
Open Universiteit
www.ou.nl

How do Students Test Software Units?

Citation for published version (APA):

Passier, H. J. M., Bijlsma, A., Doorn, N., Pootjes, H. J., & Stuurman, S. (2021). How do Students Test Software
Units? In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET) (pp. 189-198). IEEE. https://doi.org/10.1109/ICSE-
SEET52601.2021.00029

DOI:
10.1109/ICSE-SEET52601.2021.00029

Document status and date:
Published: 01/05/2021

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 19 Nov. 2022

https://doi.org/10.1109/ICSE-SEET52601.2021.00029
https://doi.org/10.1109/ICSE-SEET52601.2021.00029
https://doi.org/10.1109/ICSE-SEET52601.2021.00029
https://research.ou.nl/en/publications/875c9100-b8e5-4835-861f-9aa709f4bc80

How do students test software units?
Lex Bijlsma

Department of Computer Science
Open Universiteit

Heerlen, Nederland
lex.bijlsma@ou.nl

Niels Doorn
Academy of ICT & Creative Technologies

NHL Stenden Hogeschool
Emmen, The Netherlands

niels.doorn@nhlstenden.com

Harrie Passier
Department of Computer Science

Open Universiteit
Heerlen, The Netherlands

harrie.passier@ou.nl

Harold Pootjes
Department of Computer Science

Open Universiteit
Heerlen, The Netherlands

harold.pootjes@ou.nl

Sylvia Stuurman
Department of Computer Science

Open Universiteit
Heerlen, The Netherlands

sylvia.stuurman@ou.nl

Abstract—We gained insight into ideas and beliefs on testing
of students who finished an introductory course on programming
without any formal education on testing. We asked students to
fill in a small survey, to do four exercises and to fill in a second
survey. We interviewed eleven of these students in semi-structured
interviews, to obtain more in-depth insight. The main outcome
is that students do not test systematically, while most of them
think they do test systematically. One of the misconceptions we
found is that most students can only think of test cases based
on programming code. Even if no code was provided (black-box
testing), students try to come up with code to base their test cases
on.

Index Terms—D.2 Software Engineering, D.2.5 Testing and
Debugging, D.2.5.j Test levels, D.2.5.k Testing strategies, K.3.2.b
Computer science education

I. INTRODUCTION

Professional software developers spend a considerable part
of their time on testing. Agile methods in particular have
increased the importance of testing throughout the develop-
ment process. Yet, many recent graduates lack sufficient testing
skills [1]. For example, Edwards found that students detected
only approximately 15% of the bugs, and observed that
students often only apply so-called ‘happy path’ testing [2],
implicitly assuming that the input is ‘ideal’.

In most university curricula, scant attention is paid to
testing. For example, testing is fully integrated within the
curriculum in only 2 out of 20 Dutch universities [3]. In some
curricula, testing is not a topic at all. In most curricula, testing
education is limited to an introduction of Java’s popular test
framework JUnit. How to compose test cases is often not given
explicit attention.

There are strong indications that testing instruction in-
fluences the quality of students’ programs positively. Some
educators state that testing as activity improves software com-
prehension [4] and use that motivation to introduce testing and
integrate testing in programming education. In fact, knowledge
about testing in itself tends to improve the quality of students’
programs [5]. This effect was even observed when test cases
were provided by the teacher [6]. Moreover, testing is one of

the core knowledge areas in both the ACM/IEEE curriculum
guidelines for computer science and software engineering [7],
[8].

When we want to produce explicit, procedural guidance
on how to create test cases and better instructional material,
we should know how students view testing initially and
which misconceptions need to be paid attention. Our research
question is, therefore,

• What ideas do students have about testing before they
have had any relevant instruction?

We provide an overview of what is known with respect
to our question in Section II. In Section III we explain how
we approached our research. The results are described and
analyzed in the sections IV through VII. We conclude with
answers to our question.

II. RELATED WORK

As far as we know, only Edwards systematically examined
how students test. He used the tests that students sent in for
an assignment in a course on data structures [2]. Grading was
based on branch coverage of the tests. The mean coverage was
95.4%. The similarity between the tests was large: 90% of the
tests were the same. To check which bugs the student’s tests
could detect, all tests of the students were combined into a
single large test suite, along with the reference tests for the
assignment. This test suite was then run against all student
programs. The tests of the students only detected 13.6% of
the total number of bugs. Almost all students only performed
‘happy path’ testing, testing only the default scenario.

The fact that not only students, but also professionals tend
to rely on ‘happy path testing’ has been known for a long
time. Leventhal [9] found strong evidence of happy path
testing (also called positive bias testing). The only ‘antidote’
mentioned here is to construct thorough and complete program
specifications.

The tendency of students only to test the default scenario is
in accordance with the finding that students have ‘alternative

189

2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

978-1-6654-0138-8/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-SEET52601.2021.00029

standards’ for correctness [10]. Students soften the require-
ment that a function should show correct behavior for all input,
to the notion that the behavior should be correct for most input,
for input that seems ‘logical’.

Practitioners complain that many recently graduated stu-
dents lack sufficient testing skills [1]. Practitioners see a skill
gap between university graduates and industry expectations
and think that graduates often do not seem to see the value of
testing. They observe that graduated students often follow a
trial-and-error strategy: build something and ‘see if it works’.

Explicitly teaching testing does have effect: students who
have been educated in the subject produce better test
cases [11].

Testing, so it seems, requires explicit attention in the cur-
riculum. Without an explicit specification given by the teacher,
students seem to assume a specification that only allows ‘ideal’
input.

III. METHOD

A. Aim of the study

This is an in-depth explorative study on the perceptions of
software testing by first-year students in computer science.
The emphasis is on qualitative data. The participants have
programming knowledge on the level of an introductory course
about programming, but have no prior formal education on
the topic of software testing. We want to study their natural
way of testing software units during programming. To do so,
we used surveys, exercises and interviews. In this section, we
describe our research setup, methods and the way we analyzed
the results.

B. General approach

Thirty-one students were involved, all first-year computer
science students at a university of applied science. All students
have basic knowledge of:

• HTML, imperative programming using PHP (period 1).
• Databases and SQL, with some attention to exception

handling (period 2).
• Introduction to OO Programming with Java using BlueJ

(period 3).

In none of these courses testing was a topic.
We asked the students to fill in a survey. Then we asked

them to do four exercises, and then we asked them to fill in
a second survey. Together, this took them about 45 minutes.
Finally, we interviewed a subset of the participants. These
interviews took about twenty minutes.

1) Pre-exercises survey: The aim of the first survey is to test
the ideas and beliefs the participants have on software testing
without being exposed to the exercises. This survey contains
one multiple-choice question about when during development
tests can be best formulated, followed by an open question to
motivate the given answer, and six statements about testing
with five-point Likert scale answer options, three of which
were taken from Kolikant [10].

2) The exercises: The participants were presented with four
exercises. Three exercises had a functional description and
implementation. One had a functional description only. For
each exercise, the participant is asked:

• to give the test cases needed to decide whether the
function is correct or not

• (for the first three) to determine the correctness of the
provided implementation, and, in case of incorrectness,
to provide a test case to prove this claim.

3) Post-exercises survey: The second survey is held directly
after the exercises. The survey asks for:

• the perceived complexity of the exercises
• the process they followed to complete the exercises
• the supposed correctness of their answers
• the general ratio of time that they think should be spent

on programming and testing in daily practice
• whether they took boundary values into account during

the exercises.
All questions of this survey have five-point Likert scale answer
options.

4) Interviews: To obtain more in-depth knowledge of the
way the exercises have been done, we interviewed a subset
of the participants using a semi-structured interview. We
could also verify the given answers to the exercises and the
students’ ideas about testing in more depth. All interviews
were conducted by two interviewers, one as the chair and the
other one making notes. All interviews were audio-recorded
and written down verbatim.

C. Ideas about testing

We aimed to study both the student’s testing methods and
the way they understand the concepts related to testing. We
also gained insights into the misconceptions of the partici-
pants. We discerned the following ideas about testing. The
instruments we used are in braces:

• During what programming phase (before, during or after
programming) is testing relevant (pre-exercises survey)?

• Which stakeholder should conduct testing? (pre-exercises
survey)

• In what depth and width should software be tested (pre-
and post-exercises surveys, exercises and interviews)?

• What time ratio should be spent on testing? (post-
exercises survey)

• Completeness of testing, i.e. when does one have enough
test cases (post-exercises surveys, exercises and inter-
views)?

• Does creating test cases help with understanding code
(pre- and post-exercises surveys)?

• Does one use boundary values for test cases (pre- and
post-exercises surveys)?

We also asked them to note the start and end time at each
exercise, to see how much time they spent creating test cases.

D. Analysis

The analysis was done by four researchers, all involved in
software engineering education.

190

1) Pre- and post-exercises surveys: Both surveys were
subjected to quantitative analysis.

Answers to the open question from the pre-exercises survey
were collected and analyzed quantitatively. We labeled the
answers using characteristics that we found in the answers.
Examples of these characteristics are:

• before, during or afterwards testing
• testing the whole by testing the individual components
• iterative approach: write some code, immediately write

tests
• trial and error approach
• focus on code
• focus on functionality
• testing as a means to check whether the code is robust.

The analysis was performed by two researchers and reviewed
by the other two researchers.

2) Exercises: The answers to the exercises were analyzed
separately on completeness of the test cases, test approach,
mistakes, misconceptions, and time spent. After that, the
findings were aggregated using a classification, defined during
a brown paper session. The results of these findings and
classification were discussed until consensus of all decisions
was reached.

3) Interviews: All transcripts and notes were read entirely
by all researchers. We analyzed the interviews with respect
to the completeness of the test cases and the approaches. We
used a classification, defined during a brown paper session,
to aggregate the results and analyzed them quantitatively. The
results of these findings and classification were discussed until
we obtained consensus of all decisions.

4) Meta-analysis: Finally, to determine the main findings,
we performed a meta-analysis. We determined the most impor-
tant classes during a brown paper session, and provided them
with clear examples. These are the examples we show in this
article. Again, the results of this analysis and classification
were discussed until we obtained consensus of all decisions.

IV. RESULTS - PRE-EXERCISES SURVEY

31 students filled in the survey.

A. When to test

Question: The best time to construct test cases is (a) after,
(b) before or (c) during programming? Motivate your answer.
(Multiple answers are allowed.)

Answers:
combinations frequency (N = 31)
a 2
b 2
c 12
ab 0
ac 9
bc 1
abc 5

If we just look at the number of times an alternative
was mentioned, whether or not in combination with other

alternatives, we get the following:

alternative frequency (N = 31)
after 16
before 8
during 27

Conclusion: There is a preference for testing during pro-
gramming. The low score for testing before programming is
understandable if students base their test cases on code in-
spection (see later). We also suspect, based on the motivations
students added, that some students do not clearly distinguish
between constructing test cases and running tests. Also, the
preference for testing during programming is possibly based
on a confusion between testing and compiling, and between
running and debugging (see later).

B. Claims about testing

We presented the students with six statements about testing.
The questions 4, 5 and 6 were taken from Kolikant [10]. The
students could indicate the level of agreement on a five-point
Likert scale (1: completely disagree, 5: completely agree). For
these statements, we have N = 29.

1) Absence of errors
Claim: Testing can make it plausible that your program
does not contain errors.
Answers: Average 3.41, standard deviation 1.02. Many
students place high trust in the power of testing.

2) Who tests?
Claim: It is best if end users perform the tests.
Answers: Average 3.66, standard deviation 1.20. This
statement is widely agreed with, which is unexpected in
view of the preference they expressed to construct test
cases during development, see IV-A.

3) Which test cases?
Claim: The most important consideration when selecting
test cases is to ensure that they are representative of the
expected use of the program.
Answers: Average 3.59, standard deviation 1.05. This
shows the tendency to ‘happy path testing’.

4) Confidence
Claim: For a program I have written myself, I know it
works well when I have run it several times and obtained
correct output.
Answer: Average 2.66, standard deviation 0.98. This is
similar to claim A.1 from Kolikant’s paper [10]. In that
paper, 50% of respondents agreed with the statement,
both at high school and college level. Our respondents
seem to possess a somewhat more sophisticated attitude:
only 24% agreed.

5) Reasonable output
Claim: In testing a program for a complicated calcula-
tion, I am satisfied when the output looks reasonable. It
is not necessary to redo the calculation by hand.
Answer: Average 1.69, standard deviation 0.70. This is
similar to claim A.2 from Kolikant [10]. 33% of the
high school students and 69% of the college students

191

agreed in his study. Of our respondents, only one agreed,
choosing answer 4.

6) No testing
Claim: Sometimes I am sure that a program I have
written is completely correct. In such a case, if the
program compiles, it is not necessary to run or test the
program.
Answer: Average 1.55, standard deviation 0.90. This is
similar to claim A.3 from Kolikant [10]. In the Kolikant
study, 42% of high school students and 31% of college
students agreed. Of our respondents, only two (7%)
agreed. Both gave the answer 4.

V. RESULTS - EXERCISES

Students were presented with four exercises. In each ex-
ercise, they were asked to write test cases for the given
function. Three of the exercises were both ‘black-box’ and
‘white-box’: both a functional specification and Java code were
provided. One exercise was ‘black-box’ with only a functional
specification.

For each of the white-box exercises, students were asked
whether they considered the code to be correct. If not, they
were asked to present a test case that would fail due to the
incorrect code.

All exercises were single functions with input and output in
the form of arrays of integers or a single integer. The exercises
contained programming constructs and syntax that should be
familiar to the students and were part of the previous Java
courses they followed.

A. The exercises
The exercises were as follows:
1) Exercise 1: The longest period of frost: This function

determines the length of the longest period of frost from
a series of temperatures. The input is an array of integers
representing the temperatures of a sequence of days. The
output is an integer representing the length of the longest
number of consecutive days the temperature was below zero.
The body of the method is not correct: currentPeriod is
initialized to -1, which should be 0. The code is as follows:
/**
* Returns the longest uninterrupted period of temperatures below 0
*/
public int longestBelowZero(int[] temperatures) {

int longestPeriod = 0;
int currentPeriod = −1;
for (int i=0; i < temperatures.length; i++) {

if (temperatures[i] < 0) {
currentPeriod++;
} else {

if (currentPeriod >= longestPeriod) {
longestPeriod = currentPeriod;
}
currentPeriod = 0;
}
}
return longestPeriod;
}

Listing 1. Frost exercise (frost)

2) Exercise 2: The lowest index of the lowest value: The
input for this function is an array of integers. The function
should determine the lowest index of the lowest number in
the array. The provided code is incorrect: the index in the for
loop that iterates over the values is initialized to 1, which
should be 0. The code is as follows:

/**
* Returns the lowest index of the lowest value
*/
public int findTheLowestIndexOfTheLowestValue(int[] numbers) {

int index = 1;
for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < numbers[index]) {
index = i;
}
}
return index;
}

Listing 2. Lowest index of the Lowest value exercise (min-min)

3) Exercise 3: Changing coins: The input of this function
is an integer representing an amount of money in cents. The
function returns the smallest sequence of coins from the euro
coin series that can be used to represent that amount of money.
The code is correct.

/**
* Returns the smallest sequence of coins
* to represent the input argument.
* Possible coins:
* 1, 2, 5, 10, 20 and 50 cent and
* 1 and 2 euro (100 and 200 cent)
*/
public ArrayList<Integer> exchange(int amount) {

ArrayList<Integer> result = new ArrayList<>();
int[] coins = {200, 100, 50, 20, 10, 5, 2, 1};
for (int coin : coins) {

for (int i=0; i < amount / coin; i++) {
result.add(coin);
}
amount = amount − (amount / coin) * coin;
}
return result;
}

Listing 3. Exchange exercise (coins)

4) Exercise 4: Palindrome: The input of this function is
a string. It returns true when the input is a palindrome, and
false when it is not. This is the black-box exercise, without
implementation. Only the signature and the description are
given.

/**
* Input: A string
* Output: true if the string is a palindrome
* otherwise false
*/
public boolean isPalindrome(String word) {

// no body is provided
}

Listing 4. Palindrome checker exercise (palindrome)

These four exercises have an algorithmic nature. Based
on the description and the code, students should be able to

192

understand the algorithm and come up with test cases. The
exercises differ in the concepts that are used. The frost exercise
contains a for-loop that iterates over the input array. It also has
branching, a conditional statement (if else), with another
conditional statement in the else branch. The second exercise
uses the same array with two indexes in the conditional
statement. This can be easily overlooked. The coin exchange
exercise uses a nested loop construct. This is often considered
to be a complex concept for novice programmers [12], [13].
There is also a mathematical statement with a subtraction, a
multiplication and a division. The palindrome exercise handles
string input and uses a boolean return value.

B. Observations

Analyzing the students’ answers, we divided our observa-
tions into four main categories:

1) test approaches
2) completeness of the test cases
3) misconceptions
4) programming knowledge

For each category, we give some examples. The exercise is
mentioned between brackets, i.e. frost, coins, min-min, or
palindrome.

1) Test approaches:
a) Happy path testing: The test approach that most

students applied is happy path testing. We determined 33 test
sets consisting of happy path test cases only: frost 10, coins
3, min-min: 6, and palindrome: 14. An example from the frost
exercise:

‘One test case with at least one temperature below
zero.’

Another example from the min-min exercise:
‘[0,1,2,0,2,-1]’
b) Structural approaches: We determined nine test cases

that could be interpreted as boundary testing.
One student differentiated on the frost exercise between a

test case with one temperature and a test case with several
temperatures:

‘One test with a known outcome. Then, one array
with one item. And one array with temperatures
below zero only.’

Another student defined an empty array and a number of arrays
with length greater than zero for the frost exercise:

‘[], [-1,-1,-1,4,3,-2,-2], [-1,0,1,2,3,], [-1,-1,2,2].’
One student applied a more or less systematic test approach.
The student described four test cases (frost):

‘An array without temperatures below zero, an array
with one period of frost, an array with multiple
periods of frost, and an array with a period of frost
at the beginning.’

The last test case shows the bug in the code. Nevertheless, the
students did not define test cases with array’s of length zero
and one.

c) Test cases based on code inspection bug find: In four
situations a student only wrote one test case based on the bug
in the code. One example (frost):

‘[-1,-1,0,1]’
The function’s output is 1, while the longest period of frost is
2, due to the wrong initialization of currentPeriod.
Another example (min-min):

‘[. . .] after that I would use a test case where the
lowest value is on the first index, this will probably
fail because of the for-loop which starts with i=1.
Personally, I would probably never test this because
I would have noticed this while programming.’

This test case demonstrates the bug. The last part of the quote
underlines the approach of code inspection as an alternative
for testing.

One student mentioned that the body of the change function
(coins) is incorrect, but was not able to define a test case
showing the bug.

d) Miscellaneous: One student gave an answer we do
not understand (frost); it might be an approach to debugging
instead of testing:

‘You have to see the array to figure out if it is
correct.’

One student was unable to provide a concrete test case. This
student gave the following description (frost):

‘An input value of which you know the output value’
which is basically a very high-level description of testing in
general.

2) Completeness of test cases: A complete test set should
discern several aspects, for instance, structural as well as
domain-specific, or specification as well as implementation
based test cases. Implementation based test cases are only
possible, of course, if an implementation is present [14].

In case of the frost exercise, examples of structural aspects
are an empty array, an array with one element and an array
with several elements. Examples of domain-specific aspects
are no frost periods at all and frost periods of different lengths
spread out over the array in several ways. An example of an
implementation aspect is what to do in case of an anomaly.
If the implementation is present, one can think of applying
various coverage criteria as well as testing overflow situations
in cases specific types are used for variables.

We observed that almost all the test sets defined by the
students are far from complete. For example, for the frost
exercise, a minimum of three test cases is needed to have
path coverage. Only one student provided enough test cases
to reach path coverage, as follows:

‘[0,-1,1,-1,0,-1], [-1,0,-1,-1], [1,1,0,1]’
Most students defined either one or two test cases, or they

provided test cases that could not test the given functions
sufficiently. For example, for the first exercise, we found only
one test case eleven times.

‘One test case with at least one temperature below
zero.’

193

We found only 2 test cases 4 times
‘One test case with a negative number and one test
case with a positive number.’

We found three test cases 4 times and four test cases 2
times. As mentioned before, most of these test cases test the
happy path scenario only.
An example of an incomplete test case for the coin exercise:

‘Test cases with multiples of coins.’
The students who applied a more systematic testing ap-

proach had a slightly more complete test set.
3) Misconceptions:

a) Exhaustive testing: One student presented one test
case and then proposed an exhaustive testing scenario (frost):

‘[-1,-1,0,0,1,1] and I shall look to all possible inputs
and see whether the program reacts as is expected
with several days of frost.’
b) Test cases without expected result: Some students

specified an array with random numbers as a test case, for
example

‘Random numbers in an array.’
The problem with this approach is, of course, that the result
of such a test case is unknown beforehand and therefore it is
impossible to determine the correctness of the function.
Another example (min-min) also defining a random array as
test case is:

‘1.-) One array with equal numbers, 2.-) one array
starting with the lowest number, 3.-) one array
with all random numbers, and 4.-) one array with
numbers you know the result of.’
c) Type testing: One student defined a test case with an

array containing a character, where an array with integers is
expected (min-min):

‘One array with two numbers, one array with a
lowest number, and an array with a character.’

The language used is Java, a strongly typed language.
d) Dividing by zero: Two students remarked that dividing

by zero is forbidden and thought that, as a consequence,
dividing zero by something else is forbidden as well.

e) Implementation is required: As part of the palindrome
exercise, one student wrote one test case (‘lol’, which is a
palindrome), but mentioned that it is impossible to check the
case because the implementation is missing.

4) Programming knowledge: Although these students
should have the required knowledge about Java, it seems that
some students struggle with the given code. For example, one
student wrote as a test case (coin):

‘49,7,9,127,61 I think that something is missing with
‘int coin’, because an int can not be an array.’

Here, this student, probably, has not enough knowledge of
Java types.

Some students are not focused on input-output testing, but
on print-based testing to check whether certain statements are
successfully executed and in what order. For example, one
student wrote as a test case (min-min):

‘I define a method that prints the array to see the
array is successfully created.’

One student had no idea how to solve this exercise (frost)
and stated:

‘I have no idea.’

One student did not understand the palindrome exercise,
judging by the answer:

‘droom, paling, moordnilap, true, false, 12345,
palindr00m’

5) Time spent on the exercises: The students were asked
to note the start and end time for each exercise. We got the
following averages per exercise:

Exercise Average time spent standard deviation
1 (N = 31) 6:42 3:07
2 (N = 30) 4:30 1:46
3 (N = 31) 4:54 1:59
4 (N = 31) 2:17 1:16

The first exercise took the students the longest. This could
be caused by the time needed to understand how the exercises
worked. During the interviews, students did consider the third
exercise to be the most difficult. The last exercise, the black-
box exercise, took considerably less time than the exercises
with the code provided. This supports our findings that stu-
dents mainly use the code to think of test cases.

Overall, the short time spent by students to solve these
exercises strikes us. This finding matches with the findings of
happy path testing, and test cases based on code inspection.

6) Correct or incorrect: For each white-box exercise,
students were asked if the code was correct and if not, to
come up with a test case to support their claim. Exercise one
and two both contained one logical error and exercise three
was correct. None of the exercises contained syntax errors.
The following table shows the results:

Exercise Correct Incorrect Valid test case
1 (N = 22) 11 11 7
2 (N = 25) 4 21 19
3 (N = 23) 10 13 n/a

With respect to the first exercise, an equal number of
students thought that the code is correct and incorrect. Seven
students were able to provide a valid test case to support their
claim. On the second exercise, students scored a lot better.
Most students noticed the bug and were able to provide a
test case to support their claim. With the third exercise, most
students wrongly think the code is incorrect. This supports the
indication that most students found this exercise the hardest.

VI. RESULTS - POST-EXERCISE SURVEY

The survey has been filled in by 31 students. The following
statements were submitted to the students after they had
performed the exercises.

194

A. Understanding

Claim: Having to think of test cases has increased my
understanding of the program code.

Answer: Average 3.42, standard deviation 1.13. We did not
verify whether any deeper understanding was actually reached,
but students feel they did reach an increased understanding.

B. Test coverage

Claim: My test cases were sufficient to test the program.
Answer: Average 3.10, standard deviation 0.83. In fact the

test cases were clearly insufficient, which the students only
realized when discussing them during the interview phase.
Apparently, many students interpreted the exercise as ‘find the
coding error in this program’ and stopped when they had found
one.

This attitude could have been stimulated by the question
to consider the correctness of the code, and if not correct, to
present a test case that would fail due to this incorrectness.
However, this possibility was not supported during the inter-
views.

C. Systematic testing

Claim: I test a program by systematically checking all
possible input values.

Answer: Average 3.67, standard deviation 0.75. This is
similar to claim A.4 from Kolikant [10]. In that study, 71%
of the high school students and 75% of the college students
agreed. In our population, 79% agreed. This is a remarkable
claim, because the exercise results showed that the students
produced a very limited set of test cases that certainly did not
cover all possibilities.

D. Overlooking cases

Claim: There is always the possibility that the program fails
for some input value I have not discovered.

Answer: Average 4.59, standard deviation 0.62. This is
similar to claim A.5 from Kolikant [10]. In that case, 54%
of the high school students and 81% of the college students
agreed. In our population no less than 93% agreed. This
shows that the optimism exhibited in the previous section
should not be taken too literally. Kolikant [10] concludes
from these numbers that students tend to describe their non-
systematic methods as systematic. Our results strongly confirm
this conclusion.

E. Time use

Claim: The ratio of time spent on programming and testing
should be (1) 100/0, (2) 75/25, (3) 50/50, (4) 25/75, (5) 0/100.

Answer: Average 2.64, standard deviation 0.75. Of the
respondents 48% thought most of the time should be spent on
programming, 41% thought you should spend the same amount
of time for both, and only 10% thought that you should spend
more time on testing. One of these students had the answer
0% programming, 100% testing, which is a strange answer.

F. Boundary values

Claim: In selecting test cases I take boundary values into
account.

Answer: Average 3.53, standard deviation 0.85. However, it
was established in the interviews that not all students know the
meaning of the term boundary values. In the exercise results,
we see boundary values used only occasionally.

VII. RESULTS - INTERVIEWS

We interviewed eleven students. Here, we present our find-
ings and illustrate them using phrases from the transcribed
interview texts.

A. Test cases are based on code inspection

Code inspection is very often mentioned as an approach to
compose test cases. The functionality of the code is determined
based on the code itself instead of on specification.

‘First, I’ve read the description of the exercise, after
which I read the code thoroughly to determine its
functionality. Otherwise, I am not able to determine
the expected outcomes.’

Other examples of students indicating explicitly that they need
the code to understand its functionality are:

‘I read the text above the code and looked at the
code to determine if I understood what happens in
the code.’
‘Here, I read the code and hope to get more infor-
mation on how it should work.’

That students need the code to compose test cases is shown
by the following examples:

‘I was surprised that there was no code! That means
that you have to think about test cases based only
on the specification!’
‘There was no code available, so I have to think
about how it works. So I imagined how it could be
implemented, to see how it should work.’

B. When a bug is found, a test case for that bug is composed

Many students mention that they are looking for bugs in the
code. For each bug that they find, they compose a test case.
An example is:

‘Interviewer: And suddenly, you saw the error in the
code?
Student: Yes, and then I thought, I write [1,2,3] and
then it is ready, on to the next one.’

Furthermore, students mention that, besides happy path testing,
the test cases are limited to the bugs found in the code.
This can explain the low number of test cases we observe
in the students’ solutions on the exercises (see Section V). An
example:

‘Actually, I devise test cases more or less on what I
see in the code, as if to say this is erroneous.’

Other methods of implementation based testing were never
mentioned during the interviews.

195

C. Wrong test strategies

Wrong test strategies that are often mentioned are: random
based test cases, happy path testing, pursue exhaustive testing,
restrict test cases to the examples described as part of the
exercise, and restrict test cases to bugs found in the code.

An example of random testing is the following. On the
question of whether the number of test cases that is sufficient,
the student answers:

‘Student: For this, it is enough.
Interviewer: You took some numbers, randomly, and
looked ...
Student: ... if they are correct. Yes.’

An example of happy path testing is:

‘It was more about figuring out how much ...,
how often the longest period of frost took place, say
.... when the longest period of frost took place. For
testing, you need only negative numbers. If there are
no negative numbers, there is no longest period of
frost. So ...’

Some students pursue exhaustive testing.

‘Only integers are allowed. Thus, in that case all
possible integers as input until the computer is not
able to process them. That should be a physical
problem. Yes.’

Sometimes, students limit the test cases to the example(s)
given in the exercise test. This often leads to happy path testing
too.

‘I used exactly the same examples as given in the
exercise text.’

Finally, as we have mentioned earlier, students often limit test
cases to bugs find in the code.

D. Unnecessary or even impossible testing

Some students mention they add test cases to check value
types although the program was coded in Java, which means
the compiler detects type errors directly. We consider this as
a misconception.

‘Here I can add some characters and look how
the program reacts because the program expects
integers, but if I put in characters, then the program
should chuck them out.’
‘If I have to input a number, then I input a string as
for example ’HELLO’ and see what happens.’

Another misconception is that some students consider test-
ing as a way of finding syntax errors.

‘It is possible that you forget a semicolon, and yet
it does not work. In such a case it is good to look
at each line of code and to see where it goes wrong.
This is a way of testing.’

These misconceptions probably show students do not under-
stand what a compiler does.

E. Lack of motivation

Students often do not see the necessity to test code thor-
oughly:

‘Student: No, if I had a computer, then I should apply
much longer test cases.
Interviewer: Is there a reason you did not do that?
Student: Yes, too much effort.’

The following example shows the importance of grading:
‘I think that, how important is the exercise ..., if it
is for grading, then I should perform testing more
elaborately then just looking at the code. That is
possible, then it works, but in cases of grading, then
you should find all errors in the code.’

The following example is related to attitude/engagement:
‘I do not find myself good. It was early in the
morning. Is possible that I missed some things. The
attitude I made the exercise with played a role too.
For me, this research is not important, it is not my
research.’

F. Reading someone else’s code is difficult

Students often mentioned that reading someone else’s code
is difficult.

‘I experienced a lot of problems with the code
conventions because I am used to place the brackets
in a different way.’
‘I did not understand the code really, because of
course it is not my own code.’

This could be a reason for the few test cases students wrote.

G. Pen and paper versus working on a computer

Some students explicitly mentioned that they prefer working
on a computer instead of working with pen and paper. Working
on a computer means running the code to see if it ‘works’.

‘It is difficult for me to do it just with pen and paper.
It is easier to do it on a computer. Then, you can
easily see what happens while running the code,
what the code does exactly.’

Students look for bugs by experimenting with the code, for
which a computer is needed. With pen and paper, this approach
is not possible. In fact, they debug the code instead of test
it. This is an educational issue: students have to learn the
differences between debugging and testing and have to learn
how to write specification-based tests, probably the best with
pen and paper.

VIII. CONCLUSIONS

Our long term goal is to improve the quality of the code
that students produce, through better testing education. To
improve our test education, we need insight into student’s
misconceptions and their view on testing before they have had
any relevant instruction about this topic.

196

A. Findings

1) Test cases are based on code inspection: It was remark-
able that students based their tests on code inspection, even
in the case of an exercise with only a specification. For this
exercise, they first thought about the code they would write to
solve the problem. Some students could not write tests at all
for some exercises because they did not understand the code.

Conclusion: students at this level do not have the notion of
basing tests on the specification.

2) Test cases for a bug: During the interviews and in the
test cases defined during the exercises, we see that students
read the code, find a bug and write a test case for that bug.
This can partially be attributed to the test setup. During the
exercises, students were asked if they think the code was
correct and to write a test case that shows the bug if they
believe the code was incorrect. This question can be a trigger
to specifically search for bugs.

However, it is apparent that many students moved on to the
next exercise after designing a test for the (presumed) bug in
the code. They did not take the time to think of other test
cases.

This strong focus on the given code shows that many of
the students do not write test cases as a way to assure the
correctness of a program during its complete life cycle, but
more of a way to debug the code. This is consistent with
the findings of Edwards regarding a trial-and-error approach
to software development and testing [2]. It is known from
the literature that beginning students do not see a difference
between testing and debugging [15].

3) Lack of systematic testing: Both the interviews and the
exercises show that the students tend to limit themselves to
‘happy path testing’. This finding fits with the survey results
showing that students are optimistic about the correctness of
their code. This is a known phenomenon [2].

In the classification of Michaeli [16], our students have
a ‘level 1’ understanding of software quality (thinking that
software that successfully processes sample data works). In
the classification of Beizer [17] they are in phase 1 (thinking
that the purpose of testing is to show that the software works)
and in some cases phase 2 (thinking that the purpose of testing
is to show that the software does not work).

A more extreme misconception was found where students
did not think at all about providing test cases, but merely
copied the examples that were mentioned in the exercise text
for the purpose of illustrating and clarifying the specification.
This may be ascribed to misunderstanding the task.

4) Incomplete test sets: The exercises reveal that al-
most all the test sets defined by the students are far from
complete, mostly only containing happy path test cases.
Specification-based requirements (such as robustness), as well
as implementation-based requirements (such as coverage ra-
tios) are not satisfied. The above findings explain these in-
complete test sets well.

5) Wrong test strategies: Besides happy path testing, we
observed test cases restricted only to the examples as part of
the exercise, and test cases restricted to bugs found in code.

Another remarkable test strategy we observed is exhaustive
testing, i.e. trying to feed a function with all possible inputs.
This is a known misconception: Complete Testing is Possible1.
These students described this approach, but did not try to
show their test cases. One student mentioned the possibility
of physical problems.

6) Lack of motivation: Many students showed a lack of
motivation for testing. They are optimistic about the cor-
rectness of their own code and consider testing merely an
additional burden. One reason may be that the test tasks are
experienced as too simple to justify the extra work [18], while
code inspection is still feasible. This leads to a paradox in
testing education. If the code is small enough to understand,
testing is not a necessity. If the code becomes larger, students
are unable to comprehend the code and are therefore unable
to design tests (at least, white-box tests).

7) Time spent to test: The time spent by students to read
an exercise, to define test cases and to inspect the code
is remarkably short. This observation matches the findings
of happy path testing, test cases based on code inspection
specifying a test case for found bugs, as well as a lack of
motivation.

8) Unnecessary or even impossible testing: Although the
language we use is Java, some students proposed type test-
ing in their answers. Possibly, students tested the program
on robustness, i.e. how it reacts to erroneous inputs. Also,
some students used testing as a way to find syntax errors.
Because type checking and syntax checking are performed
by the compiler, we consider these as misconceptions, i.e.
unnecessary testing. We did not find this type of misconception
in existing research.

B. Regarding Kolikant’s findings

Regarding Kolikant’s study [10], our population of students
reveals more mistrust concerning the correctness of a program
based on reasonable output of that program: 24% of our
population versus 50% of the population of Kolikant consider
reasonable output to be a sufficient indicator of correctness.
The difference increases in case of complicated calculations:
our population 3% versus Kolikant 33% in case of high school
students and 69% in case of college students.

A similar observation was done involving the no-testing
approach in the case that a programmer is certain that his/her
program is correct. In our study, only 7% agreed that testing
is not necessary if the code compiles, where in the Kolikant
study 31% agreed with that statement. These findings follow
from the pre-exercises surveys.

Almost similar to Kolikant, we observe that 79% of the
students think that they test systematically. The exercises and
interviews show that they produced a very limited set of test
cases that certainly did not cover all possibilities. We also,
like Kolikant, conclude that students tend to describe their
non-systematic methods as systematic.

1See https://www.tutorialspoint.com/software testing/software testing
myths.htm

197

REFERENCES

[1] R. Pham, S. Kiesling, L. Singer, and K. Schneider, “Onboarding in-
experienced developers: struggles and perceptions regarding automated
testing,” Software Quality Journal, vol. 25, no. 4, pp. 1239–1268, 2017.

[2] S. H. Edwards and Z. Shams, “Do student programmers all tend to
write the same software tests?” in Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM,
2014, pp. 171–176.

[3] N. Doorn, “How can more students become ‘test-infected’: current
state of affairs and possible improvements,” Master’s thesis, Open
Universiteit, 2018.

[4] S. H. Edwards, “Using software testing to move students from trial-and-
error to reflection-in-action,” ACM SIGCSE Bulletin, vol. 36, no. 1, pp.
26–30, 2004.

[5] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia, “The
impact of software testing education on code reliability: An empirical
assessment,” Journal of Systems and Software, vol. 137, pp. 497–511,
2018.

[6] M. A. Brito, J. a. L. Rosi, S. R. d. Souza, and R. T. Braga, “An
experience on applying software testing for teaching introductory pro-
gramming courses,” CLEI Electronic Journal, vol. 15, no. 1, 2012.

[7] The Joint Task Force on Computing Curricula Association for Comput-
ing Machinery (ACM) IEEE Computer Society, Curriculum Guidelines
for Undergraduate Programs in Computer Science. ACM, 2013.

[8] The Joint Task Force on Computing Curricula Association for Comput-
ing Machinery (ACM) IEEE Computer Society, Curriculum Guidelines
for Undergraduate Degree Programs in Software Engineering. ACM,
2014.

[9] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses of factors
related to positive test bias in software testing,” International Journal
of Human-Computer Studies, vol. 41, no. 5, pp. 717–749, 1994.

[10] Y. B.-D. Kolikant, “Students’ alternative standards for correctness,” in
Proceedings of the first international workshop on Computing education
research. ACM, 2005, pp. 37–43.

[11] O. S. Gómez, S. Vegas, and N. Juristo, “Impact of cs programs on the
quality of test cases generation: An empirical study,” in Proceedings of
the 38th International Conference on Software Engineering Companion.
ACM, 2016, pp. 374–383.

[12] I. Cetin, “Students understanding of loops and nested loops in computer
programming: An apos theory perspective,” Canadian Journal of
Science, Mathematics and Technology Education, vol. 15, no. 2, pp.
155–170, 2015. [Online]. Available: https://doi.org/10.1080/14926156.
2015.1014075

[13] D. Ginat, “On novice loop boundaries and range conceptions,”
Computer Science Education, vol. 14, no. 3, pp. 165–181, 2004.
[Online]. Available: https://doi.org/10.1080/0899340042000302709

[14] A. Bijlsma, H. Passier, H. Pootjes, and S. Stuurman, “Integrated test
development: An integrated and incremental approach to write software
of high quality,” in Proceedings of the 7th Computer Science Edu-
cation Research Conference (CSERC), V. Pieterse, G. Papadopoulos,
D. Stikkolorum, and H. Passier, Eds. ACM, 10 2018, pp. 9–20.

[15] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L. Thomas, and
C. Zander, “Debugging: the good, the bad, and the quirky–a qualitative
analysis of novices’ strategies,” in ACM SIGCSE Bulletin, vol. 40, no. 1.
ACM, 2008, pp. 163–167.

[16] T. Michaeli and R. Romeike, “Addressing teaching practices regarding
software quality: Testing and debugging in the classroom,” in Pro-
ceedings of the 12th Workshop on Primary and Secondary Computing
Education. ACM, 2017, pp. 105–106.

[17] B. Beizer, Software testing techniques, 2nd ed. Van Nostrand Reinhold,
1990.

[18] L. P. Scatalon, E. F. Barbosa, and R. E. Garcia, “Challenges to integrate
software testing into introductory programming courses,” in 2017 IEEE
Frontiers in Education Conference (FIE). IEEE, 2017, pp. 1–9.

198

