
Open Universiteit 
www.ou.nl 

Construction of a knowledge graph for exercise selection

Citation for published version (APA):

Bijlsma, A., Huizing, C., Kok, A. J. F., Kuiper, R., Passier, H. J. M., Scheffers, E., Schivo, S., & Vos, T. E. J.
(2021). Construction of a knowledge graph for exercise selection. Open Universiteit. OUNL-CS (Technical
Reports) Vol. 2021 No. 2

Document status and date:
Published: 14/10/2021

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02 Jul. 2022

https://research.ou.nl/en/publications/3c777676-132b-4468-a752-6df7692ee43b


Construction of a knowledge graph for exercise selection

Lex Bijlsma1, Cornelis Huizing2, Arjan Kok1, Ruurd Kuiper2, Harrie Passier1, Erik Scheffers2,
Stefano Schivo1, and Tanja Vos1

1Open Universiteit, Faculty of Science, Department of Computer Science, P.O. Box 2960, 6401 DL
Heerlen, The Netherlands

2Eindhoven University of Technology, Faculty of Mathematics and Computer Science, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

October 14, 2021

Abstract

This paper describes the construction of an open-source repository to store and select
exercises, whose architecture and design are usable for many knowledge areas. The repos-
itory has been built and is operational for a collection of Java programming exercises,
independent of any specific teaching approach. Each exercise is equipped with a set of
knowledge items to clearly show which programming knowledge is needed. Consequently,
a tag-based search enables students to find those exercises that match their knowledge
level. In order to make the process of tagging and searching efficient, the exercise tags
have been structured into a foreknowledge graph. In this graph, each node is a tag while
edges describe dependency relations between them. An interactive online tool is provided
that supports the submission of and search for exercises.

1 Introduction

There is a long-standing, general demand for a repository that provides a substantial quantity
of good quality programming exercises. Current large student numbers as well as an increase
in on-line education, ranging from regular university courses to self-study oriented MOOCs,
make this all the more topical.

This paper presents a theoretical foundation for, and an implementation of, an open source
exercise repository that enables one to build, use and maintain a pool of exercises. Specifically,
the repository enables teachers and students at different institutions to contribute and select
exercises that provide training in programming. In this paper Java is used as the programming
language, but the repository can equally well be used for other languages. The architecture
and design of the searchable repository are, in fact, usable for all knowledge domains where
prior knowledge plays an important role, yet different pathways through the subject matter
are possible.

The main challenge is to match exercises to the knowledge level of a student in a manner that
is independent of specific teaching approaches (for instance we accommodate ‘objects first’

1



and ‘objects late’ courses equally well). The central idea is that an exercise may train several
things, like while, method and object , and require foreknowledge like a thorough understanding
of boolean conditions and a glancing acquaintance with main as occurring in template start-
up code. The challenge is then, how to match, independently from teaching approaches, such
an exercise to training desires. To achieve this aim, firstly each exercise is tagged with the
knowledge it trains. Of course, the idea of adding metadata to learning materials to enhance
findability is nothing new [10], but the level at which the tags apply, and what they exactly
capture is quite specific for the repository purpose.

Secondly, a foreknowledge graph that captures precise dependencies between tags is intro-
duced.

Thirdly, an interactive search function is developed that combines the information in the tags
and the foreknowledge graph to identify exercises that match a training desire.

The exercises are stored in a database, together with information to search the database.
An interactive search tool is provided that supports the submission of, and search for, exer-
cises. (The system also provides automated testing of students’ solutions, but in this paper
we concentrate on the search tool.) The search tool is described in an abstract manner,
implementation issues are deferred to a companion paper.

In Sections 2 to 8 the considerations that shaped the repository are presented in an incremental
fashion, identifying subgoals and choices made. Throughout, this stepwise refinement is
motivated by showing that the earlier, less complicated definitions would lead to a search
tool that has undesirable properties for practical use. The search tool corresponding to the
final definition has been implemented and is now in use at two universities with very different
programming courses. As the difficulty with systems like this tends to lie in providing the
tags, it is worth emphasizing that the approach explained in this paper has indeed led to a
practically useful implementation. It can be viewed at https://serf.win.tue.nl.

After the exposition, in Section 9, Use cases are provided. In Section 10, Related work, connec-
tions are made to the study of object-oriented programming concepts and, more specifically,
to work by Meyer and Petroni [8], and by Hubwieser [4].

The research reported on is performed in the context of SURF project “a Structured Exercise
Repository with automated Feedback” (SERF). This project also concerns automated feed-
back on solutions, on-line availability of the repository, collaborative use and maintenance of
the repository, and evaluating the impact on student performance and satisfaction.

2 Search by knowledge items – tags

Exercises are usually ordered from the perspective of a teaching approach, following the
development of acquired knowledge in the approach. However, for an exercise set to be
used by teachers and students at different institutions, using different teaching approaches,
orderings may differ. Therefore it is proposed to accompany each exercise by information
that determines at what point in different teaching approaches it will be useful.

An exercise trains the application of certain knowledge. Such knowledge consists of several
knowledge items, each of which is trained by solving the exercise. As an example, an exercise

2



might be intended to train the knowledge items while, method and object . The set of all
knowledge items in the system will be denoted by Items.

A submitter (usually a teacher) submits an exercise e to the exercise set Exercises of the
repository. The submitter also provides a set of knowledge items that the exercise is intended
to train. These will be called the tags of the exercise.

Definition 2.1 The tag set of an exercise is the subset of Items consisting of the knowledge
items the exercise is tagged within the repository. The tag set of exercise e is denoted by
Tags(e).

We reserve the word tags for knowledge items that are attached to an exercise. For now,
we assume that the submitters choose a tagging that for each exercise e gives a tag set,
based on experience and professional judgement. For an example exercise E, let Tags(E) =
{while,method , object}. (In what follows we will use the capital E when referring to this
particular example.) In Sections 3 and 5 we present formal criteria for taggings.

A searcher for exercises (this can be a student as well as a teacher) wants to select exercises
that train some desired knowledge item(s). So searchers indicate the knowledge items they
want to train as a set of knowledge items, for example, {method , object}.

Definition 2.2 A training set is a set of knowledge items a user submits to the system in
order to be provided with exercises that train these knowledge items.

A straightforward definition of a search function is to return the set of exercises for which the
exercise tag set is the same as the training set.

The first approximation of the search function is therefore as follows: For any set of knowledge
items Train, let search1 be the set of exercises that have exactly Train as their tag set.

Definition 2.3 Mapping search1 from sets of knowledge items to sets of exercises is defined
by

search1(Train)
def
= {e ∈ Exercises | Train = Tags(e)}

Earlier we considered an example exercise, E, whose tag set was ({while,method , object}).
This E is in the return set of search1({while,method , object}).

However, E is not in the return set of search1({method , object}), because E also trains while.
The exercise tag set indicates the training an exercise provides, so if for an exercise the training
set is a subset of the exercise tag set, that exercise provides at least the desired training, so it
is useful to return that exercise as well. For instance, the example exercise that trains while,
method and object can for some student at some stage in an approach be used to train method
and object or in another case just object . However, it cannot be used for these purposes when
the student does not yet have any knowledge of while. This point will be elaborated in the
next section.

The second approximation of the search function is therefore as follows: for any set of knowl-
edge items Train, the set of exercises that each have Train as subset of their tag set is selected
by search2.

3



Definition 2.4 Mapping search2 from sets of knowledge items to sets of exercises is defined
by

search2(Train)
def
= {e ∈ Exercises | Train ⊆ Tags(e)}

The example exercise, E, is still in the return set of search2({while,method , object}) and now
also in the return set of search2({method , object}).

Remark 2.1 Various choices have been made for already this first approximation. Because
of the novelty of the approach, some motivation of choices made and mention of alternatives
is provided.

To keep the search function simple, and also to make it easy for students to estimate what
has been trained when they complete an exercise, the choice has been made that each exercise
selected, taken on its own, provides the requested training rather than that the selected exercises
together provide the requested training.

To keep tagging simple, the choice has been made to use only a set of knowledge items for an
exercise rather than allow combinations of tags with, e.g., boolean connectives. The exercise
tag set induces an implicit ‘and’: an exercise trains all knowledge items in its tag set.

To keep search simple, the choice has been made to use only a set of training tags rather than
to use a query language. The training tag set also induces an implicit ‘and’: an exercise gets
selected if it trains (at least) all knowledge items in the training tag set.

Judicious use of search2 still provides some, quite intuitive, flexibility in searching. Often
training for a single knowledge item is desired: then the training set is a singleton. To search
for all exercises that train a knowledge item from a set of knowledge items, i.e., ‘or’ over
the items in the set instead of the implicit ‘and’ over the items in a training set, separate
searches can be performed for each item in the set. For example, search2({while,method})
selects the exercises that each train (at least) both while and method; search2({while}) and
search2({method}) together will also select the exercises that train both, but will additionally
select the exercises that train while but not method, and method but not while, respectively.

3 Limiting search by missing knowledge – negative tags

To include exercises that train more knowledge items than just the ones indicated, search2

returns all exercises that train at least the desired knowledge items. However, exercise tags
that were not in the search set may represent knowledge items that the searcher was just not
interested to train but able to use, which is fine, but they may also represent knowledge items
that the searcher has not mastered yet, which is problematic. For example, search2({method})
returns E, as Tags(E) = {while,method , object}. That E also trains while may for many
students not be a problem, but that it also trains object may for quite some students mean
that the exercise is beyond their level. Therefore search has to be adapted to enable to exclude
exercises that require knowledge above a particular searcher’s level.

The searcher indicates the above level knowledge items as a set of so-called negative tags.

4



Definition 3.1 A negative tag set is a set of knowledge items that are not desired to be
trained.

For the example, Negative = {object} is a possible negative tag set.

The third approximation of the search function will therefore introduce an extra argument,
as follows.

Definition 3.2 For training set Train and negative tag set Negative,

search3(Train,Negative)
def
=

{e | Train ⊆ Tags(e) ∧ (Negative ∩ Tags(e) = ∅)}

For ease of notation, Negative is an optional argument. When it is not specified, that means
Negative = ∅.

The example exercise, E, is not in the return set of search3({method}, {object}) – justifiedly
so, as Tags(E) = {while,method , object} and object was indicated as being above level. An
exercise with tag set {while,method} would be in the return set – justifiedly so, as while was
not indicated as being above level.

Next it will be shown that search3 is a generalization of search1 and search2 in the sense that
it is at least as expressive as search1 and search2.

For any set of knowledge items T , the set of exercises that each have precisely T as their tag
can be selected by search3.

Proposition 3.1 For each subset T ⊆ Items,

search3(T, Items \ T ) = {e ∈ Exercises | T = Tags(e)}

In other words, search3(T, Items \ T ) = search1(T ).

Proof:

search3(T, Items \ T ) =

{e | T ⊆ Tags(e) ∧ (Items \ T ) ∩ Tags(e) = ∅} =

{e | T ⊆ Tags(e) ∧ Tags(e) ⊆ T } =

{e | Tags(e) = T}.

�

For any set of knowledge items T , the set of exercises that each have T as subset of their tag
set can also be selected by search3.

Proposition 3.2 For each subset T ⊆ Items,

search3(T ) = {e ∈ Exercises | T ⊆ Tags(e)}

5



In other words, search3(T ) = search2(T ).

Proof:

search3(T ) =

search3(T, ∅) =

{e ∈ Exercises | T ⊆ Tags(e) ∧ (∅ ∩ Tags(e) = ∅)} =

{e ∈ Exercises | T ⊆ Tags(e)}.

�

Apart from providing the functionality of search1 and search2, mapping search3 also enables to
select sets of exercises that neither search1 nor search2 can select, namely, by using Negative to
deselect exercises that train knowledge items that are not required by Train. For example, if
the exercise set contains exercises tagged by {while,method}, {do,method} and {for ,method},
the current definition enables to exclude just the exercises labelled with for , namely by
search3({method}, {for}), which the naive versions cannot express with one search action.

An important issue to take into account is that Train is easy to describe for the searcher, but
Negative less so. Searchers know which knowledge they want to train, but by the nature of
‘above-level knowledge’ are likely not explicitly aware of what that entails, making it difficult
to provide a set Negative that captures their ‘above-level knowledge’.

This issue is tackled the following way. When performing a search3, to enable the seacher
to define Negative, the tool displays for each exercise in the result its tags. This enables the
searcher to assess whether he or she is familiar with that knowledge, and if this is not the
case, to put the unfamiliar tag in Negative. Then when the searcher repeats search3 with the
updated Negative, exercises that required the above level knowledge are excluded from the
result. For example, search3(method) has E in the return set and displays for E its tag set
{while,method , object}. The searcher then, before attempting to solve this exercise, is alerted
that knowledge about while and object is required for the solution, recognizes that object is
above his level but while is not, and adds object to Negative for the next search – which will
not return E anymore. This makes the search an interactive and iterative process.

Because just one negative search tag that is in the tag set of an exercise already means that
the exercise is above level and hence should be excluded, it is efficient to search again after
one or a limited number of exercises have provided (some) negative tags: in a new search with
these negative tags all other exercises with those tags, also those having additional unfamiliar
tags, are then excluded.

Of course, no tags should be in both the training set and the negative set: this would pose
contradictory demands (having and not having a tag in the exercise tag set) on the exercises
searched for and hence yield an empty search result.

6



4 Tagging with all knowledge items – Needs(e) tagging

The intuitive aim for searching exercises is that with appropriate search terms, a search can
return the set of all exercises that train desired knowledge items. Whether this is possible
with search3 depends on the tagging of the exercises.

The dependency on the choice of Tags(e), which so far has been decided by the problem
author without any constraints, means that it is not ensured that the set of exercises that
trains any set of knowledge items can be returned. For example, say a searcher wants to
further select, from the exercises that train {while, method , object}, the ones that also train
console I/O. This can only be done if a tag relating to console I/O was considered relevant
by the tagger and attached to the corresponding exercises. Therefore a specific tagging, by
all knowledge items needed for solving an exercise, is defined.

Definition 4.1 The needs tag set for an exercise e, Needs(e) ⊆ Items, is the set of all
knowledge items needed to solve it.

It is a reasonable assumprtion, one borne out in practice, that a consensus about what is
needed among different taggers and searchers is feasible. A more formal definition in terms
of, e.g., syntactic language elements or concepts like polymorphism used in a preferred solution
is left for later research.

For any set of knowledge items T , the set of exercises that train T can be selected by search3.

Proposition 4.1 If each exercise e satisfies Tags(e) = Needs(e) , then for each subset T ⊆
Items,

search3(T, Items \ T ) = {e ∈ Exercises | T = Needs(e)}

Proof:

Direct from Proposition 3.1 with Tags(e) replaced by Needs(e).

�

For any set of knowledge items T , the set of exercises that train T and possibly more can be
selected by search3.

Proposition 4.2 If each exercise e satisfies Tags(e) = Needs(e), then for each subset T ⊆
Items,

search3(T ) = {e ∈ Exercises | T ⊆ Needs(e)}

Proof:

Direct from Proposition 3.2 with Tags(e) replaced by Needs(e).

�

Remark 4.1 Note that the searcher can choose the Negative argument to be a smaller set
than in Proposition 4.1 to not exclude some exercises that do not only train the desired
knowledge of Train but also some already mastered items.

7



5 Tagging with relevant knowledge items – the prior-knowledge
graph

The role of tagging has now changed with respect to the initial version. Originally, the
submitter provided tags to indicate what competencies an exercise was intended to train;
however, the introduction of Needs added knowledge items that are necessary for the solution,
without the exercise being considered good training for these. As Proposition 4.1 states,
tagging with Needs(e) in principle enables for any set of knowledge items to select the set
of exercises that provides the training for these. However, it turns out that to be usable in
practice, deeper insight in the role of tags and the relations between them is necessary.

The most important practical problem is over-tagging. For example, when tagging with
Needs(e), a very basic knowledge item like assignment will be a tag for almost all exercises.
Because of the, well-motivated, inclusive use of tag sets in a search, Train ⊆ Tags(e), a novice
searching with assignment will get almost all exercises returned, most of them way beyond
his knowledge level, and has to remove these beyond level exercises in further searches by
selecting many negative tags from the displayed very large set of knowledge items. This is
impractical and off-putting. Similarly, tagging with all Needs(e) tags is laborious for the
tagger.

Therefore, we need to prune the Needs(e) tagging.

The idea is that an exercise should not be tagged with a knowledge item that is just prior
knowledge for another knowledge item that the exercise needs. This suggests limiting the
needs tags for an exercise to those knowledge items that are highest, ‘top’, in some hierarchy
of prior knowledge. For the example, an exercise that has needs tag while should not have
tag boolean-expression that is prior knowledge for the while.

Therefore, the needs relation on knowledge items is defined. (This relation should not be
confused with Needs, which is a function on exercises.)

Definition 5.1 The needs relation between knowledge items expresses that ItemA needs ItemB
if mastery of ItemA must be preceded by mastery of ItemB.

From the definition it follows that needs is transitive. The name needs is chosen for this
relation to indicate that all knowledge items that have a needs relation from a knowledge
item indicated by a tag of an exercise, are also needed knowledge items for that exercise.

The needs relation is an irreflexive partial ordering on knowledge items; it is not necessarily
linear. Exercises will generally have several tags in their needs tag set that are not in a needs
relation. For example, an exercise may train recursion and extends. Both these tags can then
be included in the needs tag set, neither is prior knowledge for the other.

Knowing which knowledge item is and is not needed by other knowledge items would pose
unrealistic demands on the tagger, and even more so on a less experienced searcher. Further-
more, there would likely be inconsistencies between individuals about this relation. Therefore,
and for use in the search function, a prior-knowledge graph is developed.

8



Definition 5.2 The prior-knowledge graph is the smallest directed acyclic graph with as
nodes the knowledge items that has the property that there is a path from ItemA to itemB if
and only if ItemA needs ItemB. If in this graph there is an arrow (directed edge) from ItemA
to itemB, we shall denote this by ItemA → ItemB. The graph is visualized with the arrows
pointing downward.

A smallest directed acyclic graph exists and is unique because needs is an irreflexive partial
ordering. An equivalent form of this definition is that for knowledge items ItemA and ItemB
we have

ItemA needs ItemB ⇔ ItemA→+ ItemB

where →+ denotes the transitive closure of →.

The minimality of the graph means that if ItemA→ ItemB and ItemB → ItemC , hence also
ItemA needs ItemC , the graph will not contain an arrow from ItemA to ItemC , because the
corresponding needs relationship is already implied by itemA→ ItemB and itemB → ItemC .

Rather than expecting the tagger to provide every exercise with its full needs tag set, we shall
see that it is sufficient to provide a limited set of knowledge items from which the needs tag
set can be generated by the paths in the graph.

The graph codifies what the knowledge items and their names are, i.e., the set Items, and
what the prior-knowledge relation between them is. It is the crucial ingredient for practical
tagging and searching, providing information to the tagger and to the searcher.

For an exercise e, the knowledge items in Needs(e) that are relative sources, i.e., that cannot
be reached by a path from other elements of Needs(e), are the most difficult knowledge items
needed for solving e. These we will call the tops of the needs tag set. In terms of the partial
ordering these are minima; because we draw the graph with arrows pointing downward, they
appear near the top of the page – hence the name. Using only tops as tags for the exercise
remedies finding too many exercises as caused by over-tagging.

The second problem is under-tagging: not having enough exercise tags to find the exercise.
This can be solved by tagging with all tags in the needs tag set that are tops.

The tops tagging is defined more formally as follows.

Definition 5.3 The tops tagging for an exercise e, Tops(e), is

Tops(e)
def
= {t ∈ Needs(e)|¬(∃u ∈ Needs(e) : u→ t)}

The original needs set of e may be recovered from Tops(e) as follows.

Proposition 5.1

Needs(e) = {x ∈ Items |
(∃t ∈ Tops(e) : t = x ∨ t needs x)}

Proof:

9



To see this, take any element x of Needs(e). If there is a t ∈ Needs(e) with t→ x, walk up to
t, and repeat the process until there is no such →-predecessor available. This will eventually
be the case because the graph is finite and acyclic. The invariant of this process is

t = x ∨ t needs x

Finally, after 0 or more steps, we have arrived at a t ∈ Needs(e) without a suitable →-
predecessor, so

¬(∃u ∈ Needs(e) : u→ t)

By definition, this t is a member of Tops(e). This proves left-to-right inclusion. The other
direction is a consequence of the transitivity of needs.

�

This corresponds to the following tagging rule. The idea is that, according to Definition 4.1,
for an exercise e the tagging with Needs(e) provides all knowledge items needed to solve it.
The graph then enables to prune this set down to tags that are tops in the graph.

For exercise e:

1. Determine Needs(e).

2. Remove tags from Needs(e) that are prior knowledge of another tag in Needs(e) to
obtain the Tops tagging.

The third problem is that tagging with only relative top tags has an undesirable consequence
for negative tagging. For instance, if a student searches for recursion and gets an exercise
labeled with, among others, the tag extends, this concept may be so far beyond his knowledge
level that it is confusing rather than helpful. The student might know that class is beyond
his level, and already have added that as a negative tag. However, although class is prior
knowledge for extends, a negative tag class should but does not exclude exercises tagged with
the extends tag but without the tag class. So for negative tags in a search all prior knowledge
tags of the exercise tags must to be considered.

The search function now can be adapted so as to let negative tags exclude exercises e that
have these tags in the Needs(e) set of their prior knowledge: search4 uses the information
from the prior-knowledge graph to expand the tag sets of the exercises.

The fourth approximation of the search function is therefore as follows.

Definition 5.4 For a train tag set Train and a negative tag set Negative,

search4(Train,Negative) =

{e ∈ Exercises | Train ⊆ Tops(e) ∧
Negative ∩ Needs(e) = ∅}

For any set of knowledge items T , the set of exercises that each have T as subset of their
Tops-tag set can be selected by search4.

10



Proposition 5.2 If each exercise e satisfies Tags(e) = Tops(e), then for each subset T ⊆
Items,

search4(T ) = {e ∈ Exercises | T ⊆ Tops(e)}

Proof:

search4 (T ) =

search4 (T , ∅) =

{e ∈ Exercises | T ⊆ Tops(e) ∧ ∅ ∩Needs(e) = ∅} =

{e ∈ Exercises | T ⊆ Tops(e)}.

�

Note that this set is a defendable choice of tag set for an exercise, but that maybe some manual
fine-tuning might be advisable. Tagging e with Tops(e) gives a tag set that is reduced as far
as possible while retaining access to all needed knowledge items. But for pragmatic reasons
it may be preferable to retain some more tags. For example, an exercise may train a relative
top knowledge item, but some knowledge that is one needs-arrow removed may be a more
intuitive training aim for a student. An experienced tagger may also include this knowledge
item as a tag.

‘Pruning’ is used to make the tagging easy to describe: in practice, rather than first estab-
lishing all needs-tags for an exercises, a tagger can with an eye on the graph avoid adding
non-relative top tags from the start, and check at the end that all relative tops that are needed
for solving the exercise are present.

This takes care of the practical tagging as far as tagging with needs tags is concerned.

These are the essential ingredients for a conceptually quite intuitive and simple, yet practi-
cable, repository.

What has been achieved is that the tagging Tags(e) as described in Section 2 as ‘based on
experience and professional judgement’ has been replaced by a tagging Tops(e). Here Tops(e)
aims to provide the same characterization of exercises by the knowledge items the exercises
trains, but for Tops(e) tagging guidelines based on a prior-knowledge graph are available.
Furthermore, several strategies for searchers exist. A searcher may search by intuition only
and add (negative) search tags when needed, or consult the knowledge graph first and then
use more precise search requests to find the exercises of his liking.

In the next two sections we add two somewhat more advanced extensions to further refine
the approach.

Remark 5.1 Studying the graph enables the tagger to see whether all prior knowledge is
covered beneath the given tags: tag as high as possible (’high’ meaning minimal with respect to
→), without overshooting (overshooting means: the exercise does not train the tag-subject!).
The graph also enables a searcher to know what low-level tags exclude exercises tagged with
higher tags only. However, in practice this is mainly useful in case the searcher is a teacher
selecting exercises for his course; for beginning students, a graph full of as yet unknown
concepts will not be informative.

11



Remark 5.2 Studying the graph also helps the teacher to partially order exercises/lecturing:
according to the needs relation.

Remark 5.3 In the use of search4, negative tagging can not be used to remove exercises that
(in addition to the search topics) train already mastered non-tops topics that the student is
not interested in re-training: adding these to the negative set would also remove higher-level
elements that the student does want to train.

6 Useful prior knowledge – the uses relation

For the needs tags, given in Definition 4.1, needed knowledge was intended as mastered
knowledge. For many exercises there also is useful knowledge of which glancing acquaintance
rather than mastery is sufficient. For instance, anyone writing a Java program with a main
function will encounter the concepts public and static, without necessarily understanding their
full meaning. Such knowledge is indicated by a separate relation: uses.

Definition 6.1 The uses tag set of an exercise e, Uses(e), is the set of knowledge items of
which glancing acquaintance is required to solve it.

Note that being a uses tag for an exercise is approach independent.

For the needs relation, given in Definition 5.1, needed prior knowledge was described as
needing to be mastered. For many knowledge items there also is useful knowledge of which
glancing acquaintance rather than mastery to understand the knowledge item is sufficient.
Such knowledge is indicated by a separate relation: uses.

Definition 6.2 The uses relation between knowledge items1 is that ItemA uses ItemB if
mastery of ItemA needs glancing acquaintance of ItemB.

Note that the uses relation between knowledge items is approach independent.

The characteristics of relation uses differ from that of needs in that it is not transitive; neither
are we interested in its transitive closure. Indeed, using a knowledge item just means being
aware that it should be mentioned in certain circumstances, without the necessity to know
more about it. Printing information by calling on System.out is possible at a very early
stage and does not require the realization that System is a public final class in the java.lang
package, nor what any of these words mean.

Detecting the items directly used by an exercise can be automated easily: the tool merely
needs to scan an example solution. For the tool to display all subjects for which a glancing
acquaintance is required for an exercise e, it should compute

ShowUses(e)
def
=

{u ∈ Items | u ∈ Uses(e) ∨ (∃t ∈ Needs(e) : t uses u)}
1Observe the difference with Definition 6.1: the earlier definition is concerned with properties of an exercise,

the present one with relations between knowledge items.

12



for which the graph is employed.

7 Abstracting topics – the isa relation

The graph is not only used by the search function, but also to help taggers and searchers in
their understanding. It is therefore important that the graph is conceptually manageable.

One issue is that there may be a proliferation of needs arrows. In Figure 1 tags A, B and
C all need the same prior knowledge X, Y and Z. This makes for a spaghetti-like structure.
(In fact, it is a well-known example from graph theory that this structure cannot be drawn
without arrows crossing.) Abstractions and the isa relation will now be introduced in order

Figure 1: A cluttered graph

to simplify the graph.

Definition 7.1 An abstraction is a set Q of knowledge items with the property that all ele-
ments of Q have some prior knowledge needs in common. Formally: there is a set RQ ⊆ Items
such that

∀A ∈ Q ∀X ∈ RQ : A needs X

For an abstraction Q we write A isa Q instead of A ∈ Q, and Q needs X instead of X ∈ RQ.
If A isa Q we shall call A an instance of Q.

Next we modify the graph by adding these abstractions as extra nodes and extra arrows
representing the isa relation. The isa relation is drawn as an arrow with an open head, while
the needs relationships have a closed head. Definition 7.1 shows that there will be isa arrows
going into an abstraction node and needs arrows going out from it. The direct arrows from
the abstraction’s instances to its needs are removed from the graph, as these are implied by
the isa and needs arrows passing through the abstraction.

For example, public and private are instances of the abstraction access, which needs class.
Hence public and private also need class without this being explicitly drawn in the graph.
This yields the much less complicated graph of Figure 2.

This change in the graph necessitates a corresponding change in the computation of Needs(e).
Where formerly we started at Tops(e) and added all items reachable via paths in the graph

13



Figure 2: A less cluttered graph

composed of needs arrows, now we need to also take into consideration paths of needs and isa
arrows that do not end with an isa arrow. Formally, Definition 5.1 must now be replaced by

Needs(e) =

{x | (∃t ∈ Tops(e) : t = x ∨
(∃u : t(needs ∪ isa)∗u ∧ u → x))}

The bound variables x and u range over the graph’s nodes, i.e., the set Items, which now
includes abstractions. Relation (needs ∪ isa)∗ denotes the reflexive-transitive closure of the
relation between parentheses. It is necessary to take this closure, because otherwise we would
get only paths that consist exclusively of isa or needs arrows, not, as required, paths of mixed
composition. Note that search4 is still defined as in Definition 5.4, but with the new formula
for Needs.

Observe that the introduction of abstractions does not change the information contained in
the graph: it merely makes it easier for the human reader to visualise and understand.

8 Abstractions as first-class knowledge items

Observe that, when used purely in the fashion of the previous section, the incoming arrows
of an abstraction are all of type isa. However, once we have decided to introduce such
abstractions as a summary of more concrete knowledge items, it turns out that these can also
be useful to indicate that for some exercise or knowledge item the prior knowledge consists of
an understanding of concepts rather than any specific implementation of these. For instance,
an exercise involving algorithm design will need the concept of repetition, but it is generally
immaterial whether this should be expressed by while or for or another form. One should not
tag such an exercise with while because there is no reason to prefer this above, say, for . One
should certainly not tag it with both while and for because it does not need both. In such
a case it is preferable that the exercise should be tagged with repetition rather than with an
overspecific syntactic construct.

14



Definition 8.1 An exercise is tagged with an abstraction when it requires understanding of
that concept, but does not mandate the use of any particular syntactic construct to express
the concept.

This does not mean that an exercise tagged with repetition should require knowledge of all
forms of repetition, but merely of the concept of repetition and of some way to implement
this. Do not confuse this with the fact that the needs of an abstraction are shared by all its
instances.

This tagging of exercises with an abstraction is intended for a very common class of exercises,
in particular the ones that occur in the part of a course that deals with algorithm design. In
this course part we get exercises such as, for example: given an array a, determine indices r
and s with r < s such that a[r] ∗ a[s] is as small as possible. Such questions are intended for
students who have passed through the initial introduction of specific grammatical constructs
for repetition and are now involved in the design of nontrivial programs that involve some
sort of repetition. As to which grammatical construct they use their algorithm, we do not
care at all.

In a similar spirit one may introduce needs arrows in the graph pointing to abstractions.
(As we observed above, these do not occur with the use of abstractions for pure decluttering
purposes.) For instance, reference types and primitive types are instances of the abstraction
type, but it is less demanding to state that assignment needs prior knowledge of the abstraction
type than prior knowledge of all available types.

In this way promoting abstractions to first-class citizens in the graph enhances expressivity.
This expressivity is already useful in case of programming languages, but all the more so
for domains with inherently abstract concepts, such as software engineering. For instance,
the concept subclassing is an abstraction because extends and implements are instances of
subclassing. Exercises may be tagged with subclassing when one does not care whether the
students use an interface or an abstract class to achieve some purpose. However, subclassing
is directly needed by protected -access and dynamic-binding : we simply cannot explain what
dynamic binding is without discussing subclasses first.

Definitions 2.2 and 5.1 remain valid if we now interpret the term ‘knowledge items’ to include
abstractions.

Note that in this case it should also be allowed to use abstractions in the negative tags of
Definition 3.1. However, this removes only the exercises where the abstractions appear in the
extended closure, hence are really required to understand the solution, not the exercises that
merely use an instance of the abstraction. So putting repetition in a negative tag does not
remove exercises that are explicitly intended to practice the for statement. Abstractions will
appear in a negative tag set when a student encounters them as a consequence of teacher
labeling; if we want the student to exclude them proactively, the graph should be supplied to
the students as well as the teachers. Putting abstractions into a negative tag set allows the
student to filter out the more advanced, high-level exercises; putting all the instances into the
negative tag set but not the abstraction will produce just the advanced ones.

In the final version of the knowledge graph, three different types of arrows occur, correspond-
ing to the needs, isa and uses relations. Figure 3 shows an example of their use.

15



Figure 3: The different types of arrows

Remark 8.1 One might ask whether all this could be simplified by ignoring the difference
between the isa and needs relations. Is not isa merely a special kind of need? The answer is
no. Consider the example of the primitive type int. Now clearly int is a type, but requiring
a student to write some simple programs containing integer expressions is very different from
expecting the student to have a deep understanding of the principles involved in the Java type
concept.

9 Use cases

In this section we describe the use of the tool in submitting exercises or solutions, and in re-
trieving suitable exercises for a given training purpose. The tool enables submitting solutions
and receiving automated feedback.

9.1 Submitting an exercise

Primary actor: teacher.

Step 1 Upload the exercise text that will ultimately be presented to students attempting
the exercise.

Step 2 Tag the exercise with knowledge it is intended to train.

Step 3 Upload an envisaged standard solution.

Step 4 The system automatically generates a set of syntax tags collected from the standard
solution.

Step 5 Decide which of the generated syntax tags are needed and which are merely used
in the sense of Definition 6.2. Store the latter.

16



Step 6 Decide whether any of the syntax tags must be combined with alternatives, or
replaced by an abstraction connected to it by an isa relation in the knowledge graph. For in-
stance, the system may have labeled an exercise with for , because that occurs in the standard
solution, but the teacher may decide that a more proper tag is repetition.

Step 7 Add tags to indicate concepts that must be understood for semantic reasons in order
to solve the exercise.

Step 8 Remove tags that are prior knowledge for other tags already present. This produces
the tops tag set in the sense of Definition 5.3.

Step 9 Calculate and store the needs tag set. This step uses the graph and is performed
automatically by the system.

Step 10 Provide a unit test to be used in evaluating student solutions.

9.2 Finding an exercise

Primary actor: either teacher or student.

Step 1 Choose one or more tags that indicate the subject for which the exercise is to provide
a practice opportunity.

Step 2 Indicate tags for related subjects that have not been mastered and hence should
not be required for the exercise. For instance, a query might have search tag repetition and
negative tag array . This step is optional, but it will reduce the work in the next steps.

Step 3 The system retrieves a set of exercise titles whose tag set contains at least one of
the search tags of Step 1.

Step 4 The system removes exercises from the set where needs tag set contains any negative
tags listed in Step 2.

Step 5 The system displays a list of exercises together with their prior knowledge needs
and uses tags.

Step 6 Repeat from Step 2, using a larger set of blocked knowledge items, until an exercise
is found that has no unwanted prior knowledge.

17



9.3 Submitting a solution

Primary actor: student.2

Step 1 The student uploads a program text that is intended to solve the exercise.

Step 2 The system provides feedback. This is composed of the result of the unit test
provided by the teacher at the time the exercise was added to the system, as well as comments
from style checking software.

10 Related work

The IEEE LOM standard for learning object metadata enables one to find and reuse learning
materials, learning objects, by tagging these [10]. The tagging presented in the current paper
applies at a different level: inside one learning object (an exercise repository). The tags, and
even more so the needs and use relations between them and the ensuing search function, are
the contribution of the approach: they capture the intricate foreknowledge relations between
concepts in the domain of learning, enabling to find small items like exercises matching the
knowledge of a specific student.

Ivanović and others [6] report on experiences with teaching materials developed and jointly
used at various institutions. Their approach to cope with different teaching approaches is that
two sets of teaching materials, roughly corresponding to Objects Late and Objects First styles
respectively, have been developed. Exercises are mostly tightly coupled to other teaching
materials such as textbooks or presentations. Their experience supports the claim that aiming
for compatibility with all approaches entails limiting the materials to exercises only. This is
feasible, provided there is automated support for selecting exercises.

Armstrong [1] presented a taxonomy of elemental object-oriented concepts. Not surprisingly,
these concepts resemble the knowledge items present in the system presented here. However,
the paper does not go into relations like the ones in this system’s knowledge graph.

A knowledge graph superficially similar to the one described here was proposed by Hubwieser
[4]. In particular, his distinction between hard and soft prerequisites resembles the needs and
uses relations. However, his graph has a different purpose: it is intended to identify and order
knowledge for curriculum design rather than for matching student skills and exercise demands.
Because of this difference in purpose, Hubwieser’s knowledge items are much larger than the
ones this paper aims at: they do not represent a single concept, but correspond roughly to
chapters in a course. Moreover, as Hubwieser’s graph is not intended for automatic retrieval
of exercises, no attempt is made to remove cyclic dependencies.

Because Hubwieser’s graph is intended to be used to support the large-scale design of a course,
it does not concern itself with small differences in presentation order. On the other hand, we
aim for a system that is usable with any pre-existing set of teaching materials. One point

2This use case does not depend on the graph and can be considered irrelevant from the point of view of
this paper. It is included to give a more complete picture of the system’s use.

18



where this ambition influences the graph is around the concept method , where it was necessary
to introduce quite fine-grained tags such as method with parameters.

It would be interesting to investigate connections between Hubwieser’s work and the present
authors’: a good question is whether we can show that the system developed in this paper
fits all curricula that satisfy the prerequisites in Hubwieser’s graph. Furthermore, it could be
investigated how the structure of a curriculum based on these prerequisites could be used to,
possibly automatically, order a set of tagged exercises to fit that curriculum.

Hubwieser and Mühling [5] present an approach to assess student competencies for OO pro-
gramming. This addresses more than a prior knowledge characterisation and would be an
interesting extension to pursue for more detailed student/exercise matching – with maybe
some emphasis on the student side.

The theory of knowledge spaces [2] was developed for the purpose of assessing the knowledge
of individuals. To this end, a body of knowledge is formalized as a set of ‘notions’ that are
comparable to the knowledge items in this paper. However, there are important differences.
One is that Doignon and Falmange do not assume that every notion has a unique set of
predecessors, while the needs relation does have this property, a reflection of the highly hier-
archical nature of the subject area being modelled. Another difference is that the notions are
identified with problem types, which leads to a great proliferation of notions – hundreds even
in the case of elementary subjects, according to Falmange, Cosyn, Doignon and Thiéry [3]. As
the examples in the latter paper show, the resulting graphs are too complicated for humans
to understand or memorize. That is not problematic for their envisaged use in knowledge
assessment, but for the present purpose human comprehension is essential (see Use case A).
Because we use graph nodes for concepts rather than exercise types, there are fewer of them:
the whole collection of programming exercises at both universities can be described by only
75 nodes. Finally, in the literature on knowledge spaces there is only one type of precedence
relation, masking the distinction between mastery and glancing acquaintance, which we have
found necessary for realistic and useful tagging of exercises. These differences do not consti-
tute an implicit criticism of knowledge spaces (or, indeed, of our own work), but follow from
the different purposes for which both approaches were developed.

Meyer and Pedroni [7, 8] present a wide ranging approach to structuring knowledge of teach-
ing domains, notably OO programming: the emphasis is on the structuring. The approach
considers three types of knowledge units (in increasing level of granularity): notions, trucs
(Testable, Reusable Units of Cognition), and clusters. In addition, it defines several types of
relationships between the entities. Their notion with the requires relation corresponds closest
to knowledge item with the needs relation. The relation refines resembles the isa relation. A
tool, TrucStudio, is provided in [9] that supports course management based on this structure.

It would be interesting to investigate how matching students to exercises could be improved
using these knowledge units and relations, and the TrucStudio tool – with maybe some em-
phasis on the exercises side.

The site CodingBat (https://codingbat.com/java) also provides a collection of exercises,
with very good feedback, but in limited number and scope: mostly for training simple algo-
rithmics and methods. This collection does not have a skills-matching search process such as
we have outlined.

19



11 Conclusions

This paper presented a course independent repository of Java exercises, with a search method
and tool to match student skills to exercise demands.

In how far the aim that the repository fits any Java curriculum succeeded is being investigated
empirically in the SERF project: the repository is being used with different curricula, and
the results will be evaluated. This is ongoing research, at present conducted in the SURF
project SERF.

The repository aims to be filled with exercises by its users: we will support and encourage
such use.

In the current version, the student/exercise match is based on knowledge items required to
solve the exercise. The emphasis in this project was how to use such information for searching.
Several of the results mentioned in Section 10 suggest how this information can be employed
for other purposes such as curriculum design and the assessment of individual competences.

An exercise should be such that it is clear what it trains: either because a preferred solution
is clear from the specified functionality, or because it is specified as an extra requirement, like
that the solution should (or should not) use recursion.

To keep the definitions in this paper as well as the implementation of the tool simple, we have
deliberately not included some straightforward improvements of user friendliness. Examples
of this are the following.

A mistake like putting the same tag in the training set and in the negative tags set results in
an empty exercise set. This is an obvious mistake and the tool could warn for this situation
or even prevent the searcher to enter it.

The exercise tags are displayed with the exercises with the aim to enable removal of exercises
that, additionally, train topics for which the student does not have the necessary knowledge,
yet do not appear in the negative tags set – possibly because the student was unaware of the
existence of these topics. By definition, the search tags are among the exercise tags; different
fonts or colours or grouping could be used to distinguish between these.

The tool can help the teacher in specifying the tag set of an exercise by computing the minimal
(i.e., pruned) set. However, it could be the intention of the teacher to specify a non-minimal
tag set, so these variant uses should be supported.

Acknowledgements

This work has been done in the context of the SERF project that has been funded by SURF
in the ‘stimuleringsregeling open en online onderwijs’ 2018.

20



References

[1] Deborah Armstrong. The quarks of object-oriented development. Communications of
the ACM, 49(2):123–128, 2006.

[2] Jean-Paul Doignon and Jean-Claude Falmagne. Spaces for the assessment of knowledge.
International journal of man-machine studies, 23(2):175–196, 1985.

[3] Jean-Claude Falmagne, Eric Cosyn, Jean-Paul Doignon, and Nicolas Thiéry. The assess-
ment of knowledge, in theory and in practice. In Formal concept analysis, pages 61–79.
Springer, 2006.

[4] Peter Hubwieser. Analysis of learning objectives in object oriented programming. In
Roland T. Mittermeir and Maciej M. Sys lo, editors, Informatics Education - Supporting
Computational Thinking, pages 142–150. Springer, 2008.

[5] Peter Hubwieser and Andreas Mühling. What students (should) know about object ori-
ented programming. In Proceedings of the Seventh International Workshop on Computing
Education Research, ICER ’11, page 77–84. Association for Computing Machinery, 2011.

[6] Mirjana Ivanović, Zoran Budimac, Anastas Mishev, Klaus Bothe, and Ioan Jurca. Java
across different curricula, courses and countries using a common pool of teaching mate-
rial. Informatics in Education, 12(2), 2013.

[7] Bertrand Meyer. Testable, reusable units of cognition. Computer, 39(4):20–24, 2006.

[8] Michela Pedroni and Bertrand Meyer. Object-oriented modeling of object-oriented con-
cepts. In International Conference on Informatics in Secondary Schools-Evolution and
Perspectives, pages 155–169. Springer, 2010.

[9] Michela Pedroni, Manuel Oriol, Bertrand Meyer, Enrico Albonico, and Lukas Angerer.
Course management with TrucStudio. ACM SIGCSE Bulletin, 40(3):260–264, 2008.

[10] Devshri Roy, Sudeshna Sarkar, and Sujoy Ghose. A comparative study of learning object
metadata, learning material repositories, metadata annotation & an automatic metadata
annotation tool. Advances in Semantic Computing, 2(2010):103–126, 2010.

Appendix: Graph

In these graphs the nodes that do not represent syntax items are called concept nodes. The
reason for this distinction is that syntax nodes can be identified automatically, but concepts
nodes are not. All abstractions in the sense of this paper are concept nodes, but the opposite
is not true. For instance, recusrion is a concept node, but it is not an abstraction, as it is not
the target of nay isa arrows.

21



Figure 4: prior-knowledge graph imperative

foreach

repetition

do-whilewhilefor

choice

collection

boolean
expression

double

switch if-else

arrayArrayList

String booleancharint

expression +
operators

primitive
type

String-number
conversion

type System.out

variable +
assignment

class

main

int
expression

casting

Integer

double
expression

char
expression

Double BooleanCharacter

String
expression

guarded
repetition

22



Figure 5: prior-knowledge graph class

type

using given
class

variable +
assignment

parameter return

method

reference
type

class

static

method
with return

method with
parameters

method
plain

general
methodoverloading

enum String

new

attributelocal
variable

access

public
access

private
access

encapsu-
lation

null

Javadoc

recursion

expression +
operators

constructor

23



Figure 6: prior-knowledge graph inheritance

interface

abstract

class

extends

Liskov subst.
principle

implements

subclassing

inheritance
hierarchies

frameworks

composition

aggregation

association

class Object

generics

bounded type
parameters

dynamic
binding

access

package
access

protected
access

exception
handling

24


