
Open Universiteit
www.ou.nl

Balanced-by-construction regular and -regular languages
(technical report)
Citation for published version (APA):

Edixhoven, L. J., & Jongmans, S-S. (2021). Balanced-by-construction regular and -regular languages (technical
report). Open Universiteit Nederland. OUNL-CS (Technical Reports) Vol. 2021 No. 01

Document status and date:
Published: 01/01/2021

Document Version:
Other version

Document license:
CC BY-NC-ND

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02 Jul. 2022

https://research.ou.nl/en/publications/59e4a827-31c2-4329-b463-026fc5561bc3

Balanced-by-construction regular and
ω-regular languages (technical report)

Luc Edixhoven[0000−0002−6011−9535](�) and Sung-Shik
Jongmans[0000−0002−4394−8745]

1 Open University, Heerlen, Netherlands
2 Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands

{led,ssj}@ou.nl

Abstract. Parenn is the typical generalisation of the Dyck language to
multiple types of parentheses. We generalise its notion of balancedness to
allow parentheses of different types to freely commute. We show that bal-
anced regular and ω-regular languages can be characterised by syntactic
constraints on regular and ω-regular expressions and, using the shuffle on
trajectories operator, we define grammars for balanced-by-construction
expressions with which one can express every balanced regular and ω-
regular language.

Keywords: Dyck language · Shuffle on trajectories · Regular languages

1 Introduction

The Dyck language of balanced parentheses is a textbook example of a context-
free language. Its typical generalisation to multiple types of parentheses, Parenn,
is central in characterising the class of context-free languages, as shown by the
Chomsky-Schützenberger theorem [1]. Many other generalisations of the Dyck
language have been studied over the years [2,3,4,7,8].

The notion of balancedness in Parenn requires parentheses of different types
to be properly nested: [1[2]2]1 is balanced but [1[2]1]2 is not. In this paper,
we consider a more general notion of balancedness, in which parentheses of the
same type must be properly nested but parentheses of different types may freely
commute. This notion of balancedness is of particular interest in the context of
distributed computing, where different components communicate by exchanging
messages: if we assign a unique type of parentheses to every communication chan-
nel between two participants, and interpret a left parenthesis as a message send
event and a right parenthesis as a receive event, then balancedness characterises
precisely all sequences of communication with no lost or orphan messages.

Specifically, we are interested in specifying languages that are balanced by
construction, which correspond to communication protocols that are free of lost
and orphan messages. More precisely, we aim to answer the question: can we
define balanced atoms and a set of balancedness-preserving operators with which
one can express all balanced languages?

2 L. Edixhoven and S.-S. Jongmans

Our main result is that we answer this question positively for the classes of
regular and ω-regular languages. Our contributions are as follows:

– In Section 2 we show how balancedness of regular languages corresponds to
syntactic properties of regular expressions.

– In Section 3 we show that, by using a parametrised shuffle operator, we can
define a grammar of balanced-by-construction expressions with which one
can express all balanced regular languages.

– In Section 4 we extend these results to ω-regular languages and expressions.

Notation N = {1, 2, . . .}, N0 = {0, 1, . . .} and Z is the set of integers. Let Σn
be the alphabet {[1,]1, . . . , [n,]n}. Its size is typically clear from the context,
in which case we omit the subscript. We write λ for the empty word. We write
Σ∗ for the set of finite words over Σ. We write Σω for the set of infinite words
{w | w : N→ Σ} over Σ. We write Σ∞ = Σ∗∪Σω. We write w(i) to refer to the
symbol at position i in w. We write w(i, . . . , j) for the substring of w beginning
at position i and ending at position j. Let v, w ∈ Σ∞. Then v is a prefix of
w, denoted v � w, if v = w or if there exists v′ ∈ Σ∞ such that vv′ = w. We
write |w|, |w|σ ∈ N0 ∪ {ℵ0} respectively for the length of w and for the number
of occurrences of symbol σ in w. Let E be the set of all regular expressions over⋃
n≥1Σn. For e1, e2 ∈ E, we write e1 ≡ e2 iff L(e1) = L(e2).

2 Balanced regular languages

In this section, we formally define our notion of balancedness and characterise
balanced regular languages in terms of regular expressions.

Balancedness A word w ∈ Σ∗ is i-balanced if |w|[i = |w|]i and if, for all prefixes
v of w, |v|[i ≥ |v|]i . It is balanced if it is i-balanced for all i. We extend this
terminology to languages and expressions in the expected way.

Regular expressions Using standard algebraic rules, we can rewrite any regular
expression representing a non-empty language into an equivalent expression that
does not contain ∅. Therefore, without loss of generality, we may assume that
regular expressions do not contain ∅, unless they are simply ∅.

To every regular expression e and for every i, we assign a value which we call
its i-balance, denoted∇(e, i). We show that this value corresponds to the number
of unmatched left i-parentheses in every word of its language (see Lemma 1(i)),
if such a number exists. Also, to differentiate between words such as [i]i and
]i[i, we assign a second value to regular expressions which we call its minimum
i-balance, denoted ∇min(e, i), which we show to correspond to the smallest i-
balance among every prefix of every word in its language (see Lemma 1(ii–iii)).

Formally, we define partial functions ∇,∇min : E × N 7→ Z as in Figure 1.
Lemma 1 states that ∇(e, i) and ∇min(e, i) have the intended properties we
described and Lemma 2 states that if the number of unmatched i-parentheses of
words in L(e) is uniquely defined, then both ∇(e, i) and ∇min(e, i) are defined.

Balanced-by-construction regular and ω-regular languages (technical report) 3

∇(λ, i) = 0 ∇([i, i) = 1 ∇(]i, i) = −1 ∇([j , i) = ∇(]j , i) = 0

∇(e1 + e2, i) = ∇(e1, i) if ∇(e1, i) = ∇(e2, i)

∇(e1 · e2, i) = ∇(e1, i) +∇(e2, i) ∇(e∗, i) = 0 if ∇(e, i) = 0

∇min(λ, i) = ∇min([i, i) = 0 ∇min(]i, i) = −1 ∇min([j , i) = ∇min(]j , i) = 0

∇min(e1 + e2, i) = min(∇min(e1, i),∇min(e2, i))

∇min(e1 · e2, i) = min(∇min(e1, i),∇(e1, i) +∇min(e2, i)) ∇min(e∗, i) = ∇min(e, i)

Fig. 1. The i-balance and minimum i-balance of regular expressions, where i 6= j.

e ::= ∅ | λ | [1 ·]1 | [2 ·]2 | . . . | e1 + e2 | e1 · e2 | e∗ | �1
θ (e1) | �2

θ (e1, e2) | . . .
θ ::= ∅ | λ | 1 | 2 | . . . | θ1 + θ2 | θ1 · θ1 | θ∗

Fig. 2. A grammar E� for expressing balanced regular languages.

We note that ∇ is partial. For instance, ∇([1 + λ, 1) and ∇([∗1, 1) are both
undefined since their languages contain [1 and λ, which have different numbers
of unmatched left i-parentheses. As ∇min relies on ∇, ∇min is partial as well.

Lemma 1. If ∇(e, i) and ∇min(e, i) are defined, then:

(i) |w|[i − |w|]i = ∇(e, i) for every w ∈ L(e);
(ii) |v|[i − |v|]i ≥ ∇min(e, i) for every prefix v of every w ∈ L(e); and
(iii) |v|[i − |v|]i = ∇min(e, i) for some prefix v of some w ∈ L(e).

Lemma 2. If |v|[i − |v|]i = |w|[i − |w|]i for every v, w ∈ L(e) and L(e) 6= ∅,
then ∇(e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying them
gives us the following characterisation:

Theorem 1. Let e ∈ E. Then e is balanced iff ∇(e, i) = ∇min(e, i) = 0 for every
i or if e = ∅.

3 Balanced-by-construction regular languages

The main contribution of this section is a grammar of balanced-by-construction
expressions, E� in Figure 2, with which one can express all balanced regular
languages. It differs from regular expressions in two ways:

– Parentheses can syntactically occur only in ordered pairs instead of sepa-
rately, so the atoms are all balanced.

– We add a family of operators �n
θ (e1, . . . , en), called shuffle on trajectories,

in order to interleave words of subexpressions.

4 L. Edixhoven and S.-S. Jongmans

The shuffle on trajectories operator is a powerful variation of the traditional
shuffle operator, which adds a control trajectory (or a set thereof) to restrict
the permitted orders of interleaving. This allows for fine-grained control over
orderings when shuffling words or languages. The binary operator was defined
— and its properties thoroughly studied — by Mateescu et al. [5]; the slightly
later introduced multiary variant [6] is formally defined as follows.

Let w1, . . . , wn ∈ Σ∗ and let t ∈ {1, . . . , n}∗ be a trajectory. Then:

�
n
t (w1, . . . , wn) =

{
σ�n

t′ (w1, . . . , w
′
i, . . . , wn) if t = it′ ∧ wi = σw′i,

λ if t = w1 = . . . = wn = λ.

The operator naturally generalises to languages and expressions:

�
n
T (L1, . . . , Ln) = {�n

t (w1, . . . , wn) | t ∈ T,w1 ∈ L1, . . . , wn ∈ Ln} .
L(�n

θ (e1, . . . , en)) = �n
L(θ)(L(e1), . . . , L(en)).

As the operator’s arity is clear from its operands, we generally omit it. For the
trajectories, we allow any regular expression over N.

Note that�n
t (w1, . . . , wn) is defined only if |t|i = |wi| for every i. If |t|i = |wi|,

we say that t fits wi. For example,�121332([1]1, [2]2, [3]3) = [1[2]1[3]3]2 and
�121([1]1, [2]2) is undefined since 121 does not fit [2]2. Similarly, �12+21([1 +
[2]2,]1) ≡ [1]1 +]1[1, �12+22([1,]1) ≡ [1]1 and �(12)∗(([1]1)∗, ([2]2)∗) ≡
([1[2]1]2)∗, while �12+11([1, λ) ≡ �(12)∗([1]1, [2(]2[2)∗) ≡ ∅ since in both
cases no trajectory fits at least one word in every operand. Additionally, we say
that T fits Li if every t ∈ T fits some wi ∈ Li and that θ fits ei if L(θ) fits L(ei).

In the remainder of this section, we show that the grammar E� can express
all (completeness) and only (soundness) balanced regular languages.

Soundness Showing that every expression in E� represents a balanced regular
language is straightforward. The base cases all comply and both balanced and
regular languages are closed under nondeterministic choice, concatenation and
finite repetition. The shuffle on trajectories operator yields an interleaving of
its operands: a simple inductive proof will show closure of balanced languages
under the operation. Mateescu et al. show that regular languages are closed un-
der binary shuffle on regular trajectory languages by constructing an equivalent
finite automaton [5, Theorem 5.1]; their construction can be generalised in a
straightforward way to fit the multiary operator, which shows that:

Theorem 2. {L(e) | e ∈ E�} ⊆ {L | L is a balanced and regular language}.

Completeness To show that every balanced regular language has a representation
in E�, we take a balanced regular expression e, rewrite it into a disjunctive
normal form e1 + . . . + en such that all ei contain no ∅ or choice operators —
unless e = ∅, but since ∅ ∈ E� we do not need to consider that specific case.
We then show that, for every i, ei ≡ �θ(ei,1, . . . , ei,m) for some ei,1, . . . , ei,m,
where every ei,j is essentially of the form ([k]k)∗ for some k.

Balanced-by-construction regular and ω-regular languages (technical report) 5

k
i = ([i]i)

k([i]i)
∗

λ
k
i = (k

i)∗ ω
i = ([i]i)

ω

+
k
i = k

i [i − k
i =]i

k
i ± k

i =]i
k
i [i ?

k
i = (± k

i)∗ ± ω
i = (]i[i)

ω

Fig. 3. Factors, with i ∈ N, k ∈ N0; balanced factors in the top row, unbalanced factors
in the bottom row. We omit the superscript when it is not relevant. The ω-factors will
be used in Section 4.

(+
k
i , −

`
i)→ k+`+1

i (+
k
i , ±

`
i)→ +

k+`+1
i (± k

i , −
`
i)→ − k+`+1

i

(− k
i , +

`
i)→ ± k+`

i (+
k
i , ?

`
i)→ +

k
i (?

k
i , −

`
i)→ − `

i

(± k
i , ±

`
i)→ ± k+`+1

i (?
k
i , ?

`
i)→ ?

min(k,`)
i (± k

i , ?
`
i), (?

`
i , ±

k
i)→ ± k

i

(+
k
i , ±

ω
i)→ ω

i

Fig. 4. Merging common pairs of factors, with i ∈ N and k, ` ∈ N0.

To do this, we show the more general result that, in fact, any regular expres-
sion containing no ∅ or +, and whose every i-balance is defined, can be written
as the shuffle of the expressions in Figure 3, which we call factors. Additionally,
this can be done in such a way that the number of unbalanced i-factors is limited
by the expression’s i-balance and minimum i-balance, which implies that if the
expression is balanced then it can be written as a shuffle of balanced factors
— which is in E�. To prove this inductively for the concatenation case, we use
that �θ1(e1, . . . , en) ·�θ2(en+1, . . . , en+m) ≡ �θ3(e1, . . . , en, en+1, . . . , en+m) for
some θ3. We then merge certain pairs of factors to retain the correspondence be-
tween unbalanced factors and i-balance; for example, + i and − i into i.

Lemma 3 justifies this merging operation and specifies the conditions under
which it may be applied. We note that in particular these conditions, with the
right T , hold for the pairs of factors in Figure 4. Using this, Lemma 4 justifies
the rewriting of regular expressions into shuffles of factors.

Lemma 3 (Merge). Let L = �T (L1, . . . , Lm). If

(a) T fits every Li,
(b) for every t ∈ T , if t(i) = m− 1 and t(j) = m then i < j, and
(c) for all v, w ∈ Lm−1Lm, if |v| = |w| then v = w,

then L = �T ′(L1, . . . , Lm−1Lm) for some T ′ such that T ′ fits L1, . . . , Lm−1Lm.

Proof. Let ϕ be a homomorphism such that ϕ(m − 1) = 1, ϕ(m) = 2 and
ϕ(i) = λ for all other i. Let ψ be a homomorphism such that ψ(m) = m− 1 and
ψ(i) = i for all other i. We proceed to show that L = �ψ(T)(L1, . . . , Lm−1Lm).
Since T fits every Li, ψ(T) also fits L1, . . . , Lm−1Lm. ut

Lemma 4 (Rewrite). Let posi(e1, . . . , en), negi(e1, . . . , en), neuti(e1, . . . , en)
be the number of + i, − i and [± i or ?

i] among e1, . . . , en.
Let e ∈ E containing no +, whose i-balance is defined for every i. Then there

exist θ and factors e1, . . . , en such that e ≡ �θ(e1, . . . , en) and, additionally,

6 L. Edixhoven and S.-S. Jongmans

(a) posi(e1, . . . , en)− negi(e1, . . . , en) = ∇(e, i) for every i,
(b) −negi(e1, . . . , en)− neuti(e1, . . . , en) = ∇min(e, i) for every i,
(c) there are not both + i and − i among e1, . . . , en for some i, and
(d) θ fits every ei.

Proof. This is a proof by induction on the structure of e.
The base cases λ, [i and]i are covered by �1

λ(0
i), �

1
1(+ 0

i) and �1
1(− 0

i).
Since e contains no +, this leaves us with two inductive cases:

– Let e = ê∗. The induction hypothesis gives us some ê1, . . . , ên and θ̂ sat-
isfying all conditions for ê. It should be clear that L((�θ̂(ê1, . . . , ên))∗) ⊆
L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L(�θ̂∗(ê

∗
1, . . . , ê

∗
n)). Since ∇(e, i) is defined for all i,

∇(ê, i) = 0 for all i. It then follows from (a) and (c) that ê1, . . . , ên contain
no + i or − i, so all ê∗i are also factors.
To prove inclusion in the other direction, we show in two steps that
L(�θ̂∗(ê

∗
1, . . . , ê

∗
n)) ⊆ L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L((�θ̂(ê1, . . . , ên))∗).

The balances, minimum balances and factor counts are unchanged, so (a–c)

are satisfied. Finally, since θ̂ fits every êi, θ̂
∗ fits every ê∗i , so (d) also holds.

– Let e = ê1 · ê2. The induction hypothesis gives us some e1,1, . . . , e1,m1 and
θ1 satisfying all conditions for ê1, and similarly for ê2. Let ϕ be a homomor-
phism such that ϕ(i) = i + m1. Then e′ = �θ1ϕ(θ2)(e1,1, . . . , e1,m1

, e2,1, . . . ,
e2,m2

) ≡ e and e′ satisfies (d), but not necessarily (a–c). We resolve the lat-
ter by merging operands e1,j , e2,k where applicable by Lemma 3. We merge
pairs of factors from Figure 4, taking care to prioritise pairs containing both
+ i and − i over pairs containing only one of these, and pairs containing

only one over pairs containing none. By Lemma 3, the resulting expression
is equivalent to e′ and satisfies (d). It also satisfies (a–c). ut

Since a balanced regular expression has an i-balance and minimum i-balance
of 0 for every i (Theorem 1), the following theorem follows directly from Lemma 4.

Theorem 3. {L(e) | e ∈ E�} ⊇ {L | L is a balanced and regular language}.

As an example, consider e = [1([1]1 +]1[1)(]1[1)∗]1. We first rewrite e as
[1[1]1(]1[1)∗]1 + [1]1[1(]1[1)∗]1. We proceed to show how to construct an
expression in E� for the first part of the disjunction:

[1[1]1(]1[1)∗]1 ≡ �1(+ 0
1)�1 (+ 0

1)�1 (− 0
1)(�1(− 0

1)�1 (+ 0
1))∗ �1 (− 0

1)

≡ �12(+ 0
1, + 0

1)�1 (− 0
1)(�1(− 0

1)�1 (+ 0
1))∗ �1 (− 0

1)

≡ �121(1
1, + 0

1)(�1(− 0
1)�1 (+ 0

1))∗ �1 (− 0
1)

≡ �121(1
1, + 0

1)(�11(± 0
1))∗ �1 (− 0

1)

≡ �121(1
1, + 0

1)�(11)∗ (? 0
1)�1 (− 0

1)

≡ �121(22)∗(
1
1, + 0

1)�1 (− 0
1)

≡ �121(22)∗2(1
1,

1
1).

Balanced-by-construction regular and ω-regular languages (technical report) 7

4 Balanced-by-construction ω-regular languages

We generalise the notion of balancedness to also include bounded infinite words
and ω-languages: a word w ∈ Σ∞ is i-balanced iff |w|[i = |w|]i , |v|[i ≥ |v|]i for all
finite prefixes v of w, and w is bounded, as defined below. A language L ⊆ Σ∞
is i-balanced if all of its words are and if it is bounded. This is extended to
balancedness and expressions in the expected way. We note that all finite words
and balanced regular languages are bounded by default; boundedness is only a
restriction on infinite words and ω-languages.3

Boundedness A word w ∈ Σ∞ is i-bounded by n ∈ N0 if |v|[i − |v|]i ≤ n for
all finite prefixes v of w. A language is i-bounded by n if all of its words are. A
word or language is bounded if it is i-bounded for all i. The minimal i-bound of
a word or language is the smallest n for which it is i-bounded. We extend these
definitions to expressions in the expected way.

We note that by this definition [i([i]i)
ω is balanced, but [∗i ([i]i)

ω is not
since it is not bounded, even though all of its words are.

4.1 Balanced ω-regular expressions

We use Ω for the set of all ω-regular expressions. It is defined as follows:

∅ ∈ Ω

e ∈ E λ /∈ L(e)

eω ∈ Ω

e1 ∈ E e2 ∈ Ω

e1 · e2 ∈ Ω

e1, e2 ∈ Ω

e1 + e2 ∈ Ω
(1)

As before, we assume without loss of generality that an ω-regular expression
e does not contain ∅, unless e = ∅, to simplify definitions and proofs.

Our characterisation of balanced ω-regular expressions is a generalisation of
that of balanced regular expressions. We note two main complications:

– We need to distinguish between finite and infinite numbers of parentheses:
[1([1]1)ω is balanced but [1([2]2)ω is not. We introduce two predicates
for expressions: ξ(e, i) and ξω(e, i), as defined in Figure 5. Intuitively, and
as shown in Lemma 5, ξ(e, i) iff every word in L(e) contains at least one
i-parenthesis, and ξω(e, i) iff every word in L(e) contains infinitely many.

– Not every subexpression of a balanced ω-regular expression can be assigned
a unique i-balance: (λ + [i)([i]i)

ω is balanced, but (λ + [i) has no unique
i-balance. Instead, we now assign an upper bound ∇U and a lower bound ∇L
to an expression’s i-balance instead of a single value. These are defined in
Figure 6. The definition of minimum i-balance is unchanged, other than the
addition of ∇min(eω, i) = ∇min(e, i) and the redefinition of ∇min(e1 · e2, i) =
min(∇min(e1, i),∇L(e1, i) + ∇min(e2, i)). We note that, for any regular ex-
pression e ∈ E, ∇L(e, i) = ∇U (e, i) = ∇(e, i).

3 Our choice for boundedness stems from our interest in communication protocols
(Section 1), where channels often require buffers of finite size.

8 L. Edixhoven and S.-S. Jongmans

ξ([i, i) ξ(]i, i)

ξ(e1, i) ∨ ξ(e2, i)
ξ(e1 · e2, i)

ξ(e1, i) ξ(e2, i)

ξ(e1 + e2, i)

ξ(e, i)

ξ(eω, i)

ξω(e2, i)

ξω(e1 · e2, i)
ξω(e1, i) ξω(e2, i)

ξω(e1 + e2, i)

ξ(e, i)

ξω(eω, i)

Fig. 5. The i-occurrence of regular and ω-regular expressions.

∇†(λ, i) = 0 ∇†([i, i) = 1 ∇†(]i, i) = −1 ∇†([j , i) = ∇†(]j , i) = 0

∇†(e1 · e2, i) =

{
∇†(e2, i) if ξω(e2, i)

∇†(e1, i) +∇†(e2, i) otherwise

∇†(e∗, i) = ∇†(eω, i) = 0 if ∇†(e, i) = 0

∇L(e1 + e2, i) = min(∇L(e1, i),∇L(e2, i)) ∇U (e1 + e2, i) = max(∇U (e1, i),∇L(e2, i))

Fig. 6. The i-balance bounds of ω-regular expressions, where i 6= j and † ∈ {L,U}.

Lemma 5. Let e ∈ E ∪ Ω such that e 6= ∅. Then:

(i) ξ(e, i) if and only if |w|[i + |w|]i > 0 for every w ∈ L(e);
(ii) ξω(e, i) if and only if |w|[i + |w|]i = ℵ0 for every w ∈ L(e).

We extend Lemmas 1 and 2 about properties of i-balance and minimum
i-balance to i-balance bounds and ω-regular expressions in Lemmas 6 and 7.

Lemma 6 (cf. Lemma 1). Let e ∈ E∪Ω. If ∇L(e, i), ∇U (e, i) and ∇min(e, i)
are defined, then:

(i) For every w ∈ L(e), |w|[i and |w|]i are either both finite or both infinite;
(ii) For every w ∈ L(e), if |w|[i , |w|]i are finite, then ∇L(e, i) ≤ |w|[i − |w|]i ≤
∇U (e, i);

(iii) If e ∈ E, then there exist w1, w2 ∈ L(e) such that |w1|[i − |w1|]i = ∇L(e, i)
and |w2|[i − |w2|]i = ∇U (e, i);

(iv) If ξω(e, i), then ∇L(e, i) = ∇U (e, i) = 0;
(v) |v|[i − |v|]i ≥ ∇min(e, i) for every finite prefix v of every w ∈ L(e);
(vi) |v|[i − |v|]i = ∇min(e, i) for some finite prefix v of some w ∈ L(e);

(vii) L(e) is i-bounded.

Lemma 7 (cf. Lemma 2). Let e ∈ E∪Ω. If e 6= ∅, e is i-bounded and if there
exists some n such that |(|v|[i−|v|]i)−(|w|[i−|w|]i)| ≤ n for all v, w ∈ L(e) with
finite i-parenthesis counts, then ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying these
lemmas gives us the following characterisation:

Theorem 4. Let e ∈ E ∪ Ω. Then e is balanced iff ∇L(e, i) = ∇U (e, i) =
∇min(e, i) = 0 for every i or if e = ∅.

Balanced-by-construction regular and ω-regular languages (technical report) 9

4.2 Balanced-by-construction ω-regular languages

The grammar in Figure 2 can be extended with ω as in (1) to obtain an expression
grammar Ω� for balanced ω-regular languages — see Figure 7 in appendix B.

Since the inductive definition of the shuffle on trajectories operator does not
support words of infinite length, we redefine it as follows. Let w1, . . . , wn ∈ Σ∞
and let t ∈ {1, . . . , n}∞. If t fits w1, . . . , wn, i.e., if |t|i = |wi| for every i, then
�t(w1, . . . , wn) = w(1)w(2) . . . w(|t|) if t has finite length and w(1)w(2) . . . if t
has infinite length, where w(i) = wj(k) for j = t(i) and k = |t(1, . . . , i)|j . As
before, this naturally extends to languages and expressions.

Soundness Balanced languages being closed under shuffle follows immediately
from its definition. To show that �T (L1, . . . , Ln) is ω-regular if T is ω-regular
and all Li are either regular or ω-regular, we can further generalise the construc-
tion used by Mateescu et al. [5] to build a Muller automaton for the resulting
language. Recall that a Muller automaton differs from a finite automaton only
in its acceptance criterion: instead of a single set of final states it has a set of
sets of final states F , and it accepts all infinite words for which the set of states
that are visited infinitely often is an element of F .

The construction of the new Muller automaton is analogous to the construc-
tion of a finite automaton for a shuffle of regular languages and differs only in
the construction of F . Let Q be the set of states of our new Muller automaton.
Let Fi be the acceptance criterion of the automaton for Li, whether a finite au-
tomaton or a Muller automaton. If Li is regular, then without loss of generality
we may assume that no state in Fi has any outgoing transition. Furthermore,
since ω-regular languages are closed under intersection and the language of all
trajectories containing infinitely many i is ω-regular for every i, we may also as-
sume without loss of generality that T only contains trajectories with infinitely
many occurrences of every i for which Li is ω-regular.

We define F as the cross product of all the Fi: F is the set of sets of states
such that, if Li is ω-regular then the projection of these states on i is an element
of Fi, and if Li is regular then the projection of these states on i is a single state
in Fi. Formally: if ϕi((qt, q1, . . . , qn)) = qi and ϕi(S) = {ϕi(q) | q ∈ S}, then
F = {S | S ⊆ Q ∧ (ϕi(S) ∈ Fi ∨ (ϕi(S) ⊆ Fi ∧ |ϕi(S)| = 1))}. The automaton
for T forces that every Muller automaton for some Li takes infinitely many steps.
By our assumption that the final states of finite automata have no outgoing
transitions, all finite automata only take a finite number of steps. It follows
that our constructed Muller automaton accepts the language of �T (L1, . . . , Ln),
which then is ω-regular. In other words:

Theorem 5. {L(e) | e ∈ Ω�} ⊆ {L | L is a balanced ω-regular language}.

Completeness Our approach to showing that every balanced ω-regular expression
has an equivalent expression in Ω� mirrors that of Section 3: we first rewrite
an expression into a disjunctive normal form and then recursively construct an
expression in Ω� for every term of the disjunction by merging pairs of factors.

10 L. Edixhoven and S.-S. Jongmans

Let e 6= ∅ be a balanced ω-regular expression. Without loss of generality,
we may assume that e = e1e

ω
2 + . . . + e2m−1e

ω
2m, where every ei is a regular

expression containing no +. Otherwise, we can rewrite it as such. We show how
to construct an expression in Ω� for e1e

ω
2 .

Since ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0 by Theorem 4, it follows that
∇min(e1, i) = ∇L(e2, i) = ∇U (e2, i) = 0. Then, by Lemma 4, we can write e1 as
a shuffle of i, λ i, + i and e2 as a shuffle of i, λ i, ± i, ?

i. The idea is to:
(a) rewrite eω2 in terms of i, λ i,

ω
i , ±

ω
i and then; (b) merge every + i in

e1 with a ± ω
i in eω2 into ω

i , using Lemma 3. We run into two complications:

– In step (a), eω2 may not necessarily be expressible as a single shuffle of factors:
if e2 = [1]1([2]2)∗, then eω2 contains both words with finite and infinite
numbers of [2,]2. The latter requires a factor ω

2 , while the former requires
its absence. To remedy this, we write eω2 as a disjunction of shuffles of factors;
one for every combination of finite and infinite versions of i, λ i. This is
further detailed in Lemma 8.

– In step (b), the number of ± ω
i in a term of eω2 may not necessarily match

the number of + i in e1: if e1 = [1 and e2 = [1]1, then e1 contains one + 1

and e2 contains one factor 1. To solve this, we use two observations:

• We can apply Lemma 3 to split a i into + i and − i.

• eω2 ≡ (e2 · e2)ω, so we can essentially multiply the factors in e2.

Thus, we can always split a i into + i and − i, then create copies of them
and merge them back into one i and one ± i. Since we can merge all
other factors with their own copy, this effectively adds one ± i. Now that
we have at least one, we can create more: we create a copy of every factor,
then merge every factor with its own copy except for some number of ± i.
This is further detailed in Lemma 9.

Lemma 8. Let e = �θ(e1, . . . , en) ∈ E� be a shuffle of factors i, λ i, ± i

such that θ fits every ej and contains no +. Then eω ≡ ê1 + . . . + êm, where
êk = �θk(ek,1, . . . , ek,n) is a shuffle of factors i, λ i,

ω
i , ±

ω
i for every k

such that the number of ± i in e is the same as the number of ± ω
i in êk for

every i, and θk fits every ek,j.

Proof. Let ϕ : E 7→ 2E∪Ω such that ϕ(k
i) =

{
k
i ,

ω
i

}
, ϕ(λ

k
i) =

{
λ
k
i ,

ω
i

}
and ϕ(± k

i) = { ± ω
i }. We can then show that eω ≡ ê1 + . . . + êm, where

{ê1, . . . , êm} = {�θω (e′1, . . . , e
′
n) | e′1 ∈ ϕ(e1), . . . , e′n ∈ ϕ(en)}.

Moreover, since ϕ maps ± i to ± ω
i , the number of factors ± ω

i in every
êk matches the number of factors ± i in e. However, if êk = �θω (e′1, . . . , e

′
n),

then θω may not necessarily fit every e′j : if e′j is one of i, λ i, then there are
t ∈ L(θω) with infinitely many j, while every word in L(e′j) is finite. Instead of
θω, we can use the trajectory θ∗ · ψ(θ)ω, where ψ is a homomorphism such that
ψ(j) = λ if e′j is one of i, λ i and ψ(j) = j otherwise. This covers exactly the
part of θω that fits every e′j . ut

Balanced-by-construction regular and ω-regular languages (technical report) 11

Lemma 9. Let �θ(e1, . . . , en) ≡ e ∈ E be a shuffle of factors i, λ i, ± i, ?
i

such that θ fits every ej and contains no +, and ξ(e, i). If there are ` factors
± i, ?

i among e1, . . . , en, then for every k ≥ ` (such that k > 0), there exists
some shuffle of factors ê = �θ̂(ê1, . . . , êm) such that eω ≡ êω, ê contains k

factors ± i and no ?
i and θ̂ fits every êj.

Proof. This proof consists of three steps. First, we need to make sure that we
have at least one ± i. Second, we replace any remaining factors ?

i with ± i.
Third, we create additional copies of ± i as needed.

1. Suppose that there are no ± i among e1, . . . , en. Then our first step con-
sists of creating one. Since ξ(e, i) and θ contains no +, there exists some
ej ∈ { i, λ i, ?

i} such that |t|j > 0 for every t ∈ L(θ). Without loss of
generality, we may assume that j = n.
If en = ? k

i , since |t|n > 0 for every t then e ≡ �θ(e1, . . . , ±
k
i) and we

can proceed with step 2. Otherwise, if en = λ
k
i , then e ≡ �θ(e1, . . . ,

k
i)

and if en = 0
i , then e ≡ �θ(e1, . . . ,

1
i). Going forward, we may thus

assume that en = k
i with k ≥ 1. Since |t|n > 0 for every t ∈ L(θ) and

θ contains no +, it follows that θ = θ1 · θ2 such that both θ1 and θ2 only
contain trajectories with odd numbers of n. We can then apply the proof of
Lemma 3 to show that e ≡ �θ3(e1, . . . , en−1, +

k1
i , −

k2
i) for some θ3, k1, k2.

If e1, . . . , en−1 contain a ?
i, then without loss of generality we may assume

that en−1 = ?
k3
i . We may assume that there exists some t ∈ L(θ) such

that |θ|n−1 = 0; otherwise we would have selected this factor as en earlier
in this step and then proceeded with step 2. It follows that all trajectories
in θ1 and θ2, and therefore in θ3, contain even numbers of n. Then, in the
same way that we split k

i into +
k1
i and − k2

i before, we can show that

e ≡ �θ4(e1, . . . , en−2, ?
k4
i , ?

k5
i , +

k1
i , −

k2
i) for some θ4, k4, k5. As seen in

Figure 4, we can then merge ?
k4
i with − k2

i and ?
k5
i with +

k1
i to obtain

e ≡ �θ5(e1, . . . , en−2, +
k1
i , −

k2
i) for some θ5. This takes care of the special

case where k = ` > 0 but there are no factors ± i. We may thus assume
without loss of generality that e ≡ �θ6(e1, . . . , +

k1
i , −

k2
i) for some θ6.

Since we still lack a ± i, we use that eω ≡ (e · e)ω to construct e′ =
�θ6(e1, . . . , +

k1
i , −

k2
i) · �θ6(e1, . . . , +

k1
i , −

k2
i) ≡ �θ7(e1, . . . , +

k1
i , −

k2
i ,

e1, . . . , +
k1
i , −

k2
i) for some θ7. We can then merge the first +

k1
i with the

second − k2
i into k1+k2+1

i and merge the second +
k1
i with the first − k2

i

into ± k1+k2
i . We can merge every other factor with its own copy, which gives

us e′ ≡ �θ8(e′1, . . . ,
k1+k2+1
i , ± k1+k2

i) and e′ω1 ≡ eω.
2. Now that we have at least one ± i, we can reuse methods applied in the

first step to replace any remaining ?
i: create a copy of every factor using

eω ≡ (e ·e)ω, then merge the two copies of ?
i with the copies of some ± i as

in Figure 4. By merging every other factor with its own copy, we effectively
replace one ?

i with one ± i. We repeat this step until there are no ?
i left.

3. Finally, by copying every factor and then merging every factor with its own
copy except for a number of ± i, we can create any additional number of ± i,
until we have some ê = �θ̂(ê1, . . . , êm) with k ± i. Since every rewriting step

12 L. Edixhoven and S.-S. Jongmans

preserves equivalence of the ω-closures and the fitting of the trajectories, it
follows that êω ≡ eω and that θ̂ fits every êj . ut

Summarising, given e1 · eω2 , by applying Lemmas 9 and 8 we can rewrite e1

as a shuffle of factors i, λ i, + i, and eω2 as a disjunction of shuffles of factors

i, λ i,
ω
i , ±

ω
i , such that the number of ± ω

i in every term of the disjunction
equals the number of + i in e1. By applying the laws of distributivity, we can then
rewrite e1 · eω2 as a disjunction of concatenations of shuffles. Since the numbers
of + i and ± ω

i match in every term of this disjunction, we can apply Lemma 3
to merge every pair into ω

i . Since all factors are now balanced, every balanced
ω-regular language has a corresponding expression in Ω�:

Theorem 6. {L(e) | e ∈ Ω�} ⊇ {L | L is a balanced ω-regular language}.

As an example, we show how to build an expression in Ω� for e = [1([1]1)ω.

[1([1]1)ω ≡ �1(+ 0
1)(�11(1

1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�1 (− 0
1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�1(− 0
1)�1 (+ 0

1)�1 (− 0
1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�11 (± 0
1)�1 (− 0

1))ω

≡ �1(+ 0
1)(�1221(1

1, ±
0
1))ω

≡ �1(+ 0
1)�(1221)ω (ω

1 , ±
ω
1)

≡ �1(2112)ω (ω
1 ,

ω
1).

References

1. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, Studies in Logic and the Founda-
tions of Mathematics, vol. 26, pp. 118 – 161. Elsevier (1959)

2. Duchon, P.: On the enumeration and generation of generalized Dyck words. Discret.
Math. 225(1-3), 121–135 (2000). https://doi.org/10.1016/S0012-365X(00)00150-3

3. Labelle, J., Yeh, Y.: Generalized Dyck paths. Discret. Math. 82(1), 1–6 (1990).
https://doi.org/10.1016/0012-365X(90)90039-K

4. Liebehenschel, J.: Lexicographical generation of a generalized Dyck language. SIAM
J. Comput. 32(4), 880–903 (2003). https://doi.org/10.1137/S0097539701394493

5. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories:
Syntactic constraints. Theor. Comput. Sci. 197(1-2), 1–56 (1998).
https://doi.org/10.1016/S0304-3975(97)00163-1

6. Mateescu, A., Salomaa, K., Yu, S.: On fairness of many-dimensional trajectories. J.
Autom. Lang. Comb. 5(2), 145–157 (2000). https://doi.org/10.25596/jalc-2000-145

7. Moortgat, M.: A note on multidimensional Dyck languages. In: Categories and
Types in Logic, Language, and Physics. Lecture Notes in Computer Science,
vol. 8222, pp. 279–296. Springer (2014). https://doi.org/10.1007/978-3-642-54789-
8 16

8. Prodinger, H.: On a generalization of the Dyck-language over a two letter
alphabet. Discret. Math. 28(3), 269–276 (1979). https://doi.org/10.1016/0012-
365X(79)90134-1

https://doi.org/10.1016/S0012-365X(00)00150-3
https://doi.org/10.1016/0012-365X(90)90039-K
https://doi.org/10.1137/S0097539701394493
https://doi.org/10.1016/S0304-3975(97)00163-1
https://doi.org/10.25596/jalc-2000-145
https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1016/0012-365X(79)90134-1
https://doi.org/10.1016/0012-365X(79)90134-1

Balanced-by-construction regular and ω-regular languages (technical report) 13

A Related work

The unrestricted Dyck language the language of words with the same number
of left and right parentheses, without restricting their ordering. Prodinger [8]
generalised the unrestricted Dyck language, but their generalisation (a) does
not restrict the ordering of parentheses, as they generalise the unrestricted Dyck
language, and (b) allows words with different numbers of left and right parenthe-
ses. Labelle and Yeh [3] and Moortgat [7] proposed 1-dimensional generalisations
of the Dyck language that use an extended alphabet (instead of only [and]): in
the former work, every symbol is associated with any integer value to compute
balancedness (instead of only +1 and −1), while in the latter work, symbols are
ordered and every prefix of a word must contain symbol σi at least as many times
as symbol σi+1. Both these generalisations are orthogonal to ours. Duchon [2]
further studies the generalisation defined by Labelle and Yeh. Finally, Liebehen-
schel [4] proposed a multidimensional generalisation where parentheses are not
paired by index but according to a similarity relation, where a type of left paren-
theses can match multiple types of right parentheses; a key difference with our
generalisation is that dissimilar parentheses are not allowed to freely commute,
which is central in our paper.

B Additional figures

e ::= ∅ | e+ e | E · e | Eω+ | �Tω (C, . . . , C) (ω-regular)

E ::= ∅ | λ | P | E + E | E · E | E∗ | �T (E, . . . , E) (regular)

E+ ::= ∅ | P | E+ + E+ | E · E+ · E | �T+ (E, . . . , E) (regular − λ)

P ::= [1 ·]1 | [2 ·]2 | . . . (parentheses)

C ::= e | E (ω-shuffle operand)

T ::= ∅ | λ | 1 | 2 | . . . | T + T | T · T | T ∗ (trajectory)

T+ ::= ∅ | 1 | 2 | . . . | T+ + T+ | T · T+ · T (trajectory − λ)

Tω ::= ∅ | Tω + Tω | T · Tω | Tω+ (ω-trajectory)

Fig. 7. A grammar Ω� for expressing balanced regular languages.

C Additional proofs

Lemma 1. If ∇(e, i) and ∇min(e, i) are defined, then:

(i) |w|[i − |w|]i = ∇(e, i) for every w ∈ L(e);
(ii) |v|[i − |v|]i ≥ ∇min(e, i) for every prefix v of every w ∈ L(e); and

14 L. Edixhoven and S.-S. Jongmans

(iii) |v|[i − |v|]i = ∇min(e, i) for some prefix v of some w ∈ L(e).

Proof. In all cases, since ∇(e, i) is defined, L(e) 6= ∅.

(i) This is proven by induction on the structure of e. Let w ∈ L(e).
– If e ∈ {λ, [j ,]j} for some j, then the result holds trivially.
– If e = e1 ·e2, then w = w1w2 such that w1 ∈ L(e1), w2 ∈ L(e2), and then

|w|[i − |w|]i = |w1|[i − |w1|]i + |w2|[i − |w2|]i
= ∇(e1, i) +∇(e2, i)

= ∇(e, i).

– If e = e1 + e2, then without loss of generality w ∈ L(e1) and either
∇(e1, i) = ∇(e2, i) or L(e2) = ∅. In either case, |w|[i−|w|]i = ∇(e1, i) =
∇(e, i).

– If e = e∗1, then w = w1w2 . . . wk for some k ≥ 0, with wj ∈ L(e1) for all
j. Then |w|[i−|w|]i = |w1|[i−|w1|]i + . . .+ |wk|[i−|wk|]i = k×∇(e1, i).
Since∇(e, i) is defined,∇(e, i) = ∇(e1, i) = 0, so |w|[i−|w|]i = ∇(e, i) =
0.

(ii) This is proven by induction on the structure of e. Let w ∈ L(e) and v � w.
– If e ∈ {λ, [j ,]j} for some j, then the result holds trivially.
– If e = e1 · e2, then w = w1w2 such that w1 ∈ L(e1), w2 ∈ L(e2). Then

either:
• v � w1, in which case, since ∇min(e1, i) ≥ ∇min(e, i), the result holds

by the induction hypothesis; or
• v = w1v2, where v2 � w2, in which case

|v|[i − |v|]i = |w1|[i − |w1|]i + |v2|[i − |v2|]i
= ∇(e1, i) + |v2|[i − |v2|]i
≥ ∇(e1, i) +∇min(e2, i)

≥ min(∇min(e1, i),∇(e1, i) +∇min(e2, i))

= ∇min(e, i).

– If e = e1 + e2, then without loss of generality w ∈ L(e1). Then |v|[i −
|v|]i ≥ ∇min(e1, i) ≥ min(∇min(e1, i),∇min(e2, i) = ∇min(e, i).

– If e = e∗1, then w = w1w2 . . . wk for some k ≥ 0, with wj ∈ L(e1) for
all j. If k = 0 then, since ∇min(e, i) ≤ 0 by definition, v = w = λ and
|w|[i − |w|]i = 0 ≥ ∇min(e, i). If k > 0, then v = w1 . . . w`−1v`, where
v` � w` for some 0 < ` ≤ k, and then

|v|[i − |v|]i = |w1|[i − |w1|]i + . . .+ |w`−1|[i − |w`−1|]i + |v`|[i − |v`|]i
= (`− 1)×∇(e1, i) + |v`|[i − |v`|]i
= |v`|[i − |v`|]i ≥ ∇min(e1, i)

= ∇min(e, i).

Balanced-by-construction regular and ω-regular languages (technical report) 15

(iii) This is proven by induction on the structure of e.
– If e ∈ {λ, [j ,]j} for some j, then the result holds trivially.
– If e = e1 · e2, then by the induction hypothesis there exist v1 � w1 ∈
L(e1), v2 � w2 ∈ L(e2) such that |v1|[i−|v1|]i = ∇min(e1, i) and |v2|[i−
|v2|]i = ∇min(e2, i). Then either:
• ∇min(e, i) = ∇min(e1, i), in which case v1 � w1w2 ∈ L(e) and |v1|[i−
|v1|]i = ∇min(e, i); or

• ∇min(e, i) = ∇(e1, i)+∇min(e2, i), in which case w1v2 � w1w2 ∈ L(e)
and

|w1v2|[i − |w1v2|]i = |w1|[i − |w1|]i + |v2|[i − |v2|]i
= ∇(e1, i) +∇min(e2, i)

= ∇min(e, i).

– If e = e1 + e2, then by the induction hypothesis there exist v1 � w1 ∈
L(e1), v2 � w2 ∈ L(e2) such that |v1|[i−|v1|]i = ∇min(e1, i) and |v2|[i−
|v2|]i = ∇min(e2, i). If ∇min(e, i) = ∇min(e1, i), then v1 satisfies the
lemma and otherwise v2 does.

– If e = e∗1, then by the induction hypothesis there exists some v � w ∈
L(e1) such that |v|[i − |v|]i = ∇(e1, i). Since ∇min(e, i) = ∇min(e1, i),
then v also satisfies the lemma for e.

Lemma 2. If |v|[i − |v|]i = |w|[i − |w|]i for every v, w ∈ L(e) and L(e) 6= ∅,
then ∇(e, i) and ∇min(e, i) are defined.

Proof. This is proven by induction on the structure of e.

– If e ∈ {λ, [j ,]j} for some j, then the results holds trivially.
– If e = e1 · e2, then suppose that the premise holds for e. If there exist
v1, w1 ∈ L(e1) such that |v1|[i − |v1|]i 6= |w1|[i − |w1|]i , then it follows
that v1w2, w1w2 ∈ L(e) for some w2 ∈ L(e2) but |v1w2|[i − |v1w2|]i 6=
|w1w2|[i−|w1w2|]i , which contradicts our premise. Therefore, |v1|[i−|v1|]i =
|w1|[i−|w1|]i for all v1, w1 ∈ L(e1). The same holds analogously for e2. Then,
by the induction hypothesis, ∇(e1, i) and ∇(e2, i) are defined and then, by
definition, so is ∇(e, i).

– If e = e1+e2, then suppose that the premise holds for e. Since L(e1), L(e2) ⊆
L(e), the premise also holds for e1 and e2 and, by the induction hypothesis,
∇(e1, i) and ∇(e2, i) are defined. It then also follows that ∇(e1, i) = ∇(e2, i)
and then, by definition, ∇(e, i) is defined.

– If e = e∗1, then suppose that the premise holds for e. Since L(e1) ⊆ L(e), the
premise also holds for e1. Let w ∈ L(e1). Since w, λ ∈ L(e), it follows from
the premise that |w|[i − |w|]i = |λ|[i − |λ|]i = 0 and then, by Lemma 1(i),
∇(e1, i) = 0. Then ∇(e, i) is defined.

Theorem 1. Let e ∈ E. Then e is balanced iff ∇(e, i) = ∇min(e, i) = 0 for every
i or if e = ∅.

16 L. Edixhoven and S.-S. Jongmans

Proof. If e = ∅ then the result trivially holds. Otherwise:

– Suppose that e is balanced and fix i. Since |w|[i − |w|]i = 0 for every w ∈
L(e), it follows from Lemma 2 that ∇(e, i) and ∇min(e, i) are defined. Let
v � w ∈ L(e). Since e is balanced, |w|[i − |w|]i = 0 and |v|[i − |v|]i ≥ 0.
Then, by Lemma 1(i,iii), ∇(e, i) = 0 and ∇min(e, i) ≥ 0. Since ∇min(e, i) ≤ 0
by definition, then ∇min(e, i) = 0.

– Suppose that ∇(e, i) = ∇min(e, i) = 0 for some i. Let v � w ∈ L(e). By
Lemma 1(i,ii), |w|[i − |w|]i = 0 and |v|[i − |v|]i ≥ 0. Since this holds for
every v, w, i, it follows that e is balanced.

Lemma 3 (Merge). Let L = �T (L1, . . . , Lm). If

(a) T fits every Li,
(b) for every t ∈ T , if t(i) = m− 1 and t(j) = m then i < j, and
(c) for all v, w ∈ Lm−1Lm, if |v| = |w| then v = w,

then L = �T ′(L1, . . . , Lm−1Lm) for some T ′ such that T ′ fits L1, . . . , Lm−1Lm.

Proof. Let ϕ be a homomorphism such that ϕ(m − 1) = 1, ϕ(m) = 2 and
ϕ(i) = λ for all other i. Let ψ be a homomorphism such that ψ(m) = m− 1 and
ψ(i) = i for all other i. We proceed to show that L = �ψ(T)(L1, . . . , Lm−1Lm).
For every t ∈ T , it follows from (b) that ϕ(t) ∈ 1∗2∗. In both directions
we then use that �t(w1, . . . , wm−1, wm) = �ψ(t)(w1, . . . ,�ϕ(t)(wm−1, wm)) =
�ψ(t)(w1, . . . , wm−1wm).

– Let w ∈ L. Then there exist t ∈ T and w1 ∈ L1, . . . , wm ∈ Lm such that
w = �t(w1, . . . , wm−1, wm) = �ψ(t)(w1, . . . , wm−1wm).

– Let w ∈ �ψ(T)(L1, . . . , Lm−1Lm). Then there exist t ∈ T and w1 ∈ L1, . . . ,
wm ∈ Lm such that w = �ψ(t)(w1, . . . , wm−1wm). By (a), there exist
w′m−1 ∈ Lm−1, w

′
m ∈ Lm such that t fits w′m−1 and w′m.

Then, since |w′m−1w
′
m| = |t|m−1 + |t|m = |ψ(t)|m−1 = |wm−1wm|, and

w′m−1w
′
m, wm−1wm ∈ Lm−1Lm, it follows from (c) that w′m−1w

′
m = wm−1wm

and w = �ψ(t)(w1, . . . , w
′
m−1w

′
m) = �t(w1, . . . , w

′
m−1, w

′
m) ∈ L.

Since T fits every Li, ψ(T) also fits L1, . . . , Lm−1Lm. ut

Lemma 4 (Rewrite). Let posi(e1, . . . , en), negi(e1, . . . , en), neuti(e1, . . . , en)
be the number of + i, − i and [± i or ?

i] among e1, . . . , en.
Let e ∈ E containing no +, whose i-balance is defined for every i. Then there

exist θ and factors e1, . . . , en such that e ≡ �θ(e1, . . . , en) and, additionally,

(a) posi(e1, . . . , en)− negi(e1, . . . , en) = ∇(e, i) for every i,
(b) −negi(e1, . . . , en)− neuti(e1, . . . , en) = ∇min(e, i) for every i,
(c) there are not both + i and − i among e1, . . . , en for some i, and
(d) θ fits every ei.

Proof. We only list the omitted parts of the proof. Recall that (d) states that θ
fits every ei.

Balanced-by-construction regular and ω-regular languages (technical report) 17

– Showing L(�θ̂∗(ê
∗
1, . . . , ê

∗
n)) ⊆ L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L((�θ̂(ê1, . . . , ên))∗):

Let w ∈ L(�θ̂∗(ê
∗
1, . . . , ê

∗
n)). Then w = �t1...t`(w1, . . . , wn) with t1, . . . , t` ∈

L(θ̂) and wj ∈ L(ê∗j) for all wj . It follows from (d) that there exist wj,k ∈
L(êj) ⊆ L(ê∗j) such that |tk|j = |wj,k| for all tk. Since ê∗j ∈ { λ i, ?

i}, it
follows that

w = �t1...t`(w1,1 . . . w1,`, . . . , wn,1 . . . wn,`)

= �t1(w1,1, . . . , wn,1) . . .�t` (w1,`, . . . , wn,`)

∈ L((�θ̂(ê
∗
1, . . . , ê

∗
n))∗).

If wj,k = λ for some j, k, then |tk|j = 0 and by (d) λ ∈ L(êj). Otherwise,
|wj,k| > 0 and wj ∈ L(ê∗j)\ {λ} = L(êj). In any case, it follows that wj ∈
L(êj) for all j, so w ∈ L((�θ̂(ê1, . . . , ên))∗).

– Showing that (a–c) hold:

We use (1), . . . , (5) to denote the number of times we merge the following
pairs from Figure 4:
(1) (+ i, − i)→ i

(2) (− i, + i)→ ± i

(3) (+ i, ± i)→ + i (+ i, ?
i)→ + i

(4) (± i, − i)→ − i (?
i, − i)→ − i

(5) (± i, ± i) , (± i, ?
i) , (?

i, ± i)→ ± i (?
i, ?

i)→ ?
i

Furthermore, for ease of notation, we fix an arbitrary i and then use pose
to denote posi(e1, . . . , en), and similarly for neg, neut and for e1, e2. We then
have

nege = nege1 + nege2 − (1)− (2) ≥ 0

pose = pose1 + pose2 − (1)− (2) ≥ 0

neute = neute1 + neute2 + (2)− (3)− (4)− (5) ≥ 0

and

(1) = min(pose1 , nege2) ≥ 0

(2) = min(nege1 , pose2) ≥ 0

(3) = min(pose1 − (1), neute2) ≥ 0

(4) = min(neute1 , nege2 − (1)) ≥ 0

(5) = min(neute1 − (4), neute2 − (3)) ≥ 0.

First, note that

∇(e, i) = ∇(e1, i) +∇(e2, i)

= pose1 − nege1 + pose2 − nege2
= pose1 + pose2 − (1)− (2)− nege1 − nege2 + (1) + (2)

= pose − nege.

18 L. Edixhoven and S.-S. Jongmans

This shows that (a) holds. For (b), we need to show that

∇min(e, i) = min(∇min(e1, i),∇(e1, i) +∇min(e2, i))

= min(−nege1 − neute1 , pose1 − nege1 − nege2 − neute2)

= −nege1 + min(−neute1 , pose1 − nege2 − neute2)

= −nege1 −max(neute1 , neute2 + nege2 − pose1)

equals

− neute − nege
= − nege1 − nege2 + (1) + (2)− neute1 − neute2 − (2) + (3) + (4) + (5)

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5).

We consider all cases:
• If neute1 ≥ neute2 + nege2 − pose1 , then

∇min(e, i) = −nege1 − neute1 .

∗ If nege2 ≥ pose1 , then (1) = pose1 , (3) = 0 and (4) = nege2 − pose1 .
Since neute1 ≥ neute2 + nege2 − pose1 , also neute1 − nege2 + pose1 ≥
neute2 , so (5) = neute2 . Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + pose1 − neute1 − neute2 + 0

+ nege2 − pose1 + neute2
= − nege1 − neute1

= ∇min(e, i).

∗ If nege2 < pose1 , then (1) = nege2 and (4) = 0.
· If neute2 ≥ pose1 − nege2 , then (3) = pose1 − nege2 and (5) =
neute2 + nege2 − pose1 . Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + nege2 − neute1 − neute2 + pose1
− nege2 + neute2 + nege2 − pose1

= − nege1 − neute1

= ∇min(e, i).

· If neute2 < pose1 − nege2 , then (3) = neute2 and (5) = 0. Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + nege2 − neute1 − neute2 + neute2 + 0 + 0

= − nege1 − neute1

= ∇min(e, i).

Balanced-by-construction regular and ω-regular languages (technical report) 19

• If neute1 ≤ neute2 + nege2 − pose1 , then

∇min(e, i) = −nege1 − neute2 − nege2 + pose1 .

∗ If nege2 ≥ pose1 , then (1) = pose1 and (3) = 0.
· If neute1 ≥ nege2 − pose1 , then (4) = nege2 − pose1 and (5) =
neute1 − nege2 + pose1 . Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + pose1 − neute1 − neute2 + 0

+ nege2 − pose1 + neute1 − nege2 + pose1
= − nege1 − neute2 − nege2 + pose1

= ∇min(e, i).

· If neute1 < nege2 − pose1 , then (4) = neute1 and (5) = 0. Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + pose1 − neute1 − neute2 + 0 + neute1 + 0

= − nege1 − neute2 − nege2 + pose1

= ∇min(e, i).

∗ If nege2 < pose1 , then (1) = nege2 and (4) = 0. Since neute2 +
nege2 − pose1 ≥ neute1 ≥ 0, also neute2 ≥ pose1 − nege2 . Then (3) =
pose1 − nege2 and (5) = neute1 . Then

− nege − neute

= − nege1 − nege2 + (1)− neute1 − neute2 + (3) + (4) + (5)

= − nege1 − nege2 + nege2 − neute1 − neute2 + pose1 − nege2
+ 0 + neute1

= − nege1 − neute2 − nege2 + pose1

= ∇min(e, i).

In all cases, (b) holds. Furthermore, since (c) holds for e1, e2, at least one of
nege1 , pose1 and at least one of nege2 , pose2 equal 0.
• If nege1 = nege2 = 0, then (1) = (2) = 0 and nege = 0, so (c) holds for e.
• If pose1 = pose2 = 0, then (1) = (2) = 0 and pose = 0, so (c) holds for e.
• If nege1 = pose2 = 0, then (2) = 0 and (1) = min(pose1 , nege2 . Then

either (1) = pose1 and pose = pose1 + pose2 − (1) − (2) = pose1 + 0 −
pose1 − 0 = 0, or (1) = nege2 and nege = nege1 + nege2 − (1) − (2) =
0 + nege2 − nege2 − 0 = 0. In both cases, (c) holds for e.
• If pose1 = nege2 = 0, then (1) = 0 and (2) = min(nege1 , pose2 . Then

either (2) = nege1 and nege = nege1 + nege2 − (1) − (2) = nege1 + 0 −
0 − nege1 = 0, or (2) = pose2 and pose = pose1 + pose2 − (1) − (2) =
0 + pose2 − 0− pose2 = 0. In both cases, (c) holds for e.

20 L. Edixhoven and S.-S. Jongmans

Lemma 5. Let e ∈ E ∪ Ω such that e 6= ∅. Then:

(i) ξ(e, i) if and only if |w|[i + |w|]i > 0 for every w ∈ L(e);
(ii) ξω(e, i) if and only if |w|[i + |w|]i = ℵ0 for every w ∈ L(e).

Proof. All of these are proven by induction on the structure of e.

(i) – Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.
– Let e = e1 · e2. If ξ(e, i), then by definition either ξ(e1, i) or ξ(e2, i).

If ξ(e1, i), then by the induction hypothesis |w|[i + |w|]i > 0 for every
w ∈ L(e1) and then this also holds for every w ∈ L(e). The same holds
analogously for e2.
Otherwise, if not ξ(e, i), then neither ξ(e1, i) or ξ(e2, i). By the induction
hypothesis, there exist some w1 ∈ L(e1), w2 ∈ L(e2) such that |w1|[i +
|w1|]i = 0 and similarly for w2. Then w1w2 ∈ L(e) and |w1w2|[i +
|w1w2|]i = |w1|[i + |w2|[i + |w1|]i + |w2|]i = 0.

– Let e = e1 + e2. If ξ(e, i), then by definition both ξ(e1, i) and ξ(e2, i). By
the induction hypothesis, |w|[i + |w|]i > 0 for all w ∈ L(e1) ∪ L(e2) =
L(e).
If not ξ(e, i), then by definition not ξ(e1, i) or not ξ(e2, i). Without loss
of generality, not ξω(e1, i). Then there exists some w ∈ L(e1) ⊆ L(e)
such that |w|[i + |w|]i = 0.

– Let e = e∗1. Never ξ(e, i), and λ ∈ L(e).
– Let e = eω1 . If ξ(e, i), then by definition ξ(e1, i) and by the induction

hypothesis |w|[i + |w|]i > 0 for every w ∈ L(e1). Since if w ∈ L(e) then
w = w1w2 . . . such that wj ∈ L(e1) for every j, clearly also |w|[i +|w|]i >
0 for every w ∈ L(e).
If not ξ(e, i), then also not ξ(e1, i) and by the induction hypothesis there
exists some w ∈ L(e1) such that |w|[i + |w|]i = 0. Then wω ∈ L(e) and
|wω|[i + |wω|]i = 0.

(ii) We note that never ξω(e, i) if e ∈ E. However, if e ∈ E then all w ∈ L(e) are
finite and the lemma thus holds.
– Let e = e1 · e2 for some e1 ∈ E, e2 ∈ Ω. If ξω(e, i), then ξω(e2, i) and,

by the induction hypothesis, |w|[i + |w|]i = ℵ0 for every w ∈ L(e2). The
same then holds for e.
If not ξω(e, i), then not ξω(e2, i) and, by the induction hypothesis, there
exists some w2 ∈ L(e2) such that |w2|[i + |w2|]i ∈ N0. Since L(e1) only
contains finite words, then w1w2 ∈ L(e) and |w1w2|[i + |w1w2|]i ∈ N0

for some w1 ∈ L(e1).
– Let e = e1 + e2 for some e1, e2 ∈ Ω. If ξω(e, i), then both ξω(e1, i)

and ξω(e2, i). By the induction hypothesis, |w|[i + |w|]i = ℵ0 for all
w ∈ L(e1) ∪ L(e2) = L(e).
If not ξω(e, i), then not ξω(e1, i) or not ξω(e2, i). Without loss of gen-
erality, not ξω(e1, i) and by the induction hypothesis there exists some
w ∈ L(e1) ⊆ L(e) such that |w|[i + |w|]i ∈ N0.

– Let e = eω1 for some e1 ∈ E. If ξω(e, i), then ξ(e1, i) and by (i) |w|[i +
|w|]i > 0 for every w ∈ L(e1). Since if w ∈ L(e) then w = w1w2 . . . such

Balanced-by-construction regular and ω-regular languages (technical report) 21

that wj ∈ L(e1) for every j, clearly then |w|[i + |w|]i = ℵ0 for every
w ∈ L(e).

If not ξω(e, i), then not ξ(e1, i) and by (i) there exists some w ∈ L(e1)
such that |w|[i + |w|]i = 0. Then wω ∈ L(e) and |wω|[i + |wω|]i = 0.

Lemma 6 (cf. Lemma 1). Let e ∈ E ∪Ω. If ∇L(e, i), ∇U (e, i) and ∇min(e, i)
are defined, then:

(i) For every w ∈ L(e), |w|[i and |w|]i are either both finite or both infinite;

(ii) For every w ∈ L(e), if |w|[i , |w|]i are finite, then ∇L(e, i) ≤ |w|[i − |w|]i ≤
∇U (e, i);

(iii) If e ∈ E, then there exist w1, w2 ∈ L(e) such that |w1|[i − |w1|]i = ∇L(e, i)
and |w2|[i − |w2|]i = ∇U (e, i);

(iv) If ξω(e, i), then ∇L(e, i) = ∇U (e, i) = 0;

(v) |v|[i − |v|]i ≥ ∇min(e, i) for every finite prefix v of every w ∈ L(e);

(vi) |v|[i − |v|]i = ∇min(e, i) for some finite prefix v of some w ∈ L(e);

(vii) L(e) is i-bounded.

Proof. All of these are proven by induction on the structure of e. Since we assume
∇L(e, i) and ∇U (e, i) to be defined, e 6= ∅.

(i) The result trivially holds for all e ∈ E since they only contain finite words.

– Let e = e1 · e2 for some e1 ∈ E, e2 ∈ Ω. By the induction hypothesis,
the result holds for e2. Since all words in L(e1) are finite, the result also
holds for e.

– Let e = e1 + e2 for some e1, e2 ∈ Ω. By the induction hypothesis, the
result holds for e1 and e2 and then also for e.

– Let e = eω1 for some e1 ∈ E. Then ∇L(e1, i) = ∇U (e1, i) = ∇(e1, i) = 0.
It follows from Lemma 1(i) that |w|[i = |w|]i for all w ∈ L(e1). If
w ∈ L(e), then w = w1w2 . . . such that wj ∈ L(e1) for all j. It follows
that |w|[i = |w|]i , so either both are finite or both are infinite.

(ii) Let w ∈ L(e).

– Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.

– Let e = e1 · e2. Then w = w1w2 for some w1 ∈ L(e1), w2 ∈ L(e2). It
follows that |w1|[i , |w1|]i , |w2|[i , |w2|]i are finite and, by the induction
hypothesis:

∇L(e, i) = ∇L(e1, i) +∇L(e2, i)

≤ |w1|[i − |w1|]i + |w2|[i − |w2|]i
≤ ∇U (e1, i) +∇U (e2, i)

= ∇U (e, i).

Since |w|[i − |w|]i = |w1|[i − |w1|]i + |w2|[i − |w2|]i , the result holds for
e.

22 L. Edixhoven and S.-S. Jongmans

– Let e = e1 + e2. Then either w ∈ L(e1) or w ∈ L(e2). In the former case,
by the induction hypothesis, ∇L(e1, i) ≤ |w|[i − |w|]i ≤ ∇U (e1, i); the
latter case is analogous for e2. Combining these gives:

∇L(e, i) = min(∇L(e1, i),∇L(e2, i))

≤ |w|[i − |w|]i
≤ max(∇U (e1, i),∇U (e2, i))

= ∇U (e, i).

– Let e ∈ {e∗1, eω1 } for some e1. Then w = w1w2 . . . wn or w = w1w2 . . .,
where wj ∈ L(e1) for every j. Since ∇L(e, i) and ∇U (e, i) are defined,
∇L(e, i) = ∇U (e, i) = ∇L(e1, i) = ∇U (e1, i) = 0. It follows from the
induction hypothesis that |wj |[i − |wj |]i = 0 for every j. Then

|w|[i − |w|]i =
∑
j≥1

|wj |[i −
∑
j≥1

|wj |]i

=
∑
j≥1

(|wj |[i − |wj |]i)

=
∑
j≥1

0

= 0.

Since ∇L(e, i) = ∇U (e, i) = 0, the result holds.
(iii) – Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.

– Let e = e1 · e2. Then by the induction hypothesis there exist w1 ∈
L(e1), w2 ∈ L(e2) such that |w1|[i − |w1|]i = ∇L(e1, i) and similarly
for w2, e2. Then w1w2 ∈ L(e) and |w1w2|[i − |w1w2|]i = ∇L(e1, i) +
∇L(e2, i) = ∇L(e, i). The case for ∇U (e, i) is analogous.

– Let e = e1 +e2. If ∇L(e, i) = ∇L(e1, i), then by the induction hypothesis
there exists some w ∈ L(e1) ⊆ L(e) such that |w|[i−|w|]i = ∇L(e1, i) =
∇L(e, i). If ∇L(e, i) = ∇L(e2, i), then we proceed analogously. The case
for ∇U (e, i) is analogous.

– Let e = e∗1. Then ∇L(e, i) = ∇U (e, i) = ∇L(e1, i) = ∇U (e1, i) = 0. By
the induction hypothesis, there exists some w ∈ L(e1) ⊆ L(e)4 such that
|w|[i − |w|]i = ∇L(e1, i) = ∇L(e, i), and analogously for ∇U (e, i).

(iv) We note that ξω(e, i) can only hold if e ∈ Ω.
– Let e = e1 · e2 for some e1 ∈ E, e2 ∈ Ω. Then ξω(e2, i) and, by the

induction hypothesis, ∇L(e2, i) = ∇U (e2, i) = 0 and then, by definition,
∇L(e, i) = ∇U (e, i) = 0.

– Let e = e1 + e2 for some e1, e2 ∈ Ω. Then ξω(e1, i) and ξω(e2, i) and, by
the induction hypothesis,∇L(e1, i) = ∇U (e1, i) = ∇L(e2, i) = ∇U (e2, i) =
0. Then by definition, ∇L(e, i) = ∇U (e, i) = 0.

4 Note that L(∅∗) = {λ}, which is not a subset of ∅, but this violates our assumption
that e does not contain ∅ unless e = ∅.

Balanced-by-construction regular and ω-regular languages (technical report) 23

– Let e = eω1 for some e1 ∈ E. Then, since∇L(e, i) and∇U (e, i) are defined,
they both equal 0.

(v) Let v � w ∈ L(e).
– Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.
– Let e = e1 · e2. Then w = w1w2 for some w1 ∈ L(e1), w2 ∈ L(e2) and

either:
• v � w1, in which case, by the induction hypothesis,

|v|[i − |v|]i ≥ ∇min(e1, i)

≥ min(∇min(e1, i),∇L(e1, i) +∇min(e2, i))

= ∇min(e, i); or

• v = w1v2 for some v2 � w2, in which case, by the induction hypoth-
esis,

|v|[i − |v|]i = |w1|[i − |w1|]i + |v2|[i − |v2|]i
≥ ∇L(e1, i) +∇min(e2, i)

≥ min(∇min(e1, i),∇L(e1, i) +∇min(e2, i)

= ∇min(e, i).

– Let e = e1 + e2. Then either w ∈ L(e1) or w ∈ L(e2). In the for-
mer case, by the induction hypothesis, |v|[i − |v|]i ≥ ∇min(e1, i) ≥
∇min(∇min(e1, i),∇min(e2, i)). The latter case is analogous.

– Let e ∈ {e∗1, eω1 } for some e1. Then v = w1 . . . wk−1vk for some vk �
wk and w1, . . . , wk ∈ L(e1). Since ∇L(e, i) and ∇U (e, i) are defined,
∇L(e1, i) = ∇U (e1, i) = 0. Then, by the induction hypothesis,

|v|[i − |v|]i =
∑

1≤j<k

|wj |[i −
∑

1≤j<k

|wj |]i + |vk|[i − |vk|]i

=
∑

1≤j<k

(|wj |[i − |wj |]i) + |vk|[i − |vk|]i

=
∑

1≤j<k

0 + |vk|[i − |vk|]i

= |vk|[i − |vk|]i
≥ ∇min(e1, i)

= ∇min(e, i).

(vi) – Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.
– Let e = e1 · e2 for some e1 ∈ E, e2 ∈ E ∪ Ω. Then either:
• ∇min(e, i) = ∇min(e1, i), in which case, by the induction hypothe-

sis, there exists some v1 � w1 ∈ L(e1) such that |v1|[i − |v1|]i =
∇min(e1, i) = ∇min(e, i), and then v1 � w1w2 ∈ L(e) for some
w2 ∈ L(e2); or

24 L. Edixhoven and S.-S. Jongmans

• ∇min(e, i) = ∇L(e1, i) +∇min(e2, i), in which case, by the induction
hypothesis, there exists some v2 � w2 ∈ L(e2) such that |v2|[i −
|v2|]i = ∇min(e2, i). Since e1 ∈ E, by (iii) there exists some w1 ∈
L(e1) such that |w1|[i − |w1|]i = ∇L(e1, i). Then w1v2 � w1w2 ∈
L(e) and |w1v2|[i − |w1v2|]i = ∇L(e1, i) +∇min(e2, i) = ∇min(e, i).

– Let e = e1 + e2. Then either ∇min(e, i) = ∇min(e1, i) or ∇min(e, i) =
∇min(e2, i). In the former case, there exists some v1 � w1 ∈ L(e1) satis-
fying the lemma; the latter case is analogous for e2.

– Let e ∈ {e∗1, eω1 } for some e1. Then ∇min(e, i) = ∇min(e1, i) and, by
the induction hypothesis, there exists some v � w ∈ L(e1) such that
|v|[i − |v|]i = ∇min(e1, i) = ∇min(e, i). Since v � w ∈ L(e∗1) and v �
wω ∈ L(eω1), v is a prefix of some word in L(e) and satisfies the lemma.

(vii) – Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.
– Let e = e1 · e2 for some e1 ∈ E, e2 ∈ E ∪ Ω. Then either:
• ∇min(e, i) = ∇min(e1, i), in which case, by the induction hypothe-

sis, there exists some v1 � w1 ∈ L(e1) such that |v1|[i − |v1|]i =
∇min(e1, i) = ∇min(e, i), and then v1 � w1w2 ∈ L(e) for some
w2 ∈ L(e2); or

• ∇min(e, i) = ∇L(e1, i) +∇min(e2, i), in which case, by the induction
hypothesis, there exists some v2 � w2 ∈ L(e2) such that |v2|[i −
|v2|]i = ∇min(e2, i). Since e1 ∈ E, ∇L(e1, i) = ∇(e1, i) and then by
Lemma 1(i) there exists some w1 ∈ L(e1) such that |w1|[i − |w1|]i =
∇(e1, i) = ∇L(e1, i). Then w1v2 � w1w2 ∈ L(e) and |w1v2|[i −
|w1v2|]i = ∇L(e1, i) +∇min(e2, i) = ∇min(e, i).

– Let e = e1 + e2. Then either ∇min(e, i) = ∇min(e1, i) or ∇min(e, i) =
∇min(e2, i). In the former case, there exists some v1 � w1 ∈ L(e1) satis-
fying the lemma; the latter case is analogous for e2.

– Let e ∈ {e∗1, eω1 } for some e1. Then ∇min(e, i) = ∇min(e1, i) and, by
the induction hypothesis, there exists some v � w ∈ L(e1) such that
|v|[i − |v|]i = ∇min(e1, i) = ∇min(e, i). Since v � w ∈ L(e∗1) and v �
wω ∈ L(eω1), v is a prefix of some word in L(e) and satisfies the lemma.

Lemma 7 (cf. Lemma 2). Let e ∈ E∪Ω. If e 6= ∅, e is i-bounded and if there
exists some n such that |(|v|[i−|v|]i)−(|w|[i−|w|]i)| ≤ n for all v, w ∈ L(e) with
finite i-parenthesis counts, then ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.

Proof. This is proven by induction on the structure of e.

– Let e ∈ {λ, [j ,]j} for some j. Then the result holds trivially.
– Let e = e1 · e2. Then clearly e1, e2 6= ∅ and e1, e2 are i-bounded. Sup-

pose that the third condition of the premise does not hold for e1. Then
there exists a pair v1, w1 ∈ L(e1) with finite |v1|[i , |v1|]i , |w1|[i , |w1|]i , such
that |v1|[i − |v1|]i − (|w1|[i − |w1|]i) > n. Then, for some w2 ∈ L(e2)
with finite |w2|[i , |w2|]i , it follows that |v1w2|[i − |v1w2|]i − (|w1w2|[i −
|w1w2|]i) > n and, since v1w2, w1w2 ∈ L(e), this contradicts our premise.
An analogous argument can be made for e2. Since e1 and e2 then satisfy
all premises, by the induction hypothesis ∇L(e1, i), ∇U (e1, i), ∇min(e1, i),

Balanced-by-construction regular and ω-regular languages (technical report) 25

∇L(e2, i), ∇U (e2, i) and ∇min(e2, i) are all defined and then so are ∇L(e, i),
∇U (e, i) and ∇min(e, i).

– Let e = e1 +e2. Since L(e1), L(e2) ⊆ L(e), the premise holds for both e1 and
e2. By the induction hypothesis, ∇L(e1, i), ∇U (e1, i), ∇min(e1, i), ∇L(e2, i),
∇U (e2, i) and ∇min(e2, i) are all defined and then so are ∇L(e, i), ∇U (e, i)
and ∇min(e, i).

– Let e = e∗1 for some e1 ∈ E. Since L(e1) ⊆ L(e), the premise holds for e1. By
the induction hypothesis, ∇L(e1, i), ∇U (e1, i) and ∇min(e1, i) are defined.
Suppose that ∇L(e1, i) 6= 0. Then by (iii) there exists some w ∈ L(e1)
such that |w|[i − |w|]i = ∇L(e1, i) 6= 0. Then |wn+1|[i − |wn+1|]i − (|w|[i −
|w|]i) > n, which contradicts our premise since w,wn+1 ∈ L(e). Analogously,
∇U (e1, i) = 0. Then, ∇L(e, i) and ∇U (e, i) are defined. Since ∇min(e1, i) is
defined, so is ∇min(e, i).

– Let e = eω1 for some e1 ∈ E. Then, by assumption, e1 6= ∅ and since
e1 ∈ E it is also i-bounded. Suppose that the third condition of the premise
does not hold for e1. Then there exists a pair v, w ∈ L(e1) with finite
|v|[i , |v|]i , |w|[i , |w|]i , such that |v|[i − |v|]i − (|w|[i − |w|]i) > n. Then
|v|[i−|v|]i 6= 0 or |w|[i−|w|]i 6= 0. It follows that vω or wω is not i-bounded,
which contradicts our premise. Since e1 satisfies the premise, by the induc-
tion hypothesis ∇L(e1, i), ∇U (e1, i) and ∇min(e1, i) are defined and then so
is ∇min(e, i). Similarly, if ∇L(e1, i),∇U (e1, i) 6= 0 then e is not i-bounded,
Since both equal 0, ∇L(e, i) and ∇U (e, i) are defined.

Theorem 4. Let e ∈ E ∪ Ω. Then e is balanced iff ∇L(e, i) = ∇U (e, i) =
∇min(e, i) = 0 for every i or if e = ∅.

Proof. If e = ∅ then the result trivially holds. Otherwise:

– Suppose that e is balanced and fix i. By definition, e is i-bounded. Since
|w|[i − |w|]i = 0 for every w ∈ L(e) with finitely many i-parentheses, it
follows from Lemma 7 that ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.
Since e is balanced, an argument by contradiction on Lemma 6(vi) will
show that ∇min(e, i) ≥ 0. Since ∇min(e, i) ≤ 0 by definition, it follows that
∇min(e, i) = 0. If e ∈ E, then an argument by contradiction on Lemma 6(iii)
will show that ∇L(e, i) = ∇U (e, i) = 0. If e ∈ Ω and ξω(e, i), then this
follows directly from Lemma 6(iv).
Otherwise, e ∈ Ω and not ξω(e, i). Suppose that∇L(e, i) 6= 0. Using standard
algebraic rules, we can rewrite e into a disjunctive normal form e1 ·eω2 + . . .+
e2k−1 · eω2k, such that ej ∈ E for all j. Then ∇L(e2`−1 · eω2`, i) 6= 0 for some `.
Without loss of generality, let ` = 0, so ∇L(e1 ·eω2 , i) 6= 0. Then not ξω(eω2 , i)
and not ξ(e2, i), so it follows from Lemma 5(i) that |w2|[i = |w2|]i = 0 for
some w2 ∈ L(e2). Since ∇L(e, i) is defined, so is ∇L(e2, i) and by definition
∇L(e2, i) = 0 and it then follows that ∇L(e1, i) 6= 0. Then, by Lemma 6(iii),
|w1|[i − |w1|]i 6= 0 for some w1 ∈ L(e1). It follows that |w1w

ω
2 |[i 6= |w1w

ω
2 |]i

and, since w1w
ω
2 ∈ L(e), this contradics our premise that e is balanced and

∇L(e, i) must be 0. Analogously, so must ∇U (e, i). We can thus conclude
that ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0.

26 L. Edixhoven and S.-S. Jongmans

– Suppose that ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0 for some i. Let v � w ∈
L(e). By Lemma 6(i), either |w|[i and |w|]i are both finite, or both infinite.
If they are both infinite, then |w|[i = |w|]i . If they are finite, it follows from
Lemma 6(ii) that |w|[i−|w|]i = 0. In either case, |w|[i−|w|]i = 0. It follows
from Lemma 6(v) that |v|[i − |v|]i ≥ 0, and from Lemma 6(vii) that e is
i-bounded. Since this holds for every w, v, i, it follows that e is balanced.

Lemma 8. Let e = �θ(e1, . . . , en) ∈ E� be a shuffle of factors i, λ i, ± i

such that θ fits every ej and contains no +. Then eω ≡ ê1 + . . . + êm, where
êk = �θk(ek,1, . . . , ek,n) is a shuffle of factors i, λ i,

ω
i , ±

ω
i for every k

such that the number of ± i in e is the same as the number of ± ω
i in êk for

every i, and θk fits every ek,j.

Proof. Let ϕ : E 7→ 2E∪Ω such that ϕ(k
i) =

{
k
i ,

ω
i

}
, ϕ(λ

k
i) =

{
λ
k
i ,

ω
i

}
and ϕ(± k

i) = { ± ω
i }. We proceed to show that eω ≡ ê1 + . . . + êm, where

{ê1, . . . , êm} = {�θω (e′1, . . . , e
′
n) | e′1 ∈ ϕ(e1), . . . , e′n ∈ ϕ(en)}.

– Let w ∈ L(eω). Then w = �t1(w1,1, . . . , w1,n) �t2 (w2,1, . . . , w2,n) . . . =
�t1t2...(w1,1w2,1 . . . , . . . , w1,nw2,n . . .) = �t(w1, . . . , wn) for some w1, . . . ,
wn ∈ Σ∞ and t ∈ {1, . . . , n}ω.
Clearly t ∈ L(θω). If ej = ± k

i , then wj ∈ L(± ω
i) since λ /∈ L(± k

i). Oth-
erwise, wj can be of finite or infinite length. If finite, then wj ∈ L(ej); if
infinite, then wj ∈ L(ω

i). In other words: wj ∈ L(e′j) for some e′j ∈ ϕ(ej),
for every j, so w ∈ L(êk) for some k.

– Let w ∈ L(êk) for some êk = �θω (e′1, . . . , e
′
n). Then w = �t1t2...(ŵ1, . . . , ŵn)

for some t1, t2, . . . ∈ L(θ). Since θ fits every ej , there exist wi,j ∈ L(ej) such
that wi = �tj (wi,1, . . . , wi,n) ∈ L(e) for all i ≥ 1, 1 ≤ j ≤ n.
By construction and the definition of the factors, w1,jw2,j . . . wi,j is a prefix
of ŵj for every i, j. It follows that w1w2 . . . wi is a prefix of w for every i,
and then w = w1w2 . . . ∈ L(eω).

The two are thus language equivalent. Moreover, since ϕ maps ± i to ± ω
i ,

the number of factors ± ω
i in every êk matches the number of factors ± i in e.

However, if êk = �θω (e′1, . . . , e
′
n), then θω may not necessarily fit every e′j : if e′j

is one of i, λ i, then there are t ∈ L(θω) with infinitely many j, while every
word in L(e′j) is finite. Instead of θω, we can use the trajectory θ∗ ·ψ(θ)ω, where
ψ is a homomorphism such that ψ(j) = λ if e′j is one of i, λ i and ψ(j) = j
otherwise. This covers exactly the part of θω that fits every e′j . ut

	Balanced-by-construction regular and omega-regular languages (technical report)

