MASTER'S THESIS

Sending QR-codes as areplacement for scanning

Dijkhof, R.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

Open Universiteit

www.ou.nl

https://research.ou.nl/en/studentTheses/caf105a8-afc9-442f-abb0-31a4fc4a6308

SENDING QR-CODES AS A REPLACEMENT
FOR SCANNING

by

Robin Dijkhof

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, Faculty of Science
Master Software Engineering
to be defended publicly on 07-09-2021 at 15:30.

Student number:
Course code: IM9906
Thesis committee: Dr. Fabian van den Broek, Open University

Dr. Greg Alpdr, Open University

Open Universiteit 8
www.oa.nl

SENDING QR-CODES AS A REPLACEMENT FOR SCANNING

in partial fulfillment of the requirements for the degree of Master of Science in Software
Engineering (IM9906).

Thesis committee: Dr. Fabian van den Broek, Open University and Dr. Greg Alpar, Open
University

Faculty of Science
Open University of the Netherlands
Graduation Assignment

ii

CONTENTS

Summary
Introduction

Research questions and Method

3.1 Research questions i ittt it e ie e
3.2 Researchmethod
3.3 Validation. e

Results
4.1 What techniques do other systems use to facilitate communication or syn-

411 TIQr . o o e e e e e e e
4.1.2 DigiDAPD . . . o o e e e
4.1.3 Rabobankapp.
4.1.4 Okta Verify Push and Google Prompt
4.1.5 Bitwardenand Browsersync
4.1.6 Securing Instant Messages With Hardware-Based Cryptography and
Authentication in Browser Extension
4.1.7 Mightytextand FingerKey.
4.1.8 SUMMATY . . . o vttt e e e e et e e e e e e e e e e e e e e e
4.2 How does the process of connecting an IRMA app to an IRMA server, using

4.3 What are the required components for realising the IRMA browser plugin? . .
4.3.1 detectingQR-codes.

4.4 What is the impact on privacy and security?

4.5 How can the QR-sending system for IRMA be extended to also work for other

4.5.1 QR-codes. i e
4.5.2 Openingotherapps. it ittt
4.6 USAe . . . o o e e
4.6.1 USertrust. o v it e e e e e e e e
4.7 Otherfindings i i e
4.7.1 Pushnotifications. e
4.7.2 Cross-platformencryption
4.7.3 IRMAsecurityissue. ittt

ii

N NN o o

o]

5 Discussion
6 Conclusion
7 Reflection

Bibliography

iv

42
45
47

SUMMARY

In this research, a QR-code sending system is created to omit the scanning of a QR-code
with a mobile device. One such app that uses QR-codes is IRMA. The IRMA app is an app
that stores personal attributes. Examples of such attributes are name, address, date of birth
and email address. These attributes are only stored on the mobile device and are never
stored on a server. This is to provide privacy and security.

Attributes can be used on various websites. For example, you can use your name and
date of birth attributes to provide your identity. There are two different flows to provide
the attributes to websites; a mobile flow and a desktop flow. With the mobile flow, the user
browses to a page on their mobile device. A login with IRMA button is present on which
the user clicks. The IRMA app opens and the user can provide their attributes to the web
page. With the desktop flow, the user browses to a page on their desktop. Upon clicking on
the login with IRMA button, a QR-code is presented. This QR-code should then be scanned
with the IRMA app. After scanning the QR-code, the user can provide their attributes just
like with the mobile flow. These flows are common and also occur in other apps such as De
Rabobank app and the DigiD app.

The desktop flow has a few disadvantages. The first disadvantage is that it can be slow.
Being a bit slow is not a big problem for a system that you would use one or two times a day,
but would quickly become annoying when you had to use it every time you want to log in.
A second disadvantage is that the desktop flow cannot be used by everyone. Some people
are simply unable to use their phone to scan a QR-code due to a disability. People who are
blind for example must know where on the screen the QR-code is present and cannot see
whether a QR-code is obstructed or not. Some wheelchair users have their phone fixed in
a phone holder and also cannot easily scan a QR-code.

To create the QR-code sending system, this research looks at how IRMA uses QR-codes.
Next, what are the required components to build the system. Next, what is the impact on
privacy and security. Last, an effort is made to generalize the solution. The final solution
uses push notifications to send the QR-code to the mobile device. The system consists of
a browser plugin, trusted server, push notification service and a mobile app. The system is
built without affecting the state of security and privacy of the IRMA app. The system is built
in a generic way so it supports not only IRMA QR-codes but also any QR-code that contains
a URI. That means developers can allow their users to use the QR-code sending system by
simply placing a universal link in their QR-code.

INTRODUCTION

The IRMA app is an app that allows a user to share personal attributes in a secure and
privacy friendly way. Examples of such attributes are name, address, date of birth and email
address. Attributes can be used for different purposes. These attributes are only stored on
the mobile device and are never stored on a server. This is to provide privacy and security.

A user can provide their attributes to various websites. For example, you can use your
name and date of birth attributes to provide your identity. Other examples are to prove you
are above a certain age without providing your date of birth or to authenticate yourself.

In contrast to other methods of providing information, such as an online form, with
IRMA it is possible guarantee to correctness of an attribute. An attribute is digitally signed
by the provider of this attribute. The website requesting your information can verify the
authenticity of the provided attributes with the digital signature and the attribute provider
its public key.

Another way in which IRMA works privacy-friendly is that your attributes are directly
sent to the website requesting them. This in contrast to other methods such as Sign in with
Facebook or Sign in with Google. Using the latter methods, you first sign in to Facebook
or Google. Google or Facebook then tellR the website who you are. Google and Facebook
know exactly when and where you are signing in to.

Providing your attributes with IRMA is rather simple. There are two scenarios. In the
first scenario, the user is on their phone. The user browses a website where there is support
for IRMA login. When the user presses the login button, the IRMA app opens. After unlock-
ing the app by entering the PIN and agreeing to disclose the attributes, the user is returned
to the website and is now logged in.

In the second scenario, the user uses a non mobile device. A desktop or laptop for
example. When the user presses the login button, a QR-code is displayed. The user should
now take their phone, probably unlock it and open the IRMA app. After unlocking the IRMA
app, the user presses the button to scan a QR-code; scans the QR-code on the website and
agrees to disclose the attribute. From this point on, the flow is equal to the first scenario.
Scanning the QR-code is necessary to set up a connection between the IRMA app and the
IRMA server. In the first scenario the connection can be setup directly since the user is
already browsing on their mobile device.

Though the steps in the second scenario are simple, they can be tedious. Authentication
methods that are too complex or take too much time, discourage users from using them.

2

Steven Furnell states users do not always have an authentication method enabled on their
devices. The reason is that it is inconvenient to unlock the device every time. Especially
when users only want to do something small such as checking an appointment or send-
ing a message[Furnell, 2016]. It can be concluded that user experience is important. The
way IRMA currently works could lead to a worse user experience, because it takes many
steps, which could hinder the adoption of IRMA. Steven Furnell concludes that usability
has started to receive more attention than before. According to Steven Furnell, developers
understand that for security to be effective, it must not only be present but also used.

It is also worth noting that some people are simply unable to use their phone to scan
a QR-code due to a disability. People who are blind, for example, must know where on
the screen the QR-code is present and cannot see whether a QR-code is obstructed or not.
Some wheelchair users have their phone fixed in a phone holder and also cannot easily
scan a QR-code. Also, it is not possible to scan a QR-code with a broken camera, whether it
is a hardware or software problem.

Ideally, from a user perspective, the user should be able to provide their attributes with
as few steps as possible. Though, in some cases it might be desirable to have a user perform
an explicit action. Instead of using the phone to scan the QR-code, it might be possible to
create a browser plugin that scans the QR-code and sends its content to the IRMA app on a
mobile phone. Instead of picking up the phone; unlocking it; opening the IRMA app; press-
ing the button to scan a QR-code and scanning the QR-code, the user unlocks their phone
and the IRMA app is already open. This removes several steps, which improves usability.
Yet, security cannot be forgotten. The solution must not be at the expense of security and
privacy. For Example, when a user leaves their computer and or mobile phone unattended,
it should not be possible for a malicious user to abuse one of its attributes. In this research,
a solution will be created to omit the QR-code scanning step when using IRMA on a sepa-
rate computer.

RESEARCH QUESTIONS AND METHOD

3.1. RESEARCH QUESTIONS

The goal of the research is to create a browser extension for the IRMA app. Because the
IRMA app focuses on privacy and security, so should the browser extension. Ignoring the
importance of privacy and security would render the plugin useless. Therefore, the main
research question that should be answered is: In what way can an IRMA browser extension,
which replaces the QR-code scanning step, be realised without affecting the state of security
and privacy of the app?

The system should in some way be able to set up communication between the browser
and mobile device. By looking at other systems we can learn how they facilitate communi-
cation or synchronisation between a browser and mobile device. The first research ques-
tion therefore is: What techniques do other systems use to facilitate communication or syn-
chronisation between a browser and mobile device? This section is also the related work
section.

To answer the main research question, we should know how the IRMA app works. The
second research question(RQ2) is: How does the process of connecting an IRMA app to an
IRMA server, using QR codes, work? This information is important because it will tell us
what information should be sent from the browser extension to the app. It is not necessary
to fully understand every part of the IRMA app. For example, it is not necessary to know
what kind of encryption is used, or how the app communicates with the server. However,
it is necessary to understand how to QR-code part works and what data is sent to the app.

All systems consist of one or more components. In our case, some are obvious such as a
browser plugin, a phone and a mobile app. Other components are less obvious. We might
need a server, a push notification service, an email server or Bluetooth. A component does
not necessarily need to be physical. Components can also be software libraries. For exam-
ple, a library might be required to perform encryption. The third research question(RQ3)
therefore is: What are the required components for realising the IRMA browser plugin? A set
of components should be able to provide communication between the browser plugin and
the mobile phone. It should also be able to link and unlink a specific mobile device to a
specific plugin. There is not a single solution to this answer. There are multiple solutions
of which each solution has its benefits and downsides. In order to pick a solution, it should
be clear what the advantages and disadvantages of each solution are.

4

The fourth research question(RQ4) is: What is the impact on privacy and security? To as-
sess the impact on privacy and security, we should be aware of the information flows. Dif-
ferent solutions require different components and therefore, different information flows.
For example, before sending push notifications, a user needs to register with their unique
ID.

The last research question(RQ5) is How can the QR-sending system for IRMA be extended
to also work for other QR-codes? It might be possible to build the system in such a way; it is
easy to support other QR-codes as well.

3.2. RESEARCH METHOD

For RQ1, we can look into apps and browser plugins that have somewhat the same func-
tionality as the IRMA app or as an IRMA browser plugin should have. We can search in app
and plugin stores for the same functionality. We can also use existing literature about the
subject.

IRMA has some great documentation, both functional and technical. This should prob-
ably give an answer to RQ2. Since IRMA is open source, we could simply analyse the source
code if the documentation appears to be insufficient.

For RQ3, we can look at RQ1. This section will contain some examples of browser plug-
ins communicating with mobile phones in some way.

To find an answer to RQ4, a component diagram and a data flow diagram(DFD) will be
created. Using these, a security analysis will be carried out using the STRIDE method[Microsoft,
2020]. STRIDE is a method to identify security threats. It is used to help reason and find
threats related to Spoofing, Tampering, Repudiation, Information disclosure Denial of Ser-
vice and Elevation of privileges. Therefore the name STRIDE. The software will be created
using an agile method with several increments. The component diagram, DFD and the se-
curity analysis will be created or updated after each increment is completed. Components
and data flows can change for each deliverable so the answer to RQ4 could change as well.
Analysing the components and data flow after each deliverable is completed is to catch
(design) errors in an early phase.

The last research question, RQ5, can be answered by looking into how other apps use
QR-codes and what is in the QR-codes. Examples of these apps are the DigiD and the
Rabobank app as stated in the results of RQ1.

With these five research questions, we can give an answer to the main research ques-
tion.

3.3. VALIDATION

First of all, there should be a plugin that works, that means it should be functionally correct.
This can easily be tested by testing one of the demos on the IRMA web page.

With the help of the component diagram, DFD and the security analysis, which are
created or updated after completing each deliverable, it is tried not to affect the state of
security and privacy. The chances are some issues will be overlooked, no threat modelling
techniques can guarantee all the possible attacks will be found. Therefore, the solution,
DFD diagram and analysis will be discussed with fellow students.

RESULTS

4.1. WHAT TECHNIQUES DO OTHER SYSTEMS USE TO FACILITATE
COMMUNICATION OR SYNCHRONISATION BETWEEN A BROWSER
AND MOBILE DEVICE?

By looking at other systems we can learn how they facilitate communication or synchro-
nisation between a browser and mobile device. We chose to look into apps and browser
plugins that have somewhat the same functionality as the IRMA app or as an IRMA browser
plugin should have. The mention of apps that are similar to IRMA is not exhaustive. There
are probably more apps that work in a similar way. The mentioned browser plugins are
found on the Chrome extension store. This section is also the related work section.

4.1.1. TIQR

Rijswijk et al. state one-factor authentication such as username password is not safe enough.
They also state that current two-factor authentication methods are not ideal. Current two-
factor authentication methods are hardware dependent, software dependent, not secure
enough, too expensive, not open, not easy to use, or a combination of factors.[van Rijswijk
and van Dijk, 2011]

Rijswijk et al. provide a new solution called Tigr. Tiqr is based on a mobile app that
is open source and does not have the disadvantages stated above. Tiqr and IRMA are very
similar in behaviour. IRMA also has non of the disadvantages above. When browsing to
a page that requires a login, the user sees a Tiqr QR-code. Just as with IRMA there are
two scenarios. When the user is on their laptop or desktop the user opens the Tiqr app
on their mobile phone and scans the QR-code. When the user visits a page on the mobile
phone, they simply click on the QR-code. After scanning or clicking on the QR-code, the
user selects an identity and confirms it wants to log in to the website using that identity.
After confirming the identity, the user enters their PIN code or uses the fingerprint sensor.
Last, a confirmation is shown in the app and on the website and the user is redirected to
the protected content. When there is no internet connection, the app shows a one-time
password as a fall-back. It is unclear what the consequences are of losing the phone and
what a user should do in that case.

Yet, there are also differences between IRMA and Tiqr. With IRMA you can provide your
attributes which are digitally signed by the provider. With Tigr you can only log in to web

6

pages, it is used to perform challenge/response authentication. Tigr also requires you to
set up an account for each website.

4.1.2. DiGgID Aprp

DigiD is an authentication method that can be used by Dutch citizens to authenticate
themselves to governmental organisations or organisations that are carrying out govern-
ment tasks [DigiD, 2020]. One of the DigiD methods is using the app. The user logins into
the app only once. After that, the user can use the DigiD app in almost the same way as the
IRMA app. On desktops and laptops, a QR-code is shown which can be scanned with the
app. This QR-code is not immediately presented. The user first has to enter a linking code
that is presented by the app. On mobile, the app pops up. Before confirming, the user also
has to provide a PIN code.

4.1.3. RABOBANK APP

The Rabobank app is a mobile banking app. It also uses QR-codes. When clicking on the
payment button on a website on a mobile device, the app is opened. When on a non-
mobile device, a QR-code is presented. This QR-code can then be scanned with the app.
Before opening the app and after scanning the QR-code, the user should enter the correct
PIN code. It is worth noting QR-code cannot always be used. On some websites the option
to pay with a QR-code is simply not present.

4.1.4. OKTA VERIFY PUSH AND GOOGLE PROMPT

Okta Verify Push[Okta, 2020] and Google Prompt[Google, 2020] allow two-factor authenti-
cation by sending a push notification to a mobile device app. First, the user signs in using
a username and a password. When the entered credentials are correct, a push notification
is sent to the app. The user can now click Accept when it recognises the login attempt or
Decline when it does not recognise the attempt. Both solutions are closed source and do
not have a fallback method. When the phone is lost, users can simply choose another 2FA
method since no passwords are stored and it is just a simple confirm button.

It would be desirable for IRMA to have a somewhat similar functionality. When brows-
ing on a laptop or desktop, instead of scanning the QR-code, a push notification is sent to
the mobile device. On receiving the push-notification, the IRMA app is opened. When the
user turns on their devices, the IRMA app is already present and the user can directly select
the attributes that should be provided. The big difference is that Google Prompt already
knows which phone belongs to which user. The user is already signed in with their Google
account on their phone. This is not the case with IRMA. The QR-code can be scanned with
any instance of the IRMA app.

4.1.5. BITWARDEN AND BROWSER SYNC

Bitwarden is one of many password managers[Bitwarden, 2020]. It is freemium, open-
source and offers 2FA (two-factor authentication) with email, authenticator apps and other
services. Bitwarden is available on multiple platforms, including browsers with the use of
a plugin. All data is stored in the cloud and fetched after a login. When offline, you can
still use Bitwarden using the latest synced version of your passwords. To prevent password
leakage should the data get exposed, the passwords are encrypted using AES-CBC 256-bit

7

encryption [Bitwarden-FAQ, 2020]. Browser sync works in a similar way. Some browsers
such as Chrome[Help, 2021] and Firefox[Mozilla, 2021c] include the same functionality as
Bitwarden. These browser have an option to store and sync information such as passwords,
tabs and bookmarks. Information is synced over other instances where the user is logged
in.

What is interesting about Bitwarden is that it comes with a browser plugin. This plugin
can detect when there is a login screen present for almost any website. Next, the user can
select an entry to fill in the username and password field. In part, we want to achieve similar
behaviour, only we want to detect the IRMA QR-code and send it directly to the app.

4.1.6. SECURING INSTANT MESSAGES WITH HARDWARE-BASED CRYPTOG-
RAPHY AND AUTHENTICATION IN BROWSER EXTENSION

Rodrigues et al. propose a method to secure Instant Messages With Hardware-Based Cryp-
tography and Authentication in a Browser Extension[Pimenta Rodrigues et al., 2020]. Ro-
drigues et al. use converse.js which is a free and open-source XMPP JavaScript chat client
that can be opened in a browser. This client connects to an XMPP server. The communi-
cation between the client and the server should be secure for which encryption is used. To
achieve true randomness for encryption, Rodrigues et al. use Hardware-Based Cryptogra-
phy. Rodrigues et al. created a browser plugin which reads(decrypt) from and writes(encrypt)
to the converse.js client. To communicate from the plugin to the hardware cryptography
services, Rodriques et al. use the Native Messaging Host(NMH). The NMH communicates
with an application that is installed on the user its client. This application actually com-
municates with hardware cryptography services.

Rodrigues et al. created a browser plugin that not just enhanced the functionality of the
client, but also overrides it. Rodrigues et al. describe a number of encountered difficulties,
related to creating the browser plugin. This can be very informative when realising the
IRMA browser plugin.

4.1.7. MIGHTYTEXT AND FINGERKEY

Mightytext and FingerKey are browser plugins that communicate with mobile devices. Mighty-
text [Mightytext, 2020] allows you to send Text messages from a browser plugin, or other
devices, through your mobile phone. By signing in to the client and your phone, you pair
the devices. FingerKey [FingerKeyApp, 2020]is a password manager that works somewhat
like IRMA. Passwords are stored encrypted on an iPhone. The iPhone is connected to a ma-
cOS device using Bluetooth, WiFi or Push notifications. A browser plugin can be installed

to fill in usernames and passwords. Like IRMA, data is stored on a mobile device and never
stored on a server. However, backups can be made and stored on iCloud or Google Drive.
Unfortunately, there is not much to find about these two extensions since they are closed
source.

Both Mighttext and FingerKey are browser plugins that enhance browser functionality
by providing functionality from a mobile device. In the same way, we could provide IRMA
app functionality to the IRMA login page in a browser.

4.1.8. SUMMARY

Tiqr is somewhat similar to IRMA. The big difference is that Tigr is about identity and IRMA
about attributes. Solutions such as Okta Verify Push and Google Prompt still require a user-
name and password for an account stored on a server, it is nothing more than a simple
confirm button on your phone. Bitwarden is a password manager that also requires a user-
name and password to access your data on their server. IRMA does not require an account
on their server.

Rodrigues et al. created an interesting browser plugin that encrypts and decrypts browser
client messages. The IRMA browser plugin should detect the QR code, just like Rodrigues
et al. detect client messages. Mightytext and FingerKey both provide access to your phone
functionality using a browser plugin. Unfortunately, it is unclear how these work. Table 4.1
contains the listed applications and their used methods to communicate between a desk-
top and mobile.

Table 4.1: Used methods in other applications

)) Direct connect Other /
Push notifications (Wi-Fi/Bluetooth) QR-codes none Unknown

Tigr X

DigiD X

Rabobank X

Okta Verify Push X

Google Promt X

Bitwarden X

Browser sync X

Mightytext X

FingerKey X X

4.2. HOW DOES THE PROCESS OF CONNECTING AN IRMA APP TO
AN IRMA SERVER, USING QR CODES, WORK?

To answer the main research question, we should know how the IRMA app works. This
information is important because it will tell what information should be sent from the
browser extension to the app. Of course, it is not necessary to fully understand every part
of the IRMA app. For example, it is unnecessary to know what kind of encryption is used or
how the app communicates with the server. However, it is necessary to understand how to
QR-code part works and what data is sent to the app.

An IRMA session starts with the user performing some action on a website [[RMA, 2021].
For example, this could be the user clicking on a "Log in with IRMA" button. This website
(also called the requestor) requests a session from the IRMA server. The IRMA server sends
back the QR-code content, which consists of a session token and an URL to the server.
This QR code is presented by the irma-frontend and can be scanned with the IRMA app.
Upon scanning, the IRMA app requests the session from the IRMA server. The IRMA server
returns the session. This session contains the requested attributes, the issued attributes or
a message to be signed. Finally, the app presents the session information, at which point
the user can accept the request.

As stated above, the requestor requests a session from the IRMA server. This can be the
irma-frontend, but also a backend. Irma-frontend provides a set of JavaScript packages that
together communicate to the IRMA server. The purpose is to have a flexible IRMA client in
the web browser. The frontend client can either communicate directly to the IRMA server
or proxy through a backend.

Since the IRMA QR-code is just a regular QR-code, it can be scanned with any QR app.
When scanning a QR-code generated by the IRMA demos with any QR-code app, the same
pattern occurs. The QR-code content consists of two properties, "u" which is the URL and
"irmaqr"” which is the QR-code type. The types found were disclosing, issuing and signing.
An example result is displayed below (Listing 1).

oo

2 "u": "https://privacybydesign.foundation/backend/irma/
3 session/wICkh6QehT8sJdd6dYcV",

4 "irmaqr": "disclosing"

s |}

Listing 1: IRMA QR-code example

When using one of the IRMA demos on a mobile phone, the QR-code part is omitted.
Instead, the user is directly taken to the IRMA app. So, for example, the user clicks on the
"Log in with IRMA" button and the IRMA app opens. When faking a desktop browser to be
a mobile Android device, the IRMA demo tries to open the IRMA app. This obviously fails
because there is no Android IRMA app installed on a desktop. The browser throws an error
in the console showing what the browser is trying to navigate to. This error contains the
same JSON object and what app to open it with. An example is displayed below (Listing 2).

intent://qr/json/{"u":"https://privacybydesign.foundation/backend/irma/
session/j7MweFY3mYzAGWKKYFEI", "irmaqr":"disclosing"}#Intent;package=
org.irmacard.cardemu;scheme=cardemu;l.timestamp=1612109193199;
S.browser_fallback_url=
https://play.google.com/store/apps/details?id=org.irmacard.cardemu;end

Listing 2: IRMA Android browser link example

The same thing happens when faking a desktop browser to be a mobile iOS device.
Again, though slightly different, we can see the same JSON object. An example is displayed
below.

The process of connecting an IRMA app to an IRMA server using QR codes is quite
simple. Upon a user action, the requestor requests a session from the IRMA server. This can
be either from the frontend directly or through the backend as a proxy. The IRMA server
returns a session token and an URL to the server. These are used to create the QR-code. The
QR-code presented on the screen is just a simple JSON object with two attributes. When

10

irma://qr/json/{"u":"https://privacybydesign.foundation/backend/irma/
session/xhrLz52zaVrpsIwf7QLJ", "irmaqr":"disclosing"}

Listing 3: IRMA iOS browser link example

faking a browser to be a mobile device and performing a user action (login for example),
the same JSON object is passed to the app.

4.3. WHAT ARE THE REQUIRED COMPONENTS FOR REALISING THE

IRMA BROWSER PLUGIN?

In order to omit the scanning of a QR-code, another way is needed to get that QR-code
information to the IRMA app. In order to do so, a set of components is needed. Two of
them are pretty obvious. The first is a browser plugin, also called a web extension. This
would make it able to inject extra functionality into a webpage or the browser. The second
component is an app. This app would somehow receive the QR-code information. The app
does not necessarily have to be a new app. It could also be a modification to the current
IRMA app. However, with a separate app would be possible to create a generic solution.

4.3.1. DETECTING QR-CODES

The most important task of the browser plugin is to detect the actual QR-code. A browser
plugin is suitable for this task because it injects functionality to the webpage on which
the QR-code is displayed. A native program could probably also do the task but would
require to be developed for multiple platforms while browser plugins are mostly platform-
independent [Mozilla, 2021d]. There are three possible solutions to detect QR-code, which
are discussed below.

Intercepting network traffic and check if it contains session format

For RQ2, we found that the IRMA server sends information to the frontend, which is
used to create the QR-code. This can actually be seen by inspecting network traffic. When
inspecting the network traffic when using the IRMA email verification, we can see the fol-
lowing GET request is made.

https://privacybydesign.foundation/demo-en/start_session.php?type=gmail
&lang=en

Listing 4: IRMA demo session request

A session is started and the following response is returned.
The response contains the content of the Qr code, which is in a specific format.
Other IRMA demos do return the same response format. The same applies to other

11

{"sessionPtr":{"u":"https://privacybydesign.foundation/backend/irma/
session/dbeV40BAK63rYjjP3j4c","irmaqr": "disclosing"},
"token":"45J2iPMgN2VWVnMbkKFP"}

Listing 5: IRMA demo session response

{"u": ..., "irmaqr": ...}

Listing 6: IRMA QR-code format

websites that use IRMA [Privacy by Design Foundation, 2021]. However, clients are free to
use another format.

Intercepting HTTP responses can easily be achieved in Firefox with the webRequest fil-
terResponseData() API [Mozilla, 2021e]. However, FireFox has only a small market share of
a few per cent Netmarketshare, 2020; Statcounter, 2020; W3schools, 2020. Chrome, which
has the biggest market share, does not have such an API. In fact, it is a desired feature for
more than 6 years [Chromium.org, 2021].

Though not supported by the Chrome API, there is a way to intercept some of the net-
work traffic. This solution is based on overriding the browser its default XMLHttpRequest
Prototype [Stackoverflow, 2021]. The XMLHttpRequest object is used to fetch data from an
URL. It can be used to fetch all kinds of data types, not just XML as the name suggests
[Mozilla, 2021f]. So by overriding the XMLHttpRequest object we can let the webpage use
our own version of the XMLHttpRequest object.

To understand how we can override the default XMLHttpRequest object, it is necessary
to have a better understanding of browser plugins, also called Web Extensions. A browser
plugin consists, inter alia, of background scripts and content scripts [Mozilla, 2021a]. Back-
ground scripts are loaded when the plugin is installed and stay active till the plugin is dis-
abled or removed. Background scripts can use the special apis provides by the browser
given they have the right permissions. Background scripts have their own context and
therefore cannot access the same window object as the webpage.

Content scripts are part of the webpage context. Just as regular scripts, content scripts
can modify the DOM. However, content scripts cannot see variables defined by page script.
Therefore, we cannot just override the default XMLHttpRequest because build-in DOM
properties are not shared between the content script and the page script. However, we
can work around this problem.

As stated above, content scripts can modify the DOM. That means we can append a new
script to the head of the page. This new script becomes part of the webpage so it becomes
a pagescript. The new script can now override the default XMLHttpRequest object with our
own behaviour. Communication between the new script and the plugin can take place with
a simple eventlistener that passes text.

I was successful in overriding the default XMLHttpRequest object with my own be-
haviour. Using that, it was possible to log the responses on the IRMA demos and other
IRMA webpages. Though successful, this method relies on the IRMA client using XML-

12

HitpRequest. When using WebSocket for example, overriding the default XMLHttpRequest
is not useful. To my knowledge, there currently are no clients that use WebSocket. However,
clients are free to use WebSockets. IRMA does not require to use XMLHttpRequest.

Though interception network traffic will work for current IMRA implementation, there
is no guarantee it will work for future implementations. Clients are free to use something
else than XMLHttpRequest and another format than specified above. Listing 6

Detect QR-code in the Document Object Model (DOM)

The Document Object Model (DOM) contains almost everything present on a webpage.
Almost every image, divlink and button is contained in the DOM. This allows searching for
a specific element if you know how to find it. If we know how to find it, we can get access to
the IRMA QR-code.

Analysing the IRMA demos and other pages that use IRMA [Privacy by Design Founda-
tion, 2021], we find that there is no uniform way to detect the QR-code. Both the HTML img
and the canvas tags are used and also ids and or classes differ. That said, there is no way
to know what we are looking for. The table below 4.2 contains the different ids, classes and
elements found.

Table 4.2: QR-code specification on webpages

IRMA page QRid QR element
https://www.irma-meet.nl/ class="irma-web-qr-canvas" canvas
https://qrona.info/ class="irma-web-qr-canvas" canvas
https://helder.health/ canvas
https://qrona.info/ class="irma-web-qr-canvas" canvas
https://login.ivido.nl class="irma-web-qr-canvas" canvas
https://medipark.hix365.nl/ img
https://huisartsenpraktijkdelelijn.hix365.nl/ img
https://mijn.huisartsenpraktijksnelder.nl/ img
https://www.030irma.nl/ id="modal-irmaqr" canvas
https://privacybydesign.foundation/ id="modal-irmaqr" canvas
https://id.amsterdam.nl/ id="irma-qr" canvas

Taking screenshots and scanning for the QR-code

Another solution would be to simply take a screenshot of the webpage and scan for the QR-
code. On the chrome web store, there are multiple extensions that can take screenshots, so
this should be possible for the IRMA plugin as well. There happens to be a webextension api
that takes screenshots Mozilla [2021b]. Next, the captured screenshot should be processed
and the QR-code content should be extracted. Since QR-codes are not something new,
there are a lot of JavaScript libraries that can scan and decode QR-codes.

There is already an open-source plugin available that does everything described above
[Beizhedenglongdev, 2021]. As expected, that plugin uses the webextension api to take a
screenshot. This screenshot is then processed by an open-source QR-code reader, which is
included in the plugin. The plugin is perfectly able to scan a QR-code on the IRMA demo
page. Since it is an open-source plugin, it can be modified to fit our needs. An example is
provided in figure 4.1.

13

{"u":"https://privacybydesign.£
oundation/backend/irma/session/
ThGkz4mG1TjASKTuCSMx", "irmagr":
"disclosing”}

VERZOEK OM ATTRIBUTEN

Een website vraagt u enkele van
uw IRMA attributen te tonen.
Scan de QR code met uw IRMA

ANNULEREN

Figure 4.1: QR Code Reader plugin

An advantage of taking screenshots and scanning for the QR-code is that it is not tied to
IRMA. It could scan any QR-code and sent that to a mobile device. For example, [was able
to scan a QR-code generated by the DigiD app. This solution does work very well. Basically,
it does the same as a regular user would.

4.3.2. SENDING THE QR-CODE CONTENT TO THE MOBILE DEVICE

Now that there is access to the QR-code content, there should be a way to send that con-
tent to the mobile device. A possible solution is to use push notifications like Okta Ver-
ify Push[Okta, 2020] and Google Prompt[Google, 2020]. Another option is to store a copy
of the IRMA app database in the browser plugin just as Bitwarden does[Bitwarden, 2020].
FingerKey [FingerKeyApp, 2020] keeps a persistent connection to the mobile device using
Wi-Fi or Bluetooth which is also a possible solution to send the QR-code content to the
mobile device.

Push notification
Both Android(Firebase Cloud Messaging|[Firebase, 2021]) and iOS(Apple Push Notification[Apple,
2021b]) support push notifications. Firebase Cloud Messaging(FCM) even supports push
notifications on multiple platforms. Using push notification it is possible to notify a client
app. For example, notify a mail app that there are new emails. The advantage of push no-
tifications is that the client does not have to poll for new mails anymore, but gets notified
instead. It is also possible to send a small payload, which can be useful. In the case of the
mail app example, it would be possible to send the subjects as payload so the new subjects
can be displayed without fetching all the new mails.

Push notifications work by first registering as a client, an mail app for example, to the

14

push notification service. Upon registering, a unique id is received. A push notification is
first composed by a trusted client, a backend for example. This notification is then sent to
the notification service backend. The notification service backend generates a message-id,
possible other metadata and sends it to the platform-specific transport layer.

A push notification can be used to send the QR-code content to the mobile device.
The mobile device registers to the push notification service and receives a unique id. The
browser plugin should then use this id to send a notification to the device that is registered
with the id. Since the push notification should be composed by a trusted client, a backend
is needed. The plugin sends the id and the QR-code to the backend. The backend then
composes the push notification and sends the notification to the push notification back-
end service. Last, the notification is sent to the device.

External
«| Push notification
- service
Internal
v
plugin : Server Phone

Figure 4.2: Push notification

Storing a copy of the IRMA app database

Bitwarden keeps a database, which contains usernames and passwords, stored and synced
on multiple devices. This way, Bitwarden can be used on all kinds of platforms at the same
time. There is a Bitwarden plugin for all major browser, apps for mobile devices and web-
page. A big difference between IRMA and Bitwarden is that IRMA stores attributes on the
mobile device and not on a server. Bitwarden stores data on a server. Currently, IRMA does
not have an export option. Attributes can not be transferred from one device to the other.
The reason for this is that it involves some delicate security issues. Attributes are person-
related, an export would probably allow a user to share attributes with others.

Simply having access to the IRMA app database is not enough. The database is en-
crypted to prevent leaking attributes. The database can only be unlocked with a special
key. This key is obtained from the server by sending the salted and hashed PIN. Separately,
the app and the server can not access attributes. Both have to cooperate. That means the
plugin and the server will have to cooperate. Basically, the browser plugin will become a
fully new IRMA client comparable to the mobile app.

Some attributes are further secured with key splitting. When using such an attribute the
user must enter their PIN in order for the session to complete. This is forced by the server

15

and not by the client. To allow the use of these credentials in the plugin, the key splitting
mechanism should also be supported.

Keep a persistent connection to the mobile device using Wi-Fi or Bluetooth

Fingerkey is a password manager that stores passwords and usernames on a mobile device.
These passwords and usernames are then made available to a computer using a Bluetooth
or Wi-Fi connection. Though generally available on a mobile device, not every computer
does have Bluetooth. Using the GsmArena Phone Finder, we found that since 2010 6607 of
the 6768 phones have Bluetooth[GSMARENA, 2021]. There is not any hard data on what
percentage of computers has Bluetooth. So to get an idea of how common Bluetooth is
in a computer we checked how many motherboards did have Bluetooth on a computer
component webpage. On Tweakers.net 250 of the 1250 motherboards do have Bluetooth
and on Alternate.nl it is only 2 of 200. So it is safe to assume that computers generally do
not have Bluetooth. That makes Bluetooth not very suitable.

Another option is Wi-Fi. Two devices can connect with Wi-Fi direct. Wi-Fi Direct was
introduced by the Wi-Fi Alliance in 2010 [Khan et al., 2017]. It enables two Wi-Fi devices to
connect directly without an access point (AP). The Fingerkey webpage notes an interesting
detail in the FAQ. It says Fingerkey is slower over Wi-Fi. This is because on iOS apps are
put to sleep when they are in the background for more than three minutes. In order to
make Fingerkey work after the app goes to sleep, it uses push notifications, which are a bit
slower. It is unfortunate that Wi-Fi cannot be used on its own. Since we are pushing data
to the app(QR-code content) and not requesting data from the app, using Wi-Fi in addition
to push notifications does not add any value. Using only push notifications on its own is
sufficient.

According to the Apple docs on background execution, an app has 5 seconds to perform
background task when it is put in the background. This can be extended, but it is unclear
by how much. A few scenarios in which background execution is allowed are audio com-
munications, location services, communication with an external (Bluetooth LE) accessory,
regular updates from a server, and push notifications[Apple, 2021a].

The problem on iOS devices described above does not occur on Android. Though An-
droid limits background execution, it makes a distinction between so-called background
services and foreground services. The name foreground service is a bit confusing since it is
not really in the foreground. It is running in the background but noticeable by a user by an
icon in the top bar. The operating system does not limit these foreground services.

The Web Extension API does not really support both Bluetooth and Wi-Fi Direct. Blue-
tooth is somewhat supported, but functionality differs for each browser. Though not sup-
ported by the Web Extension API, it would still be possible to use Bluetooth or Wi-Fi. Ro-
drigues et al. use the Native Messaging Host(NMH) to communicate with a native applica-
tion installed on the user its client[Pimenta Rodrigues et al., 2020]. The browser plugin will
communicate with the natively installed application. The native application will then use
Wi-Fi or Bluetooth to connect to the mobile device.

16

Internal

plugin Mative application ———»| Phone
x v
External
—————— MMH

Using Bluetooth
Figure 4.3: Bluetooth

17

External

| Push notification
" service

Internal

plugin » server Mative application — Phone

F

A 4

NMH

Using Wi-Fi

Figure 4.4: Wi-Fi

After detecting the QR-code and sending the content to the mobile phone, it can be
used to open the IRMA app. To prevent modification to the IRMA app, a separate app is
needed for now to receive the content and open the IRMA app.

4.4. WHAT IS THE IMPACT ON PRIVACY AND SECURITY?

This section addresses the impact on privacy and security. This section is divided into a
pre-development part and a post-development part. The pre-development part describes
the impact on privacy and security based on the components described in RQ3. The post-
development part describes the impact on security and privacy based on the developed
system.

4.4.1. PRE-DEVELOPMENT

Only two of the three methods described to decode the QR-code are viable. Both of those
two options have somewhat of an impact on privacy. The first option is to scan all the
network traffic and scan for the IRMA session object. This is not an ideal solution since we
are really only interested in the QR-code content. Another point is that there is no network
inspection permission. It is just a modification to the XMLHttpRequest object, for which the
all_urls permission is required. Upon installation or run time, the permission is requested

18

as shown in figure 4.5. Also, the statement: "This plugin scans all the network traffic to find
the QR-code" does not feel very privacy-friendly.

The second option is to take a screenshot and process the screenshot with an open-
source QR-code scanner. There is no dedicated permission to make a screenshot, though
the all_urls permission is required making it somewhat transparent. An offline QR-code
scanner is preferred to make sure no data is leaked to other parties Mozilla [2021b].

Add Audio Equalizer?

It requires your permission to:

® Access your data for all web sites

Learn more about permissions

Cancel

Figure 4.5: Plugin permission

Usually, a browser plugin can not make an HTTP request. Making a request would re-
quire a host permission for the host the request would be sent to. That way the user would
be aware that the browser is accessing a particular website. Unfortunately, both methods
to detect the QR-code content require the all_urls permission. Therefore, the browser plu-
gin automatically can make requests to any page. It would be a nice enhancement if there
would be a dedicated permission to make a screenshot.

An advantage of the screenshot method is that a single screenshot is sufficient. As soon
as the QR-code a present on the screen, a single screenshot can be processed to read the
QR-code. Taking that screenshot can be controlled by the user clicking on a button. In
contrast, the network scanning option has to be enabled all the time. It cannot be enabled
by the user clicking on a button after the screenshot is present because that is simply too
late. The request for obtaining the QR-code data has already passed.

The disadvantage of push notifications is that it requires a third party service. From
both a privacy and a security perspective, this is not ideal. Since the third party basically
relays the message, it has access to the content of the message, knows to who the message is
sent, when the message is sent and to what app. The content of the QR-code also contains
the URL to the IRMA server, so it is likely the third party will also know what page the user is
visiting. Since the third party is not within our sphere of influence we cannot control their
security. If the third party gets compromised, so does our system. The issues related to
security and privacy above can partially be solved by encrypting the content which is sentin
the message. The content can be encrypted by the browser plugin using a passphrase. This
same passphrase can then be used to decrypt the message on the phone. Using encryption,
the identity and the integrity of the message can be assured. However, the third party would
still be able to know when a message has been sent, to whom and to what app.

19

By storing a copy of the IRMA app database in the browser plugin there is little to zero
impact on privacy. Since it is basically a new client, there is almost no difference between
the plugin and the app. However, there is a huge potential security risk. Any mistake can
compromise the browser plugin client. To create this new client, it would be required to
understand every aspect of the IRMA app, which seems like a lot of effort for the problem
we are trying to resolve. Second, the IRMA app consists of approximately 28000 lines of dart
code. Assuming the same number of lines is required for the new client, it is highly unlikely
there will not be any bugs.

Using a persistent Wi-Fi connections suffers from the same privacy and security issues
as push notifications. Since the background apps are put to sleep and the connection as
well, push notifications have to be used in addition. That means the persistent Wi-Fi con-
nection inherits the same problems stated above. Also, other points of attacks are intro-
duced. The plugin should use the NMH to communicate with a native application installed
on the user’s machine. This native application should then communicate with the mobile
device over Wi-Fi. The NMH, native application and communication over Wi-Fi are all pos-
sible points of attack. Since it is a native application, it should be developed for multiple
platforms, meaning all possible points of attack should be multiplied by the number of
supported platforms.

» Native application Windows
Internal
¥ Native application MacOS v
plugin Phone
* Native application Linux A
> Mative application OS
External
» MNMH Windows [
» NMHMacOs —
> MNMH Linux
= NMH OS5

Figure 4.6: NMH

20

When using Bluetooth to communicate with the phone, it is not necessary to use push
notifications. Because it also uses the NMH it also has many points of attack.

4.4.2, POST-DEVELOPMENT

When choosing the most viable option, which includes a browser plugin that takes a screen-
shot of the QR-code, processes it and sends it to the mobile device, a dataflow diagram and
component diagram can be created 4.7, 4.8.

Firebase ,J
External
Server | Motification service
Registration token
ry Host
QR-code (encrypted)
Time:
Registration token Notification title Host
Host Notification message QR-code (encrypted)
QR-code (encrypted) AFI Token Time
(Time) Naotification title
(IP) Motification message
Internal ¥
Plugin Phone

Registration token

Encryption key Encryption key

— —
fFe——q fFe——A

Secure
storage

Browser
storage

Figure 4.7: Dataflow 1

21

Browser E Firebase E
Plugin {I

Server
E Push Fgﬂ'ffgfff#

QR-scanner

= Push Notification

/ \D Push Message
=]

T Notification Service
Browser storage Web Crypto
Phone Push Notification E
Push Message -f]j\
IRMA App D), Receiver App
Secure Storage

Figure 4.8: Component 1

The plugin scans the QR-code and sends it to the mobile device. The QR-code is scanned
using an offline scanner. That means it does not require an internet connection and can
scan the QR-code by itself. In order to send a push notification to a specific device, a regis-
tration token is required. This is a unique token that can change though. This token is too
long to enter every time, so it is stored in the browser storage.

The plugin sends the QR-code, registration token and the host from which to QR-code
was presented to the server. These attributes are part of the PushRequest. It is worth noting
that this is an external server that runs on Firebase. Therefore, Firebase also knows the IP
address and the time and date of the request.

The server now creates the push notification. This notification includes a Push Message
which contains the host, QR-code and the current time. The server also composes a noti-
fication title and message which are presented to the user. All these fields are sent to the
phone with the use of the registration token and the notification service API token. This
API token is stored on the server.

The advantage of this system is that no user data is stored on some server. All the neces-

22

sary data, which is only the encryption key and registration token, are stored on the user’s
device. There is simply no user account. Disenrolment is achieved by simply deleting the
app and browser plugin. The disadvantage of the system that it is a bit tedious to set up.
After the user has installed the plugin and the app, the encryption key should be entered
in both the plugin and the app. As described in the findings section, the registration token
is required in the plugin. This is a long token, so it is not very convenient to enter it every
time. Therefore, we store it in the plugin. Even entering it only one time would be annoying
so it can be sent from the phone in an email. From a user perspective, enrollment would
probably be easier with a single sign-on method such as Sign in with Google. This account
could then be used to store the encryption key and registration token.

4.4.3. SECURITY AND PRIVACY ANALYSIS

Using the STRIDE method [Microsoft, 2020], the system can be analysed in a systematic
way. The STRIDE method works by looking at the system and each component and look
for threats that fall into the Spoofing identity, Tampering with data, Repudiation, Informa-
tion disclosure, Denial of service or Elevation of privilege category. The STRIDE method is
performed on a very abstract version of the system. That means a system where almost no
security and privacy-related measures are taken. The results are presented in table 4.3. If
applicable, an explanation of how the possible attack is mitigated is present in the table.

Table 4.3: System threats

Threat Type Mitigation

An attacker would get access to the account | Information The system is to be used

of another user. disclosure without the requirement
of a user account

An attacker would get access to the regis- | Spoofing To open the notifica-

tration token of a legitimate user and use it tion, authentication is

to send QR-codes to the user. required.

An attacker would get access to a legiti- | Spoofing

mate user’s registration token and encryp-

tion key and use it to send QR-codes to the

user.

An attacker would get access to the push | Spoofing To open the notification,

notification server key and send QR-codes the QR-code content

to users. must be encrypted with
the correct key.

An attacker would use a man in the middle | Spoofing, The QR-code is encrypted

attack to get access to the QR-code. Information

disclosure

An attacker would use a man in the middle | Spoofing, The QR-code is encrypted

attack to replace the QR-code. Tampering using AES-GCM. Modi-
fication of the QR-code
without the correct key
will be noticed.

23

Continued on next page

Table 4.3 — Continued from previous page

Threat Type Mitigation
An attacker would use a man in the middle | Spoofing,

attack to get access to the hostname, no- | Information

tification title, notification message, times- | disclosure

tamp or registration token.

An attacker would use a man in the mid- | Spoofing,

dle attack to modify the hostname, noti- | Information

fication title, notification message, times- | disclosure

tamp or registration token.

An attacker would deny access to the server
or Notification Service by flooding it with
TCP/IP packets.

Denial of ser-
vice

Both are protected by
Firebase

An attacker would get access to the reg-
istration token and flood the device with
push notifications

Denial of ser-
vice

An attacker would modify the registration
token stored in the plugin to send QR-
codes to their own device.

Tampering,
Information
disclosure

An attacker would get access to the user
their mobile device and read the encryp-
tion key and registration token.

Information
disclosure

If supported by the de-
vice, the settings page is
protected with a finger-
print or pin code.

A user claims unknown push notifications
were sent by the system or an attacker.

Repudiation

A log shows when QR-
codes have been received.

An attacker makes an unnoticed modifica-
tion to any of the used dependencies (sup-
ply chain attack)

Spoofing,
Information
disclosure,
Elevation of
privilege

An attacker gains access to the plugin and
sends QR-codes.

Spoofing, Ele-
vation of priv-
ilege

To open the QR-code, the
user always has to click
on the notification. Even
when the receiver app is
already open.

An attacker places a QR-code on a popular
website that is scanned by a legitimate user,
without the user knowing it.

Spoofing

The QR-code is never
scanned and sent auto-
matically. The user has to
press the scan button in
the browser plugin

An attacker hides a second QR-code on a
popular website that is scanned by a legiti-
mate user while the user tries to scan a le-
gitimate QR-code.

Spoofing,
Information
disclosure

An error is displayed in
the plugin if multiple QR-
codes are present

24

Continued on next page

Table 4.3 — Continued from previous page

Threat Type Mitigation

An attacker creates a malicious copy of the | Spoofing, The plugin and app
app or plugin and tricks the user into in- | Information should contain a down-
stalling it. disclosure load link to each other.

From the component and dataflow diagram it can be noticed that Firebase has access
to a lot of data. It does not use or need the data, it simply forwards the data to the mobile
device. Access to the data is reduced by encrypting it using a text or a passphrase. This text
or passphrase should then be stored in the plugin to encrypt and in the phone to decrypt.

Though Firebase only forwards the hostname, it can not be encrypted. The hostname
is used to create a notification title that says: QR-code received from somehost.com. As de-
scribes in the findings section, notification messages are intercepted and presented by the
operating system. Therefore, it is not possible to first decrypt an encrypted notification
title. This would be possible with data messages. Unfortunately, data messages are less
reliable than notification messages. Delivery is not guaranteed. Because not all data is
encrypted, it would be possible for the QR-code sending system or the push notification
services to create a some user profile. The registration token would be the unique identifier
and it could be track on what website the QR-code sending system is used.

There are more benefits from encryption than just Firebase not being able to access the
data. If the registration token leaks out, an attacker cannot send a meaningful message
to the phone. The passphrase would be required. If an attacker would use a man in the
middle attack to intercept or modify the QR-code the attacker would be unable to do so.
With the correct type of encryption, it is possible to guarantee the authenticity, integrity
and confidentiality of the QR-code. Authenticity is required to make sure only the user can
send and receive the messages. Integrity is required to make sure no one has changed the
data. Last, confidentiality is required to make sure no one can read the message.

Though the chances of the registration token leaking out are low, the token is sent
through the whole chain. The plugin stores it and sends it to the server, the server sends it
to the notification server and the notification server uses it to send a message to the phone.
The token could leak anywhere in the chain. The same applies to the QR-code. Though the
chances of tampering and leaking are low, it passes through the whole chain, which is why
confidentially and integrity are desirable.

The chosen encryption method is AES-GCM with PBKDF2 to generate a 256 bit key. AES
is well known and since it is symmetric the user can use the same readable encryption key
on the plugin and the app. AES GCM also provides message authentication using a Message
Authentication Code (MAC) [McGrew and Viega, 2005]. Another reason to choose AES GCM
is the availability of libraries to perform the encryption and decryption for JavaScript and
Dart Flutter as described in the findings section.

A man in the middle attack can be used to get access to most data. Information disclo-
sure can be partly prevented. Public-key cryptography could be used between the plugin
and the server. All data would be encrypted on the plugin using a public key. On the server,
the data would be decrypted using the private key. This form of encryption would only
partly solve the problem of information disclosure. For example, it cannot be done be-
tween the server and the push notification service because the push notification service is
out of our control. Therefore, it does not really solve the issue of information disclosure in

25

the case of a man in the middle attack.

In essence, the QR-code sending system does exactly what normally a user has to do.
It scans a QR-code and opens an app with it. That means barely anything changes for sys-
tems that use QR-code such as IRMA. For example, IRMA attributes will remain to be not
stored on a server. The QR-code sending system is completely unrelated to IRMA. The only
thing that changes is that it is less certain a user is actually behind the computer screen.
Previously, you could send a screenshot of a QR-code, print it and scan it with your phone,
but that is tedious. That could now be bypassed by using the QR-code system.

As stated before, the plugin has access to a lot of browser features due to the nature of
the permission system. Not only that, but data such as host names and IP addresses are
theoretically accessible by the QR-code system. Just as with any system, the user has to
trust the system.

Based on the list of attacks, an attacker can perform four interesting actions. Those
are intercepting notification data, intercepting QR-codes 4.9, sending QR-codes 4.10 and
sending notifications 4.11. For three of these actions, an attack tree is created.

The two most dangerous actions for the user are intercepting QR-codes and sending
QR-codes. In these cases an attacker could get access to confidential data. Less dangerous
is the ability to intercept notification data. In this case an attacker will know the website
what website the QR-code was scanned from. The least dangerous is the ability to send
notifications. In this case, an attacker is able to spam the user with notifications. Note that
the attacker in this case is unable to include a QR-code.

26

Intercept Qr-codes

Man in the middle
attack

Access to the
encryption key

1

Supply chain attack Evil maid attack

Figure 4.9: Attack tree intercepting QR-codes

27

Send Qr-codes

Access to the

Access to registration

encryption key token
T A
. . : Man in the middle
Supply chain attack Evil maid attack Sttack

Figure 4.10: Attack tree sending QR-codes

28

Send notifications

T

Access to registration

token
A
. . : Man in the middle
Supply chain attack Evil maid attack Sttack

Figure 4.11: Attack tree sending notifications

4.5. How CAN THE QR-SENDING SYSTEM FOR IRMA BE EXTENDED

TO ALSO WORK FOR OTHER QR-CODES?

In this section we will look into how the QR-code sending system can be extended for other
apps. We will look into how other apps use QR-codes and how other apps can be opened.

4.5.1. QR-CODES
Not all apps work in the same way as IRMA does. For example, the Rabobank app, which
is a banking app works differently. Using the Rabobank app, a Betaalverzoek or Tikkie can
be sent, which is basically a payment request. This payment request is a link that can be
opened in the browser. On a mobile device, the Rabobank app is opened and on a com-
puter, a QR-code is presented. On the surface, it seems this process works in the same way
as IRMA does. However, when analysing the QR-code and the process in the same way
as above, there is no resemblance between the link that opens the app and the QR-code
content.

When scanning the QR-code with a regular QR-code scanner, the following content is
presented.

nl.rabobank.app:sign:78ANOeKEs-K77aCabqiyLAubbyDPPOkJ2g-v1irRhjAS
: jiQHey9faBC

Listing 7: Rabobank QR-code content
When faking the browser to be a mobile device, in the same way as described for IRMA,

29

the following link is tried to be opened.

nl.rabobank.ideal://ideal-payment?trxid=20005022577860&random=
a086c7ccbf91e6630289£72826e9d0e7d2baccleled64fb8cb3c3b3561£7fc0d

Listing 8: Rabobank Intent link

As can be seen from the two examples, there is no shared part. Without more infor-
mation about these links, how they work and how the Rabobank app interprets these, it is
impossible to open the app using the QR-code sending system.

Another app that uses a somewhat similar mechanism is the DigiD app, as discussed in
RQ1. In addition to the QR-code, the user first has to enter a linking code on the computer,
which is presented by the app. After entering the code, the QR-code is presented, which
then can be scanned.

When scanning the QR-code with a regular QR-code scanner, the following content is
presented.

digid-app-auth://app_session_id=40c5f44f-067e-4746-85b6-cdb5f44a6a83
&1b=!YW7VYcncpOjDyFOzHRJoPGO/HBZP0o3kSXdGvTOWAJdWx2JE3POAsZCXUI+3Ro4c
DNvYZGcpOf+mbzhT4+SX jkQoxE/kf3/bkR7CD1gs=
&at=1619353659%verification_code=XLGX

Listing 9: DigiD QR-code content

On a mobile device, the following link is opened.

intent://#Intent;scheme=digid;package=nl.rijksoverheid.digid.pub;
S.data=digid-app-auth://app_session_id=bf4c8785-5595-5f08-9125-
36a622a72963
&1b=!YW7YVcnpnOjDyFOzHRJoDG9/ZBHP0o3kSXdGvOTWAJdWx2JE3POASZCZ
UI+3Ro4cDNvYZGepOf+mbxzT4+SXjkQoxE/kf3/bkR7CD1gs=
&at=1619353766;end

Listing 10: DigiD Intent link

Just as with IRMA, the QR-code and the mobile link are very much the same. In both
cases, there is an app_session_id and an [b attribute. Both cases also include an at attribute,
which is probably a timestamp. The QR-code also contains a verification_code which is the
linking code. A mobile link can be transformed into a QR-code by simply appending the
verification code to it. This code is visible in the DigiD app.

IRMA, Rabobank and DigiD all use a QR-code mechanism. However, all are slightly
different. Of these three, IRMA is the most simple. The QR-code is embedded in the mobile

30

link. The same goes for the DigiD app. However, a verification code is added to the QR-
code. The Rabobank app is different because there are no similarities between the QR-code
and the mobile link. It is unclear how this works.

4.5.2. OPENING OTHER APPS

Apps can be opened by the OS by providing a special link. This is called deep linking or
universal links. Apps can be registered to handle these special URIs. For example, the
following code on a mobile webpage will open an app that is able to make phone calls.

window.open("tel:+4842566") ;

Listing 11: Phone number link

In this case, the app tells the OS it can handle the tel: URI. Other examples are sms,
mailto, http and https. These are examples of standard URIs (RFC 5724,RFC 6068 and RFC
7230).

Apps can also define their own unofficial URI. This is the case with the IRMA app, as
can be seen in RQ2. The IRMA app tells the OS it can handle URLs that start with irma:

irma://qr/json/{"u":"https://privacybydesign.foundation/backend/irma/
session/xhrLz52zaVrpsIwf7QLJ","irmaqr":"disclosing"}

Listing 12: IRMA iOS browser link example

On Android, the app registers the URIs in the app manifest. As can be seen from the
example below, the IRMA app registers irma, cardemu and https.

<intent-filter android:autoVerify="true">
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="https" android:host="irma.app" ... />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="irma" />
<data android:scheme="cardemu"/>

</intent-filter>

Listing 13: IRMA Android manifest

31

In iOS, the app registers the URIs in the Info.plist

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>foundation.privacybydesign.irmamob.alpha</string>
<key>CFBundleURLSchemes</key>
<array>
<string>irma</string>
</array>
</dict>
</array>

Listing 14: IRMA iOS Info.plist

Unfortunately, it is not possible to get a list of all registered URLs. That is unfortunate
because it is not possible to present a list of apps to the user to open the QR-code with.
However, it is possible to hack around this problem in Android. On Android, it is possible
to get access to the manifest of an installed app with the use of libraries [hsaifan, 2021].
Though there are differences between the original IRMA manifest and the extracted IRMA
manifest, the part for registering URLs is identical. That means we can get all the registered
URLs for a given app.

Though itis possible to find the registered URLSs for an app, that is not sufficient enough.
The IRMA app registers 3 URLs and the Rabobank app registers 9 URLs. It is simply un-
known which of these registered URLs should be used to open the QR-code. Even if it is
known which URL should be used, that is still not sufficient in some cases. This is the case
with the IRMA app. One of the registered URL is irma, though as can be seen from the ex-
ample below, the QR-code content is prefixed. This prefix "qr/json/" cannot be known by
inspecting the Android manifest. In the case of IRMA, this prefix could be found by faking
the browser to be a mobile device as described for RQ2 and above in this subsection.

irma://qr/json/QRCODE_CONTENT

Listing 15: IRMA iOS browser link template

Apps can register specific URLs which the app can handle. There is no universal way
to figure out which app supports which URLs. On Android, is it possible to find all the
registered URLs for a given app, though this is not an official API or method. Even with this
information, it is not possible to simply open an app with the QR-code content. For each
app, specific information is required to open it with the QR-code.

32

ANDROID

On Android it is possible to open apps with extra information using the Chrome browser
[Developers, 2021]. Chrome uses a specific scheme which can be used by web pages to
open apps. The basic format for an intent-based URI is as follows:

intent:

HOST/URI-path // Optional host

#Intent;
package=\[string\];
action=\[string\];
category=\[string\];
component=\ [string\];
scheme=\ [string\];

end;

Listing 16: Chrome intent template

Web pages can open a scheme with a specific app. That is a bit different from universal
link, because with universal link a scheme is opened, not a specific app. With the Chrome
intent it is possible to add extra information such as a timestamp. On IRMA the link looks
like this:

intent:
//qr/json/{"u":"https://privacybydesign.foundation/backend/irma/
session/j7MweFY3mYzAGWKKYFEI","irmaqr":"disclosing"}
#Intent;
package=org.irmacard.cardemu;
scheme=cardemu;
1.timestamp=1612109193199;
S.browser_fallback_url=https://play.google.com/store/apps/
details?id=org.irmacard.cardemu;
end

Listing 17: IRMA Android browser link example 2

It opens //qr/json/DATAwith the package org.irmacard.cardemu with the scheme cardemu.
The package is the package name of the IRMA app and the scheme is the scheme registered
by the IRMA app. Extra information is added, such as a timestamp and a fallback url in case
the irma app is not installed.

QR-codes that consist of a URI can easily be supported. Those can be passed to the
system to open. The system will try to find an app that is installed that can open the URI.

IRMA QR-codes do not contain a URL. IRMA QR-codes contain JSON objects. These

n..n

JSON objects always contain the keys "u" and "irmagqr". Using pattern recognition, it can

33

be determined whether the QR-code content is an IRMA QR-code or not. If it is indeed
an IRMA QR-code, a deep linking URI can be created. This URI can then be passed to
the operating system. For this to work, it should be known how the data in the QR-code
should be used to create a deep link. For IRMA, this is pretty simple. The link is as follows:
irma://qr/json/QR-CODE-CONTENT.

Unfortunately, it is not possible to open Rabobank QR-codes. It is not possible to create
a deep link from the QR-code. This is because the QR-code and the deep link which is used
on mobile devices do not have a shared part. Theoretically, it would be possible to support
the DigiD app because the content of the QR-code is a deep link. However, on Android the
scheme in the QR-code is not registered by DigiD. The scheme supported by DigiD is digid.
This was found using an app decompiler. Using this scheme will start the DigiD app. The
app immediately crashes however. It is not known whether DigiD QR-codes work on an iOS
device.

In summary, the system supports two kind of QR-codes. The first one is IRMA QR-codes
which are supported by pattern recognition. The second one is QR-codes that consist of a
URL In order to open actually open an app, there should be an app installed that registers
to the scheme of the URI. In other words, the QR-code should consist of a deep link and an
app should be installed that can be opened with the deep link.

4.6. USAGE

Overall installation and usage of the system from a user perspective is quite simple. The
user can install the app and plugin from the platform associated store'. After installation,
the user opens the app, goes to settings, enters an encryption key and mails the registration
token to themself (image 4.12). Next, the user opens the plugin settings and enters the
encryption key and the just received registration token (image 4.13).

The system is now set up and ready to be used. When the user wants to send a QR-code
that is currently present on the screen to the phone, they simply click on the plugin button
(image 4.14). A small dialog with basic info is presented to the user and the QR-code is sent
to the phone. QR-codes are never scanned and sent to the user without an explicit user
action. The QR-code can be opened by the user by clicking on the notification received on
the phone (image 4.15). The QR-code is also never opened without an explicit user action.
The receiver app tries to open an app with the QR-code. If that is not successful, an error
message is presented to the user. Currently, the app supports two kinds of QR-codes. The
first one is QR-codes uses for the IRMA app. The second one is any QR-code that contains
a valid URI. That means any universal URL or HTTP(S) URL can be opened. Since there is
no user account, all data can be deleted by removing the app and plugin.

IThe app and plugin are currently not present on stores.

34

X Settings

Encryption key
{ mykey|

Mail my registration token >

Settings
FCM ID
OUKVAGEESOVESXWVEROZ JNXVXP7Xs6XKoG43heC3FYCglfvzSobe

GOtO-crrLw8RVzWxLHgciCJZ_z-PTKpWipR3fXs-07sLGwie-

Encryption key
mykey

Figure 4.12: Setup app Figure 4.13: Setup plugin

35

VERZOEK OM ATTRIBUTEN

Een website vraagt u enkele van
uw IRMA aftributen te tonen.
Scan de QR code met uw IRMA

ANNULEREN

Figure 4.14: Usage plugin

36

00060 Ay =

Message send to phone

Sat, Jun 5 ¥4 8100%

Q o =~ =8 @ +

¢ 4

(grcode_receiver *+ Tm

QR-code received from privacybydesign.foundation
Click here to open

P 4

Silent notifications

@ Android System

USB debugging connected
Tap to turn off USB debugging

@ Android System + Charging this device via USB v

Manage Clear all

Figure 4.15: Usage app

4.6.1. USER TRUST

Just as with any system and piece of software, the user has to trust it. For example, the
user has to trust that the system will store data in a secure way. Another example is that
the system will not abuse certain functionality, though this can partially be prevented with
permissions. Users with the technical knowledge can inspect the source code and build the
app and plugin themself.

The first thing the user should trust the QR-code sending system with is not intercepting
the QR-codes. Theoretically, it would be possible for the system to intercept the QR-code.
This could have far-reaching consequences depending on the content of the QR-code. For
example, a QR-code containing a user session is much more interesting than a simple URL
to a web page such a google.com. In the case of IRMA, this could potentially result in the
theft of the attributes that should be issued to the user.

Next, the user should trust that plugin does not spy on the user. The user is not informed
by the browser when a screenshot is taken. So it would be possible to take a screenshot ev-
ery second and upload it to a server. Since the plugin is active on every tab, it would be
possible to record every open tab. Since making screenshots requires the "all_urls" per-

37

mission, it would be possible to make HTTP requests to any URL, again without the user
noticing. Browser manufacturers could prevent this by improving the permission system.
Last, it would be possible for the plugin to inspect the page the user is visiting and make
modifications to it.

The user should also trust that the system will not analyse user data. Since the host-
name of the website the QR-code is presented on is not encrypted and the IP address is
also known, it would be possible to analyse which web pages the user visits. This could be
interesting information to advertisers for example.

4.7. OTHER FINDINGS

This section contains finding that are not directly related to the research question, but are
relevant to the research as a whole.

4.7.1. PUSH NOTIFICATIONS

Though fundamentally the same, there are differences between push notifications on iOS
and Android [Firebase, 2021]. The Flutter Cloud Messaging plugin tries to solve these dif-
ferences as much as possible [FlutterFire, 2021]. FMC makes a distinction between Noti-
fication Messages and Data Messages. As their names imply, Notification Messages are pre-
sented in the form of a notification and Data Messages are not. Data messages are consid-
ered low priority. That means these messages do not wake up the device. However, the
priority can be changed. This does still not guarantee delivery.

The Flutter plugin makes a distinction between three different states. These states are
Foreground, Background and Terminated. Foreground messages arrive when the app is in
the foreground. Messages arrive within the app and by default, there is no notification dis-
played. Background messages arrive when the app is in the background, but is still active.
Because the message is received in the background, it can not do anything Ul related. For
example, it is not possible to bring the app to the foreground or bring another app to the
foreground. When the message contains a notification property, The operating system will
intercept the message and present a notification to the user. When clicking this notifica-
tion, the app is opened. Terminated messages are similar to background messages. They
occur when the app has been terminated.

Since most users will probably not run the app always in the foreground, the app should
be able to handle messages in the background. Unfortunately, it is not possible to bring
any app to the foreground when a background message has been received. However, it is
possible to use the notification option. The operating system can show a notification with
the text: "QR-code received from irma-demo.com. Click to open" When the user clicks on
the notification, the app is opened, processes the QR-code content and start the IRMA app.

In order to send a message to a specific device, a registration token is required. This
token is unique but can change in certain cases. For example, it changes when the user
re-installs the app or deletes user data. The token is obtained in the app when it registers
for push notifications. The token should then be used by the browser plugin. It would be
inconvenient for a user to type in this token every time the plugin is used since it can be
pretty long. The first token received was 133 characters long. Copying and pasting every
time would save a bit of time, but is still more inconvenient than simply scanning a QR-
code with your phone. Therefore, it is not a solution to the problem we are trying to resolve.

38

From a user perspective, it would be desirable to store the registration token. That way,
the user would only have to enter the token the first time. Browser plugins have the ability
to store a small amount of data. A browser plugin can either use sync storage or local storage.
Local storage is local to the machine the extension was installed on and sync storage is
synced across instances of that browser the user is signed in to. Storage is scoped to a
browser plugin, so plugin A cannot access the storage of plugin B. Storage is not encrypted
though, so it should not be used for confidential data.

REGISTRATION TOKEN GENERATION

Since notifications are sent to a specific registration token, it would be great for an attacker
to register their device with the token of a victim. That way, notifications are sent to the at-
tacker instead of the victim. Therefore, it would be good to understand how the registration
process works.

As stated above, registration tokens are unique but can change. This can be tested on
an Android device by simply deleting the app data and check if the token changes. Wiping
data three times results in three unique tokens.

e(xwAfbQSJufWtVoAErJn_ :APA91bG-tceQuufgraGVEtPTF14X2ZraBaY63d(1xyTwSt
76EdUNttPd03vccKpfSrgEAJCck-rmWUtuytBzmkcG8qbrzpw8Pvn-yGUE-8dEAryIJt1l
wudRTRVpFHRBoXTmkxrdJUbalU

Listing 18: Example registration token

When disabling network traffic upon opening the app for the first time, it is impossible
to obtain a registration token. Therefore it seems a token is generated or at least verified
on the Firebase server. Using the network profiler, is it possible to inspect network traffic
for your app. Unfortunately, not all traffic can be monitored. For example, a web socket
connection will not show up. Also, traffic of other apps is not visible. The registration token
does not show up in the network traffic. However, part of it does. The registration token
seems to consist of two parts separated by a colon. Upon opening the app for the first time,
an installation request is made with the first part of the registration token.

{
"fid": "eQxwAfbQSJufWtVoAErJn ",
"appId": "1:411431974280:android:d48de4e6730c3aeddd363d",
"authVersion": "FIS v2",
"sdkVersion": "a:16.3.5"
}

Listing 19: Installation request (Request 1)

39

"name": "projects/411431974280/installations/eQxwAfbQSJufWtVoAErJn ",

"fid": "eQxwAfbQSJufWtVoAErJn_",

"refreshToken": "2_B6ko6yFngBl3DVInSO00_6Ujwsorz7u_
TEFwqWt6V4QirwT_K2VkBikYeIRxFuwSM",

"authToken": {

"token": "eyJhbGciO0iJFUzI1NiIsInR5cCI6IkpXVCJI9.eyJhcHBJZCIGIFEGNDE
xNDMx0TcOMjgwOmFuZHJvaWQ6ZDQ4ZGUOZTY3MzB jM2F1ZGRkMzYZzZCIsImV4c
CIGMTYyMjM4MTEyMCwiZmlkI joiZVF4dOFmY1FTSnVmV3RWbOFFckpuXyIsInB
yb2plY3R0dW1iZXIi0jQxMTQzMTk3NDI4MHO . AB2LPV8wRAIgXW4nP48inoSfb
Uh9ukMkn j5NaN6yoJ11dvXYEMdZOgoCIHk j1zVenA7knnYMK6QW jRzBDhzLVuX
Zoz3ROgKSAjQN",

"expiresIn": "604800s"

b
}

Listing 20: Installation response (Response 1)

Repeating Request 1 will result in another fid returned in the response. Since not all
traffic can be monitored and the source code is obfuscated, it is not possible to tell how
registration tokens are generated and registered. Using a proxy, more information can be
obtained. This will only work for older devices. Starting from Android Nougat proxies can
only be used for apps that you control. Using this proxy, a second request can be seen that
is fired immediately after receiving the one above. Since this request is not visible in the
network profiler, it is probably fired by another app or the OS. On an older version of the
OS, all traffic can be seen.

In the second request, the fid and token obtained from the first request are used to ob-
tain the registration token. When executing request 1 for a second time, the authentication
token obtained cannot be used to obtain the registration token.

The process of generation and registering a registration token probably works as follow.
First, the client generates a fid. Using this fid, a session is started on the server and an
authentication token is returned to the client. If the fid is already known by the server,
another session is started and another fid is returned to the client. Using the authentication
token and the fid, the registration token is obtained.

Since the registration token is obtained from the server, an attacker cannot simply reg-
ister that token with their device. To get the registration token from the server, an authenti-
cation token and fid is required. This authentication token can be obtained from the server,
using the fid, only once.

4.,7.2. CROSS-PLATFORM ENCRYPTION

Both Flutter and browser plugins do support AES-GCM, whether through native function-
ality or libraries. However, there are subtle differences in implementation and terminology.
The WebCryptoAPI, which is accessible by the browser plugin, uses a salt for the password
key and an iv (initialization vector) to create the cyphertext. The Flutter cryptography li-
brary does not use a salt or an iv but uses a nonce. Also, the WebCryptoAPI uses a fag while

40

in Flutter, it is called a MAC (Message Authentication Code).

A MAC or tag can be used to authenticate the message. This MAC or tag is handled
differently in Flutter and in the WebCryptoAPI. When encrypting using the WebCryptoAPI,
the MAC is directly appended to the ciphertext. Flutter, meanwhile, expects the mac to be
a separate argument. It required the developer to strip the mac from the ciphertext before
decrypting it.

4.7.3. IRMA SECURITY ISSUE

During the development of the QR-code sending system, a severe security issue was found
in the IRMA app. It is possible to get access to a subset of attributes by simply connecting
a cable. Using USB debugging on an Android device allows someone to see logging of the
system, apps and flutter. When the IRMA app starts, that means it was killed by either the
system or the user, a subset of attributes is printed to the console. Only a subset of the
attributes is displayed because the logline is truncated because it is too long. To someone
who has more knowledge of how Flutter logging works, it might be possible the get the full
logging line and therefore, the full list of attributes.

It is interesting to see the logging occurs right after starting the IRMA app. At this point,
the user has not entered their PIN, yet the app has somehow access to the attributes. Even
when there was no internet connection and the system date was changed to a year later, the
attributes were still printed onto the console. That means either the attributes are stored in
plain text or a password to protect them are somewhere stored on the device. This logging
issue was reported and it seems the issue has now been resolved[irma, 2021].

41

DISCUSSION

To omit manually scanning a QR-code with a mobile device, a system is created that detects
a QR-code and sends it to to the mobile device instead. This system consists of a browser
plugin, a trusted server, push notifications and an app. The push notification functionality
is similar to Google Prompt and FingerKey described in RQ1.

Without using the QR-code sending system, the process is as follows for scanning an
IRMA QR-code. When the user presses the login button, a QR-code is displayed. The user
should now take their phone, probably unlock it, search for the IRMA app and open the
IRMA app. After unlocking the IRMA app, the user presses the button to scan a QR-code;
scans the QR-code on the website and agrees to disclose the attribute. The user is now
logged in. With the QR-code sending system, steps are omitted. Assuming the user has
set up the system correctly. When the QR-code is present, the user clicks on the browser
plugin. Next, the user picks up their phone, probably unlocks it and click on the notification
created by the QR-code receiver app. The IRMA app now opens and from this point on,
the process is equal to the process without the QR-code sending system. In summary, the
following steps have been removed: searching for the IRMA app, opening the IRMA app,
clicking on the QR-code scanning button and scanning the QR-code.

Though the impact on privacy and security is minimal, there are possible improve-
ments. The first thing that can be improved is the browser plugin permission system. Some
of the current permissions are too broad. An example is the "<all_urls>" permission. This
permission is required to allow the plugin to run on any domain, make requests to any
domain and to make screenshots. As a result, if the "<all_urls>" permission is required to
make a screenshot, the plugin can automatically run on any domain and make requests to
any domain. Also, if the plugin can run on any domain, it can take screenshots and there-
fore spy on the user by taking a screenshot every second or so. To improve the security and
privacy of browser plugins, the permission system could use an overhaul. Before that, some
research needs to be done on the subject of browser plugin APIs and their permissions.

Currently, not all data is encrypted. As described in the Results section, the notifica-
tion title and notification message cannot be encrypted because those are intercepted and
presented by the system. A possible solution would be to use data messages instead of no-
tification messages. According to the documentation, data messages are less reliable than
notification messages and the delivery of data messages can not be guaranteed. Unfortu-
nately, the documentation does not describe how reliable both notifications are. It would

42

be interesting to see how reliable both notifications are and if data messages can be used
for the QR-code sending systems.

The QR-code sending system can be improved by supporting more QR-codes. Cur-
rently, the system support QR-codes which content are valid URIs and IMRA QR-codes.
Obviously, not all QR-codes contain a valid URI. Examples are QR-codes for the Rabobank
app, but also for the IRMA app. There are two options when it comes to supporting more
QR-codes. The first option is to recognise patterns in the QR-code content. This solution is
applied for IRMA QR-codes. Those QR-codes always consist of a JSON object with always
the same two attributes. The second option is for system developers that use QR-code to
use URIs as QR-code content. For example, if the Rabobank QR-code contained a URI,
it would be supported by the QR-code sending system. A reason for Rabobank not using
URIs in their QR-codes could be security. Additional research could be performed to under-
stand why system developers choose not to use URIs and how the QR-code sending system
should be modified to support QR-codes that do not contain URIs.

Another possibility to omit the scanning of QR-codes is not to use QR-codes at all. De-
velopers could implement the same functionality as the QR-code sending system in their
apps. Let us take the Rabobank app for example. When the user wants to confirm a pay-
ment, a QR-code is presented on the screen, which the user has to scan with the app. On
both the client and the app, Rabobank should know the identity of the user. Obviously,
you cannot confirm payments without confirming your identity. That means a user would
have to sign in first. So instead of presenting a QR-code, a push notification is sent to the
Rabobank app. The user clicks on the notification in the notification bar on the mobile de-
vice to confirm the payment. This is comparable to how Google Prompt works. A pin code
can be used to confirm the identity of the user. However, push notifications do introduce
a dependency. Depending on push notifications only might not be a rugged solution. An-
other option is to create a short-lived session on the server. If the user opens the app within
a short time span, the payment can be confirmed without scanning a QR-code.

The functionality of both the plugin and app is limited and could be extended. Within
the plugin, it is not possible to register multiple devices. This could be a useful addition.
From within the app, it is not possible the see where the QR-code was sent from. It could
be useful to label senders.

It is clear some steps of the scanning process are omitted by using the QR-code send-
ing. Yet, it is not clear whether the system is more convenient to use for users with visual
impairment. It would be useful to perform a case study with actual users to see if and how
the accessibility of the system can be improved.

From a privacy and security aspect, little changes for the user. However, for system
developers that use QR-codes, there are some changes. Previously, developers could be
fairly sure that a user who scanned a QR-code was actually behind their computer screen.
Of course, one could take a photo of it and send it to someone else. The latter then has to
print it or display it on another screen before scanning it, which is a bit of a hassle. With the
QR-code sending system, the user is not tied to their computer screen. Wherever you are,
a notification is sent to your mobile device. Measures have been taken to prevent opening
QR-code without the user knowing it. To scan the QR-code with the browser plugin and
open it with the app, a user must perform an action. Though measures have been taken, it
becomes easier to scan a QR-code without the user being behind the computer screen with
the QR-code sending system.

43

It is interesting to see Rodrigues et al. use the NMH (native messaging host) to facilitate
communication between the browser plugin and the Hardware Cryptography Server. Ro-
drigues et al. claim the browser plugin cannot directly communicate with the hardware
cryptography server, as it is limited to the page’s DOM[Pimenta Rodrigues et al., 2020].
However, we found the browser plugin can communicate with a server. As a matter of
fact, the QR-code scanning plugin communicates with the trusted server to create push
notifications.

44

CONCLUSION

In this research, a QR-code sending system is created to omit the scanning of a QR-code
with the IRMA app without affecting the state of security and privacy. This system is built
in a generic way so it does support not only IRMA QR-codes but also any QR-code that
contains a URL

We have seen other systems use different methods to facilitate communication between
the browser and mobile device. These methods are Push notifications, QR-codes and direct
connect.

The process of connecting an IRMA app to an IRMA server using QR codes is quite
simple. Upon a user action, Upon a user action, a session is obtained from the IRMA server.
The IRMA server returns a session token and an URL to the server. These are used to create
the QR-code. The QR-code presented on the screen is just a simple JSON object with two
attributes. This object is passed to the app using Universal links or by scanning the QR-code
with the IRMA app. The QR-code sending system sends QR-codes directly to the phone
without scanning the QR-code using the mobile camera.

The QR-code sending system consists of four main components. These are a browser
plugin, a trusted server, a notification service and an app. The system also contains smaller
components used for encryption and decoding QR-codes. The browser plugin can be used
in the browser to take a screenshot. The plugin uses a QR-code decoding library to get
the content of the QR-code from the screenshot. The plugin sends the QR-code and some
metadata to the trusted server. The trusted server contains an API key for the notification
server and sends the message to the notification server. The notification server is an ex-
ternal service that provides push notifications. Using a push notification, the message is
pushed to the mobile device. A mobile app receives the message, decrypts it and tries to
open another app with it. If the content is a valid URI, it is passed to the system to open it.
If the content is an IRMA JSON object, the IRMA app is opened with it. In other cases, an er-
ror message is shown. In essence, the QR-code sending system does exactly what normally
a user has to do. It scans a QR-code and opens an app with it.

The impact on privacy and security is minimal. The content of the QR-code is encrypted
to ensure authenticity, integrity and confidentiality. Privacy could potentially be further
improved by also encrypting the notification title and message as described in the discus-
sion section. A STRIDE analysis has been carried out on the system. Based on the analysis,
the system was further improved. Also, based on the analysis, four actions were found that

45

are interesting to attackers. These are: intercept notification data, intercept QR-codes, send
QR-codes and send notification. The most common threat is an evil maid attack or a man
in the middle attack.

The system can be extended to support more app than just the IRMA app in two ways.
The first option is for the receiver app to recognise more patterns in the QR-code content.
Of course, this op requires the QR-code content to have some kind op pattern and requires
a modification to the receiver app. The second option is for developers of other app that
use QR-codes, to make the QR-code consist of a URL. If this URI is used for deep linking, it
will be supported by the QR-code sending system

The system as a whole works and is usable for QR-code for IRMA or any QR-code that
consists of a URI. The system has a minimal impact on privacy and security. However,
improvements can be made as described in the discussion section.

46

REFLECTION

I am pretty happy with subject of this thesis and the product as well. Scanning QR-codes
bother me somewhat, which made it more interesting to find a solution. Therefore, I am
a bit disappointed the solution does not work for every QR-code. Another thing that in-
terested me was IRMA itself. I had read some news articles about IRMA on technology
websites, but did not know much about it. I do not claim to be an export on the subject of
IRMA, but I am pretty sure I know more than the average user. Though I think IRMA is not
widely used, I was surprised to see my wife had to use the IRMA app to fill in some ques-
tionnaire. What I really liked was the variety of work. I have been busy with Irma, browser
plugins, push notifications, mobile apps, flutter, encryption and STRIDE analyse. In my
opinion, I have somewhat of a short attention span, unless something is new or exciting.
In the latter case, which occurred often with the big variety of work, I have somewhat of a
hyper-focus.

Between the VAF and AF is spent some time developing a browser plugin. I did this be-
cause I thought it was interesting and it solved a problem as well. During the development
I learned a lot about browser plugins. Documentation and code examples is not that great.
Because of this experience I was able to develop the QR-code sending plugin a lot faster.

Initially, the plan was to first do all the research and then built something. I am glad I
changed that and had a healthy combination of researching and building. Research results
were the input for the building and vice versa. The best example of this is the threats table
4.3 in the results section of RQ4. Threats were mitigated and as a result new threats could
occur. Another advantage was that I would never have to work on something that was less
interesting for very long. As with anything, some think are just more interesting than others.

Something what really helped me was the review of the threats table with a fellow stu-
dent. It not only gave me some insights, but also somewhat assured me I was doing the
correct thing. Besides that, it was also nice to catch up and exchange experiences.

I think writing is not my strongest skill. I am perfectly able to form clear sentences.
However, I have the tendency to keep it short. As a result, details are sometimes omitted,
which sometimes makes it hard to understand the whole story. It helps me to immediately
write things down when they are still fresh in my mind.

What really surprised me is how powerfully browser extensions can be. Plugin have
access to functionality that is not available to web pages. An example of such an API is
the screenshot API. Unfortunately, that also means these APIs can be used for malicious

47

purposes. I was for example able to spy on network traffic. I knew there were some risks,
but not this big. I think many users do not know about the right either.

48

BIBLIOGRAPHY

Apple. Preparing your ui to run in the background. https://developer.apple.com/
documentation/uikit/app_and_environment/scenes/preparing your ui_to_
run_in_the_background, 2021a. Accessed: 2021-03-07. 16

Apple. Notifications. https://developer.apple.com/notifications/, 2021b. Ac-
cessed: 2021-03-06. 14

Beizhedenglongdev. Qr code reader. https://chrome.google.com/webstore/detail/
qr-code-reader/likadllkkidlligfcdhfnnbkjigdkmci, 2021. Accessed: 2021-02-27.
13

Bitwarden. Open source password management for you and your business. https://
bitwarden. com, 2020. Accessed: 2020-08-02. 7, 14

Bitwarden-FAQ. What happens if bitwarden gets hacked? https://bitwarden.com/
help/article/what-happens-if-bitwarden-is-hacked/, 2020. Accessed: 2020-09-
04. 8

Chromium.org. Issue 487422: Webrequest api: allow extensions to read response body.
https://bugs.chromium. org/p/chromium/issues/detail?id=487422, 2021. Ac-
cessed: 2021-02-15. 12

Chrome Developers. Android intents with chrome. https://developer.chrome.com/
docs/multidevice/android/intents/, 2021. Accessed: 2021-05-23. 33

DigiD. Digid. https://www.digid.nl/, 2020. Accessed: 2020-11-28. 7

FingerKeyApp. Fingerkey. http://www.fingerkeyapp.com/, 2020. Accessed: 2020-08-15.
8,14

Firebase. Firebase cloud messaging. https://firebase.google.com/docs/
cloud-messaging/, 2021. Accessed: 2021-03-06. 14, 38

FlutterFire. Cloud messaging. https://firebase.flutter.dev/docs/messaging/
usage, 2021. Accessed: 2021-03-20. 38

Steven Furnell. The usability of security — revisited. Computer Fraud & Security, 2016(9):5
—11, 2016. ISSN 1361-3723. doi: https://doi.org/10.1016/S1361-3723(16)30070-7. URL
http://www.sciencedirect.com/science/article/pii/S1361372316300707. 3

Google. Sign in with your phone instead of a password. https://support.google.com/
accounts/answer/6361026, 2020. Accessed: 2020-08-02. 7, 14

GSMARENA. Phone finder. https://www.gsmarena.com/search.php3?, 2021. Accessed:
2021-03-07. 16

https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background
https://developer.apple.com/notifications/
https://chrome.google.com/webstore/detail/qr-code-reader/likadllkkidlligfcdhfnnbkjigdkmci
https://chrome.google.com/webstore/detail/qr-code-reader/likadllkkidlligfcdhfnnbkjigdkmci
https://bitwarden.com
https://bitwarden.com
https://bitwarden.com/help/article/what-happens-if-bitwarden-is-hacked/
https://bitwarden.com/help/article/what-happens-if-bitwarden-is-hacked/
https://bugs.chromium.org/p/chromium/issues/detail?id=487422
https://developer.chrome.com/docs/multidevice/android/intents/
https://developer.chrome.com/docs/multidevice/android/intents/
https://www.digid.nl/
http://www.fingerkeyapp.com/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.flutter.dev/docs/messaging/usage
https://firebase.flutter.dev/docs/messaging/usage
http://www.sciencedirect.com/science/article/pii/S1361372316300707
https://support.google.com/accounts/answer/6361026
https://support.google.com/accounts/answer/6361026
https://www.gsmarena.com/search.php3?

Google Chrome Help. Get your bookmarks, passwords and more on all of your devices.
https://support.google.com/chrome/answer/165139, 2021. Accessed: 2021-07-11.
8

hsaifan. Apk parser. https://github.com/hsiafan/apk-parser, 2021. Accessed: 2021-
04-26. 32

irma. Irma bugfix commit. https://github.com/privacybydesign/irmamobile/
commit/f58dc1d27de3e2630def9367£8f7add9cf5da967, 2021. Accessed: 2021-06-06.
41

IRMA. What is irma? https://irma.app/docs/what-is-irma/, 2021. Accessed: 2021-
01-31.9

Muhammad Asif Khan, Wael Cherif, Fethi Filali, and Ridha Hamila. Wi-fi direct research -
current status and future perspectives. Journal of Network and Computer Applications,
93:245-258, 2017. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2017.06.004. URL
https://www.sciencedirect.com/science/article/pii/S1084804517302230. 16

David A. McGrew and John Viega. The security and performance of the galois/counter
mode (gcm) of operation. In Anne Canteaut and Kapaleeswaran Viswanathan, edi-
tors, Progress in Cryptology - INDOCRYPT 2004, pages 343-355, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-30556-9. 25

Microsoft. The stride threat model. https://docs.microsoft.com/en-us/
previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=
MSDN, 2020. Accessed: 2020-11-28. 5, 23

Mightytext. Mightytext. https://mightytext.net/, 2020. Accessed: 2020-08-15. 8

Mozilla. Browser extensions. https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions, 2021a. Accessed: 2021-03-07. 12

Mozilla. tabs.capturevisibletab(). https://developer.mozilla.org/en-US/docs/
Mozilla/Add-ons/WebExtensions/API/tabs/captureVisibleTab, 2021b. Accessed:
2021-02-27. 13,19

Mozilla. Sync your firefox on any device. https://www.mozilla.org/en-US/firefox/
sync/, 2021c. Accessed: 2021-07-11. 8

Mozilla. Porting a google chrome extension. https://extensionworkshop.com/
documentation/develop/porting-a-google-chrome-extension/,2021d. Accessed:
2021-02-07. 11

Mozilla. webrequest.filterresponsedata(). https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData,
2021e. Accessed: 2021-02-15. 12

Mozilla. Xmlhttprequest. https://developer.mozilla.org/nl/docs/Web/API/
XMLHttpRequest, 2021f. Accessed: 2021-02-19. 12

ii

https://support.google.com/chrome/answer/165139
https://github.com/hsiafan/apk-parser
https://github.com/privacybydesign/irmamobile/commit/f58dc1d27de3e2630def9367f8f7add9cf5da967
https://github.com/privacybydesign/irmamobile/commit/f58dc1d27de3e2630def9367f8f7add9cf5da967
https://irma.app/docs/what-is-irma/
https://www.sciencedirect.com/science/article/pii/S1084804517302230
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://mightytext.net/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/captureVisibleTab
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/captureVisibleTab
https://www.mozilla.org/en-US/firefox/sync/
https://www.mozilla.org/en-US/firefox/sync/
https://extensionworkshop.com/documentation/develop/porting-a-google-chrome-extension/
https://extensionworkshop.com/documentation/develop/porting-a-google-chrome-extension/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/nl/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/nl/docs/Web/API/XMLHttpRequest

Netmarketshare. Browser market share. https://netmarketshare.com/
browser-market-share.aspx, 2020. Accessed: 2020-08-23. 12

Okta. Okta verif. https://help.okta.com/en/prod/Content/Topics/Mobile/
okta-verify-overview.htm, 2020. Accessed: 2020-08-02. 7, 14

G. A. Pimenta Rodrigues, R. D. Oliveira Albuquerque, G. D. Oliveira Alves, E L. L. De Men-
donca, W. E Giozza, R. T. De Sousa, and A. L. Sandoval Orozco. Securing instant messages
with hardware-based cryptography and authentication in browser extension. IEEE Ac-
cess, 8:95137-95152, 2020. 8, 16, 44

Privacy by Design Foundation. Irma gebruik. https://privacybydesign.foundation/
gebruik/, 2021. Accessed: 2021-02-12. 12, 13

Stackoverflow. Chrome extension to read http response. https://stackoverflow.com/
a/48134114/2564847, 2021. Accessed: 2021-02-19. 12

Statcounter. Browser market share worldwide. https://gs.statcounter.com/
browser—-market-share, 2020. Accessed: 2020-08-23. 12

Roland M. van Rijswijk and Joost van Dijk. Tiqr: A novel take on two-factor authentica-
tion. In 25th Large Installation System Administration Conference (LISA 11), Boston, MA,
December 2011. USENIX Association. URL https://www.usenix.org/conference/
lisall/tiqr-novel-take-two-factor-authentication. 6

W3schools. Browser statistics. https://www.w3schools. com/browsers/, 2020. Accessed:
2020-08-23. 12

iii

https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://help.okta.com/en/prod/Content/Topics/Mobile/okta-verify-overview.htm
https://help.okta.com/en/prod/Content/Topics/Mobile/okta-verify-overview.htm
https://privacybydesign.foundation/gebruik/
https://privacybydesign.foundation/gebruik/
https://stackoverflow.com/a/48134114/2564847
https://stackoverflow.com/a/48134114/2564847
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://www.usenix.org/conference/lisa11/tiqr-novel-take-two-factor-authentication
https://www.usenix.org/conference/lisa11/tiqr-novel-take-two-factor-authentication
https://www.w3schools.com/browsers/

	Summary
	Introduction
	Research questions and Method
	Research questions
	Research method
	Validation

	Results
	What techniques do other systems use to facilitate communication or synchronisation between a browser and mobile device?
	Tiqr
	DigiD App
	Rabobank app
	Okta Verify Push and Google Prompt
	Bitwarden and Browser sync
	Securing Instant Messages With Hardware-Based Cryptography and Authentication in Browser Extension
	 Mightytext and FingerKey
	Summary

	How does the process of connecting an IRMA app to an IRMA server, using QR codes, work?
	What are the required components for realising the IRMA browser plugin?
	detecting QR-codes
	Sending the QR-code content to the mobile device

	What is the impact on privacy and security?
	Pre-development
	Post-development
	Security and privacy analysis

	How can the QR-sending system for IRMA be extended to also work for other QR-codes?
	QR-codes
	Opening other apps

	Usage
	User trust

	Other findings
	Push notifications
	Cross-platform encryption
	IRMA security issue

	Discussion
	Conclusion
	Reflection
	Bibliography

