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1 ABSTRACT 

Antibiotics resistance (AR) in human and animal pathogens is increasingly leading to failures in 

treating infectious disease by means of antibiotics currently in use. Large scale antibiotics 

consumption in human health care and agriculture is seen as the primary driver behind this. Scientific 

research bears out that the environment has an important role in the emergence and spread of AR. 

However, a limited understanding of the mechanisms that drive AR in the environment complicates 

the identification of effective strategies. Many knowledge and data gaps still exist on the 

mechanisms that drive AR in the environment and how this eventually relates to human health risk.  

This thesis aimed to investigate the correlation between antibiotic selective pressure and antibiotic 

resistance in the aquatic environment, by performing a meta-analysis of data retrieved from 

experimental research literature. Sample data extracted from 9 studies was used containing 

measurements of both antibiotic concentrations and antibiotic resistance genes (ARGs) abundance 

per 16s in surface water and sediments. Antibiotic concentrations were translated into selective 

pressures using the PNEC (predicted no-effect concentration) for each antibiotic type. Total selective 

pressure of each antibiotic class (TASP) was matched to the total resistance gene abundance (TARG) 

of associated gene types, resulting in 738 data points. A linear mixed effect model (LMEM) was 

constructed with TARG as the response and TASP as the explanatory variable. Antibiotic class (Class) 

was added as an categorical explanatory variable and environmental matrix (Matrix), season 

(Season), and antibiotic class nested in study (Study/Class) were added as covariates.  

Results from data analysis showed no correlation between TARG and TASP. However, both Class, 

Season and Study/Class were significant factors influencing the relationship between TASP and TARG 

in the data set, together explaining 81% of the variance in the data. This indicates that the 

relationship between TASP and TARG is complex and non-linear, but temporal influences and 

antibiotic class might significantly affect the variance seen in the relationship between selective 

pressure and associated resistance gene abundance.  

Additionally, Pearson correlations showed a strong and positive correlation between Tetracyclines 

and tetW in sediments. A number of relatively strong and positive correlations were seen in both 

matrices between antibiotic classes and unrelated gene types. Overall, selective pressure was highest 

from Quinolones in both matrices, followed by Cephalosporins and Tetracyclines and lowest from 

Sulphonamides. Highest ARG-abundances were found for mobile genetic element intl1 and for the 

resistance genes blaTEM and tetZ, conferring resistance to respectively Cephalosporins and 

Tetracyclines.        



3 
 

2 INTRODUCTION 

2.1 ANTIBIOTIC RESISTANCE IS UBIQUITOUS  

Infections and infectious diseases caused by (multi) drug resistant bacteria are a fast growing 

problem, with treatment failures exceedingly leading to increased cases of morbidity and mortality 

(WHO, 2014). Especially worrisome is the emergence of pan-resistant pathogens, like Mycobacterium 

tuberculosis, a tuberculosis-causing bacterium which is one of the deadliest bacterial infectious 

diseases worldwide (ASM, 2009). This trend results not only from inadequate uses of antibiotics, like 

underdosage, but more generally from an ever increasing antibiotics consumption driving increased 

AR among bacteria including pathogens (ASM, 2009; Klein et al, 2018). This is supported by research, 

where correlations were found between national antibiotics consumption and antibiotics resistance 

rates in humans as well as in livestock animals (Bell et al, 2014; EFSA, 2017; Forslund et al, 2014; 

McDonnell et al, 2017).  

It was initially thought that AR emerges in the presence of direct selective pressures such as high 

antibiotics concentrations in the clinical setting. The role of hospitals and health care settings are 

well recognized in the development of resistant bacteria, like methicillin resistant Staphylococcus 

aureus (MSRA). But the development of AR in these settings seems to be a very specific problem, in 

that it concerns pathogens from a small number of bacterial phyla, like Enterococcus, Staphylococcus, 

Klebsiella, Acinetobacter, Pseudomonas and Escherichia (Nesme et al, 2015) and a relatively small 

number of resistance mechanisms (Pal et al, 2016).  

From an ecological standpoint however, antibiotic resistance is ubiquitous and ancient in the 

environment. The chromosomally encoded multidrug efflux pumps and ampC beta-lactamase genes 

in all the strains of Pseudomonas aeruginosa were found to be present long before the discovery of 

antibiotic drugs (Martinez et al, 2009). Bhullar et al (2012) found bacterial strains resistant to 14 

commercial antibiotic drugs, in a cave in New Mexico that had been isolated for millions of years. 

Insertion of resistance genes retrieved from a 30000 year old permafrost, into an E.coli host, resulted 

in the expression of vancomycin resistance (D’Costa et al, 2011 in: Nesme et al, 2015). They 

furthermore identified several resistance mechanisms that were not previously known (Bhullar et al, 

2012). Intrinsic resistance (as opposed to acquired) is present in bacterial species originating from 

long before the antibiotic era (Martinez et al, 2009). It is now acknowledged that there is a huge 

reservoir and diversity of resistance genes already present in the environment. This is one reason 

why the environment is getting increasing attention in the fight against AR (Gaze et al, 2013; Nesme 

et al, 2015; Berendonk et al, 2015; Manaia, 2017; Bengtsson-Palme et al, 2018b; Larsson et al, 2018).  
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2.2 ENHANCEMENT OF AR IN THE AQUATIC ENVIRONMENT AND HUMAN HEALTH RISK 

It is increasingly found that enhanced levels of antibiotic resistance genes (ARGs) in the environment 

can be related back to anthropogenic pressures (Li et al, 2015; Fondi et al, 2016; Zhu et al, 2017; 

Jiang et al, 2018a; Liu et al, 2018; Na et al, 2018; Chen et al, 2019a-j; Griffin et al, 2019; Hendriksen et 

al, 2019; Reddy et al, 2019, Zhao et al, 2018a). Antibiotic drugs, resistant bacteria and resistant genes 

are constantly emitted to the environment in sewage and waste water from hospitals, households, 

industry, agriculture and aquaculture. The aquatic environment, as a receiving body of anthropogenic 

waste from several sources, is indicated as an important compartment for the evolution and 

transportation of human-driven AR. Many studies have found significant correlations between 

anthropogenic activities and antibiotic resistance in surface water and sediments (Bengtsson-Palme 

et al, 2014; Bueno et al, 2017; Bhattacharyya et al, 2019; Chen et al, 2019e; Yi et al, 2019; Zeng et al, 

2019; Sanchez-Baena et al, 2021), finding that ARG-abundance increased substantially from 

upstream to downstream (Chen et al, 2013) or decreased from river to open sea (Leng et al, 2020) 

indicating riverine anthropogenic pollution.  

Antibiotics, antibiotic resistant bacteria (ARB) and ARGs are typically emitted into the environment 

together, after first being accumulated in ‘hotspots’ for the development of AR (Proia et al, 2016; 

Bueno et al, 2017; Kumar & Pal, 2018; Li et al, 2018; Manaia et al, 2018; Sanderson et al, 2018; Chen 

et al, 2019a-j). Characteristics of these hotspots are a combination of high microbial densities, 

nutrient-rich conditions and elevated concentrations and chemical diversity of compounds (Gaze et 

al, 2013). This can be in the gut of humans and animals, but also waste water treatment plants 

(WWTPs) provide such environments and are therefore central in many studies on environmental AR 

(Zhang et al, 2016; Guo et al, 2017; Jiao et al, 2017; Kumar & Pal, 2018; Manaia et al, 2018; Narciso-

da-Rocha et al, 2018; Sabri et al, 2018).  

WWTPs have been identified as a dominant point source in the enhancement of AR in the aquatic 

environment (Amos et al, 2015; Proia et al, 2016; Brown et al, 2019; Felis et al, 2020), owing to 

riverine emissions of both antibiotics and ARGs on surface waters in wastewater effluent causing the 

enrichment of the environment with both ARGs and human pathogens (Chen et al, 2019e; Karkman 

et al, 2019). Amos et al (2015) constructed a predictive model for antibiotic resistance along the river 

Thames, integrating environmental metadata like spatial, temporal, climatic and water-quality 

factors and using class-1 integron-integrase (intl1) prevalence as a proxy for AR. The authors found 

proximity, number, size and type of wastewater treatment plants as the main explanatory variables 

for variations in time and space of third-generation Cephalosporin resistance levels in samples taken 

from sediment along the river Thames. Despite treatment, much of the antibiotics and associated 
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resistance genes and bacteria from wastewater treatment plants are still emitted to the environment 

(Manaia et al, 2018). Removal efficiency is dependent on the technique used, but WWTP in general 

are currently not able to eliminate antibiotic residue, ARGs and resistant bacteria and the effects of 

different techniques on the fate of antibiotics, ARGs and bacteria are in many ways still a black box 

(Loos et al, 2013; Manaia et al, 2018; Brown et al, 2019; Castrignanò et al, 2020). Occasionally, AR is 

even enhanced by water treatment (Vaz-Moreira et al, 2014).  

Hospital effluent is another important source of AR. Through metagenomic research, Oh et al (2018) 

found an even higher risk in hospital sewage compared to wastewater treatment plants, based on 

the cumulative risk posed by the combined presence of human pathogens, resistance genes and 

MGEs. However, there is generally no special treatment of hospital effluent apart from the regular 

treatment of community wastewater. Through hospital effluent, resistance genes that are quite 

specific to the clinical setting and to (multi) resistant human pathogens find their way into the 

environment, like vanA (vancomycin-resistant enterococci, VRE), mecA (methicillin-resistant 

Staphylococcus aureus, MRSA), and aac(6′)-Ib-cr or blaCTX-M15 (plasmid-encoded resistance to 

quinolones and beta-lactams in Gram-negative bacteria) (Manaia et al, 2016). Additional notable 

hotspots are manure lagoons, run off from soils irrigated with (un)treated wastewater or fertilized 

with sewage sludge (Lüneberg et al, 2018), industrial antibiotic and pharmaceutical pollution (Pal et 

al, 2016), leaked untreated sewage, emissions from aquaculture (Liu et al, 2017b; Zhao et al, 2018), 

livestock facilities and landfill leaching (Le Page et al, 2017; Chen et al, 2017; Bengtsson-Palme et al, 

2018b).   

Human related bacteria, environmental and animal related bacteria do not typically interact, because 

of differences in habitat. But transient interactions with potential health risk are possible, for 

instance in the human gut after ingesting contaminated water, interacting with wildlife or eating raw 

foods (Bengtsson-Palme et al, 2015). Other places where interactions are likely to take place are 

wastewater treatment plants (WWTP), agricultural settings (in livestock or fertilized soil), water 

bodies or the food chain (Bengtsson-Palme et al, 2017a). These interactions can go in all directions 

(i.e. human to animal and vice versa). Opportunistic human pathogens, other than commensal 

human pathogens, can both live in human hosts and in the general environment. This makes their 

role in the transfer of resistance genes from the environment to human pathogens and the dispersal 

of resistance genes across environmental compartments especially interesting (Bengtsson-Palme et 

al, 2018).   

This is especially so for the aquatic environment, which is central to many human activities, providing 

water for consumption, irrigation or industrial processes and is at the same time a prime habitat for a 

great diversity of bacteria (Marti et al, 2014; Vaz-Moreira et al, 2014; Manaia et al, 2016; Gao et al, 
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2018). Throughout the water cycle there are many opportunities for the interaction between humans 

and resistant pathogens and the spread of antibiotics resistance. Resistant bacteria and genes 

travelling via surface waters can be taken up by livestock who drink the water, bringing it back into 

the food chain. They can also be brought back into the food chain via human consumption of drinking 

water or crops that have been irrigated with surface waters (Bengtsson-Palme et al, 2017a) or taken 

up by humans during swimming. Leonard et al (2015; 2018) found an increased risk of colonization 

by resistant E.coli in surfers from ingestion of coastal bathing waters.  

 

Figure 1: Infographic from UNEP on antibiotic resistance in the environment 

source: https://www.unep.org/news-and-stories/story/healthy-environment-key-antibiotics-work  

 

https://www.unep.org/news-and-stories/story/healthy-environment-key-antibiotics-work


7 
 

2.3 THE EFFECT OF ANTIBIOTIC POLLUTION ON AR IN THE AQUATIC ENVIRONMENT 

The effect of high antibiotic concentrations on the development of AR has been well established in 

the clinical environment, but contrary to what was once believed, research finds that AR can develop 

even at very low concentrations (Gullberg et al, 2011; Ashbolt et al, 2013; Gullberg, 2014; Bengtsson-

Palme et al, 2018b). Gullberg et al (2011) -in an experimental set up- found that concentrations 

several hundred fold below the MIC (minimal inhibitory concentrations) could enhance resistance in 

bacteria. This indicates that antibiotics pollution can play a role as an accelerator of environmental 

AR at subinhibitory concentrations, potentially leading to increased incidences of antibiotic resistant 

pathogens (Gullberg, 2014; Bengtsson-Palme & Larsson, 2016a & b; Larsson et al, 2018).  

Antibiotic residue is omnipresent in all environmental compartments (Jiang et al, 2014; Chen et al, 

2018; Lu et al, 2018a and 2018b; Zhao et al, 2018; Li et al, 2020) with trace concentrations being 

found back in food and water (Wang et al, 2016; Li et al, 2017) and several researchers have found 

significant positive correlations between environmental antibiotic concentrations and ARG-

abundance (Chen et al, 2013; Gao et al, 2018; Xu et al, 2018; Yan et al, 2018; Liang et al, 2020). This 

relationship seems to be stronger when high concentrations are present for instance from 

pharmaceutical industrial or hospital wastewaters (Gao et al, 2018; Karkman et al, 2019; Girijan et al, 

2020) or antibiotic intensive aquaculture (Yuan et al, 2019) , but weaker at lower concentrations 

(Gao et al, 2018). In terms of risk assessment, however, it is not known whether a safe limit exists 

and there is no PNEC (predicted no effect concentration) established for the enhancement of AR 

within the current risk assessment framework (Bengtsson-Palme & Larsson, 2016b; Le Page, 2017).  

Different environmental factors might be at play, influencing the effect of environmental antibiotics 

concentrations on AR. Bioavailability for instance can in some cases be enhanced owing to 

environmental factors that affect speciation (Zhang et al, 2014). Zhang et al (2014) found enhanced 

bioavailability of Tetracyclines to E.coli in an aqueous environment with increased concentrations of 

organic acids. But also pH and the presence of Cu(II) affect the speciation and thus bioavailability of 

Tetracyclines (Zhang et al, 2014). Overall, the interaction and effects of chronic sub-MIC levels of 

antibiotics pollution on wild bacterial communities are still poorly understood, as is the fate of 

antibiotics (Brandt et al, 2015; Carvalho & Santos, 2016; Hiltunen et al, 2017).  

On the level of bacterial communities, selective pressures possibly trigger complex dynamics, since 

most bacteria live in microbiologically diverse communities (Land et al, 2015; EMPC, 2017; Cunha et 

al, 2018; Klumper et al, 2019). Sensitivity to antibiotic pressure differs between species and between 

strains (Le Page et al, 2017) and acquired resistance to one antibiotic can render strains sensitive to 

other classes of antibiotics (Lázár et al, 2013). Research on manipulated strains of E.coli also shows 
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that within bacterial communities, sensitive bacteria might to some extent be ‘protected’ by resistant 

bacteria through group-beneficial resistance mechanisms. It was shown that sensitive types could 

profit from the collective antibiotics degradation done by the resistant population, without 

expending the fitness cost associated with carrying the resistance gene (Dugatkin et al, 2005; Kelsic 

et al, 2015). In this way, sensitive bacteria gain an advantage from group-benefits. These community 

benefits can be very strong. Experimental research by Murray et al (2018) showed that -within a 

complex bacterial community- the strength of selection remained constant from low selective 

pressure to a 100-fold increase reaching clinically relevant concentrations. This suggests that not only 

mechanisms for individual survival are important, but on the system level, mechanisms that benefit 

resilience in the bacterial community are also at play.      

Resistance can be even more increased in bacteria that live in biofilms rather than free-living. This 

extracellular matrix acts as an extra barrier to bacteria against direct exposure, by reducing the 

penetration of antibiotics (Hall et al, 2018). Susceptibility to stressors of bacteria living in biofilm can 

be reduced by a factor 10 to 1000 compared to free living bacteria (Balcázar et al, 2019). 

Simultaneously, biofilm formation can be induced in bacteria by stressors like antibiotics. This 

resistance mechanism was shown in E. coli and P. aeruginosa to occur at sub-inhibitory 

concentrations (Balcázar et al, 2015). In terms of human and environmental health, this can be 

positive when important environmental bacteria are protected from antibiotics pollution in the 

environment or negative when it allows resistant pathogens to persist (Bengtsson-Palme et al, 

2018b).  

Also, antibiotics are not the only stressors that might lead to the development and spread of AR in 

the aquatic environment. There are indications that heavy metals (Pal et al, 2017; Xu et al, 2017; 

Ohore et al, 2019; Ebiotubo et al, 2020; Komaijani et al, 2021), biocides (Jutkina et al, 2018; Pal et al, 

2015), PAHs (polyaromatic hydrocarbons) (Bhattacharyya et al, 2019), nutrients (Subirats, 2018), 

organic pollutants (Chen et al, 2019) and faecal pollution (Karkman et al, 2019) can significantly 

affect the abundance of ARGs found in waterbodies. In some cases it was found that other pollutants 

had a stronger effect on AR than antibiotic concentrations. A study by Komijani et al (2021) on ARG-

abundance in Iranian wetlands, for instance found that heavy metals showed a stronger relationship 

with ARG-abundance than the antibiotics present. Bhattacharyya et al (2019), found that blaTEM in 

sediments strongly correlated with heavy metal and PAHs pollution in mangrove ecosystems. Reddy 

et al (2019) found significant associations between ARGs and MRGs (metal-resistance genes) in 

sediment and water samples from the river Ganges.  

Adding to complexity, associations between antibiotics and other pollutants seem present in their 

effect on ARG-profiles, owing to co-selection, co-resistance and cross-resistance. Resistance to 
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antibiotics and other pollutants can be linked via cross-resistance when a resistance gene confers 

resistance to both antibiotics and other pollutants like metals (i.e. efflux-pumps) or co-resistance in 

case of co-location of resistance genes on the same genetic element that allows for co-selection into 

new bacterial cells (Li et al, 2017; Pal et al, 2017; Xu et al, 2017; Roberto et al, 2019).        

Confounding factors are spatial factors like land cover and urbanization level (Amos et al, 2015; 

Sanderson et al, 2018; Roberto et al, 2019) and seasonal or temporal changes that showed significant 

correlations with ARG-abundance and distribution owing to hydrological conditions (flow rate) (Xu et 

al, 2018), increased precipitation (Amos et al, 2015; Sanderson et al, 2018; Di Cesare et al, 2020) or 

(temporal) variations in water quality parameters like pH, nutrients, temperatures, suspended solids 

(Sanderson et al, 2018; Roberto et al, 2019) or organic matter and organic carbon (Wan et al, 2019; 

Wang et al, 2020b). Different (seasonal) patterns were found for genes conferring resistance to 

Tetracyclines and Sulphonamides (Xu et al, 2018; Roberto et al, 2019). Also the interaction of 

spatiotemporal factors was seen to significantly impact ARGs (Xu et al, 2018; Roberto et al, 2019). 

 

2.4 PERSISTENCE AND SPREAD OF AR IN THE AQUATIC ENVIRONMENT 

A bacterial cell can acquire resistance as a consequence of selective pressures, but will the absence 

of a selective pressure lead to deselection? In case resistance comes at a fitness cost and reduces 

fitness (Bengtsson-Palme et al, 2018), it could be assumed that enhanced resistance would probably 

be undone by taking away the selective pressure. However, it is shown that fitness costs can reduce 

over time, possibly because coevolution of host and plasmid will lead to a better integration (Carroll 

& Wong, 2018; Bengtsson-Palme et al, 2018a). Also, some resistance genes do not seem to come at a 

fitness cost or even result in increased fitness. A pCT plasmid encoding an extended-spectrum-β-

lactamase (ESBL) gene in certain strains of E. coli showed no decrease in fitness (Carroll & Wong, 

2018). A sulphonamide resistance-encoding plasmid showed increased fitness in an E.coli host in the 

absence of selection (Carroll & Wong, 2018).  

Fitness costs seems to differ between strains and species depending on genotype but also on the 

interactions with other plasmids present (Carroll & Wong, 2018). Sandegren et al (2019), warn that 

selection at sub-inhibitory concentrations taking place in the environment, selects for bacteria that 

are not only less susceptible or resistant to antibiotics, but who are overall also more fit considering 

the higher competition from other bacteria. This overall competitive advantage is less relevant in 

high selective pressure environments, where resistance is the single most important competitive 

advantage (Sandegren et al, 2019). This makes for a complex picture. Overall, the relative importance 

of the fitness cost of resistance genes to their persistence, in the absence of selective pressures, is 

not entirely understood. Even after antibiotics have degraded, been diluted or adsorbed, ARGs and 
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MGEs coding for resistance might be quite persistent in bacteria or as free DNA even in the absence 

of antibiotics pressures, despite assumed fitness costs and subsequent deselection (Martinez et al, 

2009; Berendonk et al, 2015). 

Once an ARG is acquired, bacteria possess several mechanisms for its exchange within and between 

bacterial species. AR through mutation can happen during antibiotics therapy and under these 

circumstance it seems to be the most important mechanism in the emergence of resistance genes in 

human pathogens, for instance in the human gut (Martinez et al, 2009). Next to intraspecies 

mutations, several mechanisms exist for interspecies or horizontal gene transfer (HGT). This could 

take the form of general transduction via virus particles (i.e. bacteriophages) and conjugation or 

natural transformation (fig.3) involving transfer via integrons, super-integrons, transposons or 

plasmids. HGT is indicated as a central mechanism in the dissemination of resistance genes in the 

environment at low selective pressures and across species, for instance from environmental bacteria 

to pathogenic ones (Martinez et al, 2009). Human created selective pressures like antibiotic drug 

pollution, but also pharmaceuticals in general, metals, disinfectants or biocides, can be the driver 

behind enhanced rates of HGT and thus further amplification of antibiotic resistance in bacterial 

communities (Gaze et al, 2013; Nesme et al, 2015; Bengtsson-Palme et al, 2018b; Sturød et al, 2018). 

Significant correlations have for instance been found between the class-1 integron-integrase gene 

intl1, ARG-abundance and anthropogenic pressures (Gillings et al, 2015; Yan et al, 2018; Deng et al, 

2020; Leng et al, 2020; Liang et al, 2020)  

 

Figure 2: Horizontal gene transfer between bacteria (from: Furuya and Lowy, 2006). Top to bottom: Natural transformation 
(free DNA, dead cell), transduction (bacteriophage) and conjugation (integrons, plasmids, transposons). 



11 

HGT often involves the conjugation of bacterial cells, requiring close contact between cells. This is 

more easily achieved in denser and relatively undisturbed environments like sediments. Experiments 

have for instance shown that mixing can frustrate this process (Davies, 1995), which might be the 

case in more turbulent surface waters. Especially biofilms seem very efficient environments for the 

propagation of ARGs. Research shows an increased rate of HGT in biofilms due to high cell density 

and proximity, making it an ideal environment for the transfer of resistance genes (Balcázar et al, 

2015). It can be formed on different kinds of surfaces, like rocks or sand on the river bed, but also on 

solids and organic particles floating in the surface water. Next to increased cell density, increasing 

temperatures can further facilitate this process (Wang et al, 2020).  Additionally, research indicates 

that biofilm formation is induced by low concentrations of antibiotics (Hoffman et al, 2005; Salcedo 

et al, 2014). Salcedo et al (2014) found that exposure of Escherichia coli and Pseudomonas 

aeruginosa to low concentrations of Tetracycline and Cephradine (Cephalosporin) enhanced the level 

of conjugation in tandem with biofilm formation, indicating increased transfer of ARGs.  

Other -non-conjugative- means of HGT between bacterial species allowing for transfer over 

distances, involve natural transformation by which free floating (extracellular) transposons, integrons 

and gene cassettes are incorporated by bacteria (Domingues et al, 2012; Sturød et al, 2018; Dong et 

al, 2019) and transduction via bacteriophages (Lekunberri et al, 2017; Calero-Cáceres and Blacázar, 

2016 and 2019). Studies indicate that ARGs embedded on extracellular DNA or in bacteriophages 

might be more persistent in the environment than ARGs embedded in bacterial cells on intracellular 

DNA (Calero-Cáceres and Munies, 2016; Wang et al, 2020).     

Originally it seemed that resistance genes in the environment are exchanged between bacteria more 

in the context of promoting genetic diversity and hence adaptability of bacterial communities, than 

resulting from specific selective pressures calling for protective ‘survival of the fittest’ strategies 

(Martinez et al, 2009; Nesme et al, 2015). Research by Kelsic et al (2015) suggests that the 

interaction between antibiotics-producing, antibiotic-sensitive and antibiotic-degrading bacteria 

contributes to species diversity and the ecological stability of bacterial communities, despite inherent 

difference of growth rates between species (Kelsic et al, 2015). With naturally low antibiotics 

concentrations in the general environment, antibiotic resistance is usually not the primary function. 

But with rising concentrations in hotspots like wastewater treatment plants (WWTPs) to clinical 

settings and antibiotic therapy in animals or humans, resistance can grow out to be the primary 

function of these genes (Martinez et al, 2009).  
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3 PROBLEM DEFINITION AND RESEARCH QUESTION 

Although antibiotic resistance is a natural and ubiquitous phenomenon in the environment, the 

enhancement of it through human activities is increasingly indicated as an important driver in the 

evolution and spread of AR, posing a potential health risk to human populations and livestock. 

Research indicates that emissions from hotspots correlate to increased levels of environmental AR. 

But scientific insight is currently not able to predict the emergence and spread of AR through the 

environment or assess associated health risks (Larsson et al, 2018). 

Especially in association with human pathogens, enhanced levels of ARGs in waters are often seen as 

important indicators of environmental reservoirs of resistance and potential human health risk 

(Berendonk et al, 2015; Martinez et al, 2015; Oh et al, 2018). But establishing health risk posed by 

resistant pathogens is very difficult. There is no known infective dose for exposure to (resistant) 

human pathogens. Silent and cumulative colonization by resistant pathogens can take place in 

healthy persons, without them manifesting symptoms of infection. But in other cases, even an 

undetectable amount of resistant pathogens can have a devastating effect on a person’s health, 

particularly when health is already compromised (Manaia et al, 2017). Although abundance of 

environmental resistance can likely pose a health risk, low abundance does not necessarily preclude 

it. Manaia et al (2017) suggest that without the ability to quantify health risks, it is best to apply the 

Precautionary Principle, focusing on the potential risks posed by human sources and practices that 

promote antibiotics resistance in the environment.   

But also the emergence and spread of AR in the aquatic environment seems to involve many factors 

that interact in complex ways. There are gaps in our understanding of how and under which 

circumstances AR evolves and spreads in the environment (Manaia et al, 2016; Bengtsson-Palme et 

al, 2018b). Due to lack of an adequate mechanistic understanding, a health risk assessment is 

currently hard to operationalize (Ashbolt et al, 2013; Manaia, 2017). More insight into the 

contribution of environmental drivers to the modulation of AR is therefore needed for devising 

strategies to prevent the emergence and spread of resistance to human and animal pathogens via 

the environment (Amos et al, 2015; Bengtsson-Palme et al, 2018b; Larsson et al, 2018).  

In order to add to the insight of the impact of antibiotic pollution on AR, this thesis aims to address 

the following question: 

Can statistically significant correlations be found between the abundance of resistance genes in 

surface water and sediments and the selective pressure from environmental antibiotic 

concentrations? 
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To increase insight, monitoring data from the environmental resistome would be very useful, but this 

kind of data is still scarce (Ashbolt et al, 2013; Pal et al, 2016), since large scale monitoring efforts 

have so far focused primarily on clinical and health care settings (WHO, 2014; McDonnell et al, 2017). 

Much data is none-the-less generated in primary research that involves the collection and analysis of 

environmental samples from different compartments and matrices, simultaneously measuring the 

amount of resistance genes and the presence of suspected environmental drivers of AR (e.g. Knapp 

et al, 2011; Amos et al, 2015; Jiao et al, 2017; Pal et al, 2017). This would add to a growing 

understanding of the influence of environmental drivers on AR. The result from these individual 

studies however are context specific and do not readily provide knowledge that can be generalized 

or has predictive power across different contexts. Therefore, an integration of the results from the 

accumulated research, might allow a better understanding of AR and could be useful in the 

development of predictive models. Since these individual studies were not designed for the eventual 

comparison or integration with results from other studies, it is important to consider if and how data 

from individual studies can be used for this purpose. 
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4 DATA AND METHODS 

4.1 SEARCH STRATEGY 

A systematic literature review of the period 2018-2019 was performed by searching the Web of 

Science in November 2019 and additionally in March 2020, using the search string “antibiotic*, 

*water and arg$ in title, abstract and keywords. The search returned 629 articles (2018: 224, 2019: 

314 and 2020: 91). 

4.2 SELECTION CRITERIA 

From the publications, only original research was selected with surface water and/or sediment 

samples from natural waters in which antibiotics concentrations were measured simultaneously with 

resistance genes abundance.   

Furthermore, a selection was made for the DNA extraction approach, focusing on qPCR.  

Different methods are in use for extracting microbial genetic material from environmental samples. 

Culture dependent approaches have been well established. The vast majority of microbes is however 

difficult or impossible to culture in the laboratory (Sharpton et al, 2014). Also, establishing the 

presence of antibiotic resistance through culture dependent methods is relatively laborious and time 

consuming (Forbes et al, 2017; Waseem et al, 2019). This makes culture dependent methods less 

suitable to study the evolution of AR in the environment. The development of culture-independent, 

molecular methods have made possible a faster, more efficient and comprehensive assessment of 

the microbiological communities present in the environment (Waseem et al, 2019). These include 

approaches based on polymerase chain reactions (PCR) and metagenomic sequencing approaches. 

Both approaches can be used to characterize and quantify bacteria and ARGs in environmental 

samples.  

High-throughput quantitative PCR (qPCR), also known as real-time PCR, relies on the amplification of 

targeted DNA molecules or genomic loci, such as ARGs or 16S rRNA, using pre-designed primer sets, 

DNA polymerase and DNA nucleotide triphosphates (dNTPs) (Kubista et al, 2006). Shotgun 

metagenomics is a relatively newer approach to the study of microbiological communities in the 

environment (Sharpton et al, 2014). It is a culture-independent method that uses high-throughput or 

next-generation sequencing platforms, like Illumina or PacBio, to sequence microbial DNA directly 

after extraction from environmental samples. Because shotgun metagenomics does not require the 

use of pre-designed primers for targeting specific marker genes or genomic loci, it is considered an 

open-format molecular detection technology (Zhou et al, 2015). An advantage compared to closed 

formats, like qPCR, is that it makes possible the detection of all microbes in the sample, even the 
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ones that are currently unknown to science (Zhou et al, 2015; Quince et al, 2017; Asante et al , 2019). 

Moreover, it does not require PCR amplification. Leaving out this step, can avoid the associated bias 

(Sharpton et al, 2014), where difference in the rate and efficiency of amplification between target 

genes can distort the original composition of the sample (Sabina & Leamon, 2015). 

Although shotgun metagenomics is a promising tool for giving an unbiased insight into the 

environmental resistome, it is still a relatively expensive approach and the downstream data analysis 

can be complex (Li et al, 2015; Forbes et al, 2017). This could be the reason that, compared to qPCR, 

metagenomic studies are still relatively rare and comprise fewer environmental samples in each 

study. Also, many of these metagenomic studies focus primarily on the abundance and types of 

ARGs, often in combination with characterizing the microbial communities. In these studies, less 

emphasis is laid on antibiotics concentrations, meaning they are either not measured or only globally 

and not measured in the same sample as the ARGs.  

An earlier attempt to use only metagenomic studies, yielded 9 useful publications comprising a total 

of 52 environmental samples (appendix 1)(Bai et al, 2019; Chen et al, 2013b; Chen et al, 2019b; Fang 

et al, 2018; Garner et al, 2016; Guo et al, 2016; Jia et al, 2017; Qui et al, 2019; Zhang et al, 2018) (see 

the overview of studies in appendix I). Lack of comparability due to differences in the calculation of 

relative gene abundances further narrowed down the number of useful studies. Hence, a choice was 

made to abandon the meta-analysis of samples from metagenomic studies and switch to studies 

using qPCR.  

The selection process based on qPCR-studies resulted in 19 studies meeting all the criteria (2018: 10, 

2019: 6 and 2020:3).  

4.3 DATA EXTRACTION 

The following data was extracted from the studies: 

 Antibiotic concentrations  

 Abundance of resistance genes 

 Environmental matrix (surface water, sediment) 

 Year of sampling 

 Month of sampling  

 Place of sampling (country, location, type of waterbody) 

Data was collected from the text and tables in the articles and supplements. Data expressed in plots, 

was extracted using WebPlotDigitizer V.4.2 (Rohatgi, 2017). A choice was made to exclude studies 
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that expressed resistance gene abundance solely in heatmaps. For Guan et al (2018) the original data 

of relative gene abundance was provided by the author.  

A number of studies were finally excluded, because: 

 no data was provided to calculate the relative abundances of ARGs to 16s rRNA 

 no antibiotic types were given to calculate selective pressures, only aggregated 

concentrations per class 

 no month of sampling was given to infer the season of sampling 

This left 9 studies with a total of 204 environmental samples (99 sediment, 105 surface water 

samples). A total of 28 types of antibiotics from 7 antibiotic classes were measured in the samples, 

along with 29 types of resistance genes and 2 mobile genetic elements. Concentrations below the 

detection or quantification limit were not included. 

4.4 DATA STRUCTURE 

4.4.1  ARG abundance 

The abundance of antibiotic resistance genes (ARGs) was expressed relative to 16s rRNA. In most 

studies this was reported as such. In cases where it had not been calculated, but rRNA 16s 

abundance was given for samples, the following formula was applied to establish relative abundance: 

rARGx,j= ARGx/16s rRNAj  (eq.1) 

Dividing the number of resistance genes of gene (x) in sample (j), by the number of 16s rRNA genes in 

sample (j). 

The total number of resistance genes (x) in sample (j) conferring resistance to an antibiotic class (y) 

was calculated with the following formula: 

TARGy,j= ∑ rARGx,j (eq.2) 

Where (x ∈ y), summing all antibiotic genes (x) conferring resistance to antibiotic class (y).  

4.4.2 Antibiotic classification and resistance mapping 

Individual antibiotics were grouped into classes according to the Anatomical Therapeutic Chemical 

(ATC) code. The Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al, 2020) was used 

to map resistance genes to the antibiotics class they confer resistance to (Table 1). 

https://card.mcmaster.ca/  

 

https://card.mcmaster.ca/
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Table 1: Overview of antibiotic classes, with corresponding antibiotic types and resistance gene types. 

ATC class Antibiotic Antibiotic resistance gene 

Quinolones  Difloxacin, Fleroxacin, Norfloxacin, 
Ciprofloxacin 

Enrofloxacin, Ofloxacin 

qnrB, qnrS, gyrA 

Microlides Lincosamides  Aureomycin, Clindamycin 

Roxithromycin, Erythromycin 

ermB, ermC, erm F  

Beta-lactams/Cephalosporins  Cefazolin, Cefotaxime OXA, CTX, blaIMP-04, blaNMD1,  
blaOXY, blaSHV-01, blaTEM 

Sulfonamides Sulfameter, Sulfadimedine, 
Sulfadiazine, Sulfamethazine, 
Sulfapyridine, Sulfamethoxazole, 
Sulfathiazole, Sulfamerazine, 
Sulfamonomethoxine, 
Sulfaquinoxaline 

sul1, sul2, sul3, sulA 

Amphenicols Chloramphenicol, Thiamphenicol, 
Florfenicol 

catI, cmlA, floR 

Tetracyclines Tetracycline, Oxytetracycline, 
Doxycyclinehyclate, Chlortetracycline 

tetA, tetB, tetC, tetD, tetE, tetM, tetO, 
tetW, tetZ 

All classes All types intI1, intI2 (mobile genetic elements) 

 

Mobile genetic elements, including intl1 and intl2, were also included because of their role in 

facilitating dissemination of antibiotic resistance (Berendonk et al, 2015; Martinez et al, 2015; Oh et 

al, 2018). These element were mapped against all classes of antibiotics in the sample.  

4.4.3 Antibiotic selective pressure 

Units for antibiotic concentrations were set to ng/l for surface water and ng/kg dry weight for 

sediment. From the antibiotic concentrations the selective pressure was derived using relevant 

PNEC-values (predicted no-effect concentrations), based on Bengtsson-Palme and Larsson (2016b) 

and the list compilated by the AMR Industry Alliance Antibiotic Discharge Targets (AMR, 2018). Both 

contain estimated PNEC-values for assessing risk of concentrations in surface waters, specifically 

taking into account risks of resistance promotion in the environment. For some types of antibiotics 

that were not included in either publication mentioned above, additional publications were used to 

derive a PNEC-value (Wang et al, 2020b, Zhang et al, 2020). For the PNEC-values and their sources, 

see appendix 2. 

The PNEC-sediment was derived from the PNEC in water and calculated as follows: 

PNEC-water*0,058*Koc (eq.3) 
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The EPI Suite™-Estimation Program Interface (KOCWIN-tool; EPA, 2012) was used to calculate the 

Koc (soil adsorption coefficient) for each antibiotic. Following Duarte et al (2019), an organic carbon 

content of 5.8% was assumed.  

Using the PNEC-value, a measure of selective pressure from each antibiotic concentration in a sample 

was calculated as follows: 

ASPi,j = MECi,j/PNECi (eq.4) 

Dividing the MEC-value (measured environmental concentration) found for antibiotic type (i) in 

sample (j) by the PNEC for that antibiotic (i).  

From this, a measure of total selective pressure per sample was calculated. 

TASPy,j = ∑ ASPi,j (eq.5) 

Where (i ∈ y), summing the selective pressure values of all antibiotic types (i) belonging to antibiotic 

class (y).  

4.4.4 Environmental matrices 

Surface water and sediment samples were collected from natural waters, including lakes, reservoirs, 

rivers and estuaries. Sediment samples in all studies were collected from the top layer. There were 

slight differences in sediment sample depth between studies, with depths ranging from several cm to 

approximately 20 cm.  

Sampling locations included: 

 Ba River in Xi’an, China (Guan et al, 2018 and Jia et al, 2018) 

 Yangtze Estuary near Shanghai, China (Guo et al, 2018) 

 Wenyu River in Beijing, China (Liu et al, 2019) 

 Three Gorges Reservoir, China (Lu et al, 2018) 

 Lake Taihu, China (Ohore et al, 2019) 

 Grote Beerze River, The Netherlands (Sabri et al, 2018) 

 Lake Honghu, China (Wang et al, 2020a) 

 Yangtze and Jialing Rivers in Chongqing City, China (Wang et al, 2020b)  

4.4.5 Data base  

The sample database (table 2) comprised 9 studies (Study),  204 samples (Sample), 2 countries 

(Country), 2 matrices (Matrix), 6 antibiotic classes (Class), 5 sampling years (Year) and 4 sampling 

seasons (Season).  
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Table 2: An overview of the main characteristics of the environmental samples (n=205) used in this meta-analysis. Samples 
were assigned to a season based on the month of sampling.  

Studies Samples Countries Matrices Antibiotic classes Sampling 
years 

Sampling 
seasons 

Guan et al, 2018 
Guo et al, 2018 
Jia et al, 2018 
Liu et al, 2019 
Lu et al, 2018 
Ohore et al, 2019 
Sabri et al, 2018 
Wang et al, 2020a 
Wang et al, 2020b 
 

204 
SW=105  
SD=99  

China (n=8) 
Netherlands 
(n=1) 

Sediment (SD) 
Surface water 
(SW) 

Quinolones (FQ) 
Sulphonamides (SUL) 
Tetracyclines (TET) 
Macrolides/Lincosamides 
(MLLS) 
Amphenicols (AC) 
Cephalosporins (CS) 

2011 
2015 
2016 
2017 
2018 

Spring 
(March-May) 
Summer 
(June-Aug) 
Autumn  
(Sep-Nov) 
Winter  
(Dec-Feb) 

 

A database of entries for each class nested by sample and study, included 553 unique entries, 

matching the total selective pressure (TASPy,j )of each antibiotic class (j) in a sample (y) to the total of 

antibiotic resistance genes that confer resistance to that class (TARGy,j). A total of 185 entries mobile 

genetic elements (intl1, intl2) that were mapped to all antibiotic classes, were added to the final 

database. The final database for data analysis comprised 738 unique entries (table 3). 

Table 3: The final database (n=750) with each data point representing the total selective pressure of an antibiotic class 
mapped to the total relative abundance of matching resistance genes in a sample. Total relative abundance of mobile 
genetic elements (MGEs) were mapped against the total selective pressure of all classes in a sample.   

Class 

 

Matrix 
To

tals 

M
o

b
ile gen

etic 

elem
e

n
ts 

Q
u

in
o

lo
n

es 

M
acro

lid
es 

C
ep

h
alo

sp
o

rin
s 

Su
lp

h
o

n
am

id
es 

A
m

p
h

e
n

ico
ls 

Tetracyclin
es 

SW 370 97 53 45 12 100 4 59 

SD 368 88 

 
66 40 12 71 8 83 

Totals 738 185 119 85 24 171 12 142 
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4.5 DATA EXPLORATION 

4.5.1 Scatterplots and boxplots 

As an initial exploration of the data, a scatterplot was made from the complete dataset (n=204) of 

accumulated sediment and surface water samples (fig.3).  

A regression line is drawn in blue, 

showing a positive slope for total 

antibiotic resistance (TARG) values 

at higher total selective pressure 

values (TASP). Datapoints however 

show a lot of spread around the 

regression line. There does not 

seem to be a clear linear 

relationship between TASP and 

TARG, judging from this 

scatterplot. 

A red dotted line is drawn in the 

graphs to indicate were the MEC 

(measured environmental concentration) divided by the PNEC (predicted no effect concentration) is 

1 (10 to the power of 0). This indicates a risk quotient of 1 (RQ=1), pointing to a potential 

environmental risk. However, for the n=204 data set, total TASP in each sample is the sum total of 

selective pressures of different classes of antibiotics. The selective pressure of individual antibiotic 

classes within a sample might not pose a potential risk.  

Also, because the number of analysed antibiotic classes differs between studies, the sum total of 

selective pressures is less informative. Low measures of TASP have for instance been found in the 

sediment samples from Three Gorges Reservoir taken by Lu et al (2018). But in these samples only 

Tetracyclines were analysed. While in Guan et al (2018) and Jia et al (2018) respectively six and seven 

major classes of antibiotics were analysed. The same is true for variations in TARG values for this 

sample set (n=204). This might very well be related to the number of ARG-types analysed in a sample 

rather than actual difference in TARG between samples. Overall, the n=204 sample set is not very 

useful for meta-analysis because of the variability between samples.       

In figure 4 therefore, the total relative abundance of ARGs in samples is mapped against the 

antibiotic class they confer resistance to. Mobile genetic elements (MGEs) are also included and 

mapped against total selective pressure in the sample. Only data points were used that yielded a 

Figure 3: Scatterplot of the collective dataset of surface water and sediment 
samples (n=204). Data points represent sum totals of selective pressure (x-
axis) and sum totals of resistance genes (y-axis) for each sample. A regression 
line is drawn in blue. The red dotted line indicates a selective pressure of 1.   
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value for both selective pressure (TASP) and matching ARG-types (TARG). This resulted in 738 data 

points.      

 

Figure 4: Scatterplot of the dataset of surface water and sediment samples. Data points represent the total selective 
pressure of an antibiotic class (x) in a sample (j) (TASPx,j ) on the x-axis and total resistance genes (y) in a sample (j) (TARGy,j) 
on the y-axis. Mobile genetic elements (MGEs) are mapped against the sum total selective pressure of each sample. This 
results in 738 data points.  
A 95% predictive ellipse is drawn around the dataset, indicating the area of 95% probability for new observations assuming 
a normal bivariate distribution. A regression line is drawn in blue. The red dotted line indicates a selective pressure of 1.  

 

Compared to figure 3 (n=204), data points in figure 4 (n=738) seem more clustered, with some areas 

showing small denser clusters around the regression line, but overall the spread remains relatively 

high and there does not seem to be a clear linear relationship in the data. The regression line is not 

very steep which might indicate very weak correlation, but it still has a positive direction. Most 

datapoints remain (well) below a selective pressure of 1 (RQ=1, red dotted line). But a number of 

samples are above RQ=1 and a small number indicate a very high risk.  

The two highest selective pressures were measured in the Jialing River from Quinolones and in the 

Yangtze River for overall selective pressure, both in the Chongqing City area (Wang et al, 2020b). 

Despite the high TASP-values in these samples, total relative abundance of matching ARGs was 

relatively low.  

Lowest total selective pressure was found for Sulphonamides in a sample taken by Jia et al (2018) in 

the springtime in Ba River in downtown Xi’an City. However, total relative abundance of ARGs 

conferring resistance to Sulphonamides was very high in this sample.  
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Figure 5: Scatterplot (n=738) with data sorted by class. CA=Amphenicols, CS=Cephalosporins, FQ=Quinolones, MGE=Mobile genetic 
elements, ML/LS=Macrolides/Lincosamides, SUL=Sulphonamides and TET=Tetracyclines.  
The red dotted line indicates a selective pressure of 1. 

 

In figure 5 antibiotic classes are made visible, showing some clustering of data points, partially from 

clustering along the x-axis corresponding to selective pressure. This is most visible for Sulphonamides 

(purple), where TASP in most samples is notably low compared to other classes. Samples with TASP 

higher than 1, indicating potential to very high risk, are mainly related to the Quinolones (apple 

green) and Tetracyclines (pink).  

In the boxplot of figure 6, the spread of selective pressure values in samples for each antibiotic class 

is visualized. MGE are plotted against all antibiotic classes, therefore it corresponds to the combined 

selective pressure of all classes in the sample. The boxplot shows that highest mean and median 

values are found for Quinolones, being nearly on par with total selective pressures as indicated by 

MGEs. This implies that -of all classes- Quinolones contribute substantially to overall TASP. After that 

Cephalosporins and Tetracyclines show highest mean and median values. As also visible in figure 6, 

Sulphonamides show the lowest mean and median values for selective pressure and lowest 

minimum values at the low end of the whiskers, but highest spread.   
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Figure 6: Boxplot indicating the spread in the data (n=738) of total selective pressure in samples for each antibiotic class. CA=Amphenicols 
(n=12), CS=Cephalosporins (24), FQ=Quinolones (n=119), MGE=Mobile genetic elements (n=185), ML/LS=Macrolides/Lincosamides (n=85), 
SUL=Sulphonamides (n=171) and TET=Tetracyclines (142).    
Explanation of boxplot: The median value is indicated by the black horizontal line across the box. The coloured box indicates the upper Q1 
(75th percentile) above the median line and the lower Q3 (25th percentile) below the median line. The whiskers indicate the range between 
minimum and maximum values. The black dot within the box indicates the mean value. The dots outside the box indicate the outliers. 

 

But low or high selective pressure does not automatically translate into a similar profile of ARGs 

abundance measured in samples. Figure 7 shows substantial spread across the y-axis within the same 

class for most classes. Comparing the mean values and spread of TARG within the data (fig. 7) with 

the TASP (fig. 6), some remarkable shifts are seen especially in Quinolones and Sulphonamides.  

 

Figure 7: Boxplot indicating the spread in the data (n=738) of total ARGs in samples for corresponding antibiotic class. CA=Amphenicols 
(n=12), CS=Cephalosporins (24), FQ=Quinolones (n=119), MGE=Mobile genetic elements (n=185), ML/LS=Macrolides/Lincosamides (n=85), 
SUL=Sulphonamides (n=171) and TET=Tetracyclines (142).    
Explanation of boxplot: The median value is indicated by the black horizontal line across the box. The coloured box indicates the upper Q1 
(75th percentile) above the median line and the lower Q3 (25th percentile) below the median line. The whiskers indicate the range between 
minimum and maximum values. The black dot within the box indicates the mean value. The dots outside the box indicate the outliers. 
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In Quinolones, although of all classes it shows the highest mean and median values in samples for 

selective pressure, it is ranked lowest in median and mean values for corresponding ARG values. In 

Sulphonamides a somewhat reverse trend is visible, ranking lowest in selective pressures, but ranking 

third of all 7 classes in median and mean values of total corresponding ARGs. MGEs and ARGs 

conferring resistance to Cephalosporins show the highest mean and median values for ARG-

abundance in samples. ARGs conferring resistance to Tetracyclines show the largest spread.  

 

Figure 8: Scatterplot (n=738) with data sorted by study. Guan et al, 2018 (n=67), Guo et al, 2018 (n=119), Jia et al, 2018 (n=158), Liu et al, 
2019 (n=28), Lu et al, 2018 (n=32), Ohore et al, 2019 (n=17), Sabri et al, 2018 (n=43), Wang et al, 2020a (n=103) and Wang et al, 2020b 
(n=183). The red dotted line indicates a selective pressure of 1. 
Samples from studies by Jia et al, 2018 (stars), Wang et al, 2020a (diamonds) and Wang et al, 2020b (triangles) are indicated.      

 
Figure 8 shows the data set sorted by study, indicating large spread of data points within studies and 

overlap between studies. A number of studies included more extreme measurements in samples, 

spanning different combinations of TASP and TARG. These measurements are indicated in figure 8 by 

stars (samples from Jia et al, 2018), diamonds (samples from Wang et al, 2020a) and triangles 

(samples from Wang et al, 2020b). Below is an impression of the three areas where these samples 

were taken. While extensive anthropogenic pressures are evident in all locations, quite different 

combinations of antibiotic selective pressure and resistance gene abundance are measured.   
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4.5.1.1 Extremes Xi’an: Very high ARGs with very low to moderate selective pressures. 

These samples were all taken by Jia et al, 2018 in springtime (march, dry season) from the Ba River at downtown Xi’an 

(Shaanxi Provence). Xi’an is a megacity of  6.5 million people. It is an overall prosperous city, rich in cultural heritage, 

touristic hotspots and famous for the terracotta army of Qin Shi Huang, the first Emperor of China. 

 

Above-left a view of Xi’an Expo Park (source: https://www.archilovers.com/projects/19597/flowing-gardens-xi-an-international-
horticultural-expo.html). Above-right a view of the Ba River at downtown Xi’an Kempinski Hotel (source: tripadvisor.com) 

 

Above: Samples were taken between Chang’an Tower/Xi’an Expo Park and Chanba National Wetland park. In the red oval is the location of 
the picture above-right. In the green circle is the location of the Xi’an Expo Park. The red diamonds indicate the approximate locations of the 
very high levels of ARGs found conferring resistance to Quinolones, Sulphonamides, Tetracyclines and Cephalosporins in both surface water 
and sediment samples. Matching selective pressure was very low for Sulphonamides and moderate for the other classes.   

https://www.archilovers.com/projects/19597/flowing-gardens-xi-an-international-horticultural-expo.html
https://www.archilovers.com/projects/19597/flowing-gardens-xi-an-international-horticultural-expo.html
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4.5.1.2 Extremes Honghu Lake: Very high selective pressures with high ARGs 

These samples were all from surface waters in autumn and spring, taken by Wang et al, 2020a from Lake Honghu in Hubei 

province. Honghu Lake is a shallow lake, connected to the Yangtze River and lies downstream from the Three Gorges Dam 

and Jingzhou, a megacity of 6.5 million people. The lake is recognized as a wetland of international importance and is an 

important tourist attraction, especially in summer when the lake is covered in lotus flowers in bloom. But Honghu Lake has 

also suffered from extensive anthropogenic pollution and overexploitation related to overfishing, surrounding agriculture, 

animal husbandry and aquaculture.    

 

Impression from Honghu Lake. The picture above-right shows the Lantian Eco-agricultural Scenic Spot where very high selective pressures 
from Tetracyclines and corresponding ARGs were measured. In the map below, this area is indicated by the red oval. High selective pressure 
and high matching resistance genes were furthermore found for Quinolones. High MGEs related to high overall selective pressure in 
samples. (Sources clockwise: upper-left https://cuecc.com/chinafeature/interests/2011411219268261.htm upper-right 
https://www.tripadvisor.com/LocationPhotos-g1152524-Honghu_Hubei.html#164000415  lower-right 
https://www.globaltimes.cn/content/1116022.shtml ) 

  

 

https://cuecc.com/chinafeature/interests/2011411219268261.htm
https://www.tripadvisor.com/LocationPhotos-g1152524-Honghu_Hubei.html#164000415
https://www.globaltimes.cn/content/1116022.shtml
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4.5.1.3 Extremes Chongqing: Low to moderate ARGs with low to very high selective pressures 

These samples were taken from surface waters and sediments in the Yangtze and Jialing Rivers in the Chongqing City area 

by Wang et al, 2020b. This area has around 31 million inhabitants and is a fast developing and important economic centre 

in China, lying in the middle reaches of the Yangtze River, upstream from Three Gorges Dam.   

  

Above left Chongqing city at the convergence of the Yangtze and Jialing Rivers (source: http://orakxx.blogspot.com/). Above-right a view of 
the Bei Bei District, a hot spring tourist hotspot along Jialing River, where very high levels of Quinolones were measured in sediment samples 
(source: ecns.cn).   

 
Above is a map showing part of the sampling area. In red diamonds the locations measuring very high selective pressures from Quinolones 
and moderately high ARGs in sediments (both in Yuzuizhen and Bei Bei district (not on map)). High selective pressure from Quinolones, but 
low ARGs were found in sediments both at Tong Jiaxi downstream of the Bei Bei District (not on map) and in downtown Chongqing (orange-
red diamonds). Moderate selective pressure from Macrolides and very low ARGs were found in surface water samples in the Yangtze River 
downstream from Yuzuizhen (blue diamond, not on map). Very low selective pressure from Sulphonamides and low ARGs are found in 
sediment samples in downtown Chongqing (green diamond). Both downtown locations were downstream from a nearby wastewater 

treatment plant.  

  

http://orakxx.blogspot.com/
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Interestingly, measures of selective pressures from Sulphonamides found in surface water samples in 

the only non-Chinese study (Sabri et al, 2018; fig.5 dark blue data points) did not seem to 

differentiate much from Chinese samples, although they were taken from a vastly different context 

in rural Netherlands along the Grote Beerze river (fig.10).  

 

Figure 9: Left is a view of the Grote Beerze River in the Netherlands and to the right is a birds-eye view of the wastewater treatment plant 
between Hapert and Casteren, releasing wastewater into the Grote Beerze.   

 

  

Median values of TASP from Sulphonamides found in the Grote Beerze were relatively high 

compared to most Chinese studies and only moderately below the highest mean and median values 

found by Liu et al (2018) in the Wenyu River at Beijing and by Wang et al (2020a) in Lake Honghu (fig. 

10). TARG for Sulphonamides in de Grote Beerze was comparable to most Chinese studies. 

Trimethoprim, an antibiotic that is often administered alongside Sulfamethoxazole, was also found in 

the Grote Beerze River, but Tetracyclines or Macrolides were not detected.  

Figure 10: Boxplot with TASP (left) and TARG (right) for Sulphonamide. Showing Q1-percentile, Q2-percentile, median, mean, maximum 
and minimum values and outliers for each study. Guan et al, 2018 (n=13), Guo et al, 2018 (n=23), Jia et al, 2018 (n=28), Liu et al, 2019 
(n=7), Ohore et al, 2019 (n=6), Sabri et al, 2018 (n=21), Wang et al, 2020a (n=31) and Wang et al, 2020b (n=42). 
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The data from Sabri et al (2018) does not indicate notable differences between countries. But this is 

only based on a small data set. Non-Chinese data represents only 6% of the complete data set (43 

out of 738 data points), which is inadequate for comparison between countries.   

Looking closer at samples within studies, in figure 11, seven studies have been plotted with different 

colours indicating antibiotic classes. Not included are Sabri et al (2018) which only includes 

Sulphonamides in the dataset and Lu et al (2018) who only studied Tetracyclines. In the studies with 

more than one antibiotic class, there seem to be some clustering and spread patterns for different 

antibiotic classes. This is most apparent in Ohore et al (2019), Liu et al (2019) and Guo et al (2018), 

but more or less visible in all studies. 
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The data set (n=738) is further explored by plotting the data ordered by matrix and season, being 

two factors that might influence the relationship between TASP and TARG.   

 

The scatterplot in figure 12 -dividing data according to environmental matrix -, shows much overlap 

between surface water and sediment samples, but a larger spread in sediment samples especially 

along the x-axis, indicating more variation in selective pressure values. Highest values for TASP as 

well as TARG were found in sediments. Lowest value for TARG was found in surface water. 

Figure 11: Scatterplots of the five studies with the largest 
datasets. Datapoints are coloured according to antibiotic class. 
CA=Amphenicols, CS=Cephalosporins, FQ=Quinolones, 
MGE=Mobile genetic elements, 
ML/LS=Macrolides/Lincosamides, SUL=Sulphonamides and 
TET=Tetracyclines.    
A 95% predictive ellipse is drawn around datapoints to indicate 
the 95% probability area for new observations, assuming a 
normal bivariate distribution.  

Figure 12: Scatterplot of the data set (n=738) ordered by matrix. SD=sediments (n=368) and SW=surface waters (n=370). A 95% 
predictive ellipse is drawn around datapoints to indicate the 95% probability area for new observations, assuming a normal bivariate 
distribution. 
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Figure 13a: Boxplots showing mean, median, Q1-Q3-percentile, maximum and minimum values and outliers of (left) total selective 
pressures (TASP) in both matrices and (right) total resistance (TARG).  

Spread and median values in both matrices in figure 13a, show that in sediments spread is higher for 

both TASP and TARG. Median values are higher in surface waters for TASP and TARG. 

 

 

Figure 13b: Boxplots showing mean, median, Q1-Q3-percentile, maximum and minimum values and outliers of total selective pressures 
(TASP)  in surface water (left) and sediment samples (right) for each antibiotic class. MGE is mapped to all classes and thus TASP is equal to 
selective pressures from alle classes.  
CA (Amphenicols, SW=4, SD=8), CS (Cephalosporins, SW=12, SD=12), FQ (Quinolones, SW=53, SD=66), MGEs (eq. to total TASP, SW=97, 
SD=88), ML/LS (Macrolides/Lincosamides, SW=45, SD=40), SUL (Sulphonamides, SW=100, SD=71) and TET (Tetracyclines, SW=59, SD=83). 

 

The boxplots in figure 13b show some differences between surface water and sediment samples for 

selective pressure from different antibiotic classes. In surface waters Tetracyclines together with 

Quinolones have the highest median values in samples which is nearly on par with MGE (indicating 

total TASP from all classes). This indicates that Tetracyclines and Quinolones contribute substantially 

to TASP in surface water, followed closely by Macrolides and Cephalosporins. Sulphonamides have 

the lowest median in surface water and overall lower values compared to other classes.  

In sediments Quinolones have the highest median -almost on par with MGE- and with little spread, 

indicating that most selective pressure values from Quinolones are relatively high in sediments, with 

some indicating potential risk (TASP>1). Cephalosporins values tend to be lower in sediments than in 
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surface waters, but the sample set is relatively small so chance might play a bigger role in this.  

Tetracyclines and even more so Macrolides and Sulphonamides tend to be lower in sediments than in 

surface waters.  

The two highest values for TASP were found in sediments. These values were indicated as outliers. 

For the purpose of having fairly similar scales for better visual comparison between boxplots these 

were left out (n=368-2).  

  

Figure 13c: Boxplots showing median, Q1-Q3-percentile, maximum and minimum values and outliers of total resistance gene abundance 
(TARG) in surface water (left) and sediment samples (right) for each antibiotic class. CA (Amphenicols, SW=4, SD=8), CS (Cephalosporins, 
SW=12, SD=12), FQ (Quinolones, SW=53, SD=66), MGEs (eq. to total TASP, SW=97, SD=88), ML/LS (Macrolides/Lincosamides, SW=43, 
SD=40), SUL (Sulphonamides, SW=100, SD=71) and TET (Tetracyclines, SW=59, SD=83). 

 

For TARG (fig. 13c) surface waters and sediments do not show very different trends across classes. 

Somewhat higher values are seen for Cephalosporins in sediments and little spread compared to 

other classes, but the sample set is relatively small (n=12). TARG values for Quinolones are in the 

lower end. This is in contrast with their comparatively high contribution to selective pressure 

(fig.13b). All classes however show considerable spread in both matrices, indicating much overlap of 

the values found for antibiotic resistance.  
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Figure 14: Scatterplot of the dataset (n=738) ordered by season. Spring = 305, Summer = 117, Autumn = 245, Winter = 71). A 95% predictive 
ellipse is drawn around datapoints to indicate the 95% probability area for new observations, assuming a normal bivariate distribution.  

 

Figure 15: Boxplots showing median, Q1-Q3-percentile, maximum, minimum values and outliers of total selective pressure (TASP)(left) and 
total resistance gene abundance (TARG)(right) for different seasons. 

Figures 14 and 15 show the data set ordered by season. The scatterplot in figure 14 indicates a lot of 

overlap between seasons. Regression lines are almost horizontal in summer, autumn and winter, but 

some positive correlation is seen for spring. Looking at the boxplots in figure 15, there seem to be 

some small differences in median values both in TASP and TARG. There are somewhat higher values 

in winter for TASP, but autumn and spring showing a very large spread. TARG shows higher values in 

spring and autumn, with maximum values highest in spring.  

It should be noted however, that there are large differences in the size of the dataset per season, 

with spring containing 307 data points and winter only 74.  
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4.5.2 Pearson correlations  

A Pearson correlation between TASP and TARG across different antibiotic classes is visualized in 

figure 16 for surface waters (left) and sediments (right). Only significant correlations are shown (p < 

0,05). 

 

Figure 16: Pearson correlation plots between total selective pressures (TASP) and total relative gene abundance (TARG) for surface water 
samples (left) and sediment samples (right). Only significant correlations are shown (p<0,05). In the red rectangle the correlations between 
TARG and TASP are shown. A blue ellipse indicates a positive correlation. A red ellipse indicates a negative correlation. The sharpness of the 
ellipse is indicative of the strength of the correlation, with perfect correlation indicated by a diagonal line. 
Sample sizes: TASP (SW=105, SD=99), CA (Amphenicols, SW=4, SD=8), CS (Cephalosporins, SW=12, SD=12), FQ (Quinolones, SW=53, SD=66), 
ML/LS (Macrolides/Lincosamides, SW=45, SD=40), MGE (SW=97, SD=88), SUL (Sulphonamides, SW=100, SD=71) and TET (Tetracyclines, 
SW=59, SD=83). 

The correlation plots indicate no significant correlations between overall TASP and TARG in either 

surface waters or sediment. Also, no correlations are present between TASP and matching TARG for 

individual antibiotic classes. Correlations between overall TARG and MGEs are moderately strong in 

both matrices. There is a moderately strong positive correlations in surface waters between. 
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Macrolide selective pressure and Tetracycline resistance genes. Other correlations are mostly with 

Cephalosporins or Amphenicols, but these are based on a relatively small data set.  

 

Figure 17: Correlation plots showing only significant (p<0,05) Pearson correlations between gene types and between gene types and TASP 
overall and for antibiotic classes in surface waters (left) and sediments (right). A blue ellipse indicates a positive correlation. The correlations 
between resistance genes and intl1 and intl2 are highlighted in the red rectangle. A red ellipse indicates a negative correlation. The 
sharpness of the ellipse is indicative of the strength of the correlation, with perfect correlation indicated by a diagonal line. Some gene types 
were left out because of a very limited number of data points. 

In figure 17 correlations are shown between gene types in surface water (left) and sediment (right) 

and between gene types and selective pressure from antibiotic classes. Only significant correlations 

are shown (p<0,05). 

In surface waters, selective pressure by Amphenicols is strongly correlated with the associated floR-

gene and to intl2, but this is only based on a very small sample set (n=4). No other correlations are 

present between antibiotic classes and corresponding resistance genes. Cephalosporins (n=12) show 

strong negative correlations with intl2 in surface water. 

In sediments a very strong negative correlation is found for Amphenicols and its corresponding 

resistance gene cat1. This is based on a small sample set (n=8). Another very strong and positive 

correlation is seen for Tetracyclines (n=99) and the associated resistance gene tetW. Tetracyclines 

also show relatively strong positive correlations with intl1 and intl2. Quinolones are positively 

correlated with intl2 in sediments. 

There are numerous significant and moderate to very strong correlations between gene types in both 

matrices. Most notable in surface waters are Quinolone and Cephalosporin resistance genes who 

seem to correlate strongly amongst each other and with several other gene types including intl1, 
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cmlA and tetA. Moderately strong and strong positive correlations are indicated between the MGEs 

intl1 and intl2 with ermB, ermC, qnrB, gyrA, blaIMP-04, blaNMD1 and blaTEM, tetB and tetW. 

Interestingly, in sediments correlations are even stronger among genes, with many near perfect 

correlations. MGEs intl1 and intl2 show moderate to strong positive correlations with all gene types 

except the genes conferring resistance to Macrolides (ermB, ermC and ermF). Macrolide resistance 

genes show overall the least correlation with other gene types in sediments.  

4.5.3 Prevalence of gene types 

In figure 18 the relative abundance of resistance genes in all samples were added together and sum 

totals are shown in the bar plot below. It would seem that five resistance gene types stand out as 

most prevalent. However, data sets differ substantially between gene types, because in each study 

different choices were made regarding the gene types to analyse. Some gene types were analysed 

more than others, influencing sum totals (see also appendix III). The sum total TARG of blaTEM is 

based on 49 detections, while sul1 is based on 189 and intl1 on 187 detections. Detection rates were 

high for all three genes. The bar plot is therefore partially an indication of research bias and 

accounting for sample size yields a different picture. 

 

Figure 18: Sum totals for all gene types that were detected in the samples. Several gene types stand out, but sample sizes differ per gene 
type. Sample sizes: ermB=99, ermF=42, qnrB=41, qnrS=129, blaTEM=49, sul1=189, sul2=137, sul3=42, intl1=187, cmlA=42, tetA=127, 
tetB=80, tetC=88, tetM=109, tetO=7, tetW=99, tetZ=42 (see also appendix III).  

Mean and median values shown in the boxplot below (fig.19) indicates that tetO is highest of all gene 

types. This is based however on only 7 values which were measured by Ohore et al (2019) in 

sediments from Taihu Lake in China. Highest values following tetO are three Cephalosporin (or β-
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lactam) resistance genes resp. blaOXY, blaTEM and blaSHV-01. These values were based on only 7 

detections for both blaOXY and blaSHV-01 , but on 49 detections for blaTEM.  

Next, tetZ (n=42) and intl1 (n=187) are the runners up. tetE (n=7) and tetC (88) have moderately high 

median values compared to other genes, but have a very large spread. Maximum values -indicated by 

the high end of the whiskers- of tetC are highest of all gene types.  

 

Figure 19: Boxplot showing median, mean, Q1-Q3-percentile, maximum, minimum values and outliers for resistance gene types. 
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4.5.4 Highlights from the data exploration 

From the data exploration, no clear indication was found for a relationship between TASP and TARG. 

However, relative to other antibiotic classes, Sulphonamides and Quinolones seemed to show an 

interesting trend. While TASP from Sulphonamides was comparatively low, TARG from 

Sulphonamides was comparable to other classes. For Quinolones it was the reverse. Comparatively 

high TASP values were observed for Quinolones, but relatively low TARG. 

From the limited non-Chinese data, there were no indications of difference between countries.  

Some clustering of TASP-values seems to be present for different antibiotic classes. This is especially 

apparent in the datasets within the studies. 

Some differences were found when zooming in on the different matrices. TASP-values from 

Quinolones were highest in sediments, while values for Tetracyclines together with Quinolones were 

highest in surface waters. TASP from Sulphonamides was lowest compared to other classes in both 

matrices. 

For TARG-values, there was much spread within the classes in both matrices. TARG from 

Cephalosporins were high in both matrices compared to other classes, especially in sediments. TARG 

from Quinolones was relatively low in both matrices.  

Overall, the spread of TASP and TARG was highest in sediment samples.  

Differences between seasons seemed minor. Somewhat higher values were measured in winter for 

TASP, but with autumn and spring showing a very large spread. TARG seemed overall somewhat 

higher values in spring and autumn, with maximum values highest in spring. But samples sizes 

differed substantially between seasons.  

Correlation plots show no significant correlations between TASP and TARG, not overall or for 

individual antibiotic classes. 

The only significant correlation between selective pressure and corresponding gene types (based on 

an ample sample size) was found in sediments for Tetracyclines and tetW. Several positive 

correlations in both matrices were present between antibiotic classes and unrelated gene types. 

A strong negative correlation was found between Cephalosporin selective pressure and intl2 in 

surface waters. Strong positive correlations were seen between Quinolones and Tetracycline 

selective pressures and the MGEs in sediments.  

Strong positive correlations were present amongst several gene types in both matrices. Correlations 

among gene types were comparably stronger in sediments. 
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There was a moderately strong and positive correlation for TARG and MGEs in both matrices. In 

surface waters MGEs correlate positively with ermB, ermC, qnrB, gyrA, blaIMP-04, blaNMD1 and 

blaTEM, tetB and tetC. In sediments MGEs correlate positively with all gene types except those 

conferring resistance to Macrolides.  

From the resistance gene types that were analysed in sufficient numbers in studies (n>40), blaTEM, 

intl1 and tetZ showed highest abundance values. tetC did not show very high median values 

compared to other gene types, but has a very large spread, showing the highest maximum values of 

all gene types.  
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4.6 DATA ANALYSIS  

4.6.1 Model architecture 

For the analysis of the data, a linear mixed effects models (LMEM) is used. As indicated in the 

introduction, antibiotic resistance in the environment can result from several factors that interact in 

complex ways. Compared to traditional linear regressions models, LMEM allow for the incorporation 

of a combination of explanatory variables as either fixed or random factors, where random factors 

make possible a hierarchical modelling of the data in cases of non-independence or nested data 

(Zuur et al, 2009; Harrison et al, 2018). LMEM thus allows for a more complex modelling of the data 

than simple linear regression models, which makes it suitable for the analysis of antibiotic resistance. 

Also, because data is collected from different studies, greater similarity of data within studies, can 

also be modelled.          

It is hypothesized that antibiotic selective pressure will have an effect on the relative abundance of 

antibiotic resistance genes in the aquatic environment. TARG is therefore taken as the response 

variable and TASP as the explanatory variable or fixed factor. Class is added as an additional 

explanatory or fixed factor, assuming a difference in effect of each class on TARG owing to 

differences in physicochemical behaviour in the environment for instance influencing bioavailability 

and owing to differences in the mechanism of action of each class, influencing resistance responses 

in bacterial communities. It is further assumed that resulting TARG will be more similar within 

individual seasons due to to more similar temperatures and hydrological conditions. Therefore, 

Season is added as random factor. Next to season, Matrix is added as a random factor, assuming 

more similarity in resistance response within the same matrix, with sediment providing a more 

compact and stable matrix for gene transfer processes, than the more dynamic surface water. From 

data exploration, there was indication that antibiotic classes within studies show stronger clustering. 

So, as a third random factor Class nested in Study was added. This resulted in the following full model 

(eq.6).  

Full model:  

TARG = TASP + Class + (1|Season) + (1|Matrix) +  (1|Study/Class) + ε  (eq.6) 

Where ε is the random error.  

For data analysis and visualization the packages ‘lme4’, ‘AICcmodavg’, ‘pbkrtest’, ‘MuMln’, ‘ggplot2’,  

‘corrplot’ and ‘ggcorrplot’ were used with the statistical software RStudio (Version 1.2.5001). 

  



41 
 

5 RESULTS AND DISCUSSION 

5.1 RESULTS 

In this research the correlation between antibiotic selective pressure and antibiotic resistance was 

investigated based on the sample data (n=204) obtained from 9 studies. Data analysis was performed 

using a linear mixed effect model (LMEM).  

To find the best fit model for the data, different candidate models were created from different 

combinations of the random effects. These were fitted using restricted maximum likelihood (REML) 

estimations. The corrected Akaike Information Criterion (AICc) was used to evaluate the random 

structure (table 4). 

 

Random Structure k AICc ΔAICc w L 

(1|Season) + (1|Matrix) +  (1|Study/Class) 12 1348,481 1,471805 3,239008e-01 -661,9233 

(1|Season) + (1|Matrix) 10 1599,629 252,620207 9,423873e-56 -789,5919 

(1|Season) + (1|Study/Class) 11 1347,009 0,00000 6,760992e-01 -662,2367 

(1|Matrix) +  (1|Study/Class) 11 1384,881 37,871965 4,038477e-09 -681,1727 

(1|Season) 9 1603,667 256,658221 1,251370e-56 -792,6517 

(1|Matrix) 9 1637,163 290,154434 6,664623e-64 -809,3998 

(1|Study/Class) 10 1637,163 39,018723 2,276158e-09 -682,7911 

Table 4: The random structure with lowest AICc is marked in bold, k=number of estimated parameters, w=Akaike weight, L= 

restricted log-likelihood. 

 

For establishing the significance of the fixed effect, F tests with Kenward-Roger approximations were 

used (table 5).  

Fixed effects F-statistic  df ddf p-value 

TASP + Class (41-42) 3,4892 6 19,2057 0,01673* 

Class (42-43) 4,039 5 15,070 0,01591* 

TASP (42-44) 0,6505 1 493,4411 0,4203 

TASP x Class (42-45) 1,6964 5 480,2231 0,1339 

Table 5: F-test with Kenward-Rogers approximations for the fixed effects, with significant fixed effects marked in bold. 
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The uncertainty of the fixed and random terms was computed using a bootstrap method performing 

1000 iterations. Uncertainty was expressed in 95% confidence intervals. As a final step, marginal and 

conditional coefficients were calculated for the best fitting model (table 6 and 7). 

Fixed Effects Coefficients SE t-value LCI95 UCI95 

Intercept -2,8604 0,8025 -3,564 -4,3938064 -1,20915 

ClassCS 1,6452 0,7484 2,198 0,1000056 3,1269241 

ClassFQ -0,5974 0,6521 -0,916 -1,9420499 0,6779273 

ClassML/LS 0,2243 0,6728 -0,333 -1,6285494 1,1360693 

ClassSUL 0,6795 0,6577 1,033 -0,6565748 1,9020862 

ClassTET 0,6684 0,6501 1,028 -0,6574808 1,9572323 

R2-marginal 0.109 

Table 6: Coefficients, standard error (SE), t-value and 95% lower and upper confidence intervals (LCI95 and UCI95) for the 

fixed effects using bootstrap method performing 1000 simulations.  

 

Random Effects Variance Sd LCI95 UCI95 

Class : Study 0,4705 0,686 0,3954592 0,9813888 

Study 1,6703 1,292 0,4887540 2,0279089 

Season 0,4058 0,637 0,1113378 1,1829833 

Residual 0,6707 0,819 0.7987441 0,8726545 

R2-conditional 0.814     

Table 7: Variance, standard deviation (Sd) and 95% lower and upper confidence intervals (LCI95 and UCI95) for the random 

effects using bootstrap method performing 1000 simulations 

 

No indication of a linear relation was found between TASP and TARG. Data analysis bore out that the 

continuous fixed factor of TASP did not significantly explain TARG. This result differs from 

comparable studies, where a significant relationship between TASP and TARG was found (Duarte et 

al, 2019) or where correlations were found between total antibiotics concentrations and ARG-

abundance (Chen et al, 2013; Gao et al, 2018; Xu et al, 2018; Yan et al, 2018; Liang et al, 2020).    

The best fit fixed structure found to describe the data, showed that antibiotic class (Class), not total 

selective pressure (TASP), correlated significantly with total resistance genes (TARG) (Table 5). Class 

accounted for close to 11% of the variance (Table 6). This relatively low percentage corresponds with 

the findings that ARG-abundance in the natural environment is the result of complex interactions 

between microbial communities, biotic and abiotic environmental factors and anthropogenic 
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pressures (Bai et al, 2019; Bengtsson-Palme et al, 2018b; Smalla et al, 2018). So it is not expected 

that one factor should contribute to a very high degree. 

Class in the LME model is a categorical fixed factor. Therefor its significance does not imply any linear 

relationship with TARG. Rather the differences in deviations from the TARG-mean were significantly 

explained by antibiotic class. This could indicate that different antibiotic classes affect total antibiotic 

resistance in different ways. Or more neutrally, that the relationship between antibiotic selective 

pressure and the abundance of corresponding resistance genes differs per class.  

Including the random effects explained 81.4% of the variance in the data (Table 7). The most 

parsimonious random structure included season (Season) and class nested in study (Study/Class), but 

not matrix (Matrix)(Table 4). Seasonal or temporal factors influencing AR have been found in a 

number of studies (Amos et al, 2015; Sanderson et al, 2018; Xu et al, 2018; Roberto et al, 2019; Wan 

et al, 2019; Di Cesare et al, 2020; Wang et al, 2020b), including different patterns for ARGs conferring 

resistance to different antibiotic classes (Xu et al, 2018; Roberto et al, 2019).  

Selective pressure in samples was highest from Quinolones in both matrices, followed by 

Cephalosporins and Tetracyclines and lowest for Sulphonamides in both matrices. Values above 

TASP=1 were measured for both Quinolones and Tetracyclines in surface water and for Quinolones in 

sediment, indicating a potential risk. Interestingly, while TASP from Sulphonamides was 

comparatively low, TARG from Sulphonamides was comparable to other classes. For Quinolones it 

was the reverse. Comparatively high TASP values were observed for Quinolones, but TARG-values 

were relatively lowest of all classes. TARG from Cephalosporins were high in both matrices compared 

to other classes, especially in sediments. Overall, there was much spread of TARG-values within the 

classes in both matrices. 

Additionally, Pearson correlations showed that the only correlation between TASP and the 

corresponding resistance genes was found in sediments for Tetracyclines and tetW.  But several 

positive correlations between TASP from antibiotic classes and unrelated resistance genes were 

present, for instance a relatively strong positive correlations (p<0.05) between selective pressure 

from Macrolides and Tetracycline resistance gene abundance in surface water samples. Regarding 

the mobile genetic elements intl1 and intl2, Cephalosporins correlated negatively with intl2 in 

surface waters, but Quinolones and Tetracyclines correlated positively and strong with MGEs in 

sediments.  

Amongst gene types, several strong positive correlations were present in both matrices, but 

correlations were comparably stronger in sediments, which might be explained by the denser and 

more stable environment that is provided in sediments offering better circumstances for HGT. 
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Overall, there was a moderately strong and positive correlation for TARG and MGEs in both matrices. 

In surface waters MGEs correlate positively with ermB, ermC, qnrB, gyrA, blaIMP-04, blaNMD1, 

blaTEM, tetB and tetC. In sediments MGEs correlate positively with all gene types except those 

conferring resistance to Macrolides. This is in line with other findings of significant correlations 

between MGEs -particularly intl1- with ARGs (Yan et al, 2018; Deng et al, 2020; Leng et al, 2020; 

Liang et al, 2020) pointing to the important role of MGEs in the transfer of ARGs (Gillings et al, 2015 

and 2017).    

Highest ARG-abundances were found for mobile genetic element intl1 and for the resistance genes 

blaTEM and tetZ, conferring resistance to respectively Cephalosporins and Tetracyclines.  tetC did not 

show very high median values compared to other gene types, but had a very large spread, showing 

the highest maximum values of all gene types.  
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5.2 DISCUSSION 

In this study, data extracted from environmental samples measuring antibiotic concentrations and 

resistance gene abundance, showed much spread and scatter between selective pressure and ARG-

abundance.  No significant relationship was found between antibiotic selective pressure and 

antibiotic resistance genes in surface water and sediments. But both antibiotic class and temporal 

factors could explain 81% of the variance. Pearson correlations did find strong associations amongst 

many resistance genes in both matrices. intl1 -indicated for its important role in HGT- ranked among 

the most abundant genes found and showed correlation with selective pressures from Quinolones 

and Tetracyclines in sediment, but showed no correlation with TASP. These results are in line with 

the growing body of research indicating that many factors influence the evolution of AR in the 

environment and the relationship between TASP from antibiotic pollution and TARG is complex and 

possibly non-linear.  

In part this could be due to processes determining the fate and behaviour of antibiotic residue in the 

environment. Chronic sub-MIC levels of antibiotics in the environment can steer bacterial evolution 

towards resistance (Hiltunen et al, 2017) and many antibiotic drugs are persistent in the environment 

(water, soil, sediment), meaning they can exert their influence long after being excreted from 

humans or farm animals (Gaze et al, 2013). But speciation, stability and mobility of antibiotics and 

their metabolites are difficult to predict under complex environmental circumstances and knowledge 

is particularly scarce. Antibiotics are usually metabolized in humans and animals before they reach 

the environment. Upon entry to the environment, the parent compound and its metabolites undergo 

further structural changes from biotic and abiotic processes, for instance during waste water 

treatment, resulting in changed physicochemical and pharmaceutical properties (Carvalho & Santos, 

2016).  

Also other explanations of the evolution of AR in the environment are possible. Although several 

studies found indications of a relationship between TASP and TARG, many have not. These studies 

rather point to the importance of other factors, like the relevance of co-emission of ARGs and 

resistant bacteria from anthropogenic sources (Brown et al, 2019; Karkman et al, 2019) or found a 

more relevant relationship between  bacterial community structure and ARG-abundance (Huerta et 

al, 2013; Zhou et al, 2017). In Karkman et al (2019) fecal pollution could explain antibiotic resistance 

in most environments, with the exception of environments highly polluted with antibiotics. In other 

studies the prominent role of continuous wastewater discharges, including organic matter, solid 

particles, bacteria and ARGs, in the spread of ARGs was emphasized above environmental selection 

(Kumar & Pal, 2018; Brown et al, 2019).  
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Especially metagenomic studies found that the characteristics of bacterial communities could better 

explain ARG presence and patterns than environmental antibiotic concentrations (Novo et al, 2013; 

Huerta et al, 2013; Zhou et al, 2017; Gao et al, 2018; Brown et al, 2019; Reddy et al, 2019; Zheng et 

al, 2019; Deng et al, 2020, Leng et al, 2020). Fondi et al (2016) found evidence that ecology 

predominantly shaped the resistance gene pools in these bacterial communities, identifying 

similarities in communities in similar ecological niches like seawater, freshwater, soil, gut and air, 

with relatively little overlap and exchange between niches. Each of the environmental compartments 

seems to have a distinct group of bacteria that are the primary host of ARGs (Zeng et al, 2019). But 

although these niches remain relatively separate, fresh water seems to connect a number of these 

ecological niches, acting as a bridge for the exchange of some highly mobile ARGs between different 

compartments (Fondi et al, 2016).           

These findings indicate that the direct effect of antibiotics on promoting AR is obscured or might be  

trumped by other more systemic processes. But this does not rule out the influence of antibiotics. 

There is evidence that antibiotics are equally able to exert influence on the composition, diversity 

and functioning of bacterial communities as well (Huerta et al, 2013; Balcázar et al, 2015; Roose-

Amsaleg en Laverman, 2016; Zhou et al, 2017; Chen et al, 2019e; Deng et al, 2019; Roberto et al, 

2019). Roose-Amsaleg en Laverman (2016) found influence of antibiotics on microbial functioning 

and their role in biogeochemical cycles. Zheng et al (2019) showed influence of antibiotics on the 

(reduced) functioning of bacterial communities in the biodegradation of perchlorate. This points to a 

more indirect influence of antibiotic pressures (Deng et al, 2020) on AR by influencing bacterial 

communities together with other environmental stressors, like heavy metals and water quality 

parameters (Zhou et al, 2017). Resistance might be more related to forces that shape and influence 

microbial communities, nonetheless antibiotics seem to be one of those forces. 

To further enhance insight into the relationship between AR and selective pressure, future research 

is suggested to combine metagenomic research into the changes in functioning, diversity and 

composition of bacterial communities in different environmental compartments with the analysis of 

environmental pressures from antibiotics by different classes and heavy metals in the same samples.   

It is further suggested to incorporate additional parameters pertaining to water quality (e.g. pH, 

organic carbon, solids, nutrients, temperature, metal concentrations), hydrological conditions (flow 

rate, water depth) and spatiotemporal data (land use, land cover, precipitation trends, seasonal 

trends).  
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5.3 LIMITATIONS 

This meta-analysis has a number of limitations. Because many studies -for different reasons- did not 

qualify for incorporation in this study, data from a only a limited number of studies (n=9) were 

extracted for data analysis. Additional sample data will increase the robustness of statistical findings 

and will allow for a deeper analysis of the data, for instance by incorporating additional meta-data in 

the analysis.     

Also, research using qPCR involves the preselection of resistance gene markers, which could bias 

analysis in favour of the most investigated or clinically relevant genes, underexposing possibly 

relevant but less researched genes. Moreover, it is not possible to find new genes that might be 

relevant to AR-enhancement in the environment. A similar bias can be involved in the choice for the 

analysis of antibiotics.    

Because antibiotic concentrations in themselves are less telling of selective pressure, an indication of 

selective pressure was calculated using the PNEC. The development of a PNEC that is tailored to 

bacteria living in complex environmental conditions and often in complex microbial communities, is 

however still in its infancy. It is still debated which species is most useful for the calibration of the 

PNEC and which environmental endpoints and protection goals should be central (Bengtsson-Palme 

& Larsson, 2016b and 2018c; Le Page et al, 2017). Also, research data is (very) scant on many 

antibiotics for establishing a PNEC. Most PNECs used in this meta-analysis were suggested by 

Bengtsson-Palme & Larsson (2016b) based on a similar methodology that they developed, but for 

some antibiotic types that were not included in their research, other sources were found (Wang et al, 

2020b; Zhang et al, 2020). The PNECs from these additional sources were established using different 

methodologies. These combined factors yield uncertainty in the establishment of selective pressures.      

Finally, linear mixed effects models were applied to the data, making possible a more complex 

modelling of the data and the incorporation of non-independence. These models however involve a  

subjective choices that can influence outcomes, most importantly the choice for fixed and random 

effects and whether data is nested or not. Also, statistical results of LMEM are not always easy to 

interpret. Results from statistical analysis should therefore not be taken as an indication of causation, 

but only serve as an aid in the interpretation of complex data.  
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6 APPENDICES 

6.1 APPENDIX 1: OVERVIEW OF METAGENOMIC STUDIES  
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Appendix 1: Overview of metagenomic studies researching  the correlation between 
antibiotics concentrations and resistance genes abundance in surface water and 
sediments (Blue header = data extracted, Pink header = data not (yet) extracted) 
Study Samples Antibiotics analysed Rationale for AB choice and 

concentrations ranking 
ARGs detected Abundance ranking ARGs Unit for relative 

abundance 
Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

1. Bai et al, 
2019 

China 
12 surface water 
samples were taken 
from drinking 
water sources in the 
upper and middle 
branch of Huaihe 
River Basin. 
It was reported that 
the antibiotic 
emission into Huaihe 
River basin is over 
3000 tons per year, 
and is listed as one of 
the highest sites of 
antibiotic emission in 
surface waters across 
China (Zhang et al., 
2015). 
 
Date: 2017-November 

Enrofloxacin (FQ) 
Norfloxacin (FQ) 
Ciprofloxacin (FQ) 
Ofloxacin (FQ) 
Fleroxacin (FQ) 
Tetracycline 
Chlortetracycline 
(TET) 
Oxytetracycline (TET) 
Metacycline (TET) 
Doxycycline (TET) 
Sulfadiazine (SUL) 
Sulfamethoxazole 
(SUL) 
Sulfathiazole (SUL)  
Sulfamerazine (SUL) 
Sulfadoxine (SUL)  
Sulfadimethoxine 
(SUL)  
Sulfamethoxidiazine 
(SUL) 
Sulfamethazine (SUL) 

Rationale not explicitly 
stated. 
 
Highest concentrations 
found: 
1. Metacycline 
2. Doxycycline 
3. Oxytetracycline 
4. Chlortetracycline 
5. Sulfamethoxazole 
6. Tetracycline 
7. Sulfamethoxidiazine 
 

Tetracyclines (TET) 
Sulphonamides (SUL) 
Bacitracin (PEP) 
CAMP (PEP) 
Vancomycin (PEP) 
Beta-lactams (BeLa) 
Aminoglycosides 
(AG) 
Lincosamides (ML) 
Multidrug 
Trimethoprim 
(DHFR) 
Fosmidomycin 
Chloramphenicol  
Others 
 
 
 
 
 
 
 
 
 
 

Most abundant: 
1. Beta lactamase 
2. Others 
3. Multidrug 
4. Bacitracin 
5. Tetracyclines  
 
Least abundant: 
1. Chloramphenicol 
2. Trimethoprim 
3. Fosmidomycin 
4. Sulphonamides 

PPM 
ARG-like reads 
per million reads 
(not assembled) 
 
Range:  
From 657 ppm in 
sample 5 
To 1023 ppm in 
samples 1 and 9 

No 

Full citing 
Bai, Y., Ruan, X., Xie, X., & Yan, Z. (2019). Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: A case study in Huaihe River Basin, China. 
Environmental Pollution, 248, 438–447. https://doi.org/10.1016/j.envpol.2019.02.057  
 
Correlations found within this study 
*Water quality ( antibiotics, COD, TP, TN, NH4) seems to contribute little to the ARGs abundance. 
*Number of livestock, health facility and agricultural areas in the watershed showed a strong influence on the total ARG abundance in drinking water sources, among which land use type was the dominant factor. 
*The specific biogeographic distribution pattern of ARGs demonstrated that total ARG abundance was also greatly impacted by the natural condition of the drinking water resources. 
*In the present study, the limited correlation between ARG and microbial community composition, as well as the absence of class 1 integron (intI1) in sampled drinking water sources confirmed the low HGT potential. 
*No pathogen was identified in the sampled drinking water sources. While Polynucleobacter was an abundant ARGs host in the microbial community, and was significantly related to the ARG profile. 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

2. Chen et al, 
2013 

China 
2 sediment samples 
were taken from the 
Pearl River Estuary 
 
In total 9 samples 
were taken in this 
study, but only two 
also provided 
antibiotics 
concentrations that 
were above the LOQ. 
 
Date: 2011-June 

Enrofloxacin (FQ) 
Norfloxacin  (FQ) 
Ofloxacin  (FQ) 
Tetracycline (TET) 
Sulfadiazine (SUL) 
Sulfamethoxazole  
(SUL) 
Sulfamethazine (SUL) 
Erythromycin (ML) 
Roxithromycin (ML) 

Rationale: 
Common antibiotics, widely 
used in the surrounding area 
 
Highest concentrations 
found: 
Norfloxacin (FQ) (found in 
both samples) 
 
Other antibiotics were found 
in low concentrations or 
were not detected in both or 
one sample 
 
 

Fluoroquinolone 
(FQ) 
Sulphonamides  
(SUL) 
Polypeptide (PEP) 
Beta-lactam  
(BeLa) 
Aminoglycoside (AG) 
Macrolide  (ML) 
Erythromycin (ML) 
Multidrug 
Fosmidomycin 
Chloramphenicol 
 
 

Most abundant: 
1. Sulphonamides 
2. Fluoroquinolones 
3. Aminoglycoside 
 
 
Least abundant: 
1. Erythromycin 
2. Beta-lactamase 
3. Tetracycline 
 
Main mechanisms of 
resistance:  
efflux pump 
Antibiotic inactivation 

PPM 
ARG-like reads 
per million reads 
(not assembled) 
 
Range:  
From 9,54 ppm in 
sample A8 
To 3,39 ppm in 
sample B2 

No 
 
 
 
 

Full citing 
Chen, B., Yang, Y., Liang, X., Yu, K., Zhang, T., & Li, X. (2013). Metagenomic Profiles of Antibiotic Resistance Genes (ARGs) between Human Impacted Estuary and Deep Ocean Sediments. Environmental Science & 
Technology, 47(22), 12753–12760. https://doi.org/10.1021/es403818e  
 
Correlations found within this study 
* The abundance of ARGs significantly correlated with the abundance of the two MGEs (e.g., integrons and plasmids) on the level of 
p < 0.01 in the PRE and SCS sediments, and a relationship of significance was also observed for the diversity of ARGs and MGEs in sediments (p < 0.01). These results strongly suggest that MGEs play an important role in 
the dissemination of ARGs in the aquatic environment. 
*Antibiotic concentrations are generally low in the environments; even near sources of pollution. Such subinhibitory levels of antibiotics could not be expected to exert a significant stress for selecting ARB and ARGs in 
the ambient environments. Alternatively, it is considered that the release of bacteria from the human and/or farmed animal flora is the predominant reason for the wide dissemination of ARGs in the human impacted 
environments. 
 
 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

3. Chen et al, 
2019 

China 
4 sediment samples 
taken from Chaobai 
River. 
The river not only is 
the main source of 
drinking water for 
Beijing, but also 
provides the 
important water 
resource for 
agricultural irrigation 
within the basin 
drainage area. 
 
Date: 2017-December 

Sulfadiazine (SUL) 
Sulfachlorpyridazine 
(SUL) 
Sulfamethoxazole 
(SUL)  
Sulfamethazine (SUL) 
Chlortetracycline 
(TET) Oxytetracycline 
(TET) Tetracycline 
(TET) Ciprofloxacin 
(FQ) Enrofloxacin (FQ) 
Lomefloxacin (FQ) 
Norfloxacin (FQ) 
Ofloxacin (FQ) 
Erythromycin (ML) 
Roxithromycin (ML) 
Tylosin (ML) 
Trimethoprim (TMP) 

A total of 16 specific 
antibiotics frequently 
detected in the Haihe River 
system (Chen et al., 2018) 
were analysed in this study. 
 
Highest concentrations 
found: 
pm 
 
Lowest concentrations 
found: 
pm 
 

Trimethoprim 
Fosmidomycin 
Chloramphenicol 
Sulphonamides 
Quinolone 
Fluoroquinolones 
CAMP (PEPTIDES) 
Aminoglycoside 
Vancomycin 
Tetracycline 
Bacitracin  
Multidrug  
Fosfomycin  
Beta lactam  
Peptide  
Aminocoumarin 
Rifampin  
Polymyxin  
MLS (macrolides) 
Triclosan  
Mupirocin 
Kasugamycin 
Glycopeptide 
Bleomycin 

Most abundant: 
1. Multidrug 
2. Bacitracin 
3. MLS 
4. Sulphonamides 
5. Quinolones 
 
  

In Chen et al, 
2019b:  
Coverage 
x/Gb 
(assembled 
contigs) 
 
In Chen et al, 
2019a:  
Copies per 16s is 
used (also taking 
gene length into 
account). Results 
in this article are 
not assembled.  
PPM could be 
derived from the 
occurrence of 
ARGs in each 
sample divided by 
the number of 
million clean 
reads per sample. 
 
Range: 

No 

https://doi.org/10.1016/j.envpol.2019.02.057
https://doi.org/10.1021/es403818e
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From 80,01 ppm 
to 191,61 ppm 
 

Full citings 
Chen, H., Bai, X., Li, Y., Jing, L., Chen, R., & Teng, Y. (2019a). Characterization and source-tracking of antibiotic resistomes in the sediments of a peri-urban river. Science of The Total Environment, 679, 88–96. 
https://doi.org/10.1016/j.scitotenv.2019.05.063  
Chen, H., Bai, X., Jing, L., Chen, R., & Teng, Y. (2019b). Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. Science of The Total 
Environment, 653, 1513–1521. https://doi.org/10.1016/j.scitotenv.2018.11.052  
Chen, H., Chen, R., Jing, L., Bai, X., & Teng, Y. (2019c). A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. Environmental 
Pollution, 245, 398–407. https://doi.org/10.1016/j.envpol.2018.11.024  
 
 
Correlations found within this study 
*Host tracking analysis identified Dechloromonas, Pseudoxanthomonas, Arenimonas, Lysobacter and Pseudomonas as the major hosts of ARGs. 
*More importantly, the co-occurrence analysis via ACCs showed a strong association of ARGs with B/MRGs and MGEs, indicating high potential of co-selection and active horizontal transmission for ARGs in the river  
environment, likely driven by the frequent impact of anthropogenic activities in that area. 
*It can be seen most of the identified genera exhibited high correlation with multidrug resistance genes.  
*The class 1 integron was positively correlated with most of the targeted ARGs, while no significant correlations were observed between the ARGs and selective pressure factors, including antibiotics and metals. 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

4.Fang et al, 
2018 

China 
6 samples (3 sediment 
and 3 surface water) 
were taken upstream 
and downstream from 
a pigfeed lot in Cixi, 
Zhejiang. 
 
Date: 2016-July 15 

Enrofloxacin (FQ) 
Norfloxacin (FQ) 
Ciprofloxacin (FQ) 
Tetracycline (TET) 
Chlortetracycline 
(TET) 
Oxytetracycline (TET) 
Sulfadiazine (SUL) 
Sulfamethoxazole 
(SUL) 
Erythromycin (ML) 
Chloramphenicol  

Eleven representative 
antibiotics were selected in 
this pig feedlot, and their 
average annual 
usage over five years (from 
2013 to 2017) is 
summarized. 
 
Highest concentrations 
found: 
1. Ciprofloxacin (FQ) 

mostly in SD 
2. Norfloxacin (FQ) 

mostly in SD 
3. Enrofloxacin (FQ) 

mostly in SD 
4. Erythromycin (ML) 

only in SD 
 
Lowest concentrations 
found: 
1. Sulfamethoxazole 

(SUL) only in SD 
2. Chloramphenicol 

(only in SW) 

Fluoroquinolones 
Tetracyclines 
Sulphonamides 
Beta-lactams 
Aminoglycosides 
Lincosamides 
Macrolides 
MLS 
Multidrug 
Chloramphenicol 
Acridines 
Others 

The most abundant ARG 
type in stream sediments 
was: 
1. Tetracycline (tetM, 

tetA(P), tetA408, 
and tetA(G)) 

2. Sulphonamides 
(sul1), AGR (aac 
and aac6) 

3. Macrolide (MLR) 
4. Multidrug (mexF). 
 
The most abundant ARG 
type in stream 
water was: 
1. Multidrug (mexF, 

OprB, and NodT) 
2. Tetracycline 

(tetA(G), tetM, 
tetX2, tetA408, 
tetA(P), tetX, 
tetA(33), and tetW) 

3. Aminoglycosides 
(aac, aadA, aac6, 
and aadB) 

4. Sulphonamides 
(sul1) 

5. Chloramphenicol 
6. Beta lactam (CARB-

8, CARB-5, and 
OXA). 

ARG-like iTags per 
million iTags 
(assembled; so 
not quite the 
same as ppm) 
 
Range: 
From 22,2 iTags 
per million to 
160,6 iTags per 
million.  

Yes, partial 

Full citing 
Fang, H., Han, L., Zhang, H., Long, Z., Cai, L., & Yu, Y. (2018). Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of 
Hazardous Materials, 357, 53–62. https://doi.org/10.1016/j.jhazmat.2018.05.066  
 
Correlations found within this study 
*It is mentioned that multidrug resistance seems to be correlated to manure sources: “It is noteworthy that the much higher abundance of MDR genes was found in DSW and NEW compared to USW and FPM, 
indicating that the MDR genes could mainly be disseminated into the downstream and estuary water of the stream along the flow of stream from the discharge site of pig sewage.” 
*Pearson's bivariate correlation analysis showed significant (P ≤ 0.05) positive correlations on ARGs between pig manures and  other samples.  
*Furthermore, significant (P ≤ 0.05) positive correlations were observed between antibiotic residues and ARGs in FPM, CPM, DOW, DOS, DSW, NES, or NGS samples (Table S8), and significant (P ≤ 0.05) positive 
correlations were also found between residues of sulphonamides, tetracyclines, fluoroquinolones, macrolides, chloramphenicol’s, and the corresponding abundance of ARG types among all samples. 
 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

5.Garner et al, 
2016 

USA 
Samples were taken 
from Poudre River in 
Colorado at several 
sites and several 
moments in time, 12 
months before a flood 
and 3 and 10 months 
after. Surface water 
samples from 2 sites 
were used for 
metagenomic analysis 
(n=6). Antibiotics 
concentrations were 
only analysed for the 
post-flood samples 
(n=4) 
 
Date: 2013-December 
and 2014-July 
 

Sulfamethoxazole 
(SUL) 
Sulfamethazine (SUL) 
Erythromycin (ML) 
Azithromycin (ML) 
Clarithromycin (ML) 

Highest concentrations: 
Sulfamethoxazole 
Erythromycin 

Fluoroquinolones 
Tetracycline 
Peptide 
Polymyxin 
Glycopeptide 
Beta-lactams 
Aminoglycosides 
MLS 
Multidrug 
Aminocoumarin 
Trimethoprim 
Fosfomycin 
Rifampin 
 

1. Trimethoprim 
(39%) 

2. Multidrug (30%) 
3. Polymyxin (11%) 
4. Aminocoumarin 

(4%) 
5. Peptide (4%) 
6. Tetracycline (3%) 
 
Most common mechanism 
of resistance was:  
efflux (46%), followed by 
antibiotic target 
replacement (39%), cell wall 
charge alteration (8%), 
antibiotic inactivation (5%), 
and molecular bypass (2%) 

ARGs per 16s, 
taking gene 
length differences 
into account. 
 
Range:  
 

Yes 

Full citing 
Garner, E., Wallace, J. S., Argoty, G. A., Wilkinson, C., Fahrenfeld, N., Heath, L. S., … Pruden, A. (2016). Metagenomic prof iling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance 
genes. Scientific Reports, 6(1), 38432. https://doi.org/10.1038/srep38432  
 
Correlations found within this study 
*Bulk water bacterial phylogeny did not correlate with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. 
*The potential role of antibiotics as selective agents influencing the re-establishment of ARGs during post-flood recovery was investigated by examining correlations between sulfonamide (sul1, sul2), tetracycline 
(tet(O), tet(W)), and macrolide (ermF) ARGs in bed sediment and bulk water, quantified using qPCR (Fig. S3), and 23 antibiotics (Table S2) in bulk water at all sites (Fig. 4). Analysis of antibiotics was limited to the bulk 
water.  
*All ARGs demonstrated significant Spearman’s rank correlations with at least one antibiotic against which they conferred resistance.  
*All ARGs identified were also found to significantly correlate with certain antibiotics against which they do not confer resistance indicating potential for co-selection. It is challenging to determine whether observed 
correlations are truly indicative of selective pressure or simply co-transport of antibiotics and ARGs from the same source. 
*Based on metagenomic data, positive correlations were observed between MLS, rifampin, and fosfomycin ARGs and the antibiotics sulfamethazine (ρ = 0.8452, 0.8452, 0.8262, p = 0.0341, 0.0341, 0.0427) and 
clarithromycin (ρ = 0.8452, 0.8452, 0.8262, p = 0.0341, 0.0341, 0.0427). 
*Although we could not precisely quantify the extent to which horizontal gene transfer shaped the resistome based on the present study, the numerous associations of plasmids and prophages with ARGs were striking, 
suggesting that it is a significant phenomenon in the riverine environment. 
*Interestingly, the overall bulk water phylogeny was not correlated with ARG profiles (2STAGE, weighted UniFrac: Spearman’s ρ = − 0.1) indicating that phylogeny alone may not be the most important factor controlling 
the profile of ARGs. 
 

https://doi.org/10.1016/j.scitotenv.2019.05.063
https://doi.org/10.1016/j.scitotenv.2018.11.052
https://doi.org/10.1016/j.envpol.2018.11.024
https://doi.org/10.1016/j.jhazmat.2018.05.066
https://doi.org/10.1038/srep38432
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Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

6.Guo et al, 
2016 

China 
12 sediment samples 
were taken at 
different sites 
following a pollution 
gradient along the 
marine coast of Hong 
Kong. 
 
Date: 2012-June 5-8 

Ofloxacin (FQ) 
Ciprofloxacin (FQ) 
Sulfadiazine (SUL) 
Sulfomethoxazole 
(SUL) 
Sulfamethazine (SUL) 
Cefalexin (BeLa) 
Erythromycin (ML) 
Roxithromycin (ML) 

Rationale not explicitly 
given. 
 
Highest concentration of 
antibiotics found: 
Roxithromycin 
Sulfadiazine 
Sulfamethoxazole 
 
 
Lowest concentrations 
found: 
All the quinolones 

Fluoroquinolone 
Tetracycline 
Sulfanomides 
Bacitracin 
Polymixin 
Vancomycin 
Beta-lactams 
Aminoglycoside 
MLS 
Multidrug 
Trimethroprim 
Fosmidomycin 
Chloramphenicol 
Fosfomycin 
others 

The abundant 
ARG types were genes 
encoding resistance to 
multidrug (3.2 
× 10−3 in average), 
bacitracin (1.2 × 10−3 in 
average) and sulphonamide 
(1.4 × 10−3 in average). 

In the article 
number of ARG-
reads normalized 
by 16s reads are 
used. 
 
ppm-numbers 
were calculated 
by multiplying by 
the 16s counts 
(referred to in the 
article as the 
bacterial smallest 
sub-unit (SSU)) 
and dividing by 
the number of 
million clean 
reads.   
 
Range: 
From 6,63 ppm to 
172,43 ppm 
 
 

No 

Full citing 
Guo, F., Li, B., Yang, Y., Deng, Y., Qiu, J.-W., Li, X., … Zhang, T. (2016). Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong 
Kong. FEMS Microbiology Ecology, 92(9), fiw128. https://doi.org/10.1093/femsec/fiw128  
 
Correlations found within this study 
*Although total ARGs were enriched in sediments from the polluted sites, distribution of single major ARG types could be explained neither by individual sediment parameters nor by 
corresponding concentration of antibiotics. It supports the hypothesis that the persistence of ARGs in sediments may not need the selection of antibiotics. 
*Correlation analyses (both Spearman correlation and Kendall correlation were tested since the data of antibiotic concentrations were not normally distributed) were performed to examine the potential implications 
between antibiotics and ARGs. However, the statistics showed no significant correlation (P 0.1 in all cases, bootstrap N>1000). This result suggested that the occurrence of ARGs could not be explained by the local 
distribution of the two major antibiotics classes. 
*Although the total ARGs abundance seemed to be positively influenced by human impact, the distribution of a few major ARG types only could be well explained by the general factors, such as COD and Zn, instead of 
the corresponding antibiotics.   
*Our results support the idea that the occurrence and persistence of ARGs in the marine sediments may not be directly associated with the in situ stress of the antibiotic residues in sediment. They could be derived 
from the direct continuous input of biomass or non-selective effect. 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

7.Jia et al, 2017 China 
5 surface water 
samples were (1 
upstream of a pig 
farm and the rest at 
greater distances 
downstream) in  
Changzhou along 
Hongqi river, Jongan 
river and Taige river. 
 
Samples in this study 
were taken at 7 sites 
in May, August and 
November. The 
November samples 
were used for 
metagenomic 
analysis. 
Two locations were 
not included here, 
because they were 
located at the swine 
wastewater 
discharge, leaving 5 
samples. 
 
Date: 2013-November 
 

Ofloxacin (FQ) 
Tetracycline (TET) 
Chlortetracycline 
(TET) 
Oxytetracycline (TET) 
Sulfadiazine (SUL) 
Sulfamethoxazole 
(SUL) 
Sulfamethazine (SUL) 
Cefalexin (BeLa) 
Erythromycin (ML) 
Roxithromycin (ML) 
Trimethoprim 
 
(Among the 21 
antibiotics tested, 11 
ones were detectable 
in the wastewater or 
river water) 

Rationale not explicitly 
given. 
 
Highest concentrations 
found: 
1. Sulfamethazine 
2. Roxithromycin 
3. Oxytetracycline 
4. Sulfomethoxazole 
 
 
 

Tetracyclines 
Sulphonamides 
Bacitracin 
Beta-lactam 
Aminoglycosides 
MLS 
Multidrug 
Chloramphenicol 

Most abundant: 
Tetracycline and 
sulphonamides resistance 
genes. 
 
 
 
 

ppm (assembly 
was performed),  
ppm was 
determined as 
the portion of the 
hits of one type 
or subtype of ARG 
in the total 
metagenome 
reads).  
 
Range: 
From 4,72 ppm 
(upstream) to 
209,83 ppm 
(downstream 
closest to the pig 
farm) 

Yes 

Full citing 
Jia, S., Zhang, X.-X., Miao, Y., Zhao, Y., Ye, L., Li, B., & Zhang, T. (2017). Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. 
Water Research, 124, 259–268. https://doi.org/10.1016/j.watres.2017.07.061  
 
Correlations found within this study 
* This study showed that swine wastewater contained a broad range of antibiotics covering different families, and the results agreed with previous studies indicating that tetracyclines and sulphonamides were the 
main antibiotics in swine manure and wastewater (Chen et al., 2012). The reason may be that tetracyclines and sulphonamides are commonly used as growth promoter and 
disease preventer in animal farming (Zhang et al., 2015). 
*Correlation analysis and host analysis consistently showed that the changes in the abundances of several key genera like Prevotella and Treponema were significantly and positively correlated with the antibiotic 
resistome alteration. 
*Wastewater discharge evidently elevated the total abundance of ARGs in the receiving water, which then showed decreasing treads along the river flow, but the decreasing rate seemed higher in 
August than in May and November. 
*Among all the types of the detectable ARGs, tetracycline and aminoglycoside resistance genes dominated in the wastewater and the severely contaminated downstream river water (Fig. S5A), occupying 69.55e80.73% 
of the total abundance. 
*In addition, the relative abundance of MGEs including integrons, plasmids and ISs varied greatly among the wastewater and river water samples. 
*Interestingly, network analysis based on the co-occurrence patterns between ARG subtypes revealed the incidences of non-random co-occurrence of ARGs within the same types or among different types in the 
wastewater and river water. This study showed that co-occurrence was evident for the ARGs within the same type (including aminoglycoside and beta-lactam), which is supported by Sun et al. (2013) revealing the 
positive selection on ARGs posed by antibiotics in manure-polluted aquatic environment. 
*The results of this study show that: “High levels of nutrients and antibiotics in wastewater drive bacterial community shift in the wastewater-receiving river water, which is mainly responsible for the resistome 
alteration.” 
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

8.Qui et al, 
2019 

China 
4 sediment samples 
were taken from 
Maozhou river – one 
of the Shenzhen rivers 
in the Pearl River 
Delta. 
Maozhou river is the 
most complex water 

Ofloxacin (FQ) 
Norfloxacin (FQ) 
Pefloxacin (FQ) 
Tetracycline (TET) 
Sulfadiazine (SUL) 
Sulfathiazole (SUL) 
Sulfadimoxine (SUL) 
Sulfamethiadiazole 
(SUL) 

The occurrences of total 20 
antibiotics which were 
selected for analysis based 
on the known types used in 
China. 
 
 
 
 

TET: Tet(G) 
SUL: Sul1, Sul2, Sul3 
ML: AAC(6’)IIA  
ereA2 (confers 
resistance to 
erythromycin) 
ereA (confers 
resistance to 
erythromycin) 

In all four selected sediment 
samples, the sul1 gene has 
the highest level of relative 
abundance compared with 
other ARGs annotated using 
the CARD database, and its 
relative abundance value 
was as high as 0.006 in 
theMZ8 sample. While the 

Data was 
assembled. 
 
Relative 
abundance 
calculated from 
formula,  

𝐺𝑖 =
𝑟𝑖

𝐿𝑖
 ×  

1

∑
𝑟𝑖

𝐿𝑖

𝑛
𝑖

 

Yes 

https://doi.org/10.1093/femsec/fiw128
https://doi.org/10.1016/j.watres.2017.07.061
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system in Shenzhen. It 
flows through 
different industrial 
areas and its black 
waters and 
unpleasant 
odour indicate that 
this river has become 
severely 
contaminated. 
 
Date: not stated 
 

Sulfamethazine (SUL) 
Sulfamethoxazole 
(SUL) 
Sulfafurazole (SUL) 
Sulfamethoxine (SUL) 
Penicillin (BeLa) 
Ampicillin (BeLa) 
Tylosin (ML) 
Clarithromycin (ML) 
Roxithromycin (ML) 
Lincomycin (ML) 
Clindamycin (ML) 
Trimethoprim 
 
 

 
Highest concentrations 
found: 
1. Sulfathiazole 
2. Sulfadiazine 
 

abundance patterns of 
other ARGs differed among 
the different sediment 
samples. 

where Gi is the 
relative 
abundance of 
gene i. ri is the 
reads quantity 
when gene i 
compared with 
gene database. Li 
is the length of 
gene i. n is the 
gene quantity of 
gene catalogue of 
the selected 
sample. 

Full citing 
Qiu, W., Sun, J., Fang, M., Luo, S., Tian, Y., Dong, P., … Zheng, C. (2019). Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Science of 
The Total Environment, 653, 334–341. https://doi.org/10.1016/j.scitotenv.2018.10.398  
 
Correlations found within this study 
* Several antibiotics were correlated with corresponding ARGs at the p < 0.05 level, indicating that exposure to antibiotics would lead to a selective pressure for certain ARGs. Still, high concentration of sulfadiazine and 
a high abundance of the sul1 gene (encoding resistance to sulfonamides) were quantified in the sediment samples, while no significant correlation was observed between them. 
*Statistical analysis figured out the relations among antibiotics, ARGs and microbial community.  Sulfamethazine was significantly correlated with both the bla_d gene (r = 0.969, p b 0.05) and Fusobacteria (r = 0.954, p 
b 0.05), and a significant correlation was also observed between the bla_d gene and Fusobacteria (r =0.965, p b 0.05). 
* The results of this study indicate that antibiotics introduced into natural water systems may serve as a major selective pressure that promotes the proliferation of antibiotic-resistant bacteria, and thereby significantly 
alters the structure of bacterial communities.  
 

Study Samples Antibiotics analysed Rationale for AB choice and 
concentrations ranking 

ARGs detected Abundance ranking ARGs Unit for relative 
abundance 

Significant 
correlations found in 
this study between 
antibiotics and 
ARGs? 

9.Zhang et al, 
2018 

China 
3 sediment samples 
were taken from the 
Pearl River. Samples 
were taken 100 
meters apart. 
The Pearl River 
samples represent a 
typical level of 
anthropogenic 
antibiotic pollution. In 
this study samples 
were also taken from 
glacial soil and 
permafrost, but these 
were not included 
here. 
 
Date: 2016-April 30 

Enrofloxacin (FQ) 
Norfloxacin (FQ) 
Ciprofloxacin (FQ) 
Ofloxacin (FQ) 
Tetracycline (TET) 
Sulfadiazine (SUL) 
Sulfamethoxazole 
(SUL) 
Sulfamethazine (SUL) 

8 commonly used antibiotics 
were analysed. 
 
Highest concentrations 
found: 
1.Ofloxacin 
2.Norfloxacin 

Tetracyclines 
Sulphonamides 
Bacitracin 
Polymyxin 
Cephalosporin 
Penicillin 
Streptomycin 
Lincomycin 
(=Lincosamide) 
Macrolides 
Erythromycin 
Multidrug 
Trimethroprim 
Chloramphenicol 
Fosfomycin 

Highest abundance of ARGs: 
1. Bacitracin 
2. Tetracycline 
3. Sulphonamides 
 

ppm 
 
Range: 
From 401,36 ppm 
to 418,39 ppm 

Yes, for some ARGs 
with corresponding 
antibiotics. 

Full citing 
Zhang, S., Yang, G., Hou, S., Zhang, T., Li, Z., & Liang, F. (2018). Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. Environmental Pollution, 234, 339–346. 
https://doi.org/10.1016/j.envpol.2017.11.031  
 
Correlations found within this study 
*The diversity of MGEs was significantly correlated with the abundance and diversity of ARGs.  The diversity of MGEs was better correlated with the abundance and diversity of ARGs than with the 
abundance of MGEs. 
*  The significant positive correlations that we found between sulfonamides and genes for sulfonamide-resistance, and between tetracycline and genes for tetracycline-resistance suggested that anthropogenic use of 
sulfonamides and tetracycline influence the distribution of the related ARGs in different environments. 
The most common ARGs found across all three environments (sediment, glacial soil and permafrost) and primarily encoded resistance to bacitracin. 
 

https://doi.org/10.1016/j.scitotenv.2018.10.398
https://doi.org/10.1016/j.envpol.2017.11.031
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6.2 APPENDIX 2: OVERVIEW OF PNEC USED  

PNEC-values used to calculate the selective pressure potential of each antibiotic in surface water 
and sediment. 

 Antibiotic PNEC-water from literature ng/L PNEC-sediment, calculated 
from PNEC-water ng/Kg dw 

Cefalexin (BeLa) 4000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

24000 

Cefazolin (BeLa) 1000 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

3220 

Trimethoprim 500  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

21000 

Enrofloxacin (FQ) 60  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

55 

Norfloxacin (FQ) 500  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

550 

Ciprofloxacin (FQ) 60 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

37 

Ofloxacin (FQ) 500 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

355 

Fleroxacin (FQ)  1000 
(lowest MIC-derived, Zhang et al, 
2020) 

3250 

Tetracycline (TET) 1000 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

2550 

Chlortetracycline (TET) 2000 
(lowest MIC-derived, Zhang et al, 
2020) 

8350 

Oxytetracycline (TET) 500  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

2135 

Doxycycline (TET) 2000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

5725 

Sulfadiazine (SUL) 70 
(Ecotox derived, ref. Lemna minor 
(plant), Wang et al, 2020b) 

300 
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Sulfamethoxazole (SUL) 16000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

240000 

Sulfathiazole (SUL) 4890 
 (Ecotox-derived, ref. Lemna minor 
(plant), Wang et al, 2020b) 

46000 

Sulfamerazine (SUL) 680 
(Ecotox-derived, ref. Lemna minor 
(plant), Wang et al, 2020b) 

4700 

Sulfadoxine (SUL) 600  
(Ecotox-derived, ref. algae, AMR 
alliance) 

1114 

Sulfadimethoxine (SUL) 2300  
(Ecotox-derived, ref. algae, Wang et 
al, 2020b) 

4070 

Sulfamethoxidiazine  
syn. Sulfameter (SUL) 

250 
(lowest MIC-derived, Zhang et al, 
2020) 

700 

Sulfamethazine (SUL) 1740 
(Ecotox-derived, ref. algae, Wang et 
al, 2020b) 

14150 

Erythromycin (ML) 1000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

32880 

Roxithromycin (ML) 1000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

559000 

Clarithromycin (ML) 250  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

2166 

Azithromycin (ML) 250  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

46000 

Chloramphenicol (CA) 8000  
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

6050 

Florfenicol (CA) 2000 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

6750 

Thiamphenicol 1000 
(lowest MIC-derived, Bengtsson-
Palme et al, 2016) 

580 

 

Method for calculating PNEC-sediment from PNEC-water 

The EPI Suite™-Estimation Program Interface (KOCWIN-tool) was used to calculate the Koc (soil 

adsorption coefficient) for each antibiotic. Following Duarte et al (2019), an organic carbon content 

of 5,8% was assumed. The PNEC-sediment was calculated as follows: PNEC-water*0,058*Koc  
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References PNEC: 

AMR Industry Alliance Antibiotic Discharge Targets, List of Predicted No-Effect Concentrations 

(PNECs), 21 September 2018. Retrieved from https://www.amrindustryalliance.org/wp-

content/uploads/2018/09/AMR_Industry_Alliance_List-of-Predicted-No-Effect-Concentrations-

PNECs.pdf  Retrieved on June 5, 2019. 

Bengtsson-Palme, J., & Larsson, D. G. J. (2016). Concentrations of antibiotics predicted to select for 

resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–

149. https://doi.org/10.1016/j.envint.2015.10.015  

Duarte, D. J., Oldenkamp, R., & Ragas, A. M. J. (2019). Modelling environmental antibiotic-resistance 

gene abundance: A meta-analysis. Science of The Total Environment, 659, 335–341. 

https://doi.org/10.1016/j.scitotenv.2018.12.233  

EPI Suite™-Estimation Program Interface retrieved from https://www.epa.gov/tsca-screening-

tools/epi-suitetm-estimation-program-interface 

Wang, G., Zhou, S., Han, X., Zhang, L., Ding, S., Li, Y., Zhang, D., & Zarin, K. (2020b). Occurrence, 

distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of 

Chongqing city, southwest China. Journal of Hazardous Materials, 389, 122110. 

https://doi.org/10.1016/j.jhazmat.2020.122110  

Zhang, S.-X., Zhang, Q.-Q., Liu, Y.-S., Yan, X.-T., Zhang, B., Xing, C., Zhao, J.-L., & Ying, G.-G. (2020). 

Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic 

resistance risk. Science of The Total Environment, 712, 136518. 

https://doi.org/10.1016/j.scitotenv.2020.136518  
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6.3 APPENDIX 4: R SCRIPT USED FOR DATA EXPLORATION AND ANALYSIS 

#Transforming the data to log scale and factors 

Clean_DATA_2$TARG <- log10(Clean_DATA_2$TARG) 

Clean_DATA_2$TASP <- log10(Clean_DATA_2$TASP) 

Clean_DATA_2$Class <- as.factor(Clean_DATA_2$Class) 

Clean_DATA_2$Study <- as.factor(Clean_DATA_2$Study) 

Clean_DATA_2$Matrix <- as.factor(Clean_DATA_2$Matrix) 

Clean_DATA_2$Year <- as.factor(Clean_DATA_2$Year) 

Clean_DATA_2$Season <- as.factor(Clean_DATA_2$Season) 

Clean_DATA_2$Sample <- as.factor(Clean_DATA_2$Sample) 

#LME models for different fixed and random effect combinations 

fullmodel <- lmer(TARG ~ TASP + Class + (1|Season) + (1|Matrix) +  (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod1 <- lmer(TARG ~ TASP + Class + (1|Season) + (1|Matrix), data = Clean_DATA_2, REML = TRUE) 

candmod2 <- lmer(TARG ~ TASP + Class + (1|Season) + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod3 <- lmer(TARG ~ TASP + Class + (1|Matrix) +  (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod4 <- lmer(TARG ~ TASP + Class + (1|Season), data = Clean_DATA_2, REML = TRUE) 

candmod5 <- lmer(TARG ~ TASP + Class + (1|Matrix), data = Clean_DATA_2, REML = TRUE) 

candmod6 <- lmer(TARG ~ TASP + Class + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

# Corrected Akaike Information Criterion 

cAIC <- aictab(as.list(c(fullmodel, candmod1, candmod2, candmod3, candmod4, candmod5, candmod6))) 

# Model selection (fixed structure) 

candmod41 <- lmer(TARG ~ 1 + (1|Season) + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod42 <- lmer(TARG ~ TASP + Class + (1|Season) +  (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod43 <- lmer(TARG ~ TASP + (1|Season) + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod44 <- lmer(TARG ~ 1 + Class + (1|Season) + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

candmod45 <- lmer(TARG ~ TASP * Class + (1|Season) + (1|Study/Class), data = Clean_DATA_2, REML = TRUE) 

# F-test (Kenward-Roger approach) 

KRmodcomp(candmod41, candmod42) 

KRmodcomp(candmod42, candmod43) 

KRmodcomp(candmod42, candmod44) 

KRmodcomp(candmod42, candmod45) 

# Boostrap confidence intervals of model estimates 

confint.merMod(candmod44, method = "boot", level = 0.95, nsim = 1000, oldNames = FALSE) 

# R2-marginal and R2-conditional 

r.squaredGLMM(candmod44)  
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6.4 APPENDIX 5: DATA ANALYSIS RESULTS RUN IN R 

 

 Modnames K AICc Delta_AICc ModelLik AICcWt Res.LL Cum.Wt 

3 Mod3 11 1347.009 0.000000 1.000000e+00 6.760992e-01 -662.2367 0.6760992 

1 Mod1 12 1348.481 1.471805 4.790729e-01 3.239008e-01 -661.9233 1.0000000 

4 Mod4 11 1384.881 37.871965 5.973202e-09 4.038477e-09 -681.1727 1.0000000 

7 Mod7 10 1386.028 39.018723 3.366604e-09 2.276158e-09 -682.7911 1.0000000 

2 Mod2 10 1599.629 252.620207 1.393859e-55 9.423873e-56 -789.5919 1.0000000 

5 Mod5 9 1603.667 256.658221 1.850868e-56 1.251370e-56 -792.6517 1.0000000 

6 Mod6 9 1637.163 290.154434 9.857463e-64 6.664623e-64 -809.3998 1.0000000 

Showing 1 to 7 of 7 entries, 8 total columns 

 

> KRmodcomp(candmod41, candmod42) 
F-test with Kenward-Roger approximation; time: 1.81 sec 
large : TARG ~ TASP + Class + (1 | Season) + (1 | Study/Class) 
small : TARG ~ 1 + (1 | Season) + (1 | Study/Class) 
         stat     ndf     ddf F.scaling p.value   
Ftest  3.4892  6.0000 19.2057    0.9896 0.01673 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> KRmodcomp(candmod42, candmod43) 
F-test with Kenward-Roger approximation; time: 1.47 sec 
large : TARG ~ TASP + Class + (1 | Season) + (1 | Study/Class) 
small : TARG ~ TASP + (1 | Season) + (1 | Study/Class) 
        stat    ndf    ddf F.scaling p.value   
Ftest  4.039  5.000 15.070   0.99974 0.01591 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> KRmodcomp(candmod42, candmod44) 
F-test with Kenward-Roger approximation; time: 0.97 sec 
large : TARG ~ TASP + Class + (1 | Season) + (1 | Study/Class) 
small : TARG ~ 1 + Class + (1 | Season) + (1 | Study/Class) 
          stat      ndf      ddf F.scaling p.value 
Ftest   0.6505   1.0000 493.4411         1  0.4203 
> KRmodcomp(candmod42, candmod45) 
F-test with Kenward-Roger approximation; time: 1.05 sec 
large : TARG ~ TASP * Class + (1 | Season) + (1 | Study/Class) 
small : TARG ~ TASP + Class + (1 | Season) + (1 | Study/Class) 
          stat      ndf      ddf F.scaling p.value 
Ftest   1.6964   5.0000 480.2231   0.99992  0.1339 
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> confint.merMod(candmod44, method = "boot", level = 0.95, nsim = 1000, ol
dNames = FALSE) 
Computing bootstrap confidence intervals ... 
 
16 message(s): boundary (singular) fit: see ?isSingular 
3 warning(s): Model failed to converge with max|grad| = 0.00200838 (tol = 
0.002, component 1) (and others) 
 
                                2.5 %     97.5 % 
sd_(Intercept)|Class:Study  0.3954592  0.9813888 
sd_(Intercept)|Study        0.4887540  2.0279089 
sd_(Intercept)|Season       0.1113378  1.1829833 
sigma                       0.7687441  0.8726545 
(Intercept)                -4.3938064 -1.2091509 
ClassCS                     0.1000056  3.1269241 
ClassFQ                    -1.9420499  0.6779273 
ClassMLLS                  -1.6285494  1.1360693 
ClassSUL                   -0.6565748  1.9020862 
ClassTET                   -0.6574808  1.9572323 

 

>  
 

 

> r.squaredGLMM(candmod44) 
           R2m       R2c 
[1,] 0.1093788 0.8143296 

 

> candmod44 
Linear mixed model fit by REML ['lmerMod'] 
Formula: TARG ~ 1 + Class + (1 | Season) + (1 | Study/Class) 
   Data: Clean_DATA_2 
REML criterion at convergence: 1321.315 
Random effects: 
 Groups      Name        Std.Dev. 
 Class:Study (Intercept) 0.686    
 Study       (Intercept) 1.292    
 Season      (Intercept) 0.637    
 Residual                0.819    
Number of obs: 505, groups:  Class:Study, 28; Study, 9; Season, 4 
Fixed Effects: 
(Intercept)      ClassCS      ClassFQ    ClassMLLS     ClassSUL     ClassT
ET   
    -2.8604       1.6452      -0.5974      -0.2243       0.6795       0.66
84   
> summary (candmod44) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: TARG ~ 1 + Class + (1 | Season) + (1 | Study/Class) 
   Data: Clean_DATA_2 
 
REML criterion at convergence: 1321.3 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.5258 -0.5199  0.0138  0.4546  4.3482  
 
Random effects: 
 Groups      Name        Variance Std.Dev. 
 Class:Study (Intercept) 0.4705   0.686    
 Study       (Intercept) 1.6703   1.292    
 Season      (Intercept) 0.4058   0.637    
 Residual                0.6707   0.819    
Number of obs: 505, groups:  Class:Study, 28; Study, 9; Season, 4 
 
Fixed effects: 
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            Estimate Std. Error t value 
(Intercept)  -2.8604     0.8025  -3.564 
ClassCS       1.6452     0.7484   2.198 
ClassFQ      -0.5974     0.6521  -0.916 
ClassMLLS    -0.2243     0.6728  -0.333 
ClassSUL      0.6795     0.6577   1.033 
ClassTET      0.6684     0.6501   1.028 
 
Correlation of Fixed Effects: 
          (Intr) ClssCS ClssFQ ClMLLS ClsSUL 
ClassCS   -0.489                             
ClassFQ   -0.645  0.603                      
ClassMLLS -0.597  0.585  0.736               
ClassSUL  -0.647  0.599  0.774  0.732        
ClassTET  -0.676  0.605  0.798  0.735  0.777 

 

>  
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