
Open Universiteit
www.ou.nl

MASTER'S THESIS

Remote and parallel test automation at the GUI level using a generic adapter

van der Kuijl, M.G.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

https://research.ou.nl/en/studentTheses/8416c467-481c-42be-b469-0c5f7c43d0b3

Remote and parallel test automation at
the GUI level using a generic adapter

Master Thesis

Software Engineering

Student name:
Student Number:
Course:

M.G. van der Kuijl

IM9906 Software Engineering Graduation Assignment

Degree programme: Open University of the Netherlands
Faculty of Management, Science and Technology
Master’s Programme in Software Engineering

Supervisor: Prof. dr. Tanja E.J. Vos
Thesis committee: Prof. dr. Tanja E.J. Vos, Open Universiteit

Dr. Pekka Aho, Open Universiteit
Dr. Machiel van der Bijl, Axini

Contents

1 Introduction 5
1.1 Automated GUI level testing . 5

1.1.1 Defining the GUI . 5
1.1.2 Test Case Design . 6
1.1.3 Test Case Execution . 7

1.2 Localization strategies . 8
1.3 GUI testing using TESTAR . 9

2 Related work 10
2.1 Accessibility APIs . 10
2.2 Programmable Web APIs . 11
2.3 Programmable Desktop APIs . 14

3 Research Questions 17

4 Generic API 20
4.1 Characteristics of the Generic API 20
4.2 Analysis of the overlap between backend APIs 22
4.3 Driving the SUT . 27

5 The Adapter Framework 30

6 Validation 41
6.1 Integrating script-based consumers 42
6.2 Integrating scriptless consumers 44

7 Results and conclusions 48

8 Personal Reflection 50

2

Summary

In the field of software engineering, testing at the GUI level is an essential ac-
tivity that is widely used in industry to perform quality assurance [1]. Besides a
manual approach, the automated approach has a variety of available techniques
(e.g. capture/replay, model-based, manually scripted) that can be used for ef-
fective GUI testing [2, 3]. Performing testing activities in an automated fashion
has become the de facto standard nowadays in the software engineering practice
[4].

An elegant automated GUI testing technique is implemented in a tool called
TESTAR (Test Automation at the user inteRface level) [5]. Using a model-based
event-extraction technique, TESTAR is capable of recognizing GUI controls and
their properties by interacting with assistive technologies. One example of an
assistive technology is the Windows Automation API. TESTAR currently faces
several limitations among which include that TESTAR must be installed on the
same host of the System Under Test (SUT) when using desktop applications,
and test execution can only take place against one SUT instance at a time for
both desktop- and web applications. This currently limits the possibility to
execute tests within a remote and parallel architecture.

Although it is possible to test web applications using the Windows Automation
API, it turned out that this API has a poor recognition of non-native elements in
web applications. Changes and updates generated by JavaScript are not always
presented to users interacting with the Web through assistive technologies. An
effort has been made to embed WebDriver in TESTAR. Although this partly
addresses the former of the earlier mentioned limitations, remote and parallel
test execution is still a desired functionality.

This research project concerns the development of this desired remote and par-
allel test execution capability and has resulted in a proposal of a generic API
that is capable of integrating multiple backend SUT APIs at the client side
using a remote server component. Using an adaptation approach an adapter
component wraps around the SUT, manages the low-level details of interacting
with the SUT and presents a more abstract view of the SUT to the consumer.
An Adapter Framework has been realised to answer several research questions.
From the consumer perspective, the communication with the Adapter Frame-

3

work is done using a RESTful API that provides all necessary capabilities to
register, authenticate and setting up a Test between a SUT Consumer and one
or more SUT Clients. The interaction between the SUT Client and the server
is done using Websocket technology. A proof of concept has showed that it is
possible to execute a script-based and scriptless execution approach using the
same API. Also, a lot of overlapping and similarities between programmable
backend APIs has been observed which makes it theoretically possible to serve
multiple Client Adapter types using one front-end API.

Chapter 1

Introduction

In the field of software testing many testing approaches and tools exist [4, 5,
6, 2, 7]. Testing an application via its Graphical User Interface (GUI) is a
subject on its own and this research project focuses on testing a system via its
GUI using a proposed Adapter Framework. Performing GUI testing activities
consists of executing testing activities against a software system with a GUI
front-end [8]. Testing a software application at the GUI level is an important
step when ensuring software quality of applications with GUIs, mainly because
taking the user’s perspective is the ultimate way of verifying a program’s correct
behaviour [9] and ensures realistic tests from the end user perspective [5]. The
GUI provides a simple way to control the software system by displaying visual
cues such as buttons, text fields, and combo-boxes (also known as ”widgets”) on
the screen. After displaying the widgets users can perform sequences of actions
such as mouse clicking or keyboard typing on these visual components [10, 2].

1.1 Automated GUI level testing

To reduce human resources and increase the frequency at which software can be
tested, test automation plays an important role [3]. Besides a manual, labour
intensive and time consuming approach [10, 11, 12, 13, 14], the more practical
automated approaches are used nowadays as an industry practice [15, 16, 17, 5].
Using automated GUI testing approaches, the user’s point of view is used while
a sequence of available actions against the SUT is automatically executed using
tools or frameworks [9].

1.1.1 Defining the GUI

Before going into more details about GUI testing an explanation is needed about
how a GUI can be defined formally. The given definition will be used later on in
the research project. Memon formally models a GUI as a set of objects/widgets
O = {o1, o2, . . . , om} and a set of object properties P = {p1, p2, . . . , pl} of those

5

objects (e.g., properties like font, caption, etc.) [7]. Mariani et al [18] go a step
further by also defining a widget wi as a pair (typei, Pi) where typei is the type
of the widget and Pi is a set of properties Pi ⊆ P .

Each GUI uses certain types of objects with associated properties. At any
specific point in time, the state of the GUI can be described in terms of all the
objects that it contains, and the values of all their properties. Formally the
state of the GUI can be defined as follows:

Definition: The state of a GUI is the set P of all the properties of all the
objects O that the GUI contains. A distinguished set of states called its valid
initial state set is associated with each GUI.

Definition: A set of states SI is called the valid initial state set for a par-
ticular GUI if the GUI may be in any state Si ∈ SI when it is first invoked.
The state of a GUI is not static; events performed on the GUI change its state.
These states of a GUI are called reachable states. The events are modeled as
state transducers.

Definition: The events E = {e1, e2, . . . , en} associated with a GUI are func-
tions from one state to another state of the GUI. The function notation Sj =
e(Si) is used to denote that state Sj is the state resulting from the execution of
event e in state Si. Events occur as part of a sequence of events.
The possible sequences of available actions can be manually defined and listed
using script-based approaches or automatically determined using scriptless ap-
proaches. The possible sequences of available actions also known as a valid
event sequence are sequences that are permitted by the structure of the GUI
and following Memom, can be defined as follows:
Definition: A legal event sequence of a GUI is e1; e2; e3; ...en; where ei + 1 can
be performed immediately after ei

From this definition and the definition given in paragraph 1.1.1 the following
definition applies for a Test Case:

Definition:. A GUI Test Case T is a pair {S0, e1; e2; ...; en}, consisting of a state
S0 ∈ SI , called the initial state for T , and a legal event sequence e1; e2; ...; en.

Testing at the GUI level can be viewed from various perspectives. The way
how a GUI Test Case is created and how it gets executed against the SUT once
it is created. Both are discussed in the next sections.

1.1.2 Test Case Design

Before automated GUI level testing can take place, first a legal event sequence
of the SUTs GUI must be created as part of the Test Case T . This section
discusses several techniques that can be used to design a Test Case.

Manually using Capture-replay tools
A step towards GUI Test Case design is the usage of capture-replay tools.
Capture-replay tools facilitate the tester generating test scripts and automated
execution of these scripts against the SUT [10] [12]. Before the test script is gen-
erated the capture component of the tool stores the end-user interaction actions
in a script file that can be replayed later using the replay component of the tool.
While capture-replay tools partially address the problems of testing GUIs, they
have drawbacks of their own, including problems involving test script mainte-
nance once the GUI starts to evolve [19] and the support for automatic Test
Case generation [12].

Model based testing (MBT)
Another step further than using Capture-replay tools is the automatically gen-
eration and execution of Test Cases. This can be achieved by performing a
model-based testing approach. The goal of model-based testing is to check the
conformity between the implementation and the specification (model) of a soft-
ware system [12]. One benefit of a model-based testing approach is Test Case
generation (from the specification), Test Case execution and the comparison of
the actual results obtained from the implementation with the expected results
described by the specification [10].

Random testing
Besides the manual Test Case design and the MBT approach, a random testing
approach exists. Using a random testing approach the GUI of the SUT is walked
randomly and all encountered events are executed in sequence by first extract-
ing the possible events followed by action selection, creating the Test Case and
executing the Test Case as an event sequence [2] against the SUT. This event-
extraction can be accomplished by interacting with the GUI via accessibility
APIs that are provided by development platforms and used at runtime [10].

Model-based testing (MBT) approaches for GUI-driven software construct an
abstraction of some subset of an application and prescribe a Test Case selection
process which constructs Test Cases based on the model. Model-based GUI test-
ing approaches first generate testscripts ”offline” before executing them against
the SUT [10]

1.1.3 Test Case Execution

Test Case execution is briefly discussed in this section. Once a Test Case T is
designed using one of earlier discussed approaches the Test Case can be executed
against the SUT using several ways. Besides a manual Test Case execution ap-
proach, both script-based and scripless Test Case execution will be discussed.

Manual Test Case execution
As discussed earlier, the most basic testing approach is manually executing the

Test Case against the SUT. Using this approach, a valid sequence of actions is
defined first and eventually manually executed against the SUT by the tester of
the SUT.

Script-based Test Case execution
GUI testing effort can significantly be reduced using a script based testing ap-
proach. Once the desired sequence of events is defined by the tester and com-
bined in a Test Case, it may be reused to automate GUI interactions in regression
testing [2]. This testing approach gives several challenges amongst the one that
can be seen by using a capture-replay approach discussed later. Because script
writing is a labor-intensive process, compared with Model-based testing, also
discussed later, the number of Test Cases is often small and the maintenance
of test scripts once the software starts to evolve is a challenge [20]. After all,
a Test Case can break once the GUI starts to change and a once valid event
sequence is invalidated by the change.

Scriptless Test Case execution
When scriptless testing is performed, no offline Test Cases are crafted upfront
and executed against the SUT at a later moment. Several techniques and tools
exist to enable this testing approach. Without a script it is not possible to
define a sequence of events and combine these events in a Test Case. There-
fore, another way of defining a Test Case should be used. Test Cases can be
generated automatically by interacting with the backend APIs that exposes the
possible events E. To generate Test Cases, we can, for instance, start from a
known initial state S0 and use a graph traversal algorithm, enumerating the
nodes during the traversal, on the event-flow graphs [21].

1.2 Localization strategies

To actually determine what sequences of available actions are available, several
localization strategies exists [4, 20]: coordinates-based, widget-based and visual-
based. These strategies are based on techniques used to stimulate and assert
the SUT. In this work, we will only concentrate on the widget-based approach
discussed briefly below.

The widget-based localization strategy
The widget-based approach is a suitable technique that can be used for ap-

plications exposing their GUI as hierarchical data structures and will be used
within the context of this research assignment. Using this technique, applica-
tions locate elements using information contained in the widget-tree. As defined
earlier in Section 1.1.1, this tree provides a data structure with a fixed set of
properties, and the complete data structure with the set of properties at a given
time constitutes the state of the GUI [22]. In case of a web application elements,
like anchors and buttons, the widgets are located by accessing their properties
(eg, identifier or text) or by navigating the DOM using Xpath queries [23]. The

actual interaction is accomplished by interacting with APIs like WebDriver. In
case of desktop applications widgets, like buttons and menu items, the widgets
can be accessed by interacting with APIs like the UI Automation API.

1.3 GUI testing using TESTAR

A Widget-based random testing approach is implemented in a tool called TES-
TAR [5]. Using a GUI-level dynamic event-extraction technique against the
Accessibility API of the host operating system, to communicate with desktop
applications, and the Java access bridge to communicate with Java Swing ap-
plications. TESTAR is capable of recognizing GUI controls and their properties
by interacting with these APIs using the system mouse and keyboard. Using
this approach, TESTAR indirectly performs programmatic interaction with the
SUT. A powerful core capability of TESTAR is selecting actions based on infor-
mation derived from the GUI and the creation of test sequences on the fly [24].
This in contrast to most model based techniques that first create Test Cases
offline and execute them later as scripts against the SUT [10].

In a typical setup, TESTAR runs on the same machine as the SUT. After
TESTAR is started, the SUT is started and TESTAR scans the SUT to retrieve
the GUI state as a Widget Tree. The Widget Tree is translated into a set of
sensible actions that a user could execute in a specific SUT’s state and one ac-
tion is selected and executed against the SUT. A new Widget Tree is retrieved,
and available Oracles are applied to check (in)validness of the new UI state.

Chapter 2

Related work

This chapter discusses the usage of programmable APIs that can be used by
SUT consumers. First several Accessibility APIs are described and explained
and from there the concept of programmable APIs are explained.

2.1 Accessibility APIs

An accessibility API is an application programming interface (API) by which
an application (server) exposes its graphical user interface (UI) and content
to another application (the client). The Accessibility API is a fundamental
component of digital accessibility. Through the accessibility API, the client
discovers, represents, and modifies the server’s UI and content. An example
of accessibility servers can be any user agent, like a web browser or document
viewer. Accessibility clients can be assistive technologies, like screen readers or
magnifiers, UI automation and testing scripts, or dynamic content scripts like
JavaScript scripts [25]. Widgets that are visually displayed on the screen have
many properties like size and physical location in the viewport. Besides the
visible properties, there are many invisible properties that are present for each
object and not related to visual appearance at all. These properties uniquely
identify an object and give information about the type of object (checkbox or
button) and the state (checked or enabled). Web frameworks, operating systems
and other platforms provide a set of interfaces that expose information about
these objects and events to assistive technologies.

Microsoft UI Automation

The Windows Operating system uses the Microsoft UI Automation accessibility
framework [19]. This framework, a Windows implementation of the UI Automa-
tion API enables Windows applications to provide and consume programmatic
information about user interfaces. Together with the previous Microsoft Active
Accessibility the ecosystem of Windows automation technologies, the Windows
Automation API is formed [26].

10

The Windows Automation API exposes every piece of the UI to client applica-
tions as an automation element where the Providers supply property values for
each element. All Elements are exposed as a tree structure, with the desktop
as the root element. Automation elements expose common properties of the UI
elements they represent. One of these properties is the control type, which de-
scribes its basic appearance and functionality (for example, a button or a check
box) [26].

Accessible Rich Internet Applications and HTML Accessibility API
Mappings

The Accessible Rich Internet Applications Suite (WAI-ARIA), defines a way to
make Web content and Web applications more accessible to people with dis-
abilities. It especially helps with dynamic content and advanced user interface
controls developed with HTML, JavaScript, and related technologies [27]. By
supplementing HTML with specific attributes these can be based to assistive
technologies when there is not otherwise a mechanism. For example, ARIA
enables accessible navigation landmarks in HTML4, JavaScript widgets, form
hints and error messages, live content updates, and more. Many ARIA wid-
gets are currently incorporated into HTML5. Part of the WAI-ARIA is the
HTML Accessibility API Mappings (HTML-AAM). HTML-AAM defines how
user agents map HTML [HTML] elements and attributes to platform accessi-
bility application programming interfaces (APIs) [28].

2.2 Programmable Web APIs

This section discusses programmable APIs that can be used to interact with
Web applications. First, the Document Object Model is discussed briefly, after
which the WebDriver specification and several implementing frameworks are
discussed, in addition to the DevTools protocol implemented by the Puppeteer
NodeJS library.

The Document Object Model
For a web application, the structure of a web page that is part of the appli-
cation is represented as a Document Object Model (DOM). The DOM is an
API for accessing and manipulating documents (in particular, HTML and XML
documents) [29]. The Document Object Model (DOM) is a cross-platform and
language-independent API that treats an XML or HTML document as a tree
structure wherein each node is an object representing a part of the document.
The DOM represents a document with a logical tree. Each branch of the tree
ends in a node, and each node contains objects. DOM methods allow pro-
grammatic access to the tree. These methods can change the structure, style
or content of a document. Nodes can have event handlers attached to them.
Once an event is triggered, the event handlers get executed. Conforming the

definition given in 1.1.1, all elements of the DOM at a certain point in time can
be seen as the state of the application at that time.

The WebDriver specification

For modern web applications, the WebDriver specification can be used to de-
termine what exact sequence of events can be executed against a Web Applica-
tion Under Test (WAUT). The WebDriver specification provides a well-designed
object-oriented API that provides improved support for modern advanced web-
applications created through dynamic web pages. The WebDriver specifica-
tion provides an API to access elements on a Web page as they are rendered
in a browser [30]. The specification leans on the DOM, UI Events and the
ECMAScript Language Specifications. Since June 2018, the WebDriver spec-
ification is recommended by the W3C with the goal to draw attention to the
specification and to promote its widespread deployment.

The WebDriver API consists of the WebDriver interface with a concrete im-
plementation done in two classes: RemoteWebDriver and HtmlUnitDriver. For
every Browser type or App operating system a subclass is extended from the
RemoteWebDriver class.

The RemoteWebDriver acts as a middle man like browser-driver (eg: chrome-
driver) behaving like a server that sits between the automation script and the
browser. This enables the browser control.

To facilitate developers and testers performing test activities against the WAUT,
the WebDriver specification is implemented in several industry frameworks and
tools like Appium, Selenium WebDriver and WebdriverIO.

Appium
Appium is an industry tool that is frequently used to support automated
approach against native, hybrid and mobile web apps. Appium is an open
source test automation framework that drives several operating systems,
like iOS, Android, and Windows apps using the WebDriver protocol [16].
Appium uses a script-based testing approach against its backends using
WebDriver libraries and APIs. Appium offers an HTTP server written
in Node.js, a JavaScript runtime built on Chrome’s V8 JavaScript engine
that creates and handles WebDriver sessions [31].

Selenium WebDriver
Selenium Webdriver is an open-source collection of APIs used for testing
web applications. The Selenium Webdriver tool is used for automated
testing of web applications to verify whether they work as expected or
not. It supports all common browsers browsers like Firefox, Chrome,
Safari, Internet Explorer and Edge. It is also capable of executing cross-
browser testing.

The following testscript written in the javascript based language Node.js
[30] makes use of the selenium-webdriver Node.js library. Combined
with the Firefox driver, once this script is executed, it first navigates
to google.com, finds an element with name ’q’, types Selenium in this
element and presses the Enter key:

1 const {Builder ,Buy ,Key ,util} = require("selenium -

webdriver");

2
3 async function example ()

4
5 {

6
7 let driver = await new Builder.forBrowser("firefox").

build();

8
9 await driver.get("https: // google.com");

10
11 await driver.findElement(By.name("q").sendKeys("

Selenium",Key.RETURN));

12
13 }

14
15 example ();

WebdriverIO
Like Appium, WebdriverIO uses a script based testing approach using
the WebDriver specification to integrate with the WAUT. WebdriverIO
implements the WebDriver specification using Node.js and allows to run
tests on desktop and mobile applications [17].

Puppeteer and the DevTools protocol

Like Webdriver, Puppeteer provides a high-level API to control a Web Appli-
cation. Most things that can be done manually in the browser, can be done
using the Puppeteer API. A capability that is important for the context of this
research project is UI testing. The Puppeteer API is hierarchical and mirrors
the browser structure. Communication with the browser is made possible using
the DevTools Protocol. All communication is made possible by using serialized
JSON objects of a fixed structure [32].

DevTools Protocol
The Developer Tools Protocol is used by various Browsers, JavaScript
Engines and debugging tools. The Chrome DevTools Protocol allows
for tools to instrument, inspect, debug and profile Chromium, Chrome
and other Blink-based browsers. Many existing projects currently use
the protocol. The Chrome DevTools uses this protocol and the team
maintains its API.

2.3 Programmable Desktop APIs

For applications running as desktop applications, programmable APIs are avail-
able to automate the testing of Windows Desktop Applications. The researched
UI Automation API discussed next is an implementation of an Accessibility API
discussed in section 2.1. According to [25] and observing the industry, there are
several accessibility APIs for different operating environments available. Con-
cerning the scope of this research, only the Windows UI Automation API will
be briefly discussed in this section.

UI Automation Specification
The UI Automation specification forms the basis of the Windows implementa-
tion of UI Automation. The usage of UI Automation is twofold. First by using
UI Automation and following accessible design practices, developers can make
applications running on Windows more accessible to many people with vision,
hearing, or motion disabilities. Secondly, UI Automation is specifically designed
to provide robust functionality for automated testing scenarios. The latter is
the subject of this research, where TESTAR already consumes this API and
implements functionality for automated testing using a scriptless approach.

The Windows OS - UI Automation API
The Windows Operating system offers two APIs that can be used for UI ac-
cessibility and software test automation. The nowadays available Automation
API has followed a long evolution path which has led to the offering of two API
specifications. As a platform add-on the legacy Microsoft Active Accessibility
was introduced in 1996 to Windows 95. The second API is an implementation of
the User Interface Automation specification (UI Automation) and is introduced
in Windows Vista and version 3.0 of the .NET Framework. The UI Automa-
tion Specification can also be supported across platforms other than Microsoft
Windows.

Windows UI Automation tree overview
The UI Automation tree is a structure where the root element represents the
Windows desktop window (”the desktop”) and whose child elements represent
application windows. Each of these child elements can contain elements that
represent pieces of the UI. These elements are represented as Microsoft UI Au-
tomation control types.

Control types are properties that serve as well-known identifiers that indicate
the kind of control that a particular UI element represents. Control types are
exposed as UIALocalizedControlType objects in the form of Button Control
type or a Menu Control Type for a Button or a Menu. A Microsoft UI Automa-
tion Client application can use this type to identify the capabilities of a control
and to determine how to interact with it.

Views of the UI Automation tree
Looking at the UI Automation tree, several views can be distinguished, each
providing relevant information provided to clients. The Raw View gives the
most detailed information available and consists of the full tree of automation
elements with the desktop as the root element. This view closely follows the
native programmatic structure of an application. A subset of the raw view can
be found in the control view. This view only includes items that satisfied the
control element property. Items holding this property provide information to
the user or enable the user to perform an action. These are the UI items that
are most interesting to automated testing applications.

Automatically testing an application using an API means that a sequence of
events first gets invoked against an intermediate component e.g. the Webdriver
API for web applications or the Windows Automation API for desktop applica-
tions. This intermediate layer translates this sequence of events to instructions
that the SUT understands. On behalf of the initial caller this application layer
invokes the SUT, asserts and redirects the output back to the caller.
Automated testing of Web application can be achieved successfully using the
currently W3C draft version of WebDriver API. WebDriver is a remote con-
trol interface that enables introspection and control of user agents. WebDriver
provides a platform- and language-neutral wire protocol as a way for out-of-
process programs to remotely instruct the behavior of web browsers [17]. The
WebDriver specification is a W3C recommendation which means this specifi-
cation can be considered as a Web standard. According to the specification,
Webdriver is used to write tests that automate a user agent, like a web browser,
from a separate controlling process. The WebDriver API provides a set of in-
terfaces to discover and manipulate DOM elements in web documents and to
control the behavior of a user agent. WebDriver supports both script-based and
scriptless approaches.

Automated testing of web applications

Testing effort is often a major cost factor during software development. Many
software organizations are spending up to 40% of their resources on testing [4].
Therefore, an existing open problem is how to reduce testing effort without af-
fecting the quality level of the final software. Automation is a major solution
for reducing high testing effort. Automating certain manual tasks from software
testing process can save a lot of testing time. It can help in performing repet-
itive tasks more quickly than manual testing. Software testing can be divided
into two main categories, manual testing and automated software testing. Both
categories have their individual strengths and weaknesses. When testing web
applications in an automated approach, actions are invoked using a script-based
or scriptless test case execution.

Using the script-based approach, the script is crafted upfront by the test au-
tomation engineer. A test script contains a sequence of commands or events,

combined with test oracles that assert the outcome of a test step, stored in a
script language file to execute a test case and report the results. The script may
contain logical decisions that affect the execution of this script, creating mul-
tiple possible pathways, constant values, variables whose values change during
playback. The advantage of test script development process is that scripts can
repeat the same instruction many times in loops, each time with different data.
Once the desired sequence of events is defined and combined in a Test Case, it
can be executed against the SUT.

When a scriptless testing approach is performed, no offline Test Cases are crafted
upfront and executed against the SUT at a later moment but the test case gener-
ation and execution are combined. Several techniques and tools exist to enable
this testing approach. Without a script, it is not possible to define a sequence
of events and combine these events in a Test Case. Therefore, another way of
defining a Test Case should be used. Test Cases can be generated automatically
by interacting with the backend APIs that exposes the possible events E. To
generate Test Cases, we can, for instance, start from a known initial state S0 and
use a graph traversal algorithm, enumerating the nodes during the traversal, on
the event-flow graphs [21].

Chapter 3

Research Questions

The introduction shows there are many ways to test an application via it’s
graphical user interface. One way is to use a Widget-based random testing
approach at the GUI level. Using this approach, scripted and a scriptless testing
activities against a SUT can be achieved. An environment specific API that
is currently available for desktop applications is offered by the Microsoft UI
Automation accessibility framework. This API is also used by TESTAR to
implement its automated scriptless testing approach against desktop SUTs. For
Web based applications, several standards are available, for example, WebDriver
and Puppeteer both are capable of inspecting and executing actions against Web
based SUTs.

This research project will first bring the Widget-based random testing ap-
proach at the GUI level together with testing Web-, Native- and Desktop Ap-
plication using a single API. Secondly an Adapter Framework will be created
that implements this API. While designing and defining the API and experi-
menting with an initial implementation, the research questions summarized in
the following subsections will be answered.

Research questions
The main research question asked in this research project is:

How can a generic API be implemented for remote and parallel GUI
testing and validated for different type of consumers?

To answer the main research question, the following sub research questions
must be answered:

RQ1: What does it mean for an API to be generic and how to adapt to multiple
environment specific APIs like the Windows Automation API, the WebDriver
API and the Android API.

RQ1.1: What is the overlap between the Windows Accessibility API and other

17

specific backend APIs like the Webdriver API and/or the Android API;

RQ1.2: Are there any generic APIs available yet and what properties hold
for these APIs; (literature study)

RQ1.3: How would it be possible to translate to a more generic version of
the Windows Automation API, the Webdriver API and the Android API.

RQ2: What are the challenges and possible solutions looking at remote and
parallel model-based GUI testing.

RQ2.1: What protocols, tools and frameworks can be used to support remote
and parallel execution of DOM based event-extraction testing approaches;

RQ2.2: What design- and/or anti patterns are available?

RQ2.3: What non-functional aspects are important to execute remote and par-
allel model-based testing.

RQ3: How can the implementation be validated by several consumers?

Validating the implementation will be done by integrating a script-based con-
sumer (e.g. WebDriver) and a scriptless consumer (e.g. TESTAR).

Assignment part one - The Generic API
The first part of the research will be entirely devoted to defining and designing
a generic API that is capable of driving GUIs, as formally defined in Section
1.1.1. The main goal is modeling an API that abstracts away environment spe-
cific APIs to the generic API. Research question RQ1 and its sub questions will
be answered in the first part. To define the generic API the formal definition
of the GUI (given in paragraph 1.1.1) will be used and combined with both the
WebDriver specification and the API specification provided by the Windows
automation technologies ecosystem. With the current knowledge, the research
assignment will kickoff with the following to be determined during the research:

• the possible types of objects/widgets that are part of O

• how the possible types of objects should be represented in a generic way

• the possible types of properties P

• how the possible types of properties should be represented in a generic
way

• how a state can look like and can be represented

The API specification of the generic API will be made available as a Java API
for both the client and server part. JSON will be used for the communication

between the SUT clients and server. A JSON API specification will be made
available as a Web Application Description Language (WADL) definition [33]
combined with a JSON Schema definition [34].

Assignment part two - The Adapter framework
The second part of this research builds further on the first part and addresses
the desired functionality to support remote test execution. An adapter frame-
work (client and server part) is implemented with at least the following core
capabilities:

• translating from backend SUT to abstract view and vice versa

• managing the low-level details of interacting with the SUTs.

• providing the possibility to remotely communicate between multiple SUT
clients and a central server

• facilitating all low-level communication between the SUT clients and the
server

For the adapter framework the following design choices have already been made
in the research proposal and will be discussed further:

• the communication between the SUT clients and server will be based on
WebSockets combined with NodeJS

• JSON will be used as the data format

• the adapter framework will support both local and remote test execution

The design choices are based on a combination of upfront requirements given
by the research committee (the usage of Websockets) and best practices and
standards used in the industry (usage of JSON and NodeJS) as described in
the research context. Gaining knowledge about the first will be in scope of
this research assignment, basic knowledge about the latter is already gained by
following several courses about the topics. Further hands-on experience and
knowledge will be gained during this research.

To validate the results obtained from researching both parts, an adapter frame-
work will be developed, and a proposal, together with an initial implementa-
tion, will be made to integrate TESTAR with this adapter. This will validate
a scriptless integration. A script-based integration will be validated by reusing
and modifying yet to be determined test scripts that are used, for example, by
Selenium WebDriver or the WebDriver.io framework.

Chapter 4

Generic API

The goal of this chapter is elaborating the first research question (RQ1) by
trying to understand what it exactly means for an API to be generic and how
an adaption to multiple environment specific APIs can be made possible.

4.1 Characteristics of the Generic API

An important design objective that the API fulfills is exposing a framework,
independent of back-end programming languages and operating systems. This
framework is capable of providing all the desired functionality to consumers of
this API. Through the use of this API, the underlying implementation is hid-
den and an uniform language and data structure is used. In the context of this
research, this objective has led to two technological choices. First, the usage of
the REST software architecture style [35], and secondly, a formally defined com-
mon information model that is capable of testing multiple backend SUTs at the
GUI level using a script-based and a scriptless testing approach. Both choices
are made in order to keep the development within the earlier mentioned design
objective. Both choices are discussed in detail in the following subsections. Be-
sides the usage of JSON over HTTP at the consumer side and Websockets at
the SUT client side, a formally defined common information model is defined
to ensure loose coupling between SUT Consumers and SUT Clients.

Translating this objective to the scope of this research project, this API should
be able to present a data structure that is capable of expressing the following:

The set of Objects/Widgets

To be able to present a complete set of Objects/Widgets this set should be listed
for all possible SUT Clients (Web, Desktop, Native App). With the following
definition as a starting point :

O is a set of objects/widgets defined as O = {o1, o2, ..., om}.

20

For a Web based application all objects are expressed as HTML tags and can
be listed as the following set:

O = {< a/ >,< li/ >,< div/ >,< img/ >,< h1/ >,< small/ >,< ul/ >, ...}

For a Windows Desktop application with the use of the Automation API, all
objects are expressed as AutomationElements. A subset can be expressed as
following:

O = {UIAFullDescription, UIAIsTopmostWindow,UIAIsDialog, UIALocalizedControlType, ...}

The set of Objects/Widgets properties

All the objects in O contain properties. The set of properties can be defined as
following:

P be a set of object properties P = {p1, p2, ..., pl}

These properties give information about the object itself like it’s unique id
or name. For the purpose of this research, it is also important to know if an
object is actionable. For an Object to be actionable, it must contain at least
one property that expresses it is actionable.

For a Web based application, an object is actionable if this object contains
specific HTML Event Attributes, like Keyboard-, Mouse-, Drag or Clipboard
Events:

P = {onClick, onMouseUp, onScrollDown, ...}.

The following listing shows a HTML Button with an onclick attribute. This
Button invokes a JavaScript function once it is clicked giving this Button the
actionable characteristic:

1 <button onclick="myFunction ()">Click me</button >

Listing 4.1: an actionable HTML object

For a Windows Desktop application and from the perspective of the UI Automa-
tion API, some properties are common to all Automation Elements. For in-
stance, all Elements possess a name or textual description, and a role (UIABut-
ton) or type (UIALocalizedControlType). Other attributes, like value and state,
vary in applicability to different types of Automation Elements. The role of an
Automation Elements is the attribute that best summarizes the nature and
functionality of the Element. Examples of types are “button”, “menu item”,
“list” or “document”. Knowing the type of an object, a SUT consumer may
determine what other properties are relevant in order to represent the object,

and what general behavior the Element may exhibit. For example, a “button”
is described by its name property and pressed state, and it can be used to invoke
an action when the UIAIsInvokePatternAvailable is true. In the UI Automation
API, in addition to a single type property, the nature and functionality of an
AutomationElement is specified by a combination of predefined behavior or pat-
tern. This approach allows a more flexible, accurate description of the object.
An AutomationElement, for instance, is actionable if this object contains the
UIABoundingRectangle property or the UIAIsInvokePatternAvailable
property. The former indicates where the AutomationElement is exactly located
on the screen, and the latter indicates if it can be invoked using the Invoke pat-
tern, if the value is true for this property. For the UIABoundingRectangle,
a mouse click in the middle of this rectangle can be invoked (assuming the but-
ton is not obscured when a mouse click is simulated). The possible subset of
properties for a desktop application looks as following:

P = {UIAIsInvokePatternAvailable, UIABoundingRectangle, ...}

4.2 Analysis of the overlap between backend APIs

In section 2, some overlap can be discovered between programmable APIs.
Based on this, a further analysis is performed to determine how an API could
possibly look like if it must serve multiple backend APIs.

The following categories are distinguished to perform a structured analysis:

• category 1: extracting the state tree
an understanding must be available about the information that is needed
to extract the state of the GUI of the SUT for all SUT types.

• category 2: locating elements
it should be clear what information is needed to locate an element on the
GUI of the SUT for all SUT types.

• category 3: executing a sequence of actions
because every programmable API has it’s own way to communicate with
the GUI of a SUT, this category focuses on the way actions can be executed
against actionable items.

Category 1: Extracting the state tree

Once a SUT ends up in the state and exposes its state tree, this state tree
must be composed and returned to the SUT consumer. For every type of SUT,
another implementation of a tree traversal algorithm can be used. For the Web
based and Windows Desktop based SUTs, this section describes the information
that is needed to be able to start composing the state tree of the SUT.

Extracting the state of a Web API
For a Web-based SUT, the state tree is expressed as the set of HTML tags
with their properties that are part of the Document Object Model of the
web page that is fully loaded. A tree traversal of this DOM can be executed
using Web scraping algorithms using the APIs provided by e.g. WebdriverIO
or Puppeteer. Information like the destination (URL) to navigate to, before
the state tree can be extracted, must be available first. Once the backend
API successfully navigated to this URL, some time might be needed for the
web page to fully load.

The DOM tree can be imagined as a collection of “nodes” related to each
other through parent-child and sibling-sibling relationships. Each node rep-
resents an object in an XML document, including elements, textual content,
and comments. Each XML document contains a single root element (¡html¿
in HTML, for example) from which all other nodes ultimately descend.

DOM tree traversal may be accomplished through the use of six basic prop-
erties previousSibling, nextSibling, childNodes, firstChild, lastChild
and parentNode. All properties, except childNodes, contain a reference to
another node object. The childNodes property contains a reference to an
array of nodes.

Extracting the state using a Desktop API
For the Windows Desktop Application, the Windows Automation API can
be used to extract the state tree of a Desktop application. If the Automa-
tion API is used, the consumer of this API acts as the UI automation client.
UI Automation clients view the UI Automation elements on the desktop
as a set of AutomationElement objects arranged in a tree structure. For a
Windows Desktop SUT, the state tree can be extracted by first looking for
the process id belonging to the name of the application that acts as the SUT.

Using the TreeWalker class, a tree traversal algorithm can be implemented.
A client application can navigate the UI Automation tree by selecting a
view of the tree and stepping from one AutomationElement to another in a
specified direction using the GetFirstChild, GetLastChild, GetPrevi-
ousSibling, GetNextSibling, and GetParent methods.

Category 2: Locating elements
An important part of the state tree is the set of items that are actionable. This
information is needed by the SUT Consumers to know that one or more actions
can be invoked against these items. Based on the definition for the set of objects
from section 4.1 and the definition of the set of actionable properties P from
section 4.1 for every item in O the information requirement can be analysed
further.

Locating elements using Web APIs
For the Web based API, there are several Locator strategies to find elements.
Using the widget based localization strategy as described in section 1.2, the
id of an element or the location path expressed as an XPath expression is
the least information that should be available in the state tree. If the Web
application uses CSS to style the web pages, also a CSS selector can be used.
Using an XPath locator strategy, in Puppeteer also called ElementHandle
that represents an in-page DOM element can be found as following:

1 const puppeteer = require(’puppeteer ’);

2
3 (async () => {

4 const browser = await puppeteer.launch ();

5 const page = await browser.newPage ();

6 await page.goto(’https :// example.com’);

7 const element = await page.$(’<xPath >’);
8 // ...

9 })();

Listing 4.2: Puppeteer API locating element example

Locating elements using Desktop APIs
To locate elements that are part of an Windows Desktop application, the
Automation API offers various ways to obtain AutomationElement objects
for user interface (UI) elements. A best practice for finding UI Automation
elements in automated testing scenarios is by its name, AutomationId or
some other property or combination of properties. The FindFirst method is
the easiest to use method. If the element sought is an application window,
the starting-point of the search can be the RootElement.
Initially and after performing a sequence of actions, a full state tree is needed
for a SUT consumer. In this case, constructing a subtree of all elements of
interest can be composed by using the TreeWalker class. Using the Au-
tomation API, the same is accomplished by starting from the root Automa-
tionElement, lookup the desired application window, and from there, lookup
the desired Automation Element.

1 var root = AutomationElement.RootElement;

2 AutomationElement element = treeWalker.GetFirstChild(root);

3
4 // Look for the window named "Application Window"

5 var applicationWindow = new PropertyCondition(

AutomationElement.NameProperty , "<Application Window >")

;

6
7 var treeWalker = new TreeWalker(applicationWindow);

8 AutomationElement element = treeWalker.GetFirstChild(root);

9
10 // now look for a button with the text "Button Name"

11 var buttonElement =window.FindFirst(TreeScope.Children , new

PropertyCondition(AutomationElement.NameProperty , "<

Button Name >"));

Listing 4.3: Automation API locating element example

To achieve this, an element that holds the property UIAIsInvokePatter-
nAvailable with the value ’true’ can be invoked using an IUIAutomation-
InvokePattern interface from the element to invoke the action of a control.

Category 3: Executing a sequence of actions
Once items are identified and the state tree is extracted from the SUT, the
next step is executing one or more actions against a given widget. Not only the
requirement that an item is actionable plays a role now, but also what kind of
item we are dealing with. A button, for instance, can only be pressed and in
a textbox an input sequence of characters can be invoked using the keyboard
action. The opposite is not possible.

Executing actions using Web APIs
For a Web Application, performing actions against an element once this
element is located can be achieved as following:

1 const puppeteer = require(’puppeteer ’);

2
3 (async () => {

4 const browser = await puppeteer.launch ();

5 const page = await browser.newPage ();

6 await page.goto(’https :// example.com’);

7 const element = await page.$(’<xPath >’);
8 await element.click ();

9 // ...

10 })();

Listing 4.4: Puppeteer API locating element example

Executing actions using Desktop APIs

Using the Automation API, the same can be achieved, assuming the
InvokePattern is available for a given Automation Element:

1 // click the button using the InvokePattern

2 var invokePattern = buttonElement.GetCurrentPattern(

InvokePattern.Pattern) as InvokePattern;

3
4 invokePattern.Invoke ();

Listing 4.5: Automation API locating element example

Analysis of the results

Based on the information analysis done in this section, a proposal can be made
towards an API that is capable of driving multiple programmable APIs. For
every category, the following attributes are needed:

Category 1: extracting the state tree

• For Web Applications

– (mandatory) destination (URL)

– (optionally) how long to wait before extraction must start

– (optionally) from what element node of the DOM tree to start

• For Desktop Applications

– (mandatory) name of the application window

Category 2: locating elements

• For Web Applications

– (choice)

∗ CSS Selector

∗ XPath Selector

∗ Tag name

∗ Link text selector

∗ Partial Link text selector

• For Desktop Applications

– (choice)

∗ XPath Selector

∗ AutomationId

Category 3: executing a sequence of actions

• Type of Widget

4.3 Driving the SUT

To change the state of a SUT, one action or a sequence of actions should be
executed against the SUT. Human Interface Devices (HID), like a keyboard, a
mouse, or a touchscreen, are used to perform these actions. One action can be
divided into a main action, like a keyboard or a mouse action, and one or more
sub actions, like pressing a key using the keyboard main action, or moving a
pointer using the mouse main action. The sub action is always modelled as a
2-tuple name/options. The options is a set of key-value pairs (see Figure). E.g.
the keyboard main action contains a sub action with name ”type” and options
with a key text and the value that must by typed.

Figure 4.1: Action sequence structure

Keyboard sub actions

For the keyboard main actions, the following sub actions are available to interact
against the SUT using a keyboard:

• type, sends a key down, key press/input, and key up event for each char-
acter in the text.

• press, if the key is a single character and no modifier keys besides the
indication that the Shift key is being held down, a key press/input event
will be generated. The text option can be specified to force an input event
to be generated.

• down, dispatches a key down event. If the key is a single character and no
modifier keys besides Shift are being held down, a key press/input event
will also be generated. The text option can be specified to force an input
event to be generated. If the key is a modifier key, Shift, Meta, Control,
or Alt, subsequent key presses will be sent with that modifier active. To
release the modifier key, use the up sub action.

• up, Dispatches a key up event.

• sendCharacter, dispatches a key press and input event. This does not
send a key down or key up event.

Mouse sub actions

The following mouse sub actions are available to interact with the SUT using a
mouse:

• down, dispatches a mouse down event.

• move, dispatches a mouse move event.

• up, dispatches a mouse up event.

• click, shortcut for mouse.move, mouse.down and mouse.up.

• wheel, dispatches a mouse wheel event.

Starting and stopping the SUT

Starting and stopping the SUT depends on the type of SUT. For a web based
SUT client, for instance, starting the SUT depends on the fact that the web
application is up and running and accepting requests. For web applications, it
can be assumed that this SUT is always running as a web application in a web
server container. For specific clients, only the SUT client adapter knows how to
start the SUT. This means a generic action is not applicable. Nevertheless, the
adapter framework exposes a management API that is able to check the status
of the SUT and sending specific commands to the SUT to start, shutdown or
restart the SUT or shut it down via the adapter framework.

Navigating through a SUT

Navigating through the SUT is possible by round tripping between SUT Con-
sumer and SUT Client by executing one TestStep. Every round trip starts with
optionally executing a sequence of actions, followed by extracting the state of
the SUT. The Adapter Framework translates the query and invokes the SUT
via the SUT specific SUT Client Adapter. The SUT Client Adapter populates
the current WidgetTree and gives this WidgetTree to the adapter framework.
The SUT Consumer determines what action can be performed by selecting an
action from the set of O and P. Once this action is selected, it should be trans-
lated to a corresponding Keyboard or Mouse action. After translating to the
corresponding action, the exposed REST API of the adapter framework can be
invoked. This time, a request with actions is sent, these actions are executed
against the SUT that should change the state of the SUT. The new state is
extracted again and returned to the SUT consumer.

Extract the current state of the SUT

Extracting the current state of the SUT is an implicit action that can be ex-
ecuted in two ways. First, when an empty sequence of actions is sent to the
Adapter Framework, only the state tree of the SUT is extracted and returned to
the consumer. Secondly, in case of sending actions, these actions are executed
before the new state is extracted and returned to the consumer. The API calls
are discussed in section Generic API.

Chapter 5

The Adapter Framework

The Adapter Framework that is build as part of this master thesis is discussed in
this section. With this Framework, a proof of concept is created and elaborated.
This Adapter Framework implements the proposed API discussed in section 4.
The goal is to answer the second research question (RQ2) and its sub questions.

High level overview, global functionality and design choices
The Adapter Framework can be broken down into several parts, all working
close together to meet the overall requirements looking at remote GUI testing
against a generic API. Figure High level overview, global functionality and de-
sign choices gives an overview of the created framework.

Figure 5.1: High level overview Adapter Framework

30

The heart of the framework is the SUT AdapterServer that, once running, ac-
cepts requests from both SUT Consumers and SUT client Adapters. The SUT
Consumer initiates tests against one or more SUT clients using an exposed
RESTful API. The SUT Client accepts sequences of events from the SUT Con-
sumer via the server, executes this sequence and sends response to the SUT
consumer. The following figure shows the Adapter Framework. In the following
subsections, all elements will be discussed in more detail.

Adapter Framework technology stack
This section lists the technology stack that is used to implement the Adapter
Framework with a short rationale behind each choice.

• NodeJS framework usage
At least the Server part and the Web Client Adapter are implemented
using the NodeJS framework. There are several reasons for choosing a
NodeJS implementation. NodeJS is a popular environment to build cross
platform applications using JavaScript. Cross platform integrations be-
tween SUT consumers and different types of SUT clients should theo-
retically be achieved easily. Secondly, the SUT Web Adapter Client is
based on Puppeteer and Puppeteer natively provides an API that can be
accessed using NodeJS.

• Puppeteer on the SUT Web Client
The Web Client Adapter implementation uses Puppeteer to interact with
the SUT. The reason for this implementation choice is the fact that Pup-
peteer natively runs on NodeJS and the NodeJS environment is used for
the adapter server. Besides this, Puppeteer can run headless and does not
need additional libraries to achieve a headless integration with Chrome
web browser which makes interaction with Web applications straight for-
ward.

• RESTful API
The SUT Server exposes a RESTful API to SUT Consumers. The reason
behind this is answered by the first research question and discussed in
section Generic API.

• WebSocket SUT Client/Server interaction
The SUT Server and SUT Client(s) integrate using WebSockets. Using a
WebSockets communication channel between SUT Clients and the server
enables real-time, bidirectional and event-based communication. Using
the Socket.IO NodeJS library provides additional functionality like Broad-
casting, which makes it easy to send events to all the connected SUT
Clients, and Rooms which can be used to broadcast events to a subset of
SUT clients. These features provide parallel execution of multiple SUT
Clients initiated by only one SUT Consumer.

• Token based Authentication
To offer a lightweight Authentication between SUT Consumers, Clients
and the Server, the usage of a Bearer token is used. The least needed
security can be achieved using this security mechanism. This mechanism
is also the most commonly used technique to shield RESTful APIs.

The SUT Consumer

The SUT consumer is the part of the Adapter Framework ecosystem that acts as
the consumer and uses the Adapter Framework to integrate with different SUTs.
SUT Consumer communicates with the Adapter Framework through JSON over
HTTP. The Adapter Framework exposes all required functions through an ex-
posed REST API. See the next subsection for more information about this API.

The RESTfull API

The REpresentational State Transfer (REST) software architecture style is used.
This allows platform and programming language independence and facilitating
the implementation of new data and processing components once SUT specifics
needs to be available to the consumer of the SUT.

To make functionality available to SUT Consumers a RESTful API exposes
the API that is discussed in section Generic API. Also part of this API is
a supporting interface that is also available as a RESTful API to expose all
functionality that is needed before testing can be started. Tasks like client reg-
istration, authentication and authorization are offered. Section RESTful API
Capabilities gives more details about what exact capabilities are available for
the SUT Consumer.

The SUT Adapter Server

The Adapter Server is the heart of the Adapter Framework ecosystem. Once
this server is up and running, it listens to incoming HTTP traffic from the SUT
Consumers or WebSocket requests from SUT Adapter Clients. Before an actual
Test can be executed, both the SUT Consumer and the SUT Client must register
themselves to the Adapter Server. After successful registration, both the SUT
Consumer and Client authenticate themselves before creating a Testsession. If
both the SUT Consumer and the SUT Client successfully created a Testsession,
a Test can be initiated from the SUT Consumer. A Test can consist of one or
more TestSteps that can be used for facilitating a scriptless testing approach or
a TestScript that is capable of facilitating a script-based approach.

SUT Client Adapters

For every specific SUT variant a SUT, Client Adapter can be created. The need
for creating a specific Client Adapter depends on the specifics of a certain SUT.

Every adapter should be capable of integrating to and from the generic API
exposed via the RESTful and WebSocket APIs.

SUT WebApplication Client Adapter
The SUT WebApplication Client Adapter is initially created to address several
research questions. This adapter makes it possible to interact with Web Appli-
cations using the Puppeteer Node.js library. The SUT WebApplication Client
Adapter exposes the same interface every Client Adapter exposes but translates
this interface to the SUT Specifics of a WebApplication.

SUT WindowsDesktopApplication Client Adapters
The SUT WindowsDesktopApplication Adapter uses the Microsoft UI Automa-
tion API to interact with Desktop applications.

WebSocket API

A WebSocket API is used to integrate SUT Client Adapters with the SUT
Adapter Server. Using WebSockets, real-time, bidirectional and event-based
communication is accomplished between the Server and the Adapter client. The
concept of rooms and namespaces is offered by the chosen Socket.io library that
is used to simultaneously interact with multiple SUT Clients while implementing
multi tenancy.

Adapter Framework functionality

The Adapter Framework offers functionality to SUT Consumers and SUT Clients
and integrates both using a RESTful API on the consumer (SUT Consumer)
side and a WebSocket API on the provider (SUT Client) side. The SUT Client
Adapters integrate natively with the API provided by the SUT specific operat-
ing system. In the following subsections, all are discussed in more detail.

Adapter Framework Core
The Adapter Framework serves as the integration layer between both the SUT
Consumers and the SUT Clients. To the SUT Consumers the Adapter Frame-
work exposes a RESTful API that is offered by the Express Node.js library. For
every capability, a different express route is implemented. To SUT Clients the
Framework serves a WebSocket connection that will wait for Clients to connect.
On every connection attempt from a Client, the Server first will try to authenti-
cate the Client based on the given credentials. Once the Client is authenticated,
a Token is returned and can be used with subsequent requests. With the pro-
vided credentials, a ClientAdapter should be capable of acting on several events
that are emitted sequentially by the WebSocket part of the Adapter Frame-
work. The SUT AdapterServer is developed using Node.js as an asynchronous
event-driven JavaScript runtime. The Websocket API is implemented using the
Node.js Websocket.io library [36].

SUT Consumer facing RESTful API
The Adapter Framework exposes a RESTful API to SUT Consumers. By ex-
posing this API, the infrastructure part of the generic API is offered. This is
done by exposing this API using the generic HTTP requests to the Methods
GET, PUT, POST and DELETE.

Besides the usage of the HTTP infrastructure, the RESTful API offers a va-
riety of functionality to support the integration between a SUT Consumer and
one or more instances of a SUT Client. The following subsections will elaborate
on the capabilities that are offered by this API.

Registration
The Registration resource can be created and accessed using this API. A Reg-
istration makes it possible to logically connect a SUT Consumer with a SUT
Client using an active Session. Having a valid Registration is a pre-condition to
be able to create a Test and executing TestSteps against a SUT.

Session
Session management is used to manage sessions by linking SUT Consumers to
SUT Clients. Besides a valid Registration, an active Session is a pre-condition.

A Session can be created using the following API call:

1 POST /api/v1/sessions

2
3 Body:

4 {
5 "name": "SUT Consumer",

6 "type":"SERVER",

7 "description": "The Consumer"

8 }

Authorization
Offering an Authorization layer in front of the Framework offers the capabil-
ity to register both a SUT Client and a SUT Consumer while shielding the
core functionality of the Adapter Framework against unauthorized usage. The
Framework provides an OAuth 2.0 authorization scheme using token authenti-
cation. The following listing itemizes the underlying API capabilities:

• register
Both the SUT Consumer and the SUT Client must be registered first
before authentication and authorization can take place, once both start
interacting with the Adapter Framework.

The following API call can be executed to register a SUT Consumer or a
SUT Client:

1 POST /api/v1/auth/register

2
3 {
4 "name": "UserName",

5 "email": "emailaddress",

6 "password": "123456"

7 }

The following response is returned in case of success:

1 {
2 "success": true,

3 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ[

...]"

4 }

Part of the response is a Bearer token with an expiry. To access the core
functionality provided by the Framework, this token must be send with
every subsequent requests.

• me
The following API call retrieves the currently logged in user:

1 POST /api/v1/auth/me

The following response will be sent back after successful login:

1 {
2 "success": true,

3 "data": {
4 "role": "SUT",

5 "_id": "6062a2852ab8070a3afdda8d",

6 "name": "John Doe",

7 "email": "johndoe@gmail.com",

8 "createdAt": "2021-03-30T04:01:09.025Z",

9 "__v": 0

10 }
11 }

• login
To login the following API call can be used:

1 POST /api/v1/auth/login

2 {
3 "email": "johndoe@gmail.com",

4 "password": "123456"

5 }

The following response will be send back successfull login:

1 {
2 "success": true,

3 "token": "eyJhbGci[..]-EemaThMYfKsmE"

4 }

Test
The Test resource provides the most important part of the RESTful API of-

fered by the Adapter Framework. Using this API a Test can be created for a
given registration:

1 POST /api/v1/registrations/{registrationid}/tests
2 {
3 "name": "Test SUT xyz2",

4 "serverSession": "605acc49f12658d6c3dcff51"

5 }

Listing 5.1: Create Test

TestStep
Once a Test is created for a given Registration, the following API call can be

used by the SUT Consumer to execute a TestStep:

1 POST /api/v1/registrations/{registrationid}/tests/{testid}
2
3 Body:

4 {
5 "teststepAction": {
6 "teststepActionMetaData": {
7 "createScreenshot": "true",

8 "ignoredTags": []

9 },
10 "destination": {
11 "sutType": "web",

12 "uri": "http://books.toscrape.com/"

13 },
14 "actionSequence": [

15 {
16 "action": "click",

17 "subactions": [

18 {
19 "name": "selector",

20 "value": "<..>"

21 }

22]

23 },
24 {
25 "action": "wait",

26 "subactions": [

27 {
28 "name": "for",

29 "value": "10000"

30 }
31]

32 },
33 {
34 "action": "screenshot"

35 }
36]

37 }
38 }

Listing 5.2: Execute TestStep

WebSocket API
Once the Adapter Framework is running, it listens to WebSocket connections
from SUT Client Adapters. The WebSocket part of the Framework is imple-
mented using the Node.js library, socket.io-client on the Client side and socket.io
on the Server side, and is capable of using a bi-directional event based commu-
nication channel. The following subsections will elaborate on the capabilities
that are offered by this API.

Server side WebSocket API Capabilities

The server side WebSocket API is used for SUT Clients to connect/disconnect
to the server, register themselves, creating a testsession with a SUT Consumer,
and eventually communicating back the results of a TestStep or TestScript.
The concept of Rooms is used to address the challenge servicing multiple SUT
Clients against one single SUT Consumer. A room is an arbitrary channel that
sockets can join and leave. It can be used to broadcast events to a subset of
clients [37]. The following paragraphs describe all offered capabilities.

• connection
The connection event makes it possible for Websocket clients to connect to
the server. The following listing shows how the server is initialized using
the same server object that is already initialized to serve a HTTP server
to the RESTful API consumers.

1 const server = app.listen(PORT , console.log(‘Server

running in ${process.env.NODE_ENV} mode on port ${
PORT}‘.green.bold));

2 const io = socketIO.init(server);

3
4 io.use(function (socket , next) {

5 authenticate(socket , next);

6 }).on(’connection ’, onNewWebsocketConnection);

Listing 5.3: Websocket Server initialization

• disconnect
If Websocket Clients gracefully or forcefully disconnect from the Server,
this event is raised. Once this event is received, the Server inactivates the
Websocket Client.

• create session
If a SUT Client is successfully connected to the server, the create session
event can be emitted by the client to create a session. Given the regis-
tration and the socketId of the connected client, the server first tries to
activate an inactive or pending session. The server creates a new session
if no matching session exists.

• create test
SUT Clients can create a test by emitting a create test event. This event
should be emitted using a valid registration and session. Once this event
is received, the server will first try to find a pending test. If a pending
test is found, it means that a test is initiated by a SUT Consumer but a
Client has not connected yet. If no pending test is found, a new one is
created.

• create teststep
After creating a test using the create test event the next step is actually
executing a sequence of actions against the SUT by emitting this event.
The payload send with this event consists of the data as described in
section Generic API.

• teststep executed
If a teststep is executed by the SUT Client, the client can emit this event
to send the results to the server. The server sends the result to the SUT
Consumer.

• testscript executed
If a testscript is executed by the SUT Client, the client can emit this event
to send the results to the server. The server sends the result to the SUT
Consumer.

• screenshot
The screenshot event can be emitted by the client to send screenshot data
to the server. Once the server receives this event, the screenshot is saved
in the document store.

Client Adapter side WebSocket API Capabilities

For a Websocket integration between the server and Client Adapters, the fol-
lowing websocket events must be implemented by a Client Adapter:

• success login
After a connection attempt, the server automatically authenticates the
client and logs in. If this succeeds, the server will emit the success login
event. After this event is received, the Client is able to register itself.

• session created
The session created event is emitted by the server after activating a pend-
ing or inactive session or after creating a new session.

• execute teststep
This event makes it possible for a Client to, based on the given payload,
execute a teststep against the SUT. The payload consists of the datamodel
that is described in section Generic API

• execute testscript
This event makes it possible for a Client to, based on the given payload,
execute a testscript against the SUT. The payload consists of the data-
model that is described in section Generic API

The Document-based storage

The document-based storage is used as an object store to persist relevant infor-
mation about SUT consumers, SUT client adapters and test sessions once test
execution takes place. The Document-based storage is a MondoDB Atlas based
storage containing the gray shaded objects of the following logical data model:

Figure 5.2: Logical Model Document-based storage

• Registration. This schema supports the Registration API capability by
linking a SUT Consumer and a SUT Client with one or more Sessions

• Session, By supporting the Session API this schema stores Session infor-
mation about connected and disconnected SUT Consumers and Clients.

• Test, The Test API is backed using this schema. Using this schema active
and inactive tests can be distinguished.

• TestStep, The status of TestSteps are stored in this schema. This schema
supports the TestStep

• User, This schema is used to register a SUT Consumer and a Client with
valid credentials. The Authorization API is supported using this schema.

Chapter 6

Validation

This section addresses the proposed API combined with the Adapter Frame-
work and answers the following research question:

RQ2: What are the challenges and possible solutions looking at remote
and parallel model-based GUI testing?

and

RQ3: How can the implementation be validated by several consumers?
Validating the implementation will be done by integrating a script

based consumer(e.g. WebDriver) and a scriptless based consumer (e.g.
TESTAR).

Both the script-based and scriptless consumers can use the same API and
must meet the same pre-conditions (see sections: Authorization, Registration,
Session) to be able to initiate a TestStep. Using a content based routing in-
tegration pattern on the serverside the server can distinguish which type of
integration (scriptless or scriptbased) is needed. For the script-based consumers
the distinguishing factor is the root tag of the JSON body ”testscript” :

1 POST /api/v1/registrations/{registrationId}/tests/{testid}
2
3 Body:

4 {
5 "testscript": {
6 "code": "<testscriptToExecute >"

7 }
8 }

Listing 6.1: script based integration

The scriptless approach can be denoted by using the ”teststepAction” root
tag:

41

1 POST /api/v1/registrations/{registrationId}/tests/{testid}
2
3 Body:

4
5 {
6 "teststepAction": {
7 "teststepActionMetaData": {},
8 "destination": {},
9 "actionSequence": []

10 }
11 }

Listing 6.2: scriptless integration

6.1 Integrating script-based consumers

One important objective this research has shown is the possibility to integrate
a script-based consumer via the proposed API with a specific backend SUT. In
the controller of the tests.js the following condition applies for a script-based
consumer:

1 if (req.body.testscript){

2
3 socket_action = ’execute_testscript ’;

4
5 teststep = {

6 teststepMetadata ,

7 testscript: req.body.testscript

8 }

9 }

10
11 socket.to(session.socketId).emit(socket_action , teststep);

Listing 6.3: script-based request handling

Based on the JSON Key ”testscript” on line 1 in Listing 4.1 the server first de-
termines the socket action (line 3), composes a request (line 5-8) and publishes
a Websocket event ”execute testscript” against the socketId of the connected
SUT client (line 11).

On the client side, the following implementation applies:

1 socket.on(’execute_testscript ’, function(testscript){

2
3 (async () => {

4 console.log(’Executing testscript ’);

5
6 let data = JSON.stringify(testscript.testscript.

code , null , 2);

7
8 fs.writeFileSync(’script.js’, data);

9
10 runScript(’script.js’, function (err) {

11 if (err) throw err;

12 console.log(’finished running script ’);

13 });

14
15 let testscriptOutcome = {

16 "data":data

17 }

18 console.log(’emit testscript_executed ’);

19
20 socket.emit(’testscript_executed ’,

testscriptOutcome);

21
22 })().catch((e) => console.error(e))

23 })

Listing 6.4: script-based event handling

Line 1 shows the subscribing on the ”execute testscript” event. After parsing
the script file (line 6 and 7), the script is written to a script file (line 8) and the
runScript function (line 10) is invoked. The next listing shows the runScript
function implementation:

1
2 const childProcess = require(’child_process ’);

3
4 function runScript(scriptPath , callback) {

5
6 console.log("In Run Script");

7 // keep track of whether callback has been invoked to

prevent multiple invocations

8 var invoked = false;

9
10 var process = childProcess.fork(scriptPath);

11
12 // listen for errors as they may prevent the exit event

from firing

13 process.on(’error’, function (err) {

14 if (invoked) return;

15 invoked = true;

16 callback(err);

17 });

18
19 // execute the callback once the process has finished

running

20 process.on(’exit’, function (code) {

21 if (invoked) return;

22 invoked = true;

23 var err = code === 0 ? null : new Error(’exit code

’ + code);

24 callback(err);

25 });

26 }

Listing 6.5: child process script execution

Above listing uses the Node.js child process module to fork a new Node.js pro-
cess (line 10) [38]. In the on ’exit’ branch (line 20), the results of the script are

captured and returned and listing 6.4 composes the event (line 15) and publishes
the ”testscript executed” event to the server.

6.2 Integrating scriptless consumers

To integrate a scriptless consumer, the data model showed in listing 6.2 offers
the capability to send teststepActionMetaData a destination and an ac-
tionSequence. The tesstepActionMetaData can be used to give additional
instructions to the SUT Client Adapter. The following listing shows a possible
teststepActionMetaData:

1 "teststepActionMetaData": {
2 "createScreenshot": "true",

3 "emitScreenshot": "true",

4 "sendScreenshot": "true",

5 "ignoredTags": ["script", "noscript", "head", "meta", "

style", "link", "svg", "canvas"]

6 }

Listing 6.6: teststepActionMetaData

Besides the teststepActionMetaData, also a destination object must be present.
The following listing shows the presence of the destination object where the
sutType web indicates the usage of a SUT WebClientAdapter backend that will
navigate to the given uri:

1 "destination": {
2 "sutType": "web",

3 "uri": "http://books.toscrape.com/"

4 }

Listing 6.7: destination

The given actionSequence makes it possible to perform actions against the given
SUT. The following listing shows a possible action sequence that will be sent
to the SUT WebClientAdapter to be interpreted and translated to native SUT
specific commands.

1 "actionSequence": [

2 {
3 "action": "click",

4 "subactions": [

5 {
6 "name": "selector",

7 "value": "# default > div > div > div > div >

section > div:nth -child(2) > ol > li:nth -

child(1) > article > div.image_container >

a > img"

8 }
9]

10 },
11 {
12 "action": "wait",

13 "subactions": [

14 {

15 "name": "for",

16 "value": "10000"

17 }
18]

19 },
20 {
21 "action": "screenshot"

22 }
23]

Listing 6.8: destination

A WebAppClientAdapter written in NodeJS listens to the execute teststep
websocket event. The adapter uses the Puppeteer API to translate the given
actionSequence to instructions against the destination uri. The following code
listing shows a possible implementation of how the translation from the generic
actions are translated to more specific Puppeteer API calls:

1 for (var actionSequence in teststep.teststepAction.

actionSequence)

2 {

3 let actionType = teststep.teststepAction.actionSequence[

actionSequence]. action;

4
5 if (actionType == ’click’) {

6 let subaction = teststep.teststepAction.actionSequence[

actionSequence]. subactions [0]

7 await page.click(subaction.value)

8 }

9
10 if (actionType == ’keyboard ’) {

11 for (subaction in teststep.teststepAction.

actionSequence[actionSequence]. subactions)

12 {

13
14 subactionName = teststep.teststepAction.

actionSequence[actionSequence]. subactions[

subaction].name;

15
16 subactionValue = teststep.teststepAction.

actionSequence[actionSequence]. subactions[

subaction].value;

17
18 if (subactionName == ’type’) {

19 await page.keyboard.type(subactionValue);

20 }

21 if (subactionName == ’press ’) {

22 await page.keyboard.press(subactionValue);

23 }

24 }

25 }

26 }

Listing 6.9: API mapping to Puppeteer

Java based SUT Consumer

Part of the research was to integrate a scriptless SUT Consumer with a SUT
Client Adapter using the proposed API. One of those consumers is TESTAR.
Because TESTAR is written in Java and will act as a Java based consumer, a
prototype using the Jackson Java JSON library has been created. Using this
prototype the RESTful API can successfully be consumed.
Using Plain Old Java Objects (POJO) the Jaxon API can be used to interact
with the exposed RESTful API. For instance, using the UserRegistration domain
object, a registration can be implemented as following:

1 public UserRegistration register(UserRegistration

userRegistration) throws Exception {

2
3
4 WebTarget registerWebTarget = webTarget.path("/api/v1/

auth/register");

5
6 Invocation.Builder invocationBuilder =

registerWebTarget.request(MediaType.

APPLICATION_JSON);

7
8 Response response = invocationBuilder.post(Entity.

entity(userRegistration , MediaType.APPLICATION_JSON

));

9
10 UserRegistration registrationResult = response.

readEntity(UserRegistration.class);

11
12 if (! registrationResult.isSuccess ()) {

13 throw new Exception(registrationResult.getError ());

14 }

15
16 return registrationResult;

17 }

Listing 6.10: User Registration against RESTfull API using Jaxon

Once all the pre-conditions (see sections: Authorization, Registration, Session)
are met, a scriptless TestStep can be executed as following:

1
2 public void executeTestStep(String token , String

registrationId , String testId , TestStep testStep) {

3
4 javax.ws.rs.core.Feature feature = OAuth2ClientSupport.

feature(token);

5 client = ClientBuilder.newBuilder ().register(feature).

build();

6
7 Response response = client.target("http :// localhost

:5000/ api/v1").path("/registrations/"+

registrationId+"/tests/"+testId).request ()

8 .property(OAuth2ClientSupport.

OAUTH2_PROPERTY_ACCESS_TOKEN , token).post(

Entity.entity(testStep , MediaType.

APPLICATION_JSON));

9
10 }

Listing 6.11: Execute scriptless TestStep against RESTfull API using Jaxon

Chapter 7

Results and conclusions

With emphasis on what information is needed to extract the state tree, locating
elements on the GUI and executing a sequence of actions against the GUI of a
Web based and Windows Desktop applications, a remarkable amount of overlap
can be seen between the analysed APIs. Analysis 4.2 shows that provided
APIs are very similar and overlap a lot. This analysis has been executed
to give an answer to the first research question (RQ1) and its sub questions.
To uniquely identify elements on the GUI, the same element attributes (id,
name or xpath) can be used. Advanced locator strategies, such as CSS selector
or xpath, are both capable to find almost any HTML element on a web page.
Additionally, for a Web based SUT that is styled with a CSS, a CSS Selector
can be used. Besides these properties, also ARIA Widget properties (2.1) can be
part of the DOM tree of an Web application. Many ARIA widgets are currently
incorporated into HTML5, making this standard not usable anymore. To locate
elements on a Desktop Application, using the Windows Automation API, the
AutomationId of an element can be used and combined with indications about
what kind of control pattern is available for a given AutomationElement. While
populating the state tree of a SUT, this information can be abstracted away
where the filtered set of O only contains the actionable widgets of the SUT and
a unique identification of the widget combined with the type of widget.
An adapter framework has been written to implement the proposed API while
giving answers to the second research question (RQ2) and its sub questions. The
selected technology stack (Adapter Framework technology stack) offers many
functionality and helped answering these sub questions. The NodeJS ecosystem
offers a high number of libraries that can easily be used to, for example expose
a RESTful API to SUT Consumers, or integrate with a MongoDB document
store. The Express framework is a minimal and flexible NodeJS web application
framework that provides a robust set of features for web and mobile applications.
The mongoose NodeJS library gives mongodb object modeling capabilities for
NodeJS and supports the writen framework by offering a persistence layer to
store information about executed teststeps and screenshots that are captured
during testexecution.

48

To answer the first research question (RQ1) and its sub questions (RQ1.1 -
RQ 1.3), an overlap analysis has been executed to find the differences and com-
monalities between web based programmable APIs and the Windows Desktop
Accessibility API. The goal of this analysis is proposing an API that can be
used to adapt to multiple SUT types (e.g. Desktop, Web, native Apps). The
results obtained from this analysis gives information about the degree of overlap
between these APIs and is based on the identified 3 categories (extracting state,
locating elements and executing actions). This analysis uses a black box ap-
proach analysing the available APIs. The absence of a more in depth analysis of
the behaviour of programable APIs and the SUT and the absence of analysing
native Apps is a threat to the validity of the proposed API. Another threat
to the validity of the crafted framework is the absence of applying a ”real” in-
tegration between e.g. TESTAR in the role of a SUT consumer and the used
SUT WebClientAdapter as the providing Adapter part that interacts with a web
based application. Furthermore to be able to validate the proposed solution as
a whole a SUT DesktopClientAdapter should implement the proposed API. In
the background section the Webdriver specification has been discussed where
Appium, Selenium Webdriver and WebdriverIO are outlined as implementing
frameworks. However these frameworks have not been used to implement the
Generic API and parts of the Adapter Framework.

If a more generic API acts as an intermediate layer, a translation must be
made from the client specifics to a more generic API and vice versa. This has
been demonstrated with a draft implementation of a Java based SUT Consumer.
This translation comes with an initial integration effort for each SUT type and
a possible maintenance cycle once the SUT specific API starts to evolve to a
newer specification, where parts of the old specification gets deprecated for in-
stance. It is not measured how much the integration effort is or how much effort
is needed to upgrade the SUT Adapters to a newer version once this version is
available.

Chapter 8

Personal Reflection

Pursuing this master degree has been one of my highest goals for the past
years. I knew upfront that this study and especially this part, the gradua-
tion assignment, will be hard. The topic of this thesis attracted me and I was
fully motivated and started off. I dived into new technologies and learned a
lot about new concepts, programming languages and frameworks. During the
process many things changed in my personal live including becoming a father
multiple times, unfolding my professional career and moving to a newly build
home. Because of these life changing events I was not able to give all my energy
and time finalizing this study the way I wanted to finalize it in the first place.
Nevertheless while looking back, I proudly can say, yes did it!

I want to give a special thank to Pekka for his patience as my supervisor and
sparring partner. Thank you for your input and trust and pulling me through
the whole process! I also want to thank Tanja as my supervisor for catching
my interest in the topic of GUI testing using TESTAR. My last words go to
my wife Monique, she always gave me the space and trust I needed during this
study as a whole and in particular this graduation assignment. I can not thank
you enough for your patience and mental support. Thanks you!!!

50

Bibliography

[1] Antonia Bertolino. Software Testing Research: Achievements, Challenges,
Dreams. In 2007 Future of Software Engineering, FOSE ’07, pages 85–103,
Washington, DC, USA, 2007. IEEE Computer Society.

[2] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUI-
TAR: an innovative tool for automated testing of GUI-driven software.
Automated Software Engineering, 21(1):65–105, March 2014.

[3] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and Evolving GUI-
directed Test Scripts. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 408–418, Washington, DC, USA,
2009. IEEE Computer Society.

[4] Emil Alégroth and Robert Feldt. On the long-term use of visual gui test-
ing in industrial practice: a case study. Empirical Software Engineering,
22(6):2937–2971, December 2017.

[5] Tanja E. J. Vos, Peter M. Kruse, Nelly Condori-Fernández, Sebastian
Bauersfeld, and Joachim Wegener. TESTAR: Tool Support for Test Au-
tomation at the User Interface Level. International Journal of Information
System Modeling and Design (IJISMD), 6(3):46–83, 2015.

[6] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. Web-
Mate: Generating Test Cases for Web 2.0. In Dietmar Winkler, Stefan Biffl,
and Johannes Bergsmann, editors, Software Quality. Increasing Value in
Software and Systems Development, Lecture Notes in Business Informa-
tion Processing, pages 55–69. Springer Berlin Heidelberg, 2013.

[7] Atif M. Memon and Mary Lou Soffa. Regression Testing of GUIs. In
Proceedings of the 9th European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, ESEC/FSE-11, pages 118–127, New York,
NY, USA, 2003. ACM.

[8] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. Graphical
user interface (GUI) testing: Systematic mapping and repository. Infor-
mation and Software Technology, 55(10):1679–1694, October 2013.

51

[9] Anna I. Esparcia-Alcázar, Francisco Almenar, Tanja E. J. Vos, and Urko
Rueda. Using genetic programming to evolve action selection rules in
traversal-based automated software testing: results obtained with the TES-
TAR tool. Memetic Computing, pages 1–9, June 2018.

[10] Gigon Bae, Gregg Rothermel, and Doo-Hwan Bae. Comparing model-based
and dynamic event-extraction based GUI testing techniques: An empirical
study. Journal of Systems and Software, 97:15–46, November 2014.

[11] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro.
AutoBlackTest: A Tool for Automatic Black-box Testing. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 1013–1015, New York, NY, USA, 2011. ACM. event-place: Waikiki,
Honolulu, HI, USA.

[12] Stanislava Nedyalkova and Jorge Bernardino. Open Source Capture and
Replay Tools Comparison. In Proceedings of the International C* Con-
ference on Computer Science and Software Engineering, C3S2E ’13, pages
117–119, New York, NY, USA, 2013. ACM. event-place: Porto, Portugal.

[13] Weiran Yang, Zhenyu Chen, Zebao Gao, Yunxiao Zou, and Xiaoran Xu.
GUI testing assisted by human knowledge: Random vs. functional. Journal
of Systems and Software, 89:76–86, March 2014.

[14] Amira Ali, Huda Amin Maghawry, and Nagwa Badr. Automated paral-
lel GUI testing as a service for mobile applications. Journal of Software:
Evolution and Process, 30(10):e1963, 2018.

[15] Selenium.

[16] Appium.

[17] W3C. WebDriver W3C Working Draft, August 2020.

[18] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro.
Automatic testing of GUI-based applications. Software Testing, Verifica-
tion and Reliability, 24(5):341–366, 2014.

[19] Urko Rueda, Tanja E J Vos, Francisco Almenar, Mirella Oreto, and Espar-
cia Alcazar. TESTAR - from academic protoype towards an industry-ready
tool for automated testing at the User Interface level. page 5, October 2016.

[20] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Rob-
ula+: an algorithm for generating robust XPath locators for web testing.
Journal of Software: Evolution and Process, 28(3):177–204, March 2016.

[21] Atif Memon, Adithya Nagarajan, and Qing Xie. Automating regression
testing for evolving GUI software. Journal of Software Maintenance and
Evolution: Research and Practice, 17(1):27–64, 2005.

[22] João Carlos Silva, João Saraiva, and José Creissac Campos. A Generic
Library for GUI Reasoning and Testing. In Proceedings of the 2009 ACM
Symposium on Applied Computing, SAC ’09, pages 121–128, New York,
NY, USA, 2009. ACM.

[23] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Pesto:
Automated migration of DOM-based Web tests towards the visual ap-
proach. Software Testing, Verification and Reliability, 28(4):e1665, June
2018.

[24] Francisco Almenar, Anna I. Esparcia-Alcázar, Mirella Mart́ınez, and Urko
Rueda. Automated Testing of Web Applications with TESTAR. In Search
Based Software Engineering, Lecture Notes in Computer Science, pages
218–223. Springer, Cham, October 2016.

[25] Andres Gonzalez and Loretta Guarino Reid. Platform-independent Accessi-
bility API: Accessible Document Object Model. In Proceedings of the 2005
International Cross-Disciplinary Workshop on Web Accessibility (W4A),
W4A ’05, pages 63–71, New York, NY, USA, 2005. ACM.

[26] Microsoft. UI Automation Specification, 2018.

[27] W3C. Accessible Rich Internet Applications (WAI-ARIA) 1.1, December
2017.

[28] W3C. HTML Accessibility API Mappings 1.0, August 2020.

[29] W3C. W3C DOM 4.1, March 2020.

[30] Mehdi Mujtaba. selenium javascript automation testing tutorial for begin-
ners, June 2020.

[31] Hans Manoj. Appium Essentials. Packt Publishing, 2015.

[32] Puppeteer, 2021.

[33] W3C. WADL, August 2009.

[34] json-schema org. JSON Schema, February 2021.

[35] Roy Fielding. Representational State Transfer (REST).

[36] socket.io. socket.io, February 2021.

[37] socket.io. socket.io/rooms, February 2021.

[38] Nodejs. NodeJS child process, July 2021.

List of Figures

4.1 Action sequence structure . 27

5.1 High level overview Adapter Framework 30
5.2 Logical Model Document-based storage 39

54

	Introduction
	Automated GUI level testing
	Defining the GUI
	Test Case Design
	Test Case Execution

	Localization strategies
	GUI testing using TESTAR

	Related work
	Accessibility APIs
	Programmable Web APIs
	Programmable Desktop APIs

	Research Questions
	Generic API
	Characteristics of the Generic API
	Analysis of the overlap between backend APIs
	Driving the SUT

	The Adapter Framework
	Validation
	Integrating script-based consumers
	Integrating scriptless consumers

	Results and conclusions
	Personal Reflection

