transitive.

Relation

D

is reflexive, antisymmetric, and transitive. Therefore it is an order relation.

V.B.1.ii.d Example: Inclusion

On any domain, the set inclusion relation

In = { (A, B) ∈ P (D)2 | A ⊆ B }

is an order

relation:

R

Let

A

be a set. We have

A ⊆ A

so

(A, A) ∈ In

and

In

is reflexive.

A

Let

A, B

be sets. Assume

(A, B) ∈ In

and

(B , A) ∈ In

. Then

A ⊆ B

and

B ⊆ A

so

A = B

. Hence

In

is antisymmetric.

T

Let

A, B , C

be sets. Assume

(A, B) ∈ In

and

(B , C) ∈ In

. Let

x ∈ D

. Assume

x ∈ A

. Since

A ⊆ B

,

x ∈ B

. Since

B ⊆ C

,

x ∈ C

. Hence

A ⊆ C

and

(A, C) ∈ In

. Therefore

In

is transitive.

Relation

In

is reflexive, antisymmetric, and transitive. Therefore it is an order rela-

tion.

V.B.1.iii Notations for orders

To highlight the asymmetry of the relation, orders are often written with an infix asymmet-

rical symbol:

≼

,

⊑

,

⊴

,

⋊

,

⋐

,

⋖

,

≪

. The

≤

symbol is being “reserved” for the “less than or

equal to” order on numbers, and

⊆

is being “reserved” for the “inclusion” order on sets.

As for equivalence relations, definitions can be written in a set-builder notation or

through a sentence. For example one can define

≼ = { ((n1

, p1) , (n2

, p2)) | n1

≤ n2

∧ p1

≤ p2

}

or by the sentence “Let

≼

be the relation over

Z2

defined as

(n1

, p1) ≼ (n2

, p2)

if and only

if

n1

≤ n2

and

p1

≤ p2

”. Then it remains to be proved that it actually is an order relation!

V.B.1.iv Strict orders

From any order

R

one can define a strict version

R

′

of the order. The strict version is the

same except it does not relate elements with themselves:

R

′ = { (x, y) | (x, y) ∈ R ∧ x ̸ = y }

One example is the strict version

<

of order

≤

.

It is common to use a resembling symbol for the strict version of the order. Usually, this

is done either by barring or removing the part that resembles the equality symbol:

82 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

•

x < y

iff

x ≤ y ∧ x ̸ = y

.

•

x ≺ y

iff

x ≼ y ∧ x ̸ = y

.

•

A ⊊ B

iff

A ⊆ B ∧ A ̸ = B

.

•

A ⋢ B

iff

A ⊑ B ∧ A ̸ = B

.

Remark the difference between

⊊

, which is strict inclusion, and

⊈

, which is the negation

of inclusion:

A ⊈ B

iff

¬ (A ⊆ B)

.

Note that because the strict version is not reflexive, it is not an order relation! We can

however prove that the strict order is transitive:

Lemma: Strict orders are transitive

Let

≼

be an order over

A

and let

≺

be the strict version of this order. Then for any

x, y , z ∈ A

, if

x ≺ y

and

y ≺ z

, then

x ≺ z

.

Proof

Let

x, y , z ∈ A

. Assume

x ≺ y

and

y ≺ z

. Therefore in particular

x ≼ y

and

y ≼ z

,

so by transitivity of

≼

,

x ≼ z

.

It remains to be proved that

x ̸ = z

. Assume, by contradiction, that

x = z

. Then

we have

y ≼ x

, and by antisymmetry of

≼

x = y

, which is a contradiction with

x ≺ y

. E Therefore

x ̸ = z

and

x ≺ z

.

Also remark that it is impossible to have both

x ≺ y

and

y ≺ x

: that would mean in

particular

x ≼ y

and

y ≼ x

, so

x = y

by antisymmetry of

≼

, which is a contradiction with

x ̸ = y

. As a result,

≺

is only antisymmetric because the premise of the implication never

holds.

Exercise V.3

Prove that each of the following relation is an order.

1.

⋐

defined over

R × R

as

(a1

, b1) ⋐ (a2

, b2)

iff

a2

≤ a1

and

b1

≤ b2

.

2.

⊴

defined over

R × N

as

(x1

, n1) ⊴ (x2

, n2)

iff either

x1

< x2

or:

x1

= x2

and

there exists

k ∈ N

such that

n1

= n2

× k

.

Exercise V.4

Prove that relation

R = { (x1

, y1) , (x2

, y2) ∈ R2 × R2 | x1

≤ x2

∨ y1

≤ y2

}

is not an

order.

V.B.2 Partial v total orders

Assume

≼

is an order relation. Nothing in the definition of an order (Reflexivity, Antisym-

metry, Transitivity) requires that for any

x, y

,

x ≼ y

or

y ≼ x

.

For example, for sets of natural numbers, we have neither

{ 1 , 2 , 3 } ⊆ { 2 , 3 , 5 }

nor

{ 2 , 3 , 5 } ⊆ { 1 , 2 , 3 }

: these elements are incomparable . That does not contradict the fact

that

⊆

is an order.

The additional requirement that any two elements can be compared makes the order

total :

Introduction to Discrete Mathematics 83

Chapter V Equivalence and Order Relations

Definition: Total order

An order

≼

over

A

is total iff

∀ x, y ∈ A, x ≼ y ∨ y ≼ x

.

An order that is not total is called a partial order .

Proving totality of an order

To prove that an order is total, one has to show that for any two elements, they are

related one way or another. This can be done using a proof by cases, because the statement

is a disjunction. It can also be done by assuming

x ̸ ≼ y

and proving

y ≼ x

(which is a proof

by cases in hiding).

To prove an order is not total, on the other hand, one has to exhibit incomparable

elements

x

and

y

such that

x ̸ ≼ y

and

y ̸ ≼ x

.

Exercise V.5

Determine whether the following relation is a total or partial order. Justify your

answer by a proof.

1.

D = { (n, p) ∈ N2 | ∃ k ∈ N , n = k · p }

(divisibility).

2.

⋐

defined over

R × R

as

(a1

, b1) ⋐ (a2

, b2)

iff

a2

≤ a1

and

b1

≤ b2

(this is from

Exercise V.3, Question 1).

3.

⊴

defined over

R × N

as

(x1

, n1) ⊴ (x2

, n2)

iff

x1

< x2

or

x1

= x2

and there

exists

k ∈ N

such that

n1

= n2

× k

(this is from Exercise V.3, Question 2).

4.

Leq = { (n, p) ∈ Z2 | ∃ k ∈ N , n + k = p }

. Note: you cannot use the fact that if

n ≰ p

then

p < n

that would be using the result you are trying to prove!

V.B.3 Lexicographic orders

V.B.3.i Definition

A lexicographic order is a way to create orders on Cartesian products, using orders on the

sets in the product. It works as follows: compare the first components; if they are the same,

compare the second component, and so on until one component can be strictly compared or

the tuples are completely identical.

This process is used in the way we sort words out in a dictionary: a word is a tuple of

letters, we have an underlying order on letters, the alphabetical order

≼α

. To compare apple

and pear , we compare their first letter a and p , and conclude that since

a ≺α

p

apple comes

before pear . Now when comparing pear and peach , we first compare the first letters, which

are both p , so move on to the second letter, both e , move on to the third letter, both a ,

move on to the fourth letter, and since

c ≺α

r

, we conclude that peach comes before pear .

This is formalized as follows; in the definition below we give the case of two sets and the

general case of

n

sets.

84 Introduction to Discrete Mathematics

Equivalence and Order Relations Chapter V

Definition: Lexicographic order

• Let

≼A

be an order over

A

and

≼B

be an order over

B

. The lexicographic order

≼lex

over

A × B

is defined as:

(x1

, y1) ≼lex

(x2

, y2)

iff

– either

x1

̸ = x2

and

x1

≼A

x2

(i.e.

x1

≺A

x2

);

– or

x1

= x2

and

y1

≼B

y2

.

• Let

≼1

, . . . , ≼n

be

n

orders over

A1

, . . . , An

, respectively. The lexicographic

order over

A1

× · · · × An

is defined as:

(x1

, . . . , xn) ≼lex

(y1

, . . . , yn)

iff

– either

(x1

, . . . , xn) = (y1

, . . . , yn)

;

– or

∃ i ∈ { 1 , . . . n } , xi

≺i

yi

and

∀ j < i, xj

= yj

.

The definitions seem to differ a bit for two sets and the general case. They actually

match for

n = 2

, but they are presented in a slightly different way. This is because for the

general case it is important to be able to determine at which index the comparison is strict

(if any). In the case of two sets, the case of equality is encompassed in the case

y1

≼B

y2

,

whereas for the general case this case is further divided into the remaining components:

there can be strict inequality at the second component, or equality and then we need to

compare further, but we cannot yet conclude to equality.

V.B.3.ii Lexicographic orders are orders

As the name claims, but which remains to be proved, the lexicographic order thus defined

is actually an order:

Theorem: Lexicographic order is an order

Let

≼1

, . . . , ≼n

be

n

orders over

A1

, . . . , An

, respectively. The lexicographic

order

≼lex

is an order over the Cartesian product

A1

× · · · × An

.

Proof

R

(x1

, . . . , xn) ≼lex

(x1

, . . . , xn)

because

(x1

, . . . , xn) = (x1

, . . . , xn)

.

A

Assume

(x1

, . . . , xn) ≼lex

(y1

, . . . , yn)

and

(y1

, . . . , yn) ≼lex

(x1

, . . . , xn)

. Assume,

by contradiction, that

(x1

, . . . , xn) ̸ = (y1

, . . . , yn)

. That means there exist

i, k ∈

{ 1 , . . . , n }

such that:

xi

≺i

yi

and ∀ j < i, xj

= yj

(V.1)

yk

≺k

xk

and ∀ j < k , xj

= yj

. (V.2)

Now we have two cases: either the indices

k

and

i

match or they don’t.

• Assume

i = k

, then we have

xi

≺i

yi

and

yi

≺i

xi

, so

xi

≼i

yi

,

yi

≼i

xi

, and

xi

̸ = yi

. By antisymmetry of

≼i

we have

xi

= yi

, which is a contradiction

with

xi

̸ = yi

.

• Without loss of generality, we can now assume that

i < k

. (The case

k < i

is the same.) We have both

xi

≺i

yi

, by (V.1), and

xi

= yi

, by (V.2) and

since

i < k

, which is a contradiction.

Introduction to Discrete Mathematics 85

Chapter V Equivalence and Order Relations

So we have a contradiction in all cases, so we have a contradiction and

(x1

, . . . , xn) = (y1

, . . . , yn)

.

T

Assume

(x1

, . . . , xn) ≼lex

(y1

, . . . , yn)

and

(y1

, . . . , yn) ≼lex

(z1

, . . . , zn)

.

• If

(x1

, . . . , xn) = (y1

, . . . , yn)

or

(y1

, . . . , yn) = (z1

, . . . , zn)

we directly have

(x1

, . . . , xn) ≼lex

(z1

, . . . , zn)

.

• Assume

(x1

, . . . , xn) ̸ = (y1

, . . . , yn)

and

(y1

, . . . , yn) ̸ = (z1

, . . . , zn)

. Then

we have

i ∈ { 1 , . . . n } , xi

≺i

yi

and

∀ j < i, xj

= yj

and

k ∈ { 1 , . . . , n }

such

that

yk

≺k

zk

and

∀ j < k , yj

= zj

.

We prove it by cases on the order between indices

i

and

k

:

– Assume

i < k

. We have

∀ j < i, xj

= yj

= zj

, and

xi

≺i

yi

, with

yi

= zi

. So

xi

≺i

zi

, so

(x1

, . . . , xn) ≼lex

(z1

, . . . , zn)

.

– Assume

i = k

. We have

∀ j < i, xj

= yj

= zj

, with

xi

≺i

yi

and

yi

≺i

zi

. By the above Lemma (Section V.B.1.iv),

xi

≺i

zi

, and

(x1

, . . . , xn) ≼lex

(z1

, . . . , zn)

.

– Assume

k < i

. We have

∀ j < k , xj

= yj

= zj

, and

xk

= yk

, with

yk

≺k

zk

. So

xk

≺k

zk

and

(x1

, . . . , xn) ≼lex

(z1

, . . . , zn)

.

V.B.3.iii Lexicographic orders and totality

Theorem

Let

≼1

, . . . , ≼n

be

n

total orders over

A1

, . . . , An

, respectively. The lexicographic

order

≼lex

over

A1

× · · · × An

is total.

Proof

Let

(x1

, . . . , xn) , (y1

, . . . , yn) ∈ A1

× · · · × An

.

First, consider the case where these tuples are equal: assume

(x1

, . . . , xn) =

(y1

, . . . , yn)

. Then by definition of

≼lex

we have

(x1

, . . . , xn) ≼lex

(y1

, . . . , yn)

.

Now assume

(x1

, . . . , xn) ̸ = (y1

, . . . , yn)

. So for at least an index

i

,

xi

̸ = yi

. Let

i

be

the smallest of those, i.e. for

j < i

,

xj

= yj

.

Since

≼i

is total, we have one of the two cases:

• Either

xi

≼i

yi

, which means

xi

≺i

yi

since

xi

̸ = yi

. Therefore

(x1

, . . . , xn) ≼lex

(y1

, . . . , yn)

.

• Or

yi

≼i

xi

, which means

yi

≺i

xi

since

xi

̸ = yi

. Therefore

(y1

, . . . , yn) ≼lex

(x1

, . . . , xn)

.

As a result

(x1

, . . . , xn)

and

(y1

, . . . , yn)

are comparable and

≼lex

is total.

86 Introduction to Discrete Mathematics

Chapter VI

Sequences and Recurrence

Chapter contents

VI.A Sequences . 88

VI.A.1 Definition, notation . 88

VI.A.1.i Explicit definition . 88

VI.A.1.ii Recursive definition 88

VI.A.2 Particular sequences . 89

VI.A.2.i Arithmetic and geometric growth 89

VI.A.2.ii Sum of terms of a sequence 90

VI.A.2.iii Arithmetico-geometric sequences 92

VI.B Proofs by induction . 93

VI.B.1 Principle of induction . 93

VI.B.2 Variations on induction . 94

VI.B.2.i Finding the right predicate 94

VI.B.2.ii The proof by contradiction version of induction 94

VI.B.2.iii Strong induction . 94

VI.B.2.iv Structural induction 96

VI.C Application: Growth and complexity 97

VI.C.1 What is complexity? . 97

VI.C.1.i Big-O notation . 98

VI.C.1.ii Worst-case complexity 98

VI.C.2 Complexity of recursive programs 98

VI.C.2.i Example: The Towers of Hanoi 99

VI.C.2.ii Example: Merge sort 101

Introduction to Discrete Mathematics 87

Chapter VI Sequences and Recurrence

VI.A Sequences

VI.A.1 Definition, notation

Formally speaking, a sequence is a total function using natural numbers (sometimes exclud-

ing zero) as the domain. This particularity is reflected in the way sequences are denoted:

instead of the usual notation

u (n)

, we write

un

for the element of index

n

, called the

n

th

term . The whole sequence is denoted

(un)n ∈ N

(rather than

u

as we do for functions). The

choice of the letter

u

in itself is guided by tradition: by habit, letters

u

,

v

,

w

, are usually

used in sequences (while

f

,

g

,

h

are more often used for functions in general).

Definition

A sequence is a total function with

N

(or

N \ { 0 }

) as domain.

VI.A.1.i Explicit definition

We can define a sequence explicitly, as we do for functions, by providing an expression to

calculate the

n

th term based on

n

. For example:

• Let

(un)n ∈ N

the sequence of integers defined by

un

= 3 n − 5

.

• Let

(vn)n ∈ N

the sequence of reals defined by

vn

=

√

n

.

• Let

(wn)n ∈ N

the sequence of rationals defined by

wn

=

2 n +7

n +1

.

With an explicit definition, a sequence has little difference with a function, only a par-

ticular domain.

VI.A.1.ii Recursive definition

What makes sequences more specific, and therefore more interesting, is that is it possible to

define a term using the previous one, as long as term

0

is provided. Calculating each term

starting from

0

allows to calculate the

n

th term.

Definition: Recursive definition of a sequence

A recursive definition of a sequence

(un)n ∈ N

is given by:

• A base case that gives the value

u0

.

• A recurrence relation that expresses

un +1

using

un

for every

n

.

The above pattern can be generalized with more than a single base case. The base

cases could be

0

and

1

; the recurrence relation can then be defined by writing

un +2

as an

expression of

un +1

and

un

. For example:

•

u0

= 1

and for

n ∈ N

,

un +1

= 2 un+3

. Then we have

u0

= 1

,

u1

= 2 u0+3 = 2 · 1+3 = 5

,

u2

= 2 u1

+ 3 = 2 · 5 + 3 = 13

. . .

•

v0

= 3

,

v1

= 2

and for

n ∈ N

,

vn +2

= 2 vn +1

− vn

. Then we have

v0

= 3

,

v1

= 2

,

v2

= 2 v1

− v0

= 2 · 2 − 3 = 1

,

v3

= 2 v2

− v1

= 2 · 1 − 2 = 0

,

v4

= 2 v3

− v2

= 2 · 0 − 2 = − 2

. . .

88 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

Using more than one base case is not the only way to define a sequence recursively. The

recursive relation can actually use any term as long as it is lower and all possible base cases

are covered. This makes a recursive definition well founded . For example one can define the

sequence

(wn)n ∈ N

as

w0

= 1

and

wn

= 2 w⌊

n

2

⌋

+ 3

. In this case, it is possible to calculate

any term

wn

using

w⌊

n

2

⌋

, and since this number is strictly smaller the process will terminate

when we eventually reach

w0

, which is given.

Exercise VI.1

Give the first 6 terms (up to index

5

) of the following sequences:

1.

(un)n ∈ N

defined by

un

=

3 n

5

.

2.

(vn)n ∈ N

defined by

vn +1

=

3 vn

5

and

v0

= 125

.

3.

(wn)n ∈ N

defined by

wn +1

= 3 wn

− 8

and

w0

= 5

.

4.

(w

′
n)n ∈ N

defined by

w

′

n +1

= 3 w

′
n

− 8

and

w

′

0

= 3

.

5.

(Fn)n ∈ N

defined by

Fn +2

= Fn +1

+ Fn

,

F0

= F1

= 1

.

VI.A.2 Particular sequences

When given a recursive definition for a sequence, finding an explicit definition is the first

goal: it allows for faster computation of any term. Each definition being different, there is no

one recipe to find such an expression (if it is even possible). There are however some families

of sequences for which there are formulas or methods to achieve an explicit definition.

VI.A.2.i Arithmetic and geometric growth

The simplest sequences are sequences that grow in the same manner between each term.

If this growth is additive, the sequence is arithmetic ; if the growth is multiplicative, the

sequence is geometric .

Definition: Arithmetic sequence

An arithmetic sequence of increment

d

is defined:

• Recursively by

u0

= a

and

un +1

= un

+ d

.

• Explicitly by

un

= a + n · d

.

Definition: Geometric sequence

A geometric sequence of ratio

r

is defined:

• Recursively by

u0

= a

and

un +1

= r · un

.

• Explicitly by

un

= a · r

n

.

The fact that the explicit definition of these sequences actually corresponds to the re-

cursive definition will be proved in Section VI.B.1 and Exercise VI.3.

In practice, an arithmetic sequence can be recognized by looking at the difference between

two consecutive terms: it is always the same. For a geometric sequence, the ratio of two

consecutive terms is constant.

Introduction to Discrete Mathematics 89

Chapter VI Sequences and Recurrence

For example, let

(un)n ∈ N

be defined by

un

= 5 n − 3

for any

n ∈ N

. For

n ∈ N

,

un +1

− un

= (5(n +1) − 3) − (5 n − 3) = 5 n +5 − 3 − 5 n +3 = 5

. So

(un)n ∈ N

is an arithmetic

sequence of increment

5

.

Let’s define

(vn)n ∈ N

by

v0

= 2

,

vn +1

= 3 vn

. Then for any

n

,

vn +1

vn

=

3 vn

vn

= 3

, so

(vn)n ∈ N

is a geometric sequence of ratio

3

.

Exercise VI.2

For the following starts of sequences:

• Conjecture based on the first terms whether it is an arithmetic, a geometric

sequence (or none of these two kinds). Justify your answer.

• If so:

– Find the increment or ratio.

– Give a recursive definition.

– Give an explicit definition.

– Find the next term of the sequence.

1.

u0

= 7 , u1

= 4 , u2

= 1 , u3

= − 2 , u4

= − 5 , . . .

2.

v0

= 3 , v1

= − 6 , v2

= 12 , v3

= − 24 , v4

= 48 , . . .

3.

w0

= 13 , w1

= 6 . 5 , w2

= 3 . 25 , w3

= 1 . 625 , w4

= 0 . 8125 , . . .

4.

s0

= 2 , s1

= 3 , s2

= 8 , s3

= 33 , s4

= 158 , . . .

VI.A.2.ii Sum of terms of a sequence

It is quite common that the sum of the value is of more interest than the individual values.

For example when the sequence represents a yearly value and the total value is of interest.

In mathematical notations, sums are written with the

Σ

symbol (which is the Greek

letter for

S

).

n∑

i =0

ui

= u0

+ u1

+ · · · + un

Below the

Σ

is the index name (here

i

) and its starting value (

0

). Above is the ending value

(here

n

). Next to the

Σ

is the expression that is being summed, using the index.

For those familiar with programming, this is akin to declaring a loop with index i ,

starting at 0 and ending at n : sum=0; for (int i=0; i<=n; i++) {sum += u(i);}

This notation is quite handy because it has some good properties:

• Linearity: when the terms being summed is a linear expression, it can be decomposed

into a linear expression of sums:

n∑

i =0

(x · ai

+ y · bi) = x ·

n∑

i =0

ai

+ y ·

n∑

i =0

bi

• Decomposition: a sum can be split into several sums at any index between the start

and end: for

0 ≤ k ≤ n

,

n∑

i =0

ui

=

k∑

i =0

ui

+

n∑

i = k +1

ui

90 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

Summing sequences up to infinity (this is called a series) is also possible, although one

has to be careful because the result may be infinite. These series show up as a good way

to approximate real numbers and functions (such as the exponential, logarithm, sine, and

cosine). For example, it can be proved that

b

This is called

Leibniz

formula .

π = 4

∑∞

i =0

(− 1)i

2 i + 1

, so calculating this sum up

to a certain point provides an approximation of

π

.

In the case of arithmetic and geometric sequences, the sum of their terms up to

n

can

actually be expressed in a closed-form formula (i.e. a formula that does not use the terms

of the sequence themselves).

VI.A.2.ii.a Sum of an arithmetic sequence

Theorem: Closed-form formula for an arithmetic series

If

un

= a + n · d

then

∑n

i =0

un

=

(n +1)(2 a + n · d)

2

.

Proof

This proof uses a technique that is very useful for sequences: we introduce symmetry

by summing the terms twice, in order to match the first term with the last.

We write

S =

∑n

i =0

un

. So

2 S = u0

+ u1

+ · · · + un

+ u0

+ u1

+ · · · + un

= (u0

+ un) + (u1

+ un − 1) + · · · + (un

+ u0)

= (a + a + n · d) + (a + d + a + (n − 1) · d) + · · · + (a + n · d + a)

= (2 a + n · d) + (2 a + n · d) + · · · + (2 a + n · d)

2 S = (n + 1)(2 a + n · d)

So

S =

∑n

i =0

un

=

(n +1)(2 a + n · d)

2

.

VI.A.2.ii.b Sum of a geometric sequence

Theorem: Closed-form formula for a geometric series

If

un

= a · r

n

with

r ̸ = 1

then

∑n

i =0

un

=

a (r

n +1 − 1)

r − 1

.

Proof

This proof uses another technique that is very useful for sequences: trying to find self-

similarities. In this case, if the sum is multiplied by

r

it looks a lot like the original

sum: Let

S =

∑n

i =0

un

. We have:

r · S = a · r + · · · + a · r

n+ a · r

n +1

S = a + a · r + · · · + a · r

n

So

r S − S = a · r

n +1 − a ⇔ S (r − 1) = a (r

n +1 − 1)

so for

r ̸ = 1

,

S =

∑n

i =0

un

=

a (r

n +1 − 1)

r − 1

.

Introduction to Discrete Mathematics 91

Chapter VI Sequences and Recurrence

Remark that in the case where

r = 1

, then all terms are equal and

∑n

i =0

un

= (n + 1) a

.

VI.A.2.iii Arithmetico-geometric sequences

One step of difficulty higher than arithmetic and geometric sequences is a mixing of these two:

arithmetico-geometric sequences, where the next term is calculated as a linear expression of

the current one.

Definition: Arithmetico-geometric sequence

An arithmetico-geometric sequence is defined recursively

by

u0

= a

and

un +1

= r · un

+ d

.

To find an explicit equivalent definition, we will use the fixed-point (sometimes written

fixpoint) of this recurrence relation: a value

x

such that if

un

= x

, then

un +1

= x

. This can

be calculated by solving the simple linear equation

x = r x + d ⇔ x (1 − r) = d ⇔ x =

d

1 − r

.

Note that we have assumed here that

r ̸ = 1

, otherwise it is an arithmetic sequence (with no

fixed-point if

d ̸ = 0

) and we have

un

= a + n · d

.

Now the trick is to define an auxiliary sequence, that will be the original one shifted by

the fixed-point: we define the shifted sequence

vn

= un

−

d

1 − r

(i.e.

un

= vn

+

d

1 − r

). We can

the rewrite the equality

un +1

= r · un

+ d

as follows:

un +1

= r · un

+ d ⇔

vn +1

+

d

1 − r

= r · (vn

+

d

1 − r) + d ⇔

vn +1

= r · (vn

+

d

1 − r) + d −

d

1 − r

⇔

vn +1

= r · vn

+

r d

1 − r

+ d −

d

1 − r

⇔

vn +1

= r · vn

+

r d + d − r d − d

1 − r

⇔

vn +1

= r · vn

So

vn

is a geometric sequence and

vn

= v0

· r

n = (a −

d

1 − r) r

n

, hence

un

= (a −

d

1 − r) r

n+

d

1 − r

.

While it is not really interesting to memorize the formula for the explicit definition of

an arithmetico-geometric sequence, it is good to memorize the method of using the auxil-

iary sequence obtained by shifting by a fixed-point; this is because this trick is not easily

rediscovered, while the calculations that then lead to the result are easily deducted.

Example of arithmetico-geometric sequence

Consider the sequence recursively defined by

u0

= 2

and

un +1

= 3 un

+ 5

. The fixed

point of the recurrence relation is

x

that satisfies the equation

x = 3 x + 5 ⇔ x = −5

2

.

We can now define the shifted sequence

vn

= un

+

5

2

, so

un

= vn

−

5

2

. Then

vn +1

−

5

2

=

3(vn

−

5

2) + 5 ⇔ vn +1

= 3 vn

−

15

2

+ 5 +

5

2

⇔ vn +1

= 3 vn

+

− 15+10+5

2

⇔ vn +1

= 3 vn

. Since

(vn)n ∈ N

is a geometric sequence of ratio

3

, we can write

vn

= v0

· 3n =

9

2

· 3n

. So for any

n

,

un

=

9

2

· 3n −

5

2

=

3n +2 − 5

2

.

92 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

VI.B Proofs by induction

VI.B.1 Principle of induction

Universal properties over sequences defined recursively can be proved in a manner following

the recursive definition, using a proof by induction .

Proof by induction rule

Let

P (n)

be a predicate over integers.

If

P (0)

and

∀ n ∈ N , P (n) ⇒ P (n +1)

, then

∀ n ∈ N , P (n)

.

The idea behind this proof rule is as follows. Assume

P (0)

and

∀ n ∈ N , P (n) ⇒ P (n +1)

.

To prove that

∀ n ∈ N , P (n)

, take an integer

n

. Starting at

0

, we have

P (0)

and the universal

quantifier can be instantiated with

n = 0

:

P (0) → P (1)

. By Modus Ponens we obtain

P (1)

.

Similarly, the universal quantifier can be instantiated with

n = 1

:

P (1) → P (2)

. Since

we have

P (1)

, by Modus Ponens we obtain

P (2)

. This continues until reaching the desired

value

n

.

This reasoning is being abstracted away in the rule, and in practice it is applied as

follows:

Proof by induction scheme

• State the property being proved by defining predicate

P

.

• Prove

P (0)

.

• Take

n ∈ N

, assume

P (n)

and prove

P (n + 1)

.

• Conclude.

In this scheme, predicate

P (n)

is called the induction hypothesis . The proof of

P (0)

is

called the base case , while proving

P (n + 1)

from

P (n)

is the induction case . These steps

are usually explicitly specified in the proof.

As this mimics exactly how recursive sequences are defined, it is well suited for any

property on sequences.

Example: Proof by induction of explicit representation of arithmetic se-

quences

Let’s prove by induction that if

(un)n ∈ N

is defined ny

u0

= a

and

un +1

= un

+ d

, then for

any

n

,

un

= a + n · d

. Formally, let

P (n)

be the predicate

un

= a + n · d

.

Base case: For

n = 0

. We have

u0

= a = a + 0 · d

so the property holds for

0

, i.e.

P (0)

is

true.

Induction case: Let

n ∈ N

. Assume

P (n)

, meaning that the property holds for

n

, namely

that

un

= a + n · d

. Then

un +1

= un+ d = a + n · d + d = a +(n +1) · d

, so the property

holds for

n + 1

:

P (n + 1)

is true.

Therefore, by induction the property holds for any

n

:

∀ n ∈ N , P (n)

.

Introduction to Discrete Mathematics 93

Chapter VI Sequences and Recurrence

Exercise VI.3

Prove by induction that a geometric sequence of ratio

r

and initial term

u0

= a

can

be expressed as

un

= a · r

n

for any

n

.

Exercise VI.4

Let

u0

= 4

and

un +1

= 3 · un

− 2

. Prove that for any

n ∈ N

,

un

= 3n +1 + 1

.

Exercise VI.5

1. Calculate a closed-form formula for

∑n

i =0

i

.

2. Prove the same result using a proof by induction.

VI.B.2 Variations on induction

VI.B.2.i Finding the right predicate

One issue with proofs by induction is that they can only be written once you know exactly

what you want to prove. And this may not be easy, for example for formulas it is sometimes

hard to know in advance what is the closed form. This can be conjectured based on a couple

of terms: calculate the first few terms and try to find a pattern. This provides a conjecture

that remains to be proved (by induction).

In some cases, to prove predicate

P

it is easier to use a stronger predicate

P

′

which is

proved by induction. Predicate

P

′

is deemed stronger is for any

n ∈ N

,

P

′(n) ⇒ P (n)

. While

it is in usually harder to prove a stronger predicate, in the case of induction the strength

of

P

′

can play in your favor because in the inductive case

P

′

is used as an hypothesis: a

stronger hypothesis means there is more to rely on.

In these case, choosing the right predicate is not obvious. It is often found by trial and

error: when failing to prove

P (n + 1)

from

P (n)

, try a stronger version

P

′

, if that fails try

an even stronger one

P

′′

. . . One case where the stronger predicate is quite straightforward

is the strong induction scheme, described in Section VI.B.2.iii.

VI.B.2.ii The proof by contradiction version of induction

To prove

∀ n ∈ N , P (n)

by contradiction, we assume its negation and show a contradiction.

In this case the negation is

∃ n ∈ N , ¬ P (n)

. So we can assume that there is some value

n

that violates predicates

P

:

¬ P (n)

. Because we are working with natural numbers, we can

assume

n

to be the smallest such value: it is possible because

N

has a smallest element (

N

is Well ordered). Then we prove first that

n ̸ = 0

, i.e.

P (0)

holds (corresponding to the base

case). Now that it can be assumed that

n > 0

, we show that

n − 1

also violates

P

:

¬ P (n − 1)

(corresponding to the induction case). That contradicts the fact that

n

was the smallest.

Therefore the assumption that

∃ n ∈ N , ¬ P (n)

does not hold so the property

∀ n ∈ N , P (n)

is true.

VI.B.2.iii Strong induction

While the induction scheme was presented starting from

0

, it is possible it actually starts

higher: often

1

, sometimes

2

, rarely but possibly higher. There can even be more than one

94 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

base case, and therefore the induction case will assume the predicate holds for several values

to prove it for the next one.

For example, when trying to prove a property

P

about the Fibonacci sequence defined

by

F0

= F1

= 1

and for any

n ∈ N

,

Fn +2

= Fn +1

+ Fn

, one will need:

• to prove that

P (0)

and

P (1)

hold (base cases);

• to assume

P (n)

and

P (n + 1)

and prove

P (n + 2)

(induction case).

As a rule of thumb, proofs by induction on sequences follow the same structure as the

recursive definition of said sequence.

A proof using two base cases will in fine be a proof that relies on two steps before.

This principle can be generalized to write proofs that rely on several steps before, while not

specifying exactly how many: the assumption used to prove

P (n)

is that

P

holds for any

value strictly smaller than

n

.

Proof by strong induction rule

Let

P (n)

be a predicate over integers.

If

P (0)

and

∀ n ∈ N , (∀ i ≤ n, P (i)) → P (n + 1)

, then

∀ n ∈ N , P (n)

.

This is very useful when a recurrence relation is defined using terms that are smaller

but not necessarily the previous one. For example for

un

= u⌊

n

2

⌋

+ 4

: the term used in the

recurrence relation is not the previous one, but a previous one, thus requiring to assume any

property holds for this term, regardless of its actual index (as long as it is smaller so that

the induction terminates).

Proof by strong induction scheme

• Prove

P (0)

.

• Take

n

, assume

∀ i ≤ n, P (i)

and prove

P (n +1)

. (Sometimes notations

are made easier by assuming

∀ i < n, P (i)

and then proving

P (n)

.)

This scheme is actually a proof by induction on the stronger predicate

P

′

defined as

P

′(n) = ∀ i ≤ n, P (i)

.

Example of strong induction: The chocolate bar problem

The problem is as follows: a chocolate bar is made of

n

squares in a single line:

How many cuts are needed to cut it in

n

individual squares?

First, let’s conjecture what this number is by calculating it for a couple of small values:

•

n = 1

, no need to cut so

0

cuts needed:

•

n = 2

, cut once to get two pieces, so

1

cut needed:

cut−→

Introduction to Discrete Mathematics 95

Chapter VI Sequences and Recurrence

•

n = 3

, cut once to get

2

and

1

(or

1

and

2

), then again to cut the

2

-bar into single

pieces, so

2

cuts:

cut−→

cut
−→

It seems that

n − 1

cuts are needed to cut a bar of length

n

: this will be our conjecture.

Let’s prove by strong induction that

n − 1

cuts are needed for a bar of

n

squares.

Base case

n = 1

: no cut needed, so

0

cuts.

Inductive case Assume that for any

p < n

,

p − 1

cuts are needed for a bar of

p

squares.

Let’s number the squares of the bar from

1

to

n

, and choose a number

p

between

1

and

n − 1

. When we cut in the bar of

n

squares right after square number

p

, we obtain

two bars of lengths

p

and

n − p

, with

1 ≤ p < n

.

cut−→

n

p

n − p

We have both

p < n

and

n − p < n

so there are

p − 1

cuts needed for one piece and

n − p − 1

needed for the other. So a total of

1+ (p − 1)+ (n − p − 1) = n − 1

cuts.

While this problem may look a bit artificial, more mathematical applications of strong

induction will be done in Chapter VII when cutting integers into pieces as part of number

theory.

Exercise VI.6

Let

(un)n ∈ N

be the sequence defined by

u0

= 0

,

u1

= 1

, for any

n ∈ N

,

un +2

=

1

4

· (u2

n +1

+ un

+ 2)

. Prove that for any

n

,

0 ≤ un

≤ 1

.

VI.B.2.iv Structural induction

i

This is for your

personal culture

more than to

be applied in

this course.

The induction may be over something else than an integer.

For example, one could use an induction proof scheme over a couple of integers ordered

lexicographically (so that the order is total). In this case the induction is often a strong

induction: prove

P (0 , 0)

, then for

n, m ∈ N

, assume for any couple

(n′ , m′) ≺ (n, m)

,

P (n′ , m′)

is true, and prove

P (n, m)

.

The same principle can be used for more than numbers, actually. Induction works

because we use a proof of a predicate

P

on a smaller integer to prove

P (n)

. This can be

extended to any well-ordered set : a set that has minimal elements. These minimal elements

are what serves as base cases: the induction does not go on forever.

So we can use a proof by induction to prove properties about a set of objects where the

proof of a predicate on smaller objects is used. The definition of what makes an object

smaller may be built as a lexicographic order, but it can also be a more natural notion, such

as being a sub-part of the bigger object. Once again, the form of the proof will follow the

96 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

structure of the definition of the object. Since it relies exclusively on said structure, it is

named structural induction .

For example, it is possible to write proofs about the set of formulas of propositional logic

by structural induction on sub-formulas:

Base case Prove the property on atomic propositions.

Induction case Prove for every operator

∗

that

P (φ)

and

P (ψ)

, then

P (φ ∗ ψ)

.

We can use such a proof scheme to prove that every formula can be written using only

→

and

⊥

(as was done in Section I.B.3.v.b): this holds for atomic propositions, and for any

operator we prove that it can actually be replaced by combinations of

→

and

⊥

. In this

case there will be more than one induction case, as there will be one per operator.

A structural induction can also be used to write proofs about proof trees in sequent

calculus.

VI.C Application: Growth and complexity

VI.C.1 What is complexity?

In computer science, complexity is the number of basic steps a program must take to execute.

Such basic steps include arithmetic operations, variable assignments, function calling. . . As

such, complexity allows to measure of how long the program takes to execute, while ab-

stracting away the differences that may arise by running the program on different hardware.

As most program execute on data, this measure depends on the value of the inputs to

the program. For example, consider the following program that calculates

∑n

i =1

i2

:

• Take a value

n

as an argument (think input).

• Start with the result at

0

.

• For each number

i

from

1

to

n

, add

i2

to the result

• Then return the result.

Executing this program requires to perform

n

times the following: multiply

i

by itself, then

adding it to the current result, and finally assign the new value to the result. That means

3 n

basic operations. To which we must add the initialization of the result to

0

. So in the

end we can say that this program requires

3 n + 1

operations to execute on input

n

.

This calculation has neglected to count that there must be some operations performed

to maintain the value of

i

, so that is a couple of operations

n

times, and maybe count the

action of returning as a basic operation. But that actually does not really matter: we are not

interested in a precise number but in the growth of the complexity when

n

increases. And

in this case, what matters is that it is proportional to

n

: we don’t need to know precisely

how many operations are performed each time, as long as it is the same for all the values

of

i

. And we don’t need to know precisely how many operations are needed to initialize

the program and have it return, because this does not change with

n

. Both these precise

values could be made negligible by using a faster computer, but it cannot change the fact

that doubling the value of

n

will (roughly) double the execution time.

Introduction to Discrete Mathematics 97

Chapter VI Sequences and Recurrence

VI.C.1.i Big-O notation

To write the complexity of programs while denoting that we are only interested in growth,

we use the

O

(“big O” or “big Omicron”) notation. Formally, it is defined as follows:

f (n) = O ((g (n)) iff ∃ M ∈ R , lim sup

n → + ∞

∣∣∣∣

f (n)

g (n)

∣∣∣∣

≤ M

What the above definition states is that he limit of

f

g

is bounded, meaning that

f

does not

grow any order of magnitude faster than

g

.

So the function

g

used in practice is the leading factor of growth of

f

, stripped of any

constant coefficient. Let’s consider the following examples:

•

2021 = O (1)

: any constant is a

O (1)

; that is the complexity of a program that executes

in the same time regardless of its arguments.

•

3 n + 1 = O (n)

: this means the growth is (at most) linear, as the program described

above.

•

7 n3 − 3 n2 +4 n − 9 = O (n3)

: in the case of polynomials, the main growth factor is the

leading coefficient. Sometimes knowing that the complexity is polynomial is enough

(not considering the degree), this is what constitutes the

P

class.

↬

See

Section I.C.3.ii

for more about

the

P

class.

•

27 n + 42 n79 = O (27 n) = 2O (n)

: since exponentials grow faster than polynomials, the

leading growth factor is the exponential here.

VI.C.1.ii Worst-case complexity

Programs do not always execute the same code: that is the purpose of conditionals (if

statements). So the number of operations may be very different depending on the actual

value. In these situations what matters is the worst-case .

Consider this (purposefully weird) program:

• Take argument

n

?

• If

n

is even return

42

• Otherwise (i.e. if

n

is odd) calculate the decomposition of

n ! + 17!

into prime factors.

When

n

is even, it executes in constant time, while it can take a very long time since

n !

growth exponentially

b

Stirling’s

formula shows

that

n !

grows

as fast as

nn en

√

2 π n

.

and there is not polynomial factorization known (and it is possible

that none exist). In this case, what matters for complexity is only the case when

n

is odd.

As a result, complexities are always stated with the understanding that the program

executes in less than

O (f (n))

steps.

VI.C.2 Complexity of recursive programs

One way to think about complex problems is to break them down into smaller ones, that

ought to be more manageable. This idea is at the crux of the divide and conquer approach:

break a big problem into smaller ones, solve these, then bring the solutions together This

strategy was named after the method used by Julius Caesar to conquer Gauls (more or less

equivalent to modern France): instead of fighting the whole Gallic peoples, fight each tribe

separately; a legion of 1000 can easily beat a tribe of 100, and do so 20 times instead of

facing a coalition of 2000 in one go.

98 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

Most common variations of the divide and conquer approach are as follows. In the first

one, assume you can solve a smaller version of the same problem, and prove you can from

that solve the current version. Otherwise said, to solve a problem for input

n

(or size

n

),

assume you can solve the same problem for size

n − 1

and then show how to go from the

solution for

n − 1

to a solution for

n

. In the second one, divide the problem in two, solve

these sub problems, and combine. Otherwise said, to solve a problem for input

n

(or size

n

), assume you can solve the same problem for size

⌈

n

2

⌉

and then show how to combine the

solutions for

⌈

n

2

⌉

to a solution for

n

. Of course, for this idea to work, one ought to be able

to solve the problem for

n = 0

or

n = 1

, i.e. the base case.

The complexity of the solving the whole problem is therefore expressed as a recurrence

relation on smaller problems. The base case, usually size

0

or

1

, is often solved with a

constant number of operations. From this recurrence relation, to get a complexity expressed

in the

O

notation, an explicit definition is needed. But finding this explicit definition from

the recurrence relation may not be easy: the recurrence rarely is an arithmetico-geometric

sequence for which we have a predefined strategy. Therefore the approach will be in two

steps:

1. Calculate a couple of terms from

n

down (“unwinding”), until you are able to conjecture

(i.e. guess) the explicit form.

2. Prove that the explicit form correspond to the recurrence relation using a proof by

induction.

VI.C.2.i Example: The Towers of Hanoi

The problem of the Towers of Hanoi is one of the best known in recursive programming and

complexity analysis. It is stated as follows:

• There are three poles A, B, C, and

n

discs of increasing size, labeled

1

to

n

.

• Initially, all the discs are stacked in a pyramid on the first pole.

• You can move the topmost disc of a pole to any other pole, but a disc must always

rest on a bigger disc.

The questions being: How do you move the whole stack from one pole to another? How

many moves does that take?

This problem can be solved using the divide and conquer approach. Assuming I know

how to move a stack of

n − 1

discs. To move

n

discs from A to C, I proceed as follows: I

can move the first

n − 1

discs from A to B. Then move disc number

n

from A to C. Finally

move the first

n − 1

discs from B to C. For this to be complete I must tell how to proceed

when

n = 1

, which is quite trivial: move the single disc.

Note that the beauty of this description lies in the fact that the move of the

n − 1

discs

is not described extensively. This kind of procedure can therefore be programmed in a very

elegant code, that follows the structure of the reasoning above. Nonetheless, the details can

be filled in by looking into what it means for

n − 1

, and that yields an actual procedure to

move the stack of

n

discs. For example, for

n = 3

, the set of moves is given in Figure VI.11.

Note that one can easily ignore the intermediate steps: only consider Figures VI.1(a,d,e,h),

showing the moves of the stack of 2 discs from A to B in one step instead of 3.

1Adapted from http://www.texample.net/tikz/examples/towers-of-hanoi/ .

Introduction to Discrete Mathematics 99

http://www.texample.net/tikz/examples/towers-of-hanoi/

Chapter VI Sequences and Recurrence

A

3

2

1

B

C

(a) Starting position.

A

3

2

B

C

1

(b) Moved disc from pole A to pole C.

A

3

B

2

C

1

(c) Moved disc from pole A to pole B.

A

3

B

2

1

C

(d) Moved disc from pole C to pole B.

A

B

2

1

C

3

(e) Moved disc from pole A to pole C.

A

1

B

2

C

3

(f) Moved disc from pole B to pole A.

A

1

B

C

3

2

(g) Moved disc from pole B to pole C.

A

B

C

3

2

1

(h) Moved disc from pole A to pole C.

Figure VI.1: Tower of Hanoi – 3 Discs.

100 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

Let’s now analyze the complexity of the problem, i.e. count the number of moves that

are required to move a stack of

n

discs, which we will call

f (n)

.. Our procedure can be

summarized as follows: to move

n

discs, we need to move

n − 1

discs, move one disc,

move

n − 1

discs again. We can therefore deduct that the function

f

follows the following

recurrence:

f (n) = f (n − 1) + 1 + f (n − 1) = 2 · f (n − 1) + 1

. The base case being a single

move to move a single disc, we have the base case of the recurrence:

f (1) = 1

.

As it is not straightforward to see what is the explicit definition of

f

that corresponds

to this recursive definition, we will unwind the recurrence and try to find a pattern.

f (n) = 2 · f (n − 1) + 1

= 2 · (2 · f (n − 2) + 1) + 1

= 22 · f (n − 2) + 2 + 1

= 22 · (2 · f (n − 3) + 1) + 2 + 1

= 23 · f (n − 3) + 22 + 21 + 20

= 23 · f (n − 3) + (23 − 1)

...

= 2i · f (n − i) + (2i − 1)

...

= 2n − 1 · f (n − (n − 1)) + (2n − 1 − 1)

= 2n − 1 · f (1) + (2

n − 1 − 1)

= 2n − 1 · 1 + (2

n − 1 − 1)

f (n) = 2n − 1

We can conjecture from this that

f (n) = 2n − 1

. It remains to be proved that this function

matches the recursive definition:

Base case: For

n = 1

,

21 − 1 = 2 − 1 = 1 = f (1)

so the base case is satisfied.

Induction case: Let

n > 1

. Assume that

f (n − 1) = 2n − 1

. Then let’s use the recursive

definition:

f (n) = 2 · f (n − 1) + 1 = 2 · (2n − 1 − 1) + 1 = 2 · 2n − 1 − 2 + 1 = 2n − 1

so

the recurrence relation is satisfied

We can therefore conclude by induction that for any

n

,

f (n) = 2n − 1

, so

2n − 1

steps are

needed to move a stack of

n

discs. We can deduct an approximate complexity:

f (n) = O (2n)

.

Note that in this case, it takes an exponential number of moves to move the discs: adding

one disc doubles the number of moves. The legend associated to this problem stated that

in a monastery in Hanoi (Vietnam), monks had the task of moving a stack of 64 discs

according to these rules. Once they are done, the world would end; but that is not a very

frightening threat: even if a move takes as little as one second, over 584 billion years would

be needed for the whole procedure to be complete (while the sun will go out in “only” 5

billion years). It must also be noted that there is no such monastery, it is pure invention by

French mathematician Édouard Lucas who created the problem in the 19th century.

VI.C.2.ii Example: Merge sort

Sorting data is a very common action in computer systems. It is also an interesting problem

because there are lots of ways of sorting, and different algorithms may have different com-

Introduction to Discrete Mathematics 101

Chapter VI Sequences and Recurrence

plexity. Note that in theory the sorting can be performed as long as the data is equipped

with an order,

↬

Orders are

defined in

Section V.B.

but here we will assume the data is integers for simplicity.

The problem is formally stated as follows: the input is an array of size

n

containing

integers. The returned array must be sorted in increasing order.

The solution used here applied the divide and conquer principle:

• Divide the array in two in the middle.

• Recursively sort the two halves, which are of sizes

⌈

n

2

⌉

and

⌊

n

2

⌋

.

• Merge them together as follows. Take an empty array. Start inserting elements from

the two sorted arrays, always choosing the smallest one that has not been inserted.

Note that because the arrays are sorted this procedure only requires traversing the

array in one way.

The base cases occur when the size is either

1

or

0

: the array is already sorted and there is

nothing to do. Note that we never actually reach size

0

with this algorithm, and this case is

mentioned for completeness’ sake in case the original input is an array of size

0

.

An example of this procedure is given in Figure VI.2 for an array of size

10

. The recursive

sorting of the sub arrays (of size

5

) is not given.

To analyze the complexity of the Merge sort, let’s assume there are

n = 2k

elements in

the original array. Although this is rarely the case in practice that the array’s size is precisely

a power of two, it can be assumed that it is the size of the next power of two, padded with

∞

. So in the case of the array of Figure VI.2, we could assume it is the following array of

size

16

:

17

23

2

19

5

18

27

15

7

13

∞

∞

∞

∞

∞

∞

Now let’s consider the complexity in terms of

k

rather than

n

: we are looking for the

complexity function

g (k)

that gives the number of operations needed to sort an array of size

2k

with the merge sort algorithm. Splitting the array in the middle means copying all the

elements in two new arrays

b

In practice the

splitting can be

done without

copy, but that

does not change

the overall

complexity.

. And the merging means, for every cell of the array, comparing

the two current minimal elements of the sorted sub-arrays and writing the smallest one in

the array. In both cases these operations take a time proportional to the number of elements,

so a time

c · 2k

, with

c

being a constant. The sorting of each sub-arrays is done in time

g (k − 1)

, because each array is half the length of the original one. As a result, the complexity

function

g

obeys the following recurrence relation:

g (k) = 2 · g (k − 1)+ c · 2k

. The base case,

which means sorting an array of size

1

, requires no action, besides recognizing that this case

has been reached. This is done in constant time so

g (0) = c′

, for some constant

c′

.

102 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

17

23

2

19

5

18

27

15

7

13

(a) Starting (unsorted) array.

17

23

2

19

5

18

27

15

7

13

(b) Splitting in the middle.

2

5

17

19

23

7

13

15

18

27

(c) Sorted sub-arrays (recursively).

2

5

17

19

23

7

13

15

18

27

i

= 0

j

= 0

i + j

= 0

(d) Merging, empty array (step 0/10).

2

5

17

19

23

7

13

15

18

27

i

= 1

j

= 0

2

i + j

= 1

(e) Merging, step 1/10.

2

5

17

19

23

7

13

15

18

27

i

= 2

j

= 0

2

5

i + j

= 2

(f) Merging, step 2/10.

2

5

17

19

23

7

13

15

18

27

i

= 2

j

= 1

2

5

7

i + j

= 3

(g) Merging, step 3/10.

2

5

17

19

23

7

13

15

18

27

i

= 2

j

= 2

5

7

13

i + j

= 4

(h) Merging, step 4/10.

2

5

17

19

23

7

13

15

18

27

i

= 2

j

= 3

5

7

13

15

i + j

= 5

(i) Merging, step 5/10.

Figure VI.2: Example of merge sort; the recursive calls are not detailed. Continued next

page.

Introduction to Discrete Mathematics 103

Chapter VI Sequences and Recurrence

2

5

17

19

23

7

13

15

18

27

i

= 3

j

= 3

5

7

13

15

17

i + j

= 6

(j) Merging, step 6/10.

2

5

17

19

23

7

13

15

18

27

i

= 3

j

= 4

5

7

13

15

17

18

i + j

= 7

(k) Merging, step 7/10.

2

5

17

19

23

7

13

15

18

27

i

= 4

j

= 4

5

7

13

15

17

18

19

i + j

= 8

(l) Merging, step 8/10.

2

5

17

19

23

7

13

15

18

27

i

= 5

j

= 4

5

7

13

15

17

18

19

23

i + j

= 9

(m) Merging, step 9/10.

2

5

17

19

23

7

13

15

18

27

i

= 5

j

= 5

5

7

13

15

17

18

19

23

27

i + j

= 10

(n) Merging, ended (step 10/10).

Figure VI.2: Example of merge sort; the recursive calls are not detailed. Continued from

previous page.

104 Introduction to Discrete Mathematics

Sequences and Recurrence Chapter VI

We can now try to conjecture an explicit form by unwinding this recurrence relation:

g (k) = 2 · g (k − 1) + c · 2k

= 2 · (2 · g (k − 2) + c · 2k − 1) + c · 2k

= 4 · g (k − 2) + c · 2k + c · 2k

= 22 · g (k − 2) + 2 · c · 2k

= 22 · (2 · g (k − 3) + c · 2k − 2) + 2 · c · 2k

= 23 · g (k − 3) + 3 · c · 2k

...

= 2i · g (k − i) + i · c · 2k

...

= 2k · g (k − k) + k · c · 2k

= 2k · g (0) + k · c · 2k

g (k) = 2k · c′ + k · c · 2k

We can see the previous calculations as follows. Each time the array is divided into two,

so there are

k

divisions before reaching arrays of size

1

. After

i

divisions, let’s call that level

i

, we have

2i

arrays, each of size

2k − i

. So all the merging done at level

i

means reading

2i

arrays of size

2k − i

, so reading

2k

values. That means the time to merge is the same at

every level. Since there are

k

levels, the global time needed for all the merging will be

k · 2k

.

The

2k · c′

is the time needed to treat all the base cases, but that is negligible compared to

k · 2k

as

k

grows to infinity.

Therefore the conjecture on

g

is that for any

k ∈ N

,

g (k) = 2k · c′ + k · c · 2k

. Let’s prove

it by induction.

Base case: For

k = 0

, we have

2k · c′ + k · c · 2k = 20 · c′ + 0 · c · 20 = c′ = g (0)

.

Induction case: Let

k > 0

, assume the property holds for

k − 1

, i.e.

g (k − 1) = 2k − 1 · c′ +

(k − 1) · c · 2k − 1

. Let’s use the recursive definition:

g (k) = 2 · g (k − 1) + c · 2k

= 2(2k − 1 · c′ + (k − 1) · c · 2k − 1) + c · 2k

g (k) = 2k · c′ + k · c · 2k

So the property holds for

k

.

As a result the property holds for any

k

, and the complexity of merge sort is

2k · c′+ k · c · 2k

.

We can express it as a

O

notation: the term in

k · 2k

is the leading one, so the complexity is

O (k · 2k)

. Remark that we can translate that back into a complexity for

n

: if

n = 2k

, then

k = log2(n)

, so the complexity is

O (n log(n))

.

b

The base of the

logarithm does

not matter in

O

notation, since

the change of

base is only a

constant term.

Exercise VI.7

Consider the following algorithm (called binary search) to find a value

v

in a sorted

array:

• If the array has size

> 0

, look at the middle element

m

:

Introduction to Discrete Mathematics 105

Chapter VI Sequences and Recurrence

– If

m = v

we have found the element, return the index of

m

.

– If

m < v

search for

v

in the right half of the array (

m

is excluded).

– If

m > v

search for

v

in the left half of the array (

m

is excluded).

• An array of size

0

does not contain

v

.

Assuming the array has a size

2k − 1

:

1. What is the size of the left half of the array? And of the right half?

2. Find a recurrence relation that expresses

f (k)

, the number of steps it takes to

find

v

in the worst case (which is when

v

is actually not in the array), based on

f (k − 1)

. Assume the complexity for an empty array is a constant

p

.

3. Unwind this relation and conjecture an explicit formula for

f (k)

.

4. Prove your conjecture.

5. Conclude about the complexity of this algorithm.

106 Introduction to Discrete Mathematics

Chapter VII

Number Theory

Chapter contents

VII.A Division of integers . 108

VII.A.1 Divisibility . 108

VII.A.1.i Definition . 108

VII.A.1.ii Properties . 108

VII.A.2 Euclidean division (a.k.a Long division) 110

VII.B Prime numbers . 113

VII.B.1 Definition . 113

VII.B.2 Euclid’s Lemma . 114

VII.B.3 Fundamental Theorem of Arithmetic 114

VII.B.4 Checking primality . 116

VII.B.5 Decomposition into prime factors 116

VII.B.6 From the decomposition to the list of divisors 117

VII.B.7 Infinity of primes . 118

VII.C Greatest Common Divisor and Least Common Multiple 119

VII.C.1 Definitions . 119

VII.C.2 Properties . 120

VII.C.3 Euclid’s Algorithm . 121

VII.C.4 Applications: fractions . 123

VII.D Diophantine Equations . 123

VII.D.1 Extension to

Z

. 123

VII.D.2 Definition and Bézout’s Theorem 124

VII.E Congruence . 127

VII.E.1 The congruence relation . 127

VII.E.2 Equivalence classes and canonical representative 129

VII.E.3 Modulo Arithmetic . 130

VII.E.3.i Addition of equivalence classes 130

VII.E.3.ii Multiplication with equivalence classes 130

VII.E.3.iii Modular exponentiation 131

VII.E.4 Applications . 132

VII.E.4.i Toolbox (Lemmas) . 132

VII.E.4.ii Divisibility criteria . 133

VII.E.4.iii Chinese Remainder Theorem 133

VII.E.4.iv RSA cryptography . 136

Introduction to Discrete Mathematics 107

Chapter VII Number Theory

VII.A Division of integers

Number theory refers to the study of how integers are formed and relate to each other,

especially through multiplication and division. Hence the central role that the concept of

divisibility plays in this chapter. Note that most of the theory focuses on natural integers,

but that it can be extended to deal with all integers, as is explained in Section VII.D.1.

VII.A.1 Divisibility

VII.A.1.i Definition

Definition: Divisibility

Let

n, m ∈ N

.

n

divides

p

, written

n | p

, iff there exists

k ∈ N

such that

n · k = p

.

So to prove that,

n | p

, one has to exhibit the value

k

such that

n · k = p

. For example:

•

3 | 15

because

3 · 5 = 15

•

7 | 42

because

7 · 6 = 42

•

6 | 42

because

6 · 7 = 42

•

1 | 17

because

1 · 17 = 17

•

42 | 0

because

42 · 0 = 0

•

23 | 23

because

23 · 1 = 23

We write

n ̸ | p

when it is not the case that

n

divides

p

. This is proved by considering

all values for

k

and proving they cannot work. For example:

•

7 ̸ | 24

because

7 · k

is either

0 , 7 , 14 , 21 , 28

or

> 28

.

•

23 ̸ | 1

because

23 · k

is either

0

or

> 23

.

Note that there are other (better) ways to prove that

n ̸ | m

, which will be explained in

Section VII.A.2.

When

n | p

,

p

n

denotes the integer

k

such that

n · k = p

. In that case

n

and

p

n

are called

divisors or factors of

p

. If, however,

n ̸ | p

, the

p

n

notation has no real sense, since we are

only considering integers, and from this point of view fractions that are not whole do not

even exist.

VII.A.1.ii Properties

VII.A.1.ii.a Relation with addition (and subtraction)

Although divisibility deals with multiplication, it is interesting to consider how it behaves

with respect to addition (and its reverse subtraction). Namely, we can only have results when

both operands are divisible by the same number.

Proposition

Let

n, p, q ∈ N

.

• If

n | p

and

n | q

, then

n | p + q

.

• If

n | p

and

n | p + q

, then

n | q

.

108 Introduction to Discrete Mathematics

Number Theory Chapter VII

Proof

Let

n, p, q ∈ N

.

• Assume

n | p

and

n | q

. Then there exists

k , m

such that

n · k = p

and

n · m = q

.

So

n · (k + m) = p + q

and

n | p + q

.

• Assume

n | p

and

n | p + q

. Then there exists

k , m

such that

n · k = p

and

n · m = p + q

. Note: since

q ≥ 0

, we have

k ≤ m

. So

n · m = n · k + q

, and

n · (m − k) = q

So

n | q

.

This can be adapted for subtraction:

Proposition

Let

n, p, q ∈ N

.

• If

n | p

,

q ≥ p

and

n | q − p

, then

n | q

.

• If

n | p

,

q ≥ p

and

n | q

, then

n | q − p

.

Although a direct proof can be used (left as exercise to the reader), this is only a par-

ticular case of the previous Proposition (using

q − p

instead of

q

).

VII.A.1.ii.b Divisibility Order

Another interesting aspect of divisibility is how it can propagate. In fact, we can show

the property is transitive, and even better, that it is a partial order. This was already proved

in Section V.B.1.ii.c, but the main elements of the proof will be reproduced here as well.

We can however note that

0

and

1

have a particular role with respect to this order. Since

1

divides any integer, it is a minimal element to the order. On the other hand,

0

does not

divide any number (but itself), so it is a maximal element .

Theorem

• Divisibility is a partial order.

•

1

is a minimal element with respect to this order.

•

0

is a maximal element with respect to this order.

Proof

Let

n, p, m ∈ N

.

• R

We have

n | n

by choosing

k = 1

in the definition. So we have reflexivity.

A

Assume

n | p

and

p | n

, then

n · k = p

and

p · k

′ = n

so

k · k

′ = 1

hence

k = k

′ = 1

and

n = p

. So we have antisymmetry.

T

Assume

n | p

and

p | m

then

n · k = p

and

p · k

′ = m

so

n · k · k

′ = m

hence

n | m

. So we have transitivity.

• The order is partial, because for example

7 ̸ | 24

(see above) and

24 ̸ | 7

, as for

Introduction to Discrete Mathematics 109

Chapter VII Number Theory

1

2

3

5

7

11

· · ·

4

8

...

9

27

...

25

125

...

49

...

121

...

.

.

.

6

12

24

...

15

...

35

...

0

Figure VII.1: The divisibility lattice.

any

k

24 k

is either

0

(if

k = 0

) or strictly greater than

7

(if

k ≥ 1

).

•

1 | n

, by choosing

k = n

. If

n ̸ = 1

then

n ̸ | 1

: for any

k

,

n · k

is either

0

or

strictly greater than

1

.

•

n | 0

, by choosing

k = 0

. If

n ̸ = 0

then

0 ̸ | n

: for any

k

,

0 · k = 0

.

It is possible to draw a graph of this order, as follows. Put each number in a vertex

(a.k.a. node, a circle with the value inside), and draw an arrow between node containing

numbers

n

to node containing number

p

if

n | p

. In graph vocabulary, we use

N

as the

vertices and

|

as the transition relation.

To clarify a bit this graph, we can omit self-loops and transitions that can be deducted

from transitivity. And of course, to actually represent it, we must choose a finite subset of

integers.

Part of this graph is represented on Figure VII.1. The shape that this graph has is

particular, and is called a lattice , in reference to the criss-crossed pattern. It has several

properties that will be detailed throughout the chapter. What we can already see is that

1

,

being the minimal element, is at the base of the lattice, while the maximal element

0

is on

top, with arrows from every number pointing to it.

VII.A.2 Euclidean division (a.k.a Long division)

When

m

is a multiple of

n

, it is possible to divide

m

by

n

, which is exactly what is behind

the concept of divisibility. This can be generalized to the case when

n

does not divide

m

,

using the Euclidean division .

b

Several notions

in this chapter

bear the name

of the ancient

Greek

mathematician

Euclid , who

introduced

them in his

book the

Elements .

This is not really a new concept, as this is also called long

division . What may be new is that we are actually going to prove properties of this division,

so what we are giving is not a definition, but rather a theorem that states these properties.

110 Introduction to Discrete Mathematics

Number Theory Chapter VII

Theorem: Euclidean Division

Given two integers

n, m ∈ N

, with

m > 0

, there exists two unique integers

q , r ∈ N

such that

n = m · q + r and 0 ≤ r < m

The very important fact is that there is only one pair

(q , r)

that satisfies the property:

there can be no ambiguity when writing a Euclidean division. Because of this uniqueness,

we call

q

the quotient (not “a”) and

r

is the remainder (again, not “a”).

The equality

n = m · q + r

itself is called the Euclidean division of

n

by

m

. And

n

is

called the dividend , while

m

is the divisor . Note that “the divisor in a Euclidean division”

is not the same as “a divisor”, since in the former case divisibility is not assumed.

For example:

• The Euclidean division of

42

by

5

is

42 = 5 · 8 + 2

: quotient is

8

, remainder is

2

.

• The Euclidean division of

132

by

3

is

123 = 3 · 41 + 0

: quotient is

41

, remainder is

0

.

• The Euclidean division of

79

by

12

is

79 = 12 · 6 + 7

: quotient is

6

, remainder is

7

.

• The Euclidean division of

79

by

6

is

79 = 6 · 13 + 1

: quotient is

13

, remainder is

1

.

In the last two examples, one can see that dividing

79

by its quotient by

12

does not yield

back

12

as the quotient. This is because the criterion on the remainder depends on the

divisor.

Proof of the Euclidean Division

If we write down what we need to prove as a first order formula, it has the following

form:

∀ n, m ∈ N , m > 0 → ∃ ! q , r ∈ N , n = m · q + r ∧ 0 ≤ r < m.

We can actually change it a bit, using the rules of first order logic, in order to have

the quantification on

m

at the outermost level. So we use the rule

∀ x, φ → P (x) ≡

φ → (∀ x, P (x))

where

x

does not appear in

φ

. Here we have that

n

does not appear

in “

m > 0

”, so we obtain the equivalent formula

∀ m ∈ N , m > 0 → ∀ n ∈ N , ∃ ! q , r ∈ N , n = m · q + r ∧ 0 ≤ r < m.

Let

m ∈ N

and assume that

m > 0

. We are going to prove by strong induction that

∀ n ∈ N , ∃ ! q , r ∈ N

such that

n = m · q + r

and

0 ≤ r < m

. Note that we have to

prove two things: existence and uniqueness. For existence, we have to exhibit

q

and

r

. For uniqueness, we assume the existence of another pair

(q

′ , r

′) ̸ = (q , r)

and deduct

a contradiction.

Base case

n = 0

.

Existence

We have

0 = m · 0 + 0

and

q = r = 0

satisfies the property.

Uniqueness

Assume there exists some other couple

(q

′ , r

′) ̸ = (0 , 0)

that sat-

isfies the property.

• Assume

q

′ > 0

: then

m · q

′ > 0

, so

n = m · q

′ + r

′ > 0

, which is a

contradiction with

n = 0

.

Introduction to Discrete Mathematics 111

Chapter VII Number Theory

• Otherwise,

q

′ = 0

, so

r

′ > 0

, so

n = m · q

′ + r

′ > 0

, which is again a

contradiction with

n = 0

.

Inductive case

Assume that for any

p < n

, the property holds, i.e., there exists a

unique couple

(q0

, r0)

that satisfies the conditions:

p = m · q0+ r0

and

0 ≤ r0

< m

.

We have two cases to consider, that actually match the basic algorithm used to

compute this division: if you cannot fit

m

into

n

, then you are done. If you can,

then subtract

m

from

n

and increment the quotient, then start again.

• Assume

n < m

.

Existence

Write

n = m · 0 + n

: we have

q = 0

and

r = n < m

by

assumption.

Uniqueness

Assume there exists some other values for

q

′

and

r

′

: another

couple

(q

′ , r

′) ̸ = (0 , n)

that satisfies the property.

– If

q

′ > 0

that means

q

′ ≥ 1

, therefore

m · q

′ ≥ m

. So

n = m · q

′+ r

′ ≥

m + r

′ ≥ m

, which is a contradiction with

n < m

.

– Otherwise,

q

′ = 0

so it must be the case that

r ̸ = n

. Writing the

division, we have

n = m · q

′ + r

′ = m · 0 + r

′ = r

′ ̸ = n

which is a

contradiction.

• Otherwise, i.e.

n ≥ m

. Write

p = n − m < n

. By induction hypothesis, we

have a unique couple

(q0

, r0)

that satisfies the conditions:

n − m = m · q0+ r0

and

0 ≤ r0

< m

.

Existence

From the previous equation we get

n = m · q0

+ r0

+ m =

m · (q0

+ 1) + r0

. We choose

q = q0

+ 1

and

r = r0

.

Uniqueness

Assume by contradiction that there is another couple

(q

′ , r

′)

, with

n = m · q

′ + r

′

and

0 ≤ r

′ < m

. If

q

′ = 0

then

n = r

′ < m

, which contradicts

n ≥ m

, so it must be the case that

q

′ ≥ 1

. We can therefore subtract

m

from both sides of the division:

n − m = m · (q

′ − 1)+ r

′

. If

q

′ − 1 ̸ = q0

or

r

′ ̸ = r0

, that contradicts the

uniqueness of

q0

and

r0

.

Exercise VII.1

For the following numbers

n

and

m

, write the Euclidean division of

n

by

m

.

1.

n = 37

,

m = 4

2.

n = 43

,

m = 8

3.

n = 39

,

m = 3

As we remarked, Euclidean division is a generalization of the division when

n | m

. The

special case can actually be detected because then the remainder is

0

. That provides an

easier proof of

n ̸ | m

than trying any value for

k

and showing that

n · k ̸ = m

: just show that

the remainder is not

0

.

Proposition

m | n

iff the remainder of the Euclidean division of

n

by

m

is

0

.

112 Introduction to Discrete Mathematics

Number Theory Chapter VII

Proof

We can prove this equivalence by proving two implications.

⇒

Assume

m | n

. Then there exists

q

such that

m · q = n

. This is the Euclidean

division with

r = 0

:

n = m · q + 0

.

⇐

Assume

r = 0

in the Euclidean division of

n

by

m

. Then

n = m · q

so

m | n

.

Exercise VII.2

For the following numbers

n

and

m

, determine whether

n | m

or

n ̸ | m

. Justify your

answer.

1.

n = 10

,

m = 50

2.

n = 50

,

m = 10

3.

n = 13

,

m = 63

4.

n = 37

,

m = 37

5.

n = 37

,

m = 0

6.

n = 1

,

m = 19

Exercise VII.3

List all the divisors of

28

by trial and error.

VII.B Prime numbers

Prime numbers are the basic atoms (in the literal sense: “which cannot be cut”) of numbers,

as they cannot be decomposed as a product of other numbers:

VII.B.1 Definition

Definition: Prime number

A number

n ∈ N

is prime iff it has exactly two divisors:

1

and

n

.

Not that by this definition,

0

and

1

are not prime numbers, even though they cannot

really be decomposed either. They have a special role in arithmetic, as

1

is the neutral

element while

0

is absorbing for multiplication, so it is convenient to exclude them from this

definition.

The first prime numbers are

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37

. We can see in Fig-

ure VII.1 that they constitute the “line” at the base of the lattice of divisibility: they are

not divisible by anything but

1

.

A number that is not prime is composite , so for example

21

is composite because its

divisors are

1 , 3 , 7 , 21

. As a result it can be written as

21 = 3 · 7

, which is a decomposition

into the product

3

and

7

. For a prime number, the only possible “decomposition” being the

trivial one

p = 1 · p

, which actually is not a real decomposition because

p

appears as the

component.

Introduction to Discrete Mathematics 113

Chapter VII Number Theory

VII.B.2 Euclid’s Lemma

Because of their atomicity, prime numbers have good properties regarding divisibility. This

result is best known as Euclid’s Lemma:

Euclid’s Lemma

Let

n, m, p ∈ N

. If is

p

prime and

p | n · m

, then

p | n

or

p | m

.

Before even attempting to prove this Lemma, we can remark that the condition of

p

being prime is crucial here. For example

6 | 8 · 3

, because

8 · 3 = 24

and

6 · 4 = 24

. But

6 ̸ | 8

and

6 ̸ | 3

. What is happening here which cannot happen with a prime number is that

6 = 2 · 3

, so one can write

24

in different ways:

24 = 6 · 4 = 2 · 3 · 4 = 8 · 3

. As a prime

number cannot be decomposed, any way of writing the product

n · m

has to feature

p

or a

multiple of

p

.

Proof of Euclid’s Lemma

Let

n, m, p ∈ N

. Assume that

p

is prime, and

p | n · m

. First, we can treat the case

when either

n

or

m

is

1

: the result is trivial. For example if

n = 1

, then

n · m = m

,

so the assumption

p | n · m

yields directly

p | m

; the case for

m = 1

being similar. So

we can assume that both

n

and

m

are not

1

in the sequel of the proof.

We will prove the result by contradiction: assume

p ̸ | n

and

p ̸ | m

. We can choose

m

to be minimal: for given

p

and

n

,

m

is the smallest such value such that

p | n · m

,

p ̸ | n

, and

p ̸ | m

.

We write the Euclidean division of

m

by

p

:

m = p · q + r

, with

0 ≤ r < p

. Since

p ̸ | m

,

the case

r = 0

is impossible, so we actually have

0 < r < p

.

• Assume

q = 0

. Then

m = r

, so we have

0 < m < p

. We now write the

Euclidean division of

p

by

m

:

p = m · q

′ + r

′

with

0 < q

′

,

0 < r

′ < m < p

;

the case

r

′ = 0

being impossible since

m ̸ | p

as

p

is prime. Therefore we can

rewrite the division as

r

′ = p − m · q

′

. Multiplying both sides by

n

we obtain

n · r

′ = n · p − n · m · q

′

. Since

p | n · m

, there exists

k

such that

p · k = n · m

, so

n · r

′ = n · p − p · k · q

′ = p · (n − k · q

′)

. As a result

p | n · r

′

. We also have

p ̸ | r

′

because

0 < r

′ < p

. So

p | n · r

′

,

p ̸ | n

, and

p ̸ | r

′

with

r

′ < m

, which contradicts

the minimality of

m

.

• Otherwise,

q > 0

. Multiplying the Euclidean division by

n

on both sides, we

get

n · m = p · q · n + n · r

. Since

p | n · m

and

p | p · q · n

,

p | n · r

. Because

0 < r < p

, we have

p ̸ | r

. Since

q > 0

, we have

r < m

. So

p | n · r

,

p ̸ | n

, and

p ̸ | r

with

r < m

, which contradicts the minimality of

m

.

VII.B.3 Fundamental Theorem of Arithmetic

As prime numbers cannot be decomposed, they are the building blocks of all other numbers.

This is what is stated in the Fundamental Theorem of Arithmetic (FTA):

114 Introduction to Discrete Mathematics

Number Theory Chapter VII

Fundamental Theorem of Arithmetic

Every number

n > 1

can be written in a unique way as a product of prime factors.

Here the uniqueness of the decomposition is what makes the result beautiful. Indeed, it

makes intuitive sense that if a number can be decomposed, and said components themselves

are decomposed, at one point the decomposition will only have elements that cannot be

broken down any further, in our cases prime numbers. What is less intuitive is that this

decomposition is unique: regardless of how the decomposition goes, in the end the same basic

elements will always be there. Note that the uniqueness is understood up to commutativity:

21 = 7 · 3 = 3 · 7

is the decomposition of

21

into

3

and

7

.

Also note that once again

0

and

1

are excluded from the Theorem. Number

0

can

be written in infinitely many ways that all require the use of

0

itself, which is not prime:

0 = 0 · 5 · 13 = 0 · 3 · 29 · 101 = . . .

. Number

1

can be written in a unique way, but it requires

the use of the non-prime number

1

:

1 = 1

.

Proof of the Fundamental Theorem of Arithmetic

As a decomposition breaks down a number into smaller ones but not necessarily

the previous one, the proof uses strong induction. Note that both existence and

uniqueness have to be proved.

Base case

n = 2

.

Existence

n = 2

is a product of primes.

Uniqueness

Any other decomposition

2 = p1

· · · pn

would violate the primal-

ity of

2

, hence it is unique.

Inductive case

Assume that for any

m < n

,

m

can be written uniquely as a

product of primes.

• If

n

is prime, it is a product of primes. Any other decomposition

n =

p1

· · · pn

contradicts the primality of

n

, hence it is unique.

• If

n

is not prime:

Existence

Let

m

be a divisor of

n

with

1 < m < n

. Then there is a

k

such that

m · k = n

, and we also have

1 < k < n

. By induction

hypothesis,

m = p1

· p2

· · · pi

is a product of primes and so is

k =

p′

1

· p′

2

· · · p′

j

. As a result

n = m · k = p1

· p2

· · · pi

· p′

1

· p′

2

· · · p′

j

is a

product of primes.

Uniqueness

Assume that there are distinct decomposition of primes for

n

:

q1

· q2

· · · qi

= q

′

1

· q

′

2

· · · q

′

j

. So

q1

| q

′

1

· q

′

2

· · · q

′

j

. By repeatedly

applying Euclid’s Lemma, we can show that

q1

divides one of the

q

′

ℓ

:

either

q1

| q

′

1

, or

q1

| q

′

2

· · · q

′

j

; in the latter case either either

q1

| q

′

2

, or

q1

| q

′

3

· · · q

′

j

; and so on until we find an index

ℓ

such that

q1

| q

′

ℓ

. Since

they are both primes, that means

q1

= q

′

ℓ

. So there are two distinct

decompositions for

n

q1

= q2

· · · qi

= q

′

1

· · · q

′

ℓ − 1

· q

′

ℓ +1

· · · q

′

j

. Since

n

q1

< n

,

this contradict the induction hypothesis.

Introduction to Discrete Mathematics 115

Chapter VII Number Theory

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(a) Crossing out multiples of 2.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(b) Crossing out multiples of 3.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(c) Crossing out multiples of 5.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(d) Crossing out multiples of 7, 11, 13.

Figure VII.2: Sieve of Eratosthenes up to 26.

VII.B.4 Checking primality

A consequence of the FTA is that every number is either prime or a product of primes. So

in order to know whether a number

n

is prime, it is sufficient to try to divide by all prime

numbers smaller than

n

, which reduces the number of divisions to try.

This idea is at the core of the Sieve of Eratosthenes , which works as follows:

1. Write all the numbers in a table (up to a certain limit).

2. Start at 2, strikeout all multiples of 2, as they won’t be primes.

3. Move to the next non-stricken number

p

: as it has not been stricken out, it is not a

multiple of any other prime so

p

is a prime number.

4. Strikeout all multiples of

p

, as they won’t be primes.

5. Repeat from point 3 until the end of the table is reached.

6. All non-stricken numbers are the primes.

An example up to 26 is given in Figure VII.2.

Note that there are other (faster) methods to check if a number is prime, but they are

beyond the scope of this course.

VII.B.5 Decomposition into prime factors

As the order of the prime factors do not matter, we usually write the decomposition starting

from the lowest prime number to the highest. If a prime number appears more than one,

then all the occurrence are to be gathered in a single power of a prime. For example

24 = 2 · 2 · 2 · 3 = 23 · 3

.

116 Introduction to Discrete Mathematics

Number Theory Chapter VII

60

6

10

2

3

2

5

Figure VII.3: Decomposition of 60 into prime factors.

The proof of the FTA gives a procedure to decompose a number

n

into prime factors,

based on the two sub-cases of the inductive case:

• If the number is prime, the decomposition is

n = n

.

• Otherwise: find a divisor

d

of

n

and decompose

n

d

and

d

independently.

For example:

60 = 6 · 10 = (2 · 3) · (2 · 5) = 22 · 3 · 5

. The uniqueness of the decomposition

means that it does not really matter what divisor is chosen, the end result will be the same.

When calculating as a human, it is often more practical to use the factors that spring to

mind; in the case of

60

, splitting it as

6 · 10

was quite natural. On paper, it is not uncommon

to write these decompositions in a tree-like pattern ,as is done in Figure VII.3.

Another method which is a bit more tedious but more systematic and hence easier

to program in a computer is to always trying prime numbers until they do not divide in

anymore:

60 = 2 · 30 = 2 · 2 · 15 = 2 · 2 · 3 · 5 = 22 · 3 · 5

. It is more systematic in part

because one does not actually need to know when a number is prime: a non-prime number

d

will never be found as a factor since the prime factors of

d

would have been factored out

already. So it does not hurt (for a computer, a human may be a bit smarter than that when

prime numbers are known) to try all the numbers. In the example above,

12

is not found

as a factor because all the factors

2

and

3

have been factored out already. This method has

the added advantage of already providing the factors in the usual order.

To decompose by hand, a couple of basic criteria of divisibility allow for a fast check of

whether a prime number is a factor:

2

Last digit is even (0, 2, 4, 6, 8).

3

The sum of the digits is a multiple of 3: 3, 6, 9, or a number with more digits that can

also be summed in the same fashion.

↬

This fact is

proved in Sec-

tion VII.E.4.ii.

5

Last digit is either 0 or 5.

Exercise VII.4

Decompose the following numbers into prime factors:

1. 100

2. 198

3. 102

4. 105

5. 43

6. 1125

VII.B.6 From the decomposition to the list of divisors

As prime factors are a particular kind of divisors, they are quite useful in order to find all

the divisors. Indeed, the prime factor decomposition of a number and any of its divisor are

related.

Introduction to Discrete Mathematics 117

Chapter VII Number Theory

Proposition

Let

n, m ∈ N

. Assume that the decomposition of

n

into prime factors is

n = pk1

1

·

pk2

2

· · · pki

i

. If

m | n

, then the decomposition of

m

into prime factors is

m = p
k

′

1

1

·

p
k

′

2

2

· · · p
k

′

i

i

where for any

i, k

′

i

≤ ki

.

Proof

Take a number

n ∈ N

and its decomposition into prime factors:

n = pk1

1

· pk2

2

· · · pki

i

.

Let

m ∈ N

and assume that

m | n

. Then for any prime factor

p

of

m

, it is also a

prime factor of

n

. This can be proved by repeatedly applying Euclid’s Lemma, as was

done in the proof of the FTA. Since this process can be repeated on

m

p

which divides

n

p

, in the end every prime factor of

m

is also a prime factor of

n

. As a result we can

write

m = p
k

′

1

1

· p
k

′

2

2

· · · p
k

′

i

i

where for any

i, k

′

i

≤ ki

.

Remark that in this proposition, some powers in

m

may be

0

, that only means that this

prime factor of

n

is not a factor of

m

. Also note that the factors (or powers of factors)

appearing in

n

but not in

m

allow to calculate

n

m

:

n

m

= p
k1

− k

′

1

1

· p
k2

− k

′

2

2

· · · p
ki

− k

′

i

i

.

Since a divisor of

n

share the same prime factores with lower powers, listing all the

possible power combination for each prime yields the list of all the divisors of

n

:

p0

1

· p0

2

· · · p0

i

=

1

,

p1

1

· p0

2

· · · p0

i

, . . . ,

pk1

1

· p0

2

· · · p0

i

,

pk1

1

· p1

2

· · · p0

i

,. . . ,

pk1

1

· pk2

2

· · · p0

i

, . . .

pk1

1

· pk2

2

· · · pki

i

= n

.

For example:

60 = 22 · 31 · 51

so its divisors are:

•

20 · 30 · 50 = 1

•

21 · 30 · 50 = 2

•

22 · 30 · 50 = 4

•

20 · 31 · 50 = 3

•

21 · 31 · 50 = 6

•

22 · 31 · 50 = 12

•

20 · 30 · 51 = 5

•

21 · 30 · 51 = 10

•

22 · 30 · 51 = 20

•

20 · 31 · 51 = 15

•

21 · 31 · 51 = 30

•

22 · 31 · 51 = 60

Exercise VII.5

1. Decompose

1575

into prime factors.

2. List all its divisors.

VII.B.7 Infinity of primes

As prime numbers are the building blocks of integers, getting to know them a bit better

is necessary to better understand arithmetics. One of the first question to answer is: how

many primes are they? The answer is:

Theorem

There are infinitely many prime

numbers.

118 Introduction to Discrete Mathematics

Number Theory Chapter VII

Proof

We will use a proof by contradiction. Assume, by contradiction, that there is only

finitely many prime numbers. They can be listed as:

p1

, p2

, . . . , pn

.

Let

m = 1 +

∏n

i =1

pi

= 1 + p1

· p2

· · · pn

. That is

m

is the product of all the primes,

plus

1

.

For any

i ∈ { 1 , . . . , p }

, consider the Euclidean division of

m

by

pi

: we have

m = pi

·

(p1

· p2

· · · pi − 1

· pi +1

· · · pn)+1

. So the remainder of the division is

1

, hence

pi

̸ | m

. So

m

cannot be decomposed into a product of primes, which contradicts the Fundamental

Theorem of Arithmetic.

i

This is for your

personal culture

more than to

be applied in

this course.

Now that we know that there are infinitely many primes, there are more questions

pertaining to “how many” there are that can be asked. For example, one can ask how many

prime numbers are smaller than or equal to a given integer

n

. It has been shown (but will

not be proved here), that as

n

grows, the number of primes smaller than

n

grows as

n

ln(n)

.

Otherwise stated, if a number is randomly selected between

1

and

n

(for a big enough

n

),

the probability of selecting a prime number is

1

ln(n)

. So the bigger the number

n

, the less

likely a prime number is to be selected: prime numbers become rarer as

n

grows. This is

known as the Prime Number Theorem, proved by Hadamard and Poussin in the late 19th

century.

VII.C Greatest Common Divisor and Least Com-

mon Multiple

VII.C.1 Definitions

Based on the building blocks that are the prime numbers, one can compare other numbers

to one another, according to how they are built. So two numbers are alike up to the prime

factors that they share, which is akin to saying that they are alike up to the largest divisor

they share:

Definition: Greatest Common Divisor (GCD)

The Greatest Common Divisor of

n

and

m

(both

> 0

) is the

largest number

p

such that

p | n

and

p | m

. It is written

gcd(n, m)

.

For example: let’s calculate

gcd(12 , 27)

. The divisors of

12

are:

1 , 2 , 3 , 4 , 6 , 12

. the

divisors of

27

are:

1 , 3 , 9 , 27

. The common divisors are therefore

1

,

3

, and

3

is the largest,

so

gcd(12 , 27) = 3

.

For

24

and

35

, the divisors are

1

,

2

,

3

,

4

,

6

,

8

,

12

,

24

and

1

,

5

,

7

,

35

, respectively. The

only common divisor is

1

, so

gcd(24 , 35) = 1

.

For

4

and

36

, the divisors are

1

,

2

,

4

and

1

,

2

,

3

,

4

,

6

,

9

,

12

,

18

,

36

, so

1

,

2

,

4

are common

and

gcd(4 , 36) = 4

.

Remark that

1

is always a common divisor, although not always the greatest one. One

consequence is that the GCD is always defined for any two numbers. When

gcd(n, m) = 1

,

n

and

m

are co-prime .

The GCD can be read from the lattice of divisibility (see Figure VII.1 page 110) as

Introduction to Discrete Mathematics 119

Chapter VII Number Theory

follows: from

n

and

m

, take all the arrows backwards (that corresponds to divisors), and

the first time these explorations meet is the GCD. For example to calculate

gcd(12 , 27)

from

the lattice: from

24

explore

8

and

12

, then

4

and

6

then

2

and

3

, then

1

. From

27

explore

9

, then

3

, then

1

. The first time they meet is

3

, so

gcd(12 , 27) = 3

.

The meeting point (this is lattice terminology), has a dual notion: the join. Namely,

for the meet we explored downward in the lattice, while for the join we explore upward.

Upward exploration means exploring multiples, so the first time these explorations join, the

least common multiple is found:

Definition: Least Common Multiple (LCM)

The Least Common Multiple of

n

and

m

(both

> 0

) is the smallest

number

p > 0

such that

n | p

and

m | p

. It is written

lcm(n, m)

.

For examples, let’s calculate

lcm(6 , 8)

. Non-zero multiples of

6

include

6

,

12

,

18

,

24

,

30

,

36

,

42

,

48

,. . . Non-zero multiples of

8

include

8

,

16

,

24

,

32

,

40

,

48

,. . . The common one include

24 , 48 , . . .

, so the smallest is

24

and

lcm(6 , 8) = 24

. Note that on the lattice of Figure VII.1,

the explorations went:

6

,

12

,

24

and

8

,

16

,

24

(

16

is not displayed) so they join at

24

.

In the case of

9

and

6

, multiples are

9

,

18

,

27

,

36

,

45

,

54

,. . . and

6

,

12

,

18

,

24

,

30

,

36

,

42

,

48

,

54

,

. . .

, respectively. The common multiples being

18

,

54 , . . .

we have

lcm(9 , 6) = 18

.

For

14

and

15

, the multiples are

14

,

28

,

42

,

56

,

70

,

84

,

98

,

112

,

126

,

140

,

154

,

168

,

182

,

196

,

210 , . . .

and

15

,

30

,

45

,

60

,

75

,

90

,

105

,

120

,

135

,

150

,

165

,

180

,

195

,

210

,. . . So

lcm(15 , 14) = 210

. Note that here

210 = 14 · 15

.

We can remark that

0

is always a common multiple, but as it is not interesting, it is

excluded from the definition. Another easy common multiple of

n

and

m

is

n · m

. While it

may not be the smallest, its existence ensures that the LCM is always defined.

VII.C.2 Properties

As the definitions of GCD and LCM are symmetric for

n

and

m

, these notions are symmet-

rical:

Proposition: Symmetry

Let

n, m ∈ N

and assume

n, m > 0

.

•

gcd(n, m) = gcd(m, n)

. •

lcm(n, m) = lcm(m, n)

.

As noted, the GCD is related to how prime factors are shared between

n

and

m

. This

gives a method to compute GCD, and LCM, based on the decompositions:

Proposition: GCD and LCM from prime factor decomposition

Let

n, m ∈ N

and assume

n, m > 0

. Let

n = pk1

1

· pk2

2

· · · pki

i

and

m =

pj1

1

· pj2

2

· · · pji

i

be the decompositions into prime factors of

n

and

m

. Then:

•

gcd(n, m) = p
min(k1

,j1)

1

· p
min(k2

,j2)

2

· · · p
min(ki

,ji)

i

.

•

lcm(n, m) = p
max(k1

,j1)

1

· p
max(k2

,j2)

2

· · · p
max(ki

,ji)

i

.

120 Introduction to Discrete Mathematics

Number Theory Chapter VII

Note that in this proposition we assume that the prime number appearing in the decom-

positions are identical because some powers might be

0

. For example we write

12 = 22 · 31 · 50

and

15 = 20 · 31 · 51

. Based on this

gcd(12 , 15) = 20 · 31 · 50 = 3

and

lcm(12 , 15) = 22 · 31 · 51 = 60

.

Proof

Let

d

be a common divisor of

m

and

n

. As we remarked in Section VII.B.6

d

can be

written

pr1

1

· pr2

2

· · · pri

i

with for any

ℓ ∈ { 1 , . . . , i }

,

rℓ

≤ kℓ

(since

d | n

) and

rℓ

≤ jℓ

(since

d | m

). So

rℓ

≤ min(kℓ

, jℓ)

. Now consider

g = p
min(k1

,j1)

1

· p
min(k2

,j2)

2

· · · p
min(ki

,ji)

i

.

We just proved that

g

is a common divisor to

n

and

m

. Now for any divisor

d

, since

the power associated to every prime number

pℓ

in

d

is

rℓ

≤ min(kℓ

, jℓ)

,

d | g

, so

d ≤ g

,

as a result

g

is the greatest common divisor.

The reasoning is similar for the LCM: any common multiple

d

can be written

pr1

1

·

pr2

2

· · · pri

i

with for any

ℓ ∈ { 1 , . . . , i }

,

rℓ

≥ kℓ

(since

n | d

) and

rℓ

≥ jℓ

(since

m | d

).

So

rℓ

≥ max(kℓ

, jℓ)

. Therefore

q = p
max(k1

,j1)

1

· p
max(k2

,j2)

2

· · · p
max(ki

,ji)

i

is indeed a

common multiple of

n

and

m

. In addition, any other common multiple is also a

multiple of

q

since the power associated with prime

pℓ

in

d

is at least

max(kℓ

, jℓ)

.

Corollary

gcd(n, m) · lcm(n, m) = n · m

.

Proof

In

n · m

every prime factor

pℓ

has power

kℓ

+ jℓ

= min(kℓ

, jℓ) + max(kℓ

, jℓ)

.

Indeed we have

3 · 60 = 12 · 15

:

3 · 60 = (20 · 31 · 50) · (22 · 31 · 51) = 22 · 32 · 51 = 180

12 · 15 = (22 · 31 · 50) · (20 · 31 · 51) = 22 · 32 · 51 = 180 .

Exercise VII.6

Calculate using the decomposition into prime factors:

1.

gcd(36 , 21)

and

lcm(36 , 21)

.

2.

gcd(78 , 24)

3.

lcm(45 , 33)

VII.C.3 Euclid’s Algorithm

Although the above provides a procedure to calculate the GCD and LCM of two numbers, it

is highly inefficient as it requires to first decompose into prime factors. There is a more effi-

cient way to calculate the GCD, called Euclid’s Algorithm. Then from the GCD, calculating

the LCM can be done using the formula

lcm(n, m) =

n · m

gcd(n,m)

.

Introduction to Discrete Mathematics 121

Chapter VII Number Theory

Proposition

Let

n, m ∈ N

and assume

n, m > 0

. Let

n = m · q + r

be the Euclidean division of

n

by

m

.

• If

r = 0

, then

gcd(n, m) = m

.

• If

r > 0

(i.e.

m ̸ | n

), then

gcd(n, m) = gcd(m, r)

.

Proof

• If

r = 0

then

m | n

so

m

is a divisor of

n

; as

m

is also a divisor of

m

, it is a

common divisor. There cannot be a larger one as it would not divide

m

.

• Let

d

be a common divisor of

n

and

m

. Then

d | m · q

and

d | m · q + r

, so

d | r

.

Reciprocally, a divisor of

m

and

r

is a divisor of

n = m · q + r

. This is true in

particular for the greatest divisor.

This property gives rise to a recursive procedure to calculate the GCD of two numbers:

Euclid’s Algorithm

If

m | n

, then

gcd(n, m) = m

, otherwise

gcd(n, m) = gcd(m, r)

where

r

is the remain-

der in the Euclidean division of

n

by

m

.

So it is possible to calculate

gcd(n, m)

by writing successive divisions. Each time

m

replaces

n

and

r

replaces

m

. The last non-zero remainder is the GCD of

n

and

m

.

Note that while it is in practice easier to assume that

n ≥ m

, it is not required by the

algorithm. When

n < m

,as the division of

n

by

m

will have a remainder of

n

, and the next

division is

m

divided by

n

. For example, let’s calculate

gcd(24 , 136)

:

24 = 136 · 0+24 ⇝ 136 = 24 · 5+16 ⇝ 24 = 16 · 1+ 8 ⇝ 16 = 8 · 2+0

So

gcd(24 , 136) = 8

.

Exercise VII.7

Use Euclid’s Algorithm to calculate:

1.

gcd(364 , 122)

2.

gcd(121 , 374)

3.

gcd(764 , 224)

Exercise VII.8

1. Use Euclid’s Algorithm to calculate

gcd(21 , 13)

.

2. Fibonacci’s sequence is defined recursively as

Fn +2

= Fn +1

+ Fn

,

F0

= F1

= 1

.

a. Prove by strong induction that for

n > 0

,

0 < Fn

< Fn +1

.

b. Prove that for any

n ∈ N

,

gcd(Fn +1

, Fn) = 1

.

�

In the proofs above, be careful about the base case.

122 Introduction to Discrete Mathematics

Number Theory Chapter VII

VII.C.4 Applications: fractions

While this is not really new, it is nice to see the operations done on fractions under the new

light of arithmetics.

A fraction

n

m

can be simplified by dividing both numerator and denominator by a common

divisor of

n

and

m

. To be as efficient as possible, said divisor should be the largest, hence

gcd(n, m)

:

n

m

=

n

gcd(n,m)

m

gcd(n,m)

A consequence is that

n

m

is irreducible if and only if

n

and

m

are co-prime.

In order to add (or subtract) fractions

n

m

and

p

q

, they must be put over the same de-

nominator. As this denominator must be a multiple of

m

and

q

, but still be the smallest to

preserve fractions as simplified as possible,

lcm(m, q)

must be used. What is actually used

to make

n

m

as an equivalent fraction with denominator

lcm(m, q)

is all the factors of

q

that

are not factors of

m

, namely

q

gcd(m,q)

. Indeed in the denominator

m ·

q

gcd(m,q)

=

m · q

gcd(m,q)

=

lcm m, q

. A similar idea is used for fraction

p

q

, yielding the following formula:

n

m

+

p

q

=

n ·

q

gcd(m,q)

+ p ·

m

gcd(m,q)

lcm(m, q)

Although it is not easy to read, it is easily implemented in a computer program. For

fraction additions as a human, it is actually simpler to consider prime factor decomposition.

For example:

154

140

=

21 · 50 · 71 · 111

22 · 51 · 71 · 110

=

111

21 · 51

=

11

10

3

14

+

5

12

=

3

21 · 30 · 71

+

5

22 · 31 · 70

=

3 · 21 · 31 · 70 + 5 · 20 · 30 · 71

22 · 31 · 71

=

18 + 35

22 · 31 · 71

=

53

84

VII.D Diophantine Equations

VII.D.1 Extension to

Z

So far, this chapter treated only natural numbers. But what par tof that could actually

works in

Z

?

Actually, a lot, since the sign information is only one extra factor.

First, divisibility can still be defined as before. The only difference is that in

Z

, it is no

longer an order:

− n | n

and

n | − n

, but

n ̸ = − n

. As there is still reflexivity and transitivity,

but no antisymmetry, so this is called a pre-order .

Euclidean division can still be defined for

n, m ∈ Z

:

n = m · q + r

with

0 ≤ r < | m |

.

Note that the remainder is still positive, even though that may be counter intuitive. For

example, for

± 17

divided by

± 3

, we have the following four cases:

•

17

by

3

:

17 = 3 · 5 + 2

•

− 17

by

3

:

− 17 = 3 · (− 6) + 1

•

17

by

− 3

:

17 = (− 3) · (− 5) + 2

Introduction to Discrete Mathematics 123

Chapter VII Number Theory

•

− 17

by

− 3

:

− 17 = (− 3) · 6 + 1

In computer programming, the remainder operation (usually %) does not work in the mathe-

matical way. In most programming languages the remainder is so that

−| m | ≤ n % m < | m |

.

To find the mathematical remainder, one has to use

((n % m) + m)% m

.

Primes numbers are only positive, so

− 2

is not prime, for example. That allows the FTA

to still hold, with the added sign information: a negative number

n < − 2

is decomposed

into

n = − pk1

1

· pk2

2

· · · pki

i

.

Similarly, GCD and LCM are defined to always be positive:

gcd(n, m) = gcd(| n | , | m |)

and

lcm(n, m) = lcm(| n | , | m |)

.

VII.D.2 Definition and Bézout’s Theorem

A Diophantine equation is an equation where solutions are only sought in

Z

.

b

It is named

after the

ancient Greek

mathematician

Diophantus.

We will

restrict ourselves to linear Diophantine equations with 2 variables: equations of the form

ax + by = c

, where

a, b, c ∈ Z

are parameters and

x

and

y

the unknown variables, for

example:

11 x + 3 y = 7

.

These equations are fairly easy to solve for reals (e.g.

(0 ,

7

3)

is a real solution to

11 x +3 y =

7

), but when restricting to integers it becomes more difficult to find solutions. Thinking of

this problem graphically, a linear Diophantine equation defines a line, but we are only

interested on the points that are on the grid, and finding these special points make the

problem harder. In the case of

11 x + 3 y = 7

, there are some integral solutions, for example

(− 7 , 28)

or

(14 , − 49)

. Bézout’s Theorem provides a way of determining whether such integral

solutions exist, and the proof gives a method to actually find these solutions when they exist.

Bézout Theorem

The equation

ax + by = c

has:

• Infinitely many integer solutions if

gcd(a, b) | c

.

• No integer solution if

gcd(a, b) ̸ | c

.

The proof consists in finding a solution

(x0

, y0)

to

ax + by = gcd(a, b)

, in a separate

Lemma which proof contains the actual procedure to find a solution. Then it is possible to

find all the solutions from

(x0

, y0)

. These solutions can then be transformed to solutions of

ax + by = c

if

gcd(a, b) | c

. Then we show the reciprocal: if

ax + by = c

has a solution then

gcd(a, b) | c

.

Lemma

Diophantine Equation

ax + by = gcd(a, b)

has a solution.

Proof of the Lemma

The idea behind this proof, and the practical method that can be used to find solutions

is as follows. We write Euclid’s algorithm, and then read it backwards. The last-but-

one line is

ri − 1

= ri

· qi+gcd(a, b)

, which can be rewritten as

gcd(a, b) = ri − 1

− ri

· qi

.

Then write the line before as

ri

= ri − 2

− ri − 1

· qi − 1

and so on until reaching

a

and

b

.

To write the formal proof, we use the Extended Euclid’s Algorithm which actually

124 Introduction to Discrete Mathematics

Number Theory Chapter VII

calculates the solution as the algorithm unfolds. Think can be thought of as incorpo-

rating the backward reading of the algorithm as we go.

First, some notation: in this proof

n ÷ m

is the quotient in the Euclidean division:

n = m · (n ÷ m) + r

,

0 ≤ r < m

. Then we define three sequences as follows:

•

r0

= a

,

r1

= b

, for any

n ∈ N

,

rn +2

= rn

− (rn

÷ rn +1) · rn +1

•

x0

= 1

,

x1

= 0

, for any

n ∈ N

,

xn +2

= xn

− (rn

÷ rn +1) · xn +1

•

y0

= 0

,

y1

= 1

, for any

n ∈ N

,

yn +2

= yn

− (rn

÷ rn +1) · yn +1

• The sequences are defined until

rn

reaches

0

.

Behind these definitions is the following idea.

(rn)n ∈ N

is the sequence of the remain-

ders in Euclid’s algorithm. So each time

rn +2

is the remainder in the Euclidean

division of

rn

by

rn +1

. As was proved in the proof of Euclid’s Algorithm, we have

that for

n ∈ N

,

gcd(a, b) = gcd(rn

, rn +1)

.

Now sequences

(xn)n ∈ N

and

(yn)n ∈ N

are a bit harder to understand as is. What

matters is that at any step, we maintain the equality

rn

= a · xn

+ b · yn

. Taking this

equality just before the remainder sequence reaches

0

(

rn +1

= 0

) gives us

gcd(a, b) =

a · xn

+ b · yn

, and therefore integral solutions to the equation.

Let’s prove by induction that for

n ∈ N

,

rn

= a · xn

+ b · yn

.

Base case:

Here there are two base case:

0

and

1

.

n = 0

a · x0

+ b · y0

= a · 1 + b · 0 = a = r0

.

n = 1

a · x1

+ b · y1

= a · 0 + b · 1 = b = r1

.

Induction Case:

Assume for

n

and

n +1

the proposition holds, i.e.

rn

= a · xn+ b · yn

and

rn +1

= a · xn +1

+ b · yn +1

. Then:

a · xn +2

+ b · yn +2

= a · (xn

− (rn

÷ rn +1) · xn +1) + b · (yn

− (rn

÷ rn +1) · yn +1)

= a · xn

+ b · yn

− (rn

÷ rn +1)(a · xn +1

+ b · yn +1)

= rn

− (rn

÷ rn +1) · rn +1

a · xn +2

+ b · yn +2

= rn +2

So for

n ∈ N

,

rn

= a · xn+ b · yn

, and when

rn +1

= 0

we have

gcd(a, b) = a · xn+ b · yn

,

so

(xn

, yn)

is a solution.

The calculation of Extended Euclid’s Algorithm for

34

and

13

is given in Table VII.1.

While any computer implementation should use this extended algorithm, when on paper,

however, it is less tedious to just rewind the usual Euclid’s algorithm. To facilitate the

writing, each division is rewritten so that the remainder is the difference between the dividend

and the product of the quotient and divisor:

n = m · q + r ⇔ r = n − m · q

. For

34

and

13

,

Introduction to Discrete Mathematics 125

Chapter VII Number Theory

n

Division

rn

xn

yn

Check

0

34

1

0

34 · 1 + 13 · 0 = 34

1

13

0

1

34 · 0 + 13 · 1 = 13

2

34 = 13 · 2 + 8

8

1

− 2

34 · 1 + 13 · (− 2) = 34 − 26 = 8

3

13 = 8 · 1 + 5

5

− 1

3

34 · (− 1) + 13 · 3 = − 34 + 39 = 5

4

8 = 5 · 1 + 3

3

2

− 5

34 · 2 + 13 · (− 5) = 68 − 65 = 3

5

5 = 3 · 1 + 2

2

− 3

8

34 · (− 3) + 13 · 8 = − 102 + 104 = 2

6

3 = 2 · 1 + 1

1

5

− 13

34 · 5 + 13 · (− 13) = 170 − 169 = 1

7

2 = 1 · 2 + 0

0

Details of calculations for

xn

and

yn

:

x2

= x0

− 2 · x1

= 1 y2

= y0

− 2 · y1

= − 2 x3

= x1

− 1 · x2

= − 1 y3

= y1

− 1 · y2

= 3

x4

= x2

− 1 · x3

= 2 y4

= y2

− 1 · y3

= − 5 x5

= x3

− 1 · x4

= − 3 y5

= y3

− 1 · y4

= 8

x6

= x4

− 1 · x5

= 5 y6

= y4

− 1 · y5

= − 13

Table VII.1: Extended Euclid’s Algorithm for

34

and

13

.

it would be done as follows:

34 = 13 · 2 + 8 ⇔ 8 = 34 − 13 · 2 (VII.1)

13 = 8 · 1 + 5 ⇔ 5 = 13 − 8 · 1 (VII.2)

8 = 5 · 1 + 3 ⇔ 3 = 8 − 5 · 1 (VII.3)

5 = 3 · 1 + 2 ⇔ 2 = 5 − 3 · 1 (VII.4)

3 = 2 · 1 + 1 ⇔ 1 = 3 − 2 · 1 (VII.5)

2 = 1 · 2 + 0 ⇝ gcd(34 , 13) = 1 (VII.6)

Starting from

1 = 3 − 2 · 1

in Equation VII.5, we rewrite

2

using Equation VII.4, then

3

using Equation VII.3 until reaching an expression using our original numbers

34

and

13

:

1 = 3 − 2 · 1 [Rewriting

1

using Equation VII.5]

= 3 − (5 − 3 · 1) = 3 · 2 − 5 [Rewriting

2

using Equation VII.4]

= (8 − 5 · 1) · 2 − 5 = 8 · 2 − 5 · 3 [Rewriting

3

using Equation VII.3]

= 8 · 2 − (13 − 8 · 1) · 3 = 8 · 5 − 13 · 3 [Rewriting

5

using Equation VII.2]

= (34 − 13 · 2) · 5 − 13 · 3 = 34 · 5 − 13 · 13 [Rewriting

8

using Equation VII.1]

1 = 34 · 5 + 13 · (− 13) [Integral solution found]

Therefore the couple

(5 , − 13)

is an integral solution.

Proof of Bézout’s Theorem

First, assume that

gcd(a, b) | c

. Be the above Lemma, equation

ax + by = gcd(a, b)

has a solution, which we name

(x0

, y0)

. Let

k ∈ Z

, then let

xk

= x0

+ k ·

b

gcd(a,b)

and

126 Introduction to Discrete Mathematics

Number Theory Chapter VII

yk

= y0

− k ·

a

gcd(a,b)

. So

axk

+ byk

= a ·

(

x0

+ k ·

b

gcd(a, b)

)

+ b ·

(

y0

− k ·

a

gcd(a, b)

)

=

ax0

+ by0

+ k ·

(

ab − ba

gcd(a, b)

)

= ax0

+ by0

= gcd(a, b)

Hence

(xk

, yk)

is also a solution. Note that dividing by

gcd(a, b)

is not necessary to

obtain a solution, it is necessary to obtain all solutions.

Since

gcd(a, b) | c

, we can write

c = p · gcd(a, b)

. Let

(xk

, yk)

be a solution of

ax + by = gcd(a, b)

. Then

a (xk

· p) + b (yk

· p) = gcd(a, b) · p = c

, so

(xk

· p, yk

· p)

is a

solution of

ax + by = c

.

For the reciprocal, assume that

ax + by = c

has a solution, let’s prove that

gcd(a, b) | c

.

Let

d

be a common divisor to

a

and

b

. Then

d | ax + by = c

. In particular

gcd(a, b)

is a common divisor of

a

and

b

, so

gcd(a, b) | c

.

Corollary

When

a

and

b

are co-prime all equations

ax + by = c

have solutions.

Proof

Assume

a

and

b

are co-prime. Therefore

gcd(a, b) = 1

, so

gcd(a, b) | c

,

hence

ax + by = c

have an infinity of integral solutions.

Exercise VII.9

For the following equations, determine if they have integral solutions, and if so exhibit

such a solution. Optionally: give the form of all solutions.

1.

75 x + 40 y = 5

2.

12 x + 35 y = 2

3.

86 x + 36 y = 7

4.

23 x + 42 y = 1

5.

268 x + 28 y = 6

6.

124 x + 36 y = − 8

VII.E Congruence

VII.E.1 The congruence relation

The congruence relation modulo

n

relates numbers that are separated by a multiple of

n

:

Introduction to Discrete Mathematics 127

Chapter VII Number Theory

Definition: Congruence modulo

n

Let

n ∈ N

, the congruence modulo

n

relation is

Conn

= { (m, p) ∈ Z × Z | ∃ k ∈ Z , m = p + n · k } .

When

(m, p) ∈ Conn

, we write

m ≡ p (mod n)

.

Note that if

n = 0

, this relation boils down to identity, and is not very interesting. In

the sequel, every time the congruence relation modulo

n

is mentioned, it can be assumed

that

n > 0

.

This can be reformulated in terms of remainder in the Euclidean division by

n

:

Proposition

Let

n ∈ N

with

n > 0

, and

m, p ∈ Z

.

m

and

p

are congruent modulo

n

iff they have the same remainder in the Euclidean division by

n

.

Proof

⇒

Assume

m = p + n · k

. The Euclidean divisions of

m

and

p

by

n

are, respectively,

m = n · q + r

and

p = n · q

′+ r

′

(with

0 ≤ r, r

′ < n

). Then

n · q + r = n · q

′+ r

′+ n · k

.

So

n · (q − q

′ − k) = r

′ − r

and

n | r

′ − r

. But

− n < r

′ , r < n

so

r

′ − r = 0

,

therefore

r = r

′

.

⇐

Assume

m = n · q + r

and

p = n · q

′+ r

(with

0 ≤ r < n

). Then setting

k = q − q

′

,

we have

m = p + n · k

.

Here are several examples of equivalences by congruence relations:

•

23 ≡ 58 (mod 5)

because

58 = 5 · 11 + 3

and

23 = 5 · 4 + 3

.

•

23 ≡ 3 (mod 5)

because

23 = 5 · 4 + 3

and

3 = 5 · 0 + 3

.

•

− 17 ≡ 7 (mod 8)

because

− 17 = 8 · (− 3) + 7

and

7 = 7 · 0 + 7

.

•

21 ≡ 51 (mod 3)

because

21 = 3 · 7 + 0

and

51 = 3 · 17 + 0

.

•

21 ≡ 0 (mod 5)

because

21 = 3 · 7 + 0

and

0 = 3 · 0 + 0

.

•

43 ≡ 16 (mod 3)

because

43 = 3 · 14 + 1

and

16 = 3 · 5 + 1

.

•

43 ≡ 1 (mod 5)

because

43 = 3 · 14 + 1

and

1 = 3 · 0 + 1

.

•

47 ≡ 35 (mod 3)

because

47 = 3 · 15 + 2

and

35 = 3 · 11 + 2

.

•

47 ≡ 2 (mod 5)

because

47 = 3 · 15 + 2

and

2 = 3 · 0 + 2

.

Theorem

Let

n ∈ N

. Congruence modulo

n

is an equivalence relation.

Remark that this was proved in the case

n = 5

in Exercise V.2. The general case is not

much different, and is reproduced here for completeness’ sake.

128 Introduction to Discrete Mathematics

Number Theory Chapter VII

Proof

If

n = 0

, then

Conn

= Id

which is an equivalence relation. Otherwise, we can use the

above proposition to prove reflexivity, symmetry, and transitivity.

R

Let

m ∈ Z

.

m

has the same remainder as

m

in the division by

n

.

S

Let

m, p ∈ Z

. Assume

m ≡ p (mod n)

. Then

m

has the same remainder as

p

in

the division by

n

, which can be rephrased as

p

has the same remainder as

n

in

the division by

n

, so

p ≡ m (mod n)

.

T

Let

m, p, q ∈ Z

. Assume

m ≡ p (mod n)

and

p ≡ q (mod n)

. Then, in the

division by

n

,

m

has the same remainder as

p

, and

p

has the same remainder as

q

, so

m

has the same remainder as

q

and

m ≡ q (mod n)

.

VII.E.2 Equivalence classes and canonical representative

Let

n ∈ N

,

n > 0

. The congruence relation modulo

n

being an equivalence relation, we

can consider its equivalence classes. As congruence relates numbers that share the same

remainder in the Euclidean division by

n

, there are

n

equivalence classes, which can be

canonically represented by this remainder:

[0] , [1] , . . . , [n − 1]

. For any

p ∈ { 0 , . . . , n − 1 }

,

[p]

contains integers of the form

n · k + p

. This is why we usually try to write

m ≡ r (mod n)

with

0 ≤ r < n

being the remainder of the division by

n

. In that case we also sometimes

write

m mod n = r

; this is a useful shorthand for “

r

is the remainder of

m

in the Euclidean

division by

n

”.

Consider the equivalence classes reached when counting from

0

to infinity. We start at

[0]

, then

[1]

, then all the way to

[n − 1]

. then the equivalence class of

n

is

[0]

, the class of

n +1

is

[1]

, and so on: we have a cycle of classes appearing, which we can represent in a ring,

as is done in Figure VII.4 for

n = 13

. Note that going backwards into negative numbers also

yields a cycle:

− 1

is in the class

[n − 1]

,

− 2

in

[n − 2]

, etc until

− (n − 1)

is in the class

[1]

(as

− (n − 1) = − n + 1

),

− n

is in the class

[0]

, then

− (n + 1)

is in the class

[− 1]

again, as

we cycle back to the first class.

Another way to understand this representation is to imagine that the line of integers

(infinite on both sides) is coiled into a spring so that each ring contains

n

numbers . That

way all numbers that are separated by

n

are on top of one another. Looking from the

perspective of the equivalence relation means looking at the coil from the side, and only

seeing a ring of

n

numbers.

The set of classes, which is the quotient of

Z

by equivalence classes modulo

n

, is named

Z /n Z

.

Exercise VII.10

Calculate:

1.

37 mod 8

(i.e. find

x

such that

37 ≡ x (mod 8)

and

0 ≤ x < 8

).

2.

− 437 mod 7

(i.e. find

x

such that

− 437 ≡ x (mod 7)

and

0 ≤ x < 7

).

Introduction to Discrete Mathematics 129

Chapter VII Number Theory

0

1

2

3

4

5

6

7

8

9

10

11

12

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

Figure VII.4: The ring of integers modulo 13.

VII.E.3 Modulo Arithmetic

What makes

Z /n Z

is that we can define addition and multiplication of elements of classes

directly. These calculations are called modulo arithmetic .

VII.E.3.i Addition of equivalence classes

The addition of two classes

[m]

and

[p]

is defined as

[m] + [p] = [m + p]

. For example with

n = 13

:

[2] + [5] = [7]

,

[9] + [11] = [20] = [7]

. One can check on Figure VII.4 that starting

from

[2]

and incrementing

5

times yields

7

. And starting from

[9]

and incrementing

11

times

yields

7

as well, although crossing from

12

to

0

.

This addition has good properties, which are actually similar to addition in

Z

(the

usual addition), and actually are deducted directly from them. First, it is commutative:

[m] + [p] = [m + p] = [p + m] = [p] + [m]

. It is also associative:

([m] + [p]) + [q] =

[(m + p) + q] = [m + (p + q)] = [m] + ([p] + [q]) = [m] + [p] + [q]

.

There is neutral element (a “zero”):

[0]

is such that for any

[m] ∈ Z /n Z

,

[0] + [m] = [m]

Every class has an additive inverse (an “opposite”): for any

[m] ∈ Z /n Z

, the opposite of

[m]

is

[n − m]

:

[m] + [n − m] = [n] = [0]

. For example with

n = 13

: the opposite of

[2]

is

[13 − 2] = [11]

because

[2] + [11] = [13] = [0]

.

All these properties make

Z /n Z

a commutative group with respect to this addition

operation.

VII.E.3.ii Multiplication with equivalence classes

The multiplication of two classes

[m]

and

[p]

is defined as

[m] × [p] = [m · p]

.

In this case it is less obvious why the product of the remainders is the remainder of

the product (in that particular ring of course). Let’s write the Euclidean divisions by

n

:

m = n · q + r

and

p = n · q

′ + r

′

.

m · p = n2 · q · q

′ + n · q · r

′ + n · q

′ · r + r · r

′ = n · (n · q · q

′ + q · r

′ + q

′ · r) + r · r

′

130 Introduction to Discrete Mathematics

Number Theory Chapter VII

So modulo

n

, the term

n · (n · q · q

′ + q · r

′ + q

′ · r)

is equivalent to

0

(as a multiple of

n

), so

[m · p] = [r · r

′]

. Note that

[r · r

′]

mays not be a canonical representative, and would need to

be divided by

n

:

r · r

′ = n · k + r

′′

with

0 ≤ r

′′ < n

.

For example with

n = 13

:

[2] × [5] = [10]

,

[4] × [7] = [28] = [2]

.

This multiplication also has somme good properties. It is commutative and associative

(as is the underlying multiplication in

Z

). There is a neutral element (“one”):

[1]

is such that

for any

[m] ∈ Z /n Z

,

[1] × [m] = [m]

. Furthermore, multiplication distributes over addition:

[m] × ([p] + [q]) = [m] × [p] + [m] × [q]

. Again, this is proved by using distributivity in

Z

.

All these properties make

Z /n Z

a commutative ring . Note that this term is a mathe-

matical term, and not all rings have the ring-shape that

Z /n Z

has.

Modular inverse

In the case of addition, all classes have an opposite. We can try to find such a multiplica-

tive inverse (“reciprocal’). For

[m] ∈ Z /n Z

, the reciprocal of

[m]

would be a class

[p] ∈ Z /n Z

such that

[m] × [p] = [1]

. That would mean

[m · p] = 1

. So finding

[p]

is the same as finding

p

and

k

such that

m · p = k · n + 1

. This is the same as solving the Diophantine Equation

m · x + n · y = 1

. By Bézout’s Theorem, there is a solution iff

gcd(m, n) = 1

, i.e.

n

and

m

co-primes. So some classes have an inverse: the ones where

gcd(m, n) = 1

.

For example with

n = 6

:

5

and

6

being co-primes,

[5]

has a reciprocal: it can be found

by solving

5 x + 6 y = 1

. This can be done by Euclid’s algorithm or by guessing a solution;

here

(5 , − 4)

is a solution as

5 · 5 − 6 · 4 = 25 − 24 = 1

. Therefore

[5] × [5] = [25] = [1]

. On

the other hand,

2

is not co-prime with

6

, so

2

does not have a reciprocal.

If

n

is prime, then for any

0 < m < n

,

gcd(m, n) = 1

, so in that case all classes except

[0]

have an inverse. For example with

n = 13

, which is prime, all classes (but

[0]

) have a

reciprocal that can be calculated by solving a Diophantine equation.

[3] × [9] = [27] = [1]

,

[7] × [2] = [14] = [1]

. In that case,

Z /n Z

is a commutative field .

VII.E.3.iii Modular exponentiation

As is the case in

Z

, exponentiation in

Z /n Z

is defined as the iterated multiplication:

[m]p = [m] × [m] × · · · × [m]︸

︷︷

︸

p times

= [m × m × · · · × m︸

︷︷

︸

p times

] = [mp]

In practice, whether by hand or for computers, it is easier to calculate

[mp]

by successively

calculating

[m]

,

[m2] = [m] × [m]

,

[m3] = [m2] × [m]

. . . as each time calculations involve

numbers between

0

and

n2

.

For example, to calculate

510 mod 3

, the inefficient way would be to actually compute

510 = 9765625

then divide this big number by

3

. A computer could handle that (because it

is still relatively small), but by hand, it is much better to compute within the ring

Z / 3 Z

to

keep numbers low:

510 mod 3 = (5 mod 3)10 mod 3

= 210 mod 3 = ((2 mod 3) × (29 mod 3) mod 3

= (((2 × 2) mod 3) × (28 mod 3)) mod 3 = 1 × (28 mod 3)

= (((2 × 2) mod 3) × (26 mod 3)) mod 3 = 1 × (26 mod 3)

= (((2 × 2) mod 3) × (24 mod 3)) mod 3 = 1 × (24 mod 3)

= (((2 × 2) mod 3) × (22 mod 3)) mod 3 = 1 × (22 mod 3)

510 mod 3 = (2 × 2) mod 3 = 1

Introduction to Discrete Mathematics 131

Chapter VII Number Theory

Note that here we used the most basic exponentiation algorithm that simply performs

p

multiplications to compute

[m]p

.

i

This is for your

personal culture

more than to

be applied in

this course.

More efficient algorithms such as the fast exponentiation

which uses

O (log(p))

multiplications can also be used in

Z /n Z

. For

510 mod 3

that would

go as follows:

510 mod 3 =

((
(5 mod 3)2 mod 3

)2 mod 3 × (5 mod 3)2 mod 3

)

mod 3

=

((
22 mod 3

)2 mod 3 × 22 mod 3

)

mod 3

=

(
12 mod 3 × 1

)

mod 3

= (1 × 1) mod 3

= 1 mod 3

510 mod 3 = = 1

Exercise VII.11

In

Z / 5 Z

(i.e. the equivalence classes modulo

5

).

1. Calculate

[3] + [4]

.

2. Calculate

[2] + [3]

.

3. Find the additive inverse of

[1]

.

4. Calculate

[4] × [4]

.

5. Calculate the multiplicative inverse of

[3]

.

6. Calculate

[2]7

.

VII.E.4 Applications

Calculation using congruences and modulo arithmetic have applications into everyday life.

The most commonly used one is the RSA protocol that is at the heart of credit card security,

so it is fair to say that it is used billions of times every day.

VII.E.4.i Toolbox (Lemmas)

We first state a couple of handy lemmas that will be used throughout.

Lemma: “Modulo-a-product lemma”

If

n

and

m

are co-prime numbers and

p ≡ q (mod n)

and

p ≡ q (mod m)

, then

p ≡ q (mod n · m)

.

Proof

By definition of the congruence relations modulo

n

and

m

, respectively:

p = k · n + q

and

p = h · m + q

, for some

k , h ∈ Z

. So

k · n = h · m

. Since

n | h · m

but shares no

factor with

m

(as they are co-primes), we deduct that

n | h

. We can therefore write

h = n · j

for some

j ∈ Z

. So

p = j · (n · m) + q

and

p ≡ q (mod n · m)

.

Fermat’s Little Theorem

If

n

is prime then for

0 < p < n

,

pn − 1 ≡ 1 (mod n)

.

132 Introduction to Discrete Mathematics

Number Theory Chapter VII

The proof of Fermat’s Little Theorem requires a couple of tools of the next chapter, and

therefore is proved in Section VIII.B.2.ii.

VII.E.4.ii Divisibility criteria

Being able to test divisibility at a glance helps a lot to factor a number. Some criteria, such

as the ones for

2

and

5

are quite easy to prove without a real use of modulo arithmetic:

since 10 is a multiple of

2

(resp. of

5

), only the last digit matter.

For

3

and

9

, the criteria can be proved using modulo arithmetic:

Proposition: Divisibility by 3

A number is a multiple of 3 iff the sum of the digits is a multiple of 3.

Proposition: Divisibility by 9

A number is a multiple of 9 iff the sum of the digits is a multiple of 9.

Proof (of both criteria)

A number in base 10 can be written as a sum of powers of

10

multiplied by the digit.

Formally, let

x ∈ Z

:

x =

∑n

i =0

di10
i = d0

· 100+ d1

· 101+ d2

· 102+ · · · + dn

· 10n

(here

d0

is the least significant digit, the rightmost one).

Since

10 ≡ 1 (mod 3)

, so each

10i ≡ 1 mod 3

. So

x ≡

n∑

i =0

di

≡ d0

+ d1

+ d2

+ · · · + dn

(mod 3) .

As a result

x

is a multiple of

3

iff

x ≡ 0 (mod 3)

iff

∑n

i =0

di

≡ 0 (mod 3)

.

Similarly,

10 ≡ 1 (mod 9)

, so each

10i ≡ 1 mod 9

. So

x ≡

n∑

i =0

di

≡ d0

+ d1

+ d2

+ · · · + dn

(mod 9) .

As a result

x

is a multiple of

9

iff

x ≡ 0 (mod 9)

iff

∑n

i =0

di

≡ 0 (mod 9)

.

For example: is

354541

divisible by

3

?

354541 = 300000+50000+4000+500+40+1 = 3 · 105+5 · 104+4 · 103+5 · 102+4 · 101+1 · 100 .

In

Z / 3 Z

,

354541 ≡ 3 + 5 + 4 + 5 + 4 + 1 ≡ 22 ≡ 2 + 2 ≡ 4 ≡ 1 (mod 3)

. So

354541

is not

divisible by

3

; in fact we know the remainder in the division of

354541

by

3

is

1

.

VII.E.4.iii Chinese Remainder Theorem

This Theorem is called “Chinese” because it is attributed to Chinese mathematician Sun-tzu.

Introduction to Discrete Mathematics 133

Chapter VII Number Theory

Chinese Remainder Theorem

Let

k ∈ N

. Let

n1

, n2

, . . . , nk

∈ N

be pairwise co-primes:

∀ i, j , i ̸ = j → gcd(ni

, nj) =

1

. Then for any numbers

a1

, a2

, . . . ak

∈ N

, there exists

q

such that for any

i

,

q ≡

ai

(mod ni)

.

In addition, all solutions are equivalent modulo

n = n1

· n2

· · · nk

.

As is often the case for of existential statements, the proof is constructing an element to

exhibit. In that sense, the proof itself is more interesting than the result because it provides

a procedure to find the solution.

Proof

Let

n1

, n2

, . . . , nk

∈ N

be pairwise co-primes and

a1

, a2

, . . . an

∈ N

. For

i ∈ { 1 , . . . , k }

,

let

mi

=

n

ni

= n1

· · · ni − 1

· ni +1

· · · nk

, the product of all the

(nj)j ∈{ 1 ,...,k }

except

ni

.

As

ni

does not share any prime factor with any of the other

(nj)j ∈{ 1 ,...,k }

, it does not

share a factor with

mi

either:

mi

and

ni

are co-primes. By Bézout’s Theorem, there

is a solution

(xi

, yi)

to

ni

· xi

+ mi

· yi

= 1

. Note that we can rephrase the above by

considering that

yi

is the inverse of

mi

in

Z /niZ

. So we have

mi

· yi

≡ 1 (mod ni)

.

As

mi

is the product of the

(nj)j ∈{ 1 ,...,k } ,j ̸ = i

, for

j ̸ = i

,

nj

| mi

, therefore

mi

· yi

≡

0 (mod nj)

.

Define

q =

∑k

j =1

aj

· mj

· yj

. For

i ∈ { 1 , . . . , k }

, consider

q mod ni

, i.e. consider

q

in

Z /niZ

:

q ≡

k∑

j =1

aj

· mj

· yj

(mod ni)

≡ ai

· mi

· yi

+

i − 1∑

j =1

aj

· mj

· yj

+

k∑

j = i +1

aj

· mj

· yj

(mod ni)

≡ ai

· 1 +

i − 1∑

j =1

aj

· 0 +

k∑

j = i +1

aj

· 0 (mod ni)

q ≡ ai

(mod ni)

So

q

is a solution to all the modulo equations.

Let

n = n1

· n2

· · · nk

Assume both

q

and

q

′

are solutions. Then for

i ∈ { 1 , . . . , k }

,

q ≡ ai

(mod ni)

and

q

′ ≡ ai

(mod ni)

, so by transitivity

q

′ ≡ q (mod ni)

. By

the “Modulo-a-product lemma”,

q

′ ≡ q (mod n)

. Reciprocally,

q

is a solution and

q

′ ≡ q (mod n)

then

q

′ = q + h · n = q

′ + h · ni

· mi

so for any

i

,

q

′ ≡ q (mod ni)

. As

for any

i ∈ { 1 , . . . , k }

,

q ≡ ai

(mod ni)

, by transitivity we have that

q

′ ≡ ai

(mod ni)

so

q

′

is also a solution.

For example, let’s try to find the smallest positive integer

q

such that

q ≡ 4 (mod 5)

,

q ≡ 3 (mod 6)

,

q ≡ 5 (mod 7)

. First we see that since

5

,

6

and

7

are co-primes (

5

and

7

are

primes and

6 = 2 · 3

), so we can use the procedure laid out in the proof above.

We first need to calculate the multiplicative inverse of the product of two of our modulos

modulo the third one; namely:

134 Introduction to Discrete Mathematics

Number Theory Chapter VII

•

6 × 7

in

Z / 5 Z

•

5 × 7

in

Z / 6 Z

•

5 × 6

in

Z / 7 Z

Inverse of

42

in

Z / 5 Z

: We can start by seeing that

42 ≡ 2 (mod 5)

, so we can look for the

inverse of

2

, instead of

42

. That makes the Diophantine equation simpler, and usually

one can guess a solution rather than compute Euclid’s algorithm and revert it. In this

case, the equation is

5 x +2 y = 1

. And since

5 · 1 = 5

and

2 · 2 = 4

and their difference

is

1

, we can guess a solution:

(1 , − 2)

. Although

− 2

is not an element of

Z / 5 Z

, its

representative is

3

. And we can check that

2 · 3 = 6 ≡ 1 (mod 5)

.

Inverse of

35

in

Z / 6 Z

: Again

35 ≡ 5 (mod 6)

, so we solve

6 x + 5 y = 1

, for which

(1 , − 1)

is a solution. So we use

5

, the representative of

− 1

in

Z / 6 Z

:

5 · 5 = 25 ≡ 1 (mod 6)

.

Inverse of

30

in

Z / 7 Z

: Here we need to inverse

2

in

Z / 7 Z

as

30 ≡ 2 (mod 7)

. Solving

7 x + 2 y = 1

yields

(1 , − 3)

, so the inverse is

4

:

2 · 4 = 8 ≡ 1 (mod 7)

.

With these inverse, we define

q0

= 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 = 1629

. By construction

q0

satisfies the conditions, but it can nonetheless be checked:

1629 = 5 · 325 + 4 1629 = 6 · 271 + 3 1629 = 7 · 232 + 5

Or using modulo arithmetic:

q0

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 (mod 5)

≡ 4 · 126 + (3 · 7 · 5) · 5 + (5 · 6 · 4) · 5 (mod 5)

≡ 4 · 1 + (3 · 7 · 5) · 0 + (5 · 6 · 4) · 0 (mod 5)

q0

≡ 4 (mod 5)

q0

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 (mod 6)

≡ (4 · 7 · 3) · 6 + 3 · 175 + (5 · 5 · 4) · 6 (mod 6)

≡ (4 · 7 · 3) · 0 + 3 · 1 + (5 · 5 · 4) · 0 (mod 6)

q0

≡ 3 (mod 6)

q0

≡ 4 · 42 · 3 + 3 · 35 · 5 + 5 · 30 · 4 (mod 7)

≡ (4 · 6 · 3) · 7 + (3 · 5 · 5) · 7 + 5 · 120 (mod 7)

≡ (4 · 6 · 3) · 0 + (3 · 5 · 5) · 0 + 5 · 1 (mod 7)

q0

≡ 5 (mod 7)

Note however that

q0

may not be the smallest such positive integer. Since all solutions

are equivalent modulo

5 · 6 · 7 = 210

, we can actually compute the solution we are looking

for by taking the remainder of

q0

in the division by

210

:

q0

= 210 · 7 + 159

. So the number

we are looking for is

159

. Once again we know by construction that it is a solution, but we

can check for good measure:

159 = 5 · 31 + 4 159 = 6 · 26 + 3 159 = 7 · 22 + 5

Introduction to Discrete Mathematics 135

Chapter VII Number Theory

Exercise VII.12

John has some flowers. He tries tried to group them by bunches of 9 but he had 5

flowers left. He then tries to group them by bunches of 10 and was left with 7 flowers.

He tried to group them by bunches of 11 and was left with 3 flowers.

1. How many flowers does John have (at the minimum)?

2. Can you suggest a number of flowers per bunch that would divide evenly?

VII.E.4.iv RSA cryptography

i

This is for your

personal culture

more than to

be applied in

this course.

The RSA cryptography protocol, named after its three inventors Ron Rivest, Adi Shamir,

and Len Adleman is the protocol behind secure communication. It is found in credit card

payment protocols, online authentication (https protocol for example), and many more.

The principle is as follows. First, construct three integers

e

,

d

, and

n

such that for every

integer

m

we have

(me)d ≡ m (mod n)

. Then publish

e

and

n

(which are collectively known

as the public key), while

d

is kept secret (this is the private key). Because there is a public

and a private key, RSA is called an asymmetric protocol.

Given a message that needs to be transmitted, the first step is to translate the message

into an integer

m ∈ N

such that

0 ≤ m < n

. This translation algorithm is public, so from

m

the original message can be retrieved. In addition, the message can be cut into packets,

each converted to an integer and glued back when translated back. In that case each integer

is transmitted using the RSA protocol. For simplicity, we will focus on what happens when

the integer

m

is given; it will be called the “message”, even though it is only an integer.

To encrypt a message, calculate

me mod n

using the recipient’s public key. The rightful

recipient can then decrypt by calculating

(me)d (mod n)

, which is

m

and can be translated

back into the message. Note that only using the right value

d

gives the original message, so

only the intended recipient can retrieve the value

m

.

This protocol can also be used to sign a document. The key holder can provide a message

m

along with

md mod n

. Anyone with the public key is able to calculate

(md)e (mod n)

and find

m

. In this case, only the key holder would have been able to calculate

md mod n

,

thus ensuring that he is the sender of the message.

VII.E.4.iv.a Constructing the keys

What remains to be shown is how to construct these values

e

,

d

, and

n

such that for every

integer

m

we have

(me)d ≡ m (mod n)

. In addition,

d

should be hard to find, otherwise the

security of the protocol is weak.

To build a new RSA pair of public and private key, we start by choosing two (big) prime

numbers

p

and

q

, with

p ̸ = q

. These integers, although not used in the protocol itself, must

be kept secret since it would otherwise be easy to reconstruct the secret key. Then we set

n = p · q

. Note that although

n

is part of the public key, it is hard to find

p

and

q

by

factoring

n

, as there is no efficient algorithm to do so. In essence, to find

p

and

q

from

n

one

would have to try all values smaller than

√

n

. When

p

and

q

are big numbers, say

1024

-bit

integers, that means there is about

21024 ≃ 10308

values to try as a factor of

n

.

Then calculate

k = lcm(p − 1 , q − 1)

(kept secret as well). This can be done by performing

Euclid’s algorithm on

p − 1

and

q − 1

to find

gcd(p − 1 , q − 1)

; then

lcm(p − 1 , q − 1) =

(p − 1)(q − 1)

gcd(p − 1 ,q − 1)

. Choose

e < k

and co-prime with

k

; usually the value chosen at this step

136 Introduction to Discrete Mathematics

Number Theory Chapter VII

e = 216 + 1

, which is a prime number. Finally,

d

can be calculated as the inverse of

e

in

Z /k Z

by solving the Diophantine Equation

e · d + k · y = 1

.

So building the keys is a somewhat convoluted procedure, but it takes relatively little

time on a computer. As we have seen, finding

p

and

q

from

e

and

n

is a hard problem since

it involve factoring. The day an efficient (i.e. polynomial) algorithm is found for factoring

is the day RSA stops being secure at all and the whole modern cryptographic world would

collapse. It is, however, unlikely to happen any time soon.

VII.E.4.iv.b Proving correctness

What remains to be proved is that the keys

e

,

d

, and

n

that we built actually have the

essential property required to encrypt/decrypt or sign messages using the RSA protocol.

Theorem: Correctness of RSA

Using

e

,

d

, and

n

as constructed above, for

every integer

m

we have

(me)d ≡ m (mod n)

.

Proof

Consider integers

p, q , n, k , e, d

build as described above. By construction we have

e · d − 1 = k · y

for some

y

. Since

k = lcm(p − 1 , q − 1)

, we have

k = i0

· (p − 1)

and

k = j0

· (q − 1)

for some integers

i0

, j0

∈ N

. By setting

i = i0

· y

and

j = j0

· y

, we

have

e · d − 1 = (p − 1) · i = (q − 1) · j

, so

e · d = 1 + (p − 1) · i = 1 + (q − 1) · j

.

Let

m ∈ N

. Let’s prove that

me · d ≡ m (mod p)

. Using

e · d = 1 + (p − 1) · i

, we

can write

me · d ≡ m1+(p − 1) · i ≡ m · m(p − 1) · i ≡ m ·

(
mp − 1

)i

(mod p)

. By Fermat’s

Little Theorem,

mp − 1 ≡ 1 (mod p)

, so

m ·

(
mp − 1

)i ≡ m · 1i ≡ m (mod p)

. Hence

me · d ≡ m (mod p)

.

We can do a similar proof to show that

me · d ≡ m (mod q)

, using

e · d = 1+ (q − 1) · j

.

As

p

and

q

are distinct primes, they are co-primes, so by the “Modulo-a-product

lemma” we have

me · d ≡ m (mod p · q)

, so

me · d ≡ m (mod n)

.

Introduction to Discrete Mathematics 137

Chapter VIII

Introduction to Combinatorics

Chapter contents

VIII.A What is Combinatorics? . 140

VIII.A.1 Different approaches to combinatorics 140

VIII.A.2 Some basic tools . 141

VIII.B Choosing

k

among

n

. 142

VIII.B.1 Definition, calculation, and closed form 142

VIII.B.1.i A recurrence relation 142

VIII.B.1.ii A closed form . 143

VIII.B.2 Binomial coefficients . 145

VIII.B.2.i Binomial expansion 145

VIII.B.2.ii Number Theory with binomial coefficients 148

Introduction to Discrete Mathematics 139

Chapter VIII Introduction to Combinatorics

VIII.A What is Combinatorics?

The term combinatorics can be though as a fancy word for counting . The main thing that is

being counted it the number of elements in a set

S

from its definition or description. Usually

the set being consider is built from some sets of know size, given by a parameter: we are

looking for a function of these parameters. The set

S

is a combination of the underlying

sets, hence the name combinatorics .

In computer science, combinatorics are used to evaluate the complexity of some algo-

rithms, for example when all the elements of the set have to be considered: evaluating

the size of the set allows to evaluate the overall complexity. In statistics and probability,

when randomly selecting an element in a set

S

with uniform probability, each element has

probability

1

| S |

of being chosen; so knowing

| S |

allows to compute these probabilities.

This chapter is a brief introduction to combinatorics. Some of its content is more a revisit

on some notions described in earlier chapters. The idea is more to provide methods than

formulas, as each combinatorics problem is different from the other. Some of the questions

we will consider are:

• How many subsets are there in a set of size

n

?

• How many subsets of size

k

are there in a set of size

n

?

• How many propositional formulas (up to logical equivalence) exist when there are

n

propositional variables?

VIII.A.1 Different approaches to combinatorics

When faced with a combinatorics problem, there are three main ways to approach the

problem.

Reformulation: Reformulate the description in order to have the number of elements ap-

pear. This is the most direct approach, which works well for relatively simple cases.

For example, to calculate the number of subsets of a set of size

n

, one can think of a

subset as follows: for every element, it can be in the set or not, so there are

2n

sets.

This was the approach taken in Section IV.B.2 when discussing the cardinality of the

powerset.

Induction: Find a recurrence relation that relates the size of the set based on the underlying

sets. This method works best when there is a single underlying set

S0

on which set

S

is built so

| S |

is a single variable function of

| S0

|

:

| S | = f (| S0

|)

. The base case

corresponds to

| S0

| = 0

, i.e. when the underlying set is empty. Then inductive

case expresses the number of combinations when

| S0

| = n + 1

using the number of

combinations for

| S0

| = n

: express

f (n + 1)

as an expression using

f (n)

. A closed

form can be conjectured and proved by induction.

↬

In

Section VI.C.2,

several

recurrence

relations are

transformed

into a closed

form using this

method.

Using the same example as above: let

f (n)

be the number of subsets of a set of size

n

.

Base case:

n = 0

: There is only one subset, the empty set, so

f (0) = 1

.

Inductive case:

For a set

S

of size

n + 1

, take one element

e ∈ S

. Consider the

subsets of

S \ { e }

. There are

f (n)

subsets. Then a subset of

S

is either a subset

of

S \ { e }

or a subset of

S \ { e }

to which

e

was added, therefore

f (n +1) = 2 f (n)

.

140 Introduction to Discrete Mathematics

Introduction to Combinatorics Chapter VIII

Proving that this function yields the closed form

f (n) = 2n

is left as exercise to the

reader.

Indirect counting: This method is best described by this explanation: “To count the

number of sheep, count the number of sheep legs and divide by 4”. In practice it

means that it is sometimes easier to count objects more than once, and then divide to

account for this multiple counting.

An example of this situation is counting how many handshakes occurred in a meeting

of

n

people. Everyone shook the hand of everyone else, so

n − 1

hands. In total that

makes

n (n − 1)

handshakes But that means we counted the handshake between two

people

A

and

B

twice: once as

A

shaking

B

’s hand, and once as

B

shaking

A

’s hand.

Therefore the actual number of handshakes is

n (n − 1)

2

.

VIII.A.2 Some basic tools

Sets can be built in a variety of ways from others. But some basic operations on sets are at

the heart of most constructions. Therefore knowing how these operations affect cardinalities

allows to calculate the size of the resulting set. Note that some of these tools already appear

in Chapter IV, but are reproduced here for completeness’ sake.

Proposition

• The number of tuples in the Cartesian product of

p

sets of sizes

n1

, n2

, . . . , np

is

∏p

i =1

ni

= n1

· n2

· · · np

.

• The number of subsets a set of size

n

is

2n

.

• The number of ways to arrange (i.e. pick an order) of a set of size

n

is

n ! =

n∏

i =1

i = 1 · 2 · · · n.

It is also known as the number of permutations of the set.

Proof

Only the last point remains to be proved. Two proofs will actually be done, each

illustrating a different approach.

Reformulation: If we select elements from first to last, there are

n

ways to pick the

first one, then

n − 1

way to take the second one, all the way down to only

1

way to pick the last element remaining. Therefore the number of ways to pick

an order of a set of size

n

is

n · · · 2 · 2 =

∏n

i =1

i = n !

.

Induction: Let’s find a recurrence relation for the number of permutations. Let

π (n)

be the number of permutations in a set of size

n

. We’ll prove that it corresponds

to

n !

at the same time, i.e. that

π (n) = n !

.

Base case:

If

n = 1

, there is only one way to arrange a singleton, so there

is

π (1) = 1

arrangement. As

1! = 1

, the base case matches what is to be

Introduction to Discrete Mathematics 141

Chapter VIII Introduction to Combinatorics

proved. Technically

n = 0

is the actual base case. There is also one way

to arrange the empty set, so

π (0) = 1

, and that works with the conjecture

as well because

0! = 1

.

Inductive case:

To add the

n +1

th element to one of the order for

n

elements,

it could be put before any of the

n

elements or at the last position, so there

are

n + 1

choices for that. Therefore

π (n + 1) = (n + 1) · π (n)

. Assume

π (n) = n !

. Then

π (n + 1) = (n + 1) · π (n) = (n + 1) · (n !) = (n + 1)!

. So

the induction holds.

Therefore there are

n !

ways to arrange a set of size

n

.

VIII.B Choosing

k

among

n

VIII.B.1 Definition, calculation, and closed form

When “Choosing

k

among

n

”, we are counting how many ways are there to choose

k

elements

among

n

, without any element repeating. In more formal terms, this amounts to count how

many subsets of exactly

k

elements a set

S

of size

n

has:

∣∣∣

{
A ⊆ S

∣∣| A | = k

}

∣∣∣

There are several common ways to denote that number, although they are all read “from

n

choose

k

”. The one I’ll use in this book is

(
n

k

)

, also called Newton’s notation. You may

sometimes see the notation

C

k
n

, the

C

standing for combination .

VIII.B.1.i A recurrence relation

To calculate the actual value of

(
n

k

)

, we can try to find a recurrence relation. Let

S

be a

set with

n

elements. First assume

0 < k ≤ n

. To choose

k

elements from

S

, consider one

element

e ∈ S

. Then either choose:

• to exclude

e

and then choose

k

elements from

S \ { e }

.

• or to include

e

and then choose

k − 1

elements from

S \ { e }

, and add

e

to the set.

That provides the recurrence relation:

(
n

k

)

=

(
n − 1

k

)

+

(
n − 1

k − 1

)

Now the cases when we cannot assume that

0 < k ≤ n

are the base cases.

k = 0

There is only one way to pick

0

elements (the empty set), so

(
n

0

)

= 1

for

n ≥ 0

.

n < k

There is no way to take more elements than there are in the set so

(
n

k

)

= 0

.

k < 0

There is no way to take a negative number of elements so

(
n

k

)

= 0

.

142 Introduction to Discrete Mathematics

Introduction to Combinatorics Chapter VIII

(
0

0

)

= 1

(
0

1

)

= 0

(
1

0

)

= 1

(
1

2

)

= 0

(
1

1

)

= 1

(
2

0

)

= 1

(
2

3

)

= 0

(
2

1

)

= 2

(
2

2

)

= 1

(
3

0

)

= 1

(
3

4

)

= 0

(
3

1

)

= 3

(
3

2

)

= 3

(
3

3

)

= 1

(
4

0

)

= 1

(
4

5

)

= 0

(
4

1

)

= 4

(
4

2

)

= 6

(
4

3

)

= 4

(
4

4

)

= 1

(
5

0

)

= 1

(
5

6

)

= 0

(
5

1

)

= 5

(
5

2

)

= 10

(
5

3

)

= 10

(
5

4

)

= 5

(
5

5

)

= 1

(
6

0

)

= 1

(
6

7

)

= 0

(
6

1

)

= 6

(
6

2

)

= 15

(
6

3

)

= 20

(
6

4

)

= 15

(
6

5

)

= 6

(
6

6

)

= 1

Figure VIII.1: Calculating some

(
n

k

)

from the recurrence relation.

Proposition: Recurrence relation for

(
n

k

)

Let

S

be a set with

n

elements. Then

(
n

k

)

=

1 if k = 0

0 if n < k or k < 0(
n − 1

k

)
+

(
n − 1

k − 1

)

otherwise

Before finding a closed form, we can calculate some of these values and lay them out in

2-dimensions. This is done in Figure VIII.1. In this figure, arrows represent the contribution

of a coefficient in the other: so for example arrows from

(
4

2

)

and

(
4

3

)

to

(
5

3

)

represent the

fact that

(
4

2

)
+

(
4

3

)

=

(
5

3

)

. What we can remark (and which will be formally proved once we

have a closed form), is that there are zeroes on all the fringes. These correspond to the base

case

n < k

. As they don’t really impact the calculation we can actually leave them out of

the depiction (here they are semi-transparent). There should also be zeroes when

k < 0

but

this was left out of the picture.

We can also notice that there are ones on the edges:

(
n

0

)

=

(
n

n

)

= 1

. That make sense

because there is only one way to choose

n

from

n

: choosing the whole set. More generally,

we can notice that there is symmetry:

(
n

k

)

=

(

n

n − k

)

. Again, intuitively that makes sense

because choosing

k

elements to take is like choosing

n − k

elements to leave. To highlight

this symmetry, the

(
n

k

)

are often displayed in a triangle, called Pascal’s Triangle , depicted

in Figure VIII.21.

VIII.B.1.ii A closed form

It is possible to do a direct proof from the problem to a closed-form formula, by indirect

counting and reformulating the problem. First choose the first element: there

n

possibilities.

Then there are

n − 1

possibilities for the second, as we don’t want repetition. This continues

1Both Figures VIII.1 and VIII.2 were adapted from https://tex.stackexchange.com/questions/17522/

pascals-triangle-in-tikz

Introduction to Discrete Mathematics 143

https://tex.stackexchange.com/questions/17522/pascals-triangle-in-tikz
https://tex.stackexchange.com/questions/17522/pascals-triangle-in-tikz

Chapter VIII Introduction to Combinatorics

(
0

0

)

= 1

(
1

0

)

= 1

(
1

1

)

= 1

(
2

0

)

= 1

(
2

1

)

= 2

(
2

2

)

= 1

(
3

0

)

= 1

(
3

1

)

= 3

(
3

2

)

= 3

(
3

3

)

= 1

(
4

0

)

= 1

(
4

1

)

= 4

(
4

2

)

= 6

(
4

3

)

= 4

(
4

4

)

= 1

(
5

0

)

= 1

(
5

1

)

= 5

(
5

2

)

= 10

(
5

3

)

= 10

(
5

4

)

= 5

(
5

5

)

= 1

(
6

0

)

= 1

(
6

1

)

= 6

(
6

2

)

= 15

(
6

3

)

= 20

(
6

4

)

= 15

(
6

5

)

= 6

(
6

6

)

= 1

Figure VIII.2: Pascal’s Triangle.

until all

k

elements are chosen, so we have counted

n · (n − 1) · · · (n − k + 2) · (n − k + 1)

options. Note that this can be rewritten as

n !

(n − k)!

=

n · (n − 1) ··· (n − k +2) · (n − k +1) · (n − k) ··· 1

(n − k) ··· 1

=

n · (n − 1) · · · (n − k +2) · (n − k +1)

But choosing so we have counted the same sets several

times: picking

a

, then

b

, then

c

is the same as picking

b

then

a

, then

c

: we must divide by

all the ways we had to pick the same set. Since there are

k !

possible orderings of this set of

size

k

, we obtain

(
n

k

)

=

n !

(n − k)! · k !

Remark that this works for

0 ≤ k ≤ n

, otherwise the reasoning does not really work, and

(
n

k

)

is

0

.

As this kind of proof might seem a little informal, it is best to prove the result by

induction, using the recurrence relation. Although to do so we had to have a closed form to

state the induction hypothesis.

Theorem: Closed form for

(
n

k

)

(
n

k

)

=

{

n !

(n − k)! · k !

if 0 ≤ k ≤ n

0 otherwise

Remark: this formula directly gives . If you are not convinced, or just want to prove

that it matches the recurrence relation, we will do a proof by induction.

Proof

The proof will use strong induction. The property we want to prove is

(
n

k

)

=

n !

(n − k)! · k !

⇔

(
n

k

)

=

(
n − 1

k

)
+

(
n − 1

k − 1

)

.

Base cases:

144 Introduction to Discrete Mathematics

Introduction to Combinatorics Chapter VIII

k = 0

n !

(n − k)! · k !

=

n !

n ! · 0!

=

n !

n ! · 1

= 1

, so the property holds for

k = 0

.

n < k

,

k < 0

it is

0

in both formulas, so the property holds in these cases.

Inductive case: Assume the property holds for every

(k

′ , n′) ≺ (k , n)

, where

≺

is

the strict lexicographic ordering. In particular, it holds for

(k − 1 , n − 1)

and

for

(k , n − 1)

.

(
n

k

)

=

(
n − 1

k

)
+

(
n − 1

k − 1

)

=

(n − 1)!

(n − 1 − k)! · k !

+

(n − 1)!

(n − 1 − (k − 1))! · (k − 1)!

=

(n − 1)! · (n − k)

(n − k)! · k !

+

(n − 1)! · k

(n − k)! · k !

=

(n − 1)! · (n − k)+(n − 1)! · k

(n − k)! · k !

=

(n − 1)! · (n − k + k)

(n − k)! · k !

=

(n − 1)! · n

(n − k)! · k !(
n

k

)

=

(n)!

(n − k)! · k !

So the equality holds for

(k , n)

.

Therefore the property holds for any

k

and

n

.

Corollary

For

n, k ∈ N

,

(
n

k

)

=

(

n

n − k

)

and

(
n

1

)

=

(

n

n − 1

)

= n

.

Proof

• For the first point:

(
n

k

)

=

n !

(n − k)! · k !

=

n !

k ! · (n − k)!

=

(

n

n − k

)

.

•

(
n

1

)

=

(

n

n − 1

)

by the above. In this particular case we have:

(
n

1

)

=

n !

(n − 1)! · 1!

=

n · (n − 1) · · · 1

(n − 1) · · · 1

= n.

VIII.B.2 Binomial coefficients

VIII.B.2.i Binomial expansion

Collectively, all the

(
n

k

)

are known as the binomial coefficients , because they appear as the

coefficients in the expansion of the binomial

(x + y)n

. This is actually where they were

introduced as first by Newton, rather than for counting.

Introduction to Discrete Mathematics 145

Chapter VIII Introduction to Combinatorics

Theorem

(x + y)n =

n∑

k =0

(
n

k

)

xk y

n − k

Proof

We prove the result by induction.

Base case:

n = 0

:

(x + y)0 = 1 = 1 · x0 y0

, so the property holds.

Inductive case: Assume the property holds for

n

, let’s prove it holds for

n + 1

.

(x + y)n +1 = (x + y) · (x + y)n = (x + y) ·

(

n∑

k =0

(
n

k

)

xk y

n − k

)

by induction hypothesis. We can now distribute:

(x + y)n +1 = x ·

(

n∑

k =0

(
n

k

)

xk y

n − k

)

+ y

(

n∑

k =0

(
n

k

)

xk y

n − k

)

=

(

n∑

k =0

(
n

k

)

xk +1 y

n − k

)

+

(

n∑

k =0

(
n

k

)

xk y

n − k +1

)

Now the idea is twofold: we’ll need to combine like terms; and we’ll need to

have terms that match the result we want, namely terms using

n + 1

instead

of

n

.

(x + y)n +1 =

(

n∑

k =0

(
n

k

)

xk +1 y(n +1) − (k +1)

)

+

(

n∑

k =0

(
n

k

)

xk y(n +1) − k

)

To make like terms appear, we remark that in the left sum we have

k + 1

while

we have

k

in the right sum. But as

k

is only the summation variable, it can be

renamed, as long as the sum bounds are changed to: so summing for

k

going

from

0

to

n

is the same as summing for

k +1

going from

1

to

n +1

. To more easily

see what’s going on, let’s perform this change in two steps: first set

i = k + 1

,

so the sum in

k

from

0

to

n

becomes a sum in

i

from

1

to

n +1

. Then, because

the summation variable is bound within the sum, it can be

α

-renamed

↬

See

Section II.B.6

for details

about variable

scope and

renaming.

into

k

:

(x + y)n +1 =

(
n +1∑

i =1

(

n

i − 1

)

xi y(n +1) − i

)

+

(

n∑

k =0

(
n

k

)

xk y(n +1) − k

)

=

(
n +1∑

k =1

(

n

k − 1

)

xk y(n +1) − k

)

+

(

n∑

k =0

(
n

k

)

xk y(n +1) − k

)

Now we do have like terms, but the summation bounds are not the same, so we

cannot combine all the terms. We need to separate the terms that don’t match

146 Introduction to Discrete Mathematics

Introduction to Combinatorics Chapter VIII

to be able to actually perform the sum. Note that the terms that don’t match

are

xn +1

, corresponding to

k = n + 1

in the first sum and

y

n +1

corresponding

to

k = 0

in the second. The resulting sums will both have

k

going from

1

to

n

.

(x + y)n +1 =

(
n

n

)

xn +1 y0 +

(

n∑

k =1

(

n

k − 1

)

xk y(n +1) − k

)

+

(
n

0

)

x0 y

n +1 +

(

n∑

k =1

(
n

k

)

xk y(n +1) − k

)

=

(
n

n

)

xn +1 y0 +

(
n

0

)

x0 y

n +1 +

(

n∑

k =1

(

n

k − 1

)

xk y(n +1) − k +

(
n

k

)

xk y(n +1) − k

)

=

(
n

n

)

xn +1 y0 +

(
n

0

)

x0 y

n +1 +

(

n∑

k =1

(

(

n

k − 1

)

+

(
n

k

)

) xk y(n +1) − k

)

Using the recurrence property

(

n

k − 1

)
+

(
n

k

)

=

(
n

k

)

:

(x + y)n +1 =

(
n

n

)

xn +1 y0 +

(
n

0

)

x0 y

n +1 +

(

n∑

k =1

(
n + 1

k

)

xk y(n +1) − k

)

Now to reintegrate

xn +1

and

y

n +1

, we can remark that

(
n

n

)

=

(
n +1

n +1

)

= 1

and

(
n

0

)

=

(
n +1

0

)

= 1

. So

(x + y)n +1 =

(
n + 1

n + 1

)

xn +1 y0 +

(
n + 1

0

)

x0 y

n +1 +

(

n∑

k =1

(
n + 1

k

)

xk y(n +1) − k

)

=

n +1∑

k =0

(
n + 1

k

)

xk y(n +1) − k

So the property holds for

n + 1

, therefore it holds for every

n ∈ N

.

For example we can expand

(x + y)4 = x4+4 x3 y +6 x2 y2+4 xy3+ y4

. In practice, calculat-

ing this expansion can be done by using Pascal’s Triangle (Figure VIII.2) and remembering

that the powers of

x

and

y

always sum to

n

.

A consequence of this expansion is that by setting both

x

and

y

to

1

, we have:

n∑

k =0

(
n

k

)

= 2n

This also makes sense in terms of our original formulation in combinatorics. Adding for all

the

k

how many subsets of

k

elements exist is just counting all the subsets, of which there

are

2n

.

Introduction to Discrete Mathematics 147

Chapter VIII Introduction to Combinatorics

VIII.B.2.ii Number Theory with binomial coefficients

As the coefficients are integers, it makes sense to take a look in terms of number theory.

Namely, how do

(
n

k

)

behave modulo

n

?

Theorem: Freshman’s dream

If

n

is prime, then

(x + y)n ≡ xn + y

n (mod n)

.

This theorem is called Freshman’s dream as a joke to unexperienced mathematicians who

try to expand a binomial by simply distributing the powers. Of courses that does not work

in

R

(or even

Q

,

Z

, or

N

), but is a particular property of

Z /n Z

with

n

prime. The proof of

the Theorem relies on the following Lemma:

Lemma: Binomial with

n

prime

If

n

is prime, then for

0 < k < n

,

n |

(
n

k

)

.

Proof

The closed-form formula provides

(
n

k

)

=

n !

(n − k)! · k !

. In this formula, all prime factors

of

(n − k)!

and

k !

are smaller than

n

, therefore do not divide

n

(by primality) and

cannot be divided by

n

. As a result

n

, which is a factor of the numerator, cannot be

simplified in the fraction. Since

(
n

k

)

is an integer (as the recurrence relation shows),

then

n

is a factor of

(
n

k

)

.

Proof of Freshman’s Dream

Write the binomial expansion

(x + y)n =

∑n

k =0

(
n

k

)
xk y

n − k

. Since for

0 < k < n

,

n |

(
n

k

)

by the above Lemma,

(
n

k

)

≡ 0 (mod n)

and the term is canceled. What

remains is

(x + y)n ≡

(
n

0

)
x0 y

n − 0 +

(
n

n

)
xn y

n − n ≡ xn + y

n (mod n)

.

Using Freshman’s dream , we can now proof Fermat’s Little Theorem (stated in Sec-

tion VII.E.4.i and used to prove the correctness of the RSA protocol in Section VII.E.4.iv).

Fermat’s Little Theorem

If

n

is prime then for

0 < p < n

,

pn − 1 ≡ 1 (mod n)

.

Proof of Fermat’s Little Theorem

We first prove that

pn ≡ p mod n

for

p ∈ N

by induction on

p

.

Base case:

p = 0

:

pn ≡ 0n ≡ 0 (mod n)

.

Induction case: Assume the Theorem holds for

p

.

By Freshman’s dream ,

(p + 1)n ≡ pn + 1n (mod n)

. But

pn ≡ p (mod n)

by induction hypothesis and

1n ≡ 1 (mod n)

. Therefore we have

(p + 1)n ≡

p + 1 (mod n)

and the property holds for

p + 1

148 Introduction to Discrete Mathematics

Introduction to Combinatorics Chapter VIII

Therefore for every

p ∈ N

,

pn ≡ p mod n

.

Now we assume that

0 < p < n

. Write

pn ≡ p (mod n)

as

pn = p + k n

for some

k

. Then

p (pn − 1 − 1) = k n

. But

n ̸ | p

(since

0 < p < n

) so by Euclid’s Lemma

n | (pn − 1 − 1)

and

pn − 1 − 1 = k

′ n

for some

k

′

. We can write

pn − 1 = 1+ k

′ n

therefore

pn − 1 ≡ 1 (mod n)

.

Introduction to Discrete Mathematics 149

	Introduction to Discrete Mathematics: An OER for MA-471
	Foreword
	Propositional Logics
	Introduction
	What is truth?
	Propositions
	Natural language vs mathematical language

	Boolean Algebra
	The building blocks: Propositional variables and operators
	Propositional variables
	Boolean values and operators

	Truth table for formulas
	Example: Writing the truth table for (qr)(p(qr))
	Logical equivalence
	Remark: Equivalence and if-and-only-if

	Putting the Algebra back into Boolean Algebra
	Neutrality and Absorption
	Double negation and Idempotence
	Commutativity, Associativity, Distributivity
	De Morgan's laws, Contraposition
	Constructing operators from others
	Calculating in the Boolean algebra

	Classifying formulas
	Formula categories
	Classifying formulas, in practice
	Example: =(pq) (p r q)
	Example: =(p q) (p q)

	Satisfiability
	The satisfiability problem: SAT
	The NP class

	First-order logic (FO)
	Predicates
	Interpretations and semantics
	Notations and vocabulary
	Predicates and boolean operators

	Quantifiers
	Universal quantifier: Always
	Existential quantifier: Sometimes
	Negated quantifiers: Never, Not always
	Finding the truth value of quantified formula
	Quantification on several variables
	Variable scope, freeness and boundedness
	Remarks
	A new look on the satisfiability problem
	Abbreviations for easier maths
	Second- (or more) -order logic

	Equivalence in first-order logic
	Syntactical calculation
	Calculation rules
	Quantifier alternation

	Semantic proofs
	Proving non-equivalence
	Proving equivalence

	Proof systems and proof patterns
	What is a proof?
	Formal vs human proofs
	Vocabulary

	Proof systems
	Rule-based systems
	Hilbert-style Natural Deduction system for propositional logic
	The rules
	Writing proofs
	Examples
	Tricks for creating proofs in ND

	Natural deduction for first-order logic
	Other proof systems
	Some equivalent systems
	Intuitionistic logic
	Sequent calculus
	All the other proof systems

	From formal proofs to mathematical proofs
	Human proofs
	Decomposition of the statement
	The art of writing a proof
	Proof patterns
	Proving a quantified statement
	Direct proof by implication
	Proof by contrapositive
	Proof by contradiction
	Proof by cases
	Proving iff as two implications
	Chains of iffs
	Chains of iffs using implications

	Remarks
	All the other rules
	On the boldness of arrows
	Practicing proof techniques

	Set Theory
	Sets over a domain
	Definition, vocabulary, notations
	The writing of sets
	Usual domains

	Boolean algebra on sets
	Sets and first-order logic
	Boolean operators for sets
	Venn Diagrams
	Proving theorems about sets

	Cardinality
	Disjointedness, coverings, and partitions
	Disjoint sets
	Coverings
	Partitions and Disjoint Unions

	Sets of sets
	The nature of the elements
	The powerset
	Defining natural numbers from sets

	Sets of tuples
	Cartesian products
	Definition
	Cardinality
	Examples

	Relations
	Definition
	Examples
	Projection
	Relations in relational databases

	Functions
	Definition and notations
	Special cases for domains and co-domain
	Injection, surjection, bijection
	Injection, surjection, bijection and cardinality

	Equivalence and Order Relations
	Equivalence relations
	Definition and notation
	Formal and informal definitions
	Proving equivalence
	Notations

	Equivalence classes
	Definition
	Partition using equivalence classes
	Quotient by an equivalence relation
	Equivalence classes in mathematics

	Order relations
	Definition and notation
	Formal and informal definition
	Proving a relation is an order
	Notations for orders
	Strict orders

	Partial v total orders
	Lexicographic orders
	Definition
	Lexicographic orders are orders
	Lexicographic orders and totality

	Sequences and Recurrence
	Sequences
	Definition, notation
	Explicit definition
	Recursive definition

	Particular sequences
	Arithmetic and geometric growth
	Sum of terms of a sequence
	Arithmetico-geometric sequences

	Proofs by induction
	Principle of induction
	Variations on induction
	Finding the right predicate
	The proof by contradiction version of induction
	Strong induction
	Structural induction

	Application: Growth and complexity
	What is complexity?
	Big-O notation
	Worst-case complexity

	Complexity of recursive programs
	Example: The Towers of Hanoi
	Example: Merge sort

	Number Theory
	Division of integers
	Divisibility
	Definition
	Properties

	Euclidean division (a.k.a Long division)

	Prime numbers
	Definition
	Euclid's Lemma
	Fundamental Theorem of Arithmetic
	Checking primality
	Decomposition into prime factors
	From the decomposition to the list of divisors
	Infinity of primes

	Greatest Common Divisor and Least Common Multiple
	Definitions
	Properties
	Euclid's Algorithm
	Applications: fractions

	Diophantine Equations
	Extension to Z
	Definition and Bézout's Theorem

	Congruence
	The congruence relation
	Equivalence classes and canonical representative
	Modulo Arithmetic
	Addition of equivalence classes
	Multiplication with equivalence classes
	Modular exponentiation

	Applications
	Toolbox (Lemmas)
	Divisibility criteria
	Chinese Remainder Theorem
	RSA cryptography

	Introduction to Combinatorics
	What is Combinatorics?
	Different approaches to combinatorics
	Some basic tools

	Choosing k among n
	Definition, calculation, and closed form
	A recurrence relation
	A closed form

	Binomial coefficients
	Binomial expansion
	Number Theory with binomial coefficients

